• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /* TO DO:
18  *   1.  Perhaps keep several copies of the encrypted key, in case something
19  *       goes horribly wrong?
20  *
21  */
22 
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <fcntl.h>
26 #include <unistd.h>
27 #include <stdio.h>
28 #include <sys/ioctl.h>
29 #include <linux/dm-ioctl.h>
30 #include <libgen.h>
31 #include <stdlib.h>
32 #include <sys/param.h>
33 #include <string.h>
34 #include <sys/mount.h>
35 #include <openssl/evp.h>
36 #include <openssl/sha.h>
37 #include <errno.h>
38 #include <cutils/android_reboot.h>
39 #include <ext4.h>
40 #include <linux/kdev_t.h>
41 #include "cryptfs.h"
42 #define LOG_TAG "Cryptfs"
43 #include "cutils/log.h"
44 #include "cutils/properties.h"
45 #include "hardware_legacy/power.h"
46 #include "VolumeManager.h"
47 
48 #define DM_CRYPT_BUF_SIZE 4096
49 #define DATA_MNT_POINT "/data"
50 
51 #define HASH_COUNT 2000
52 #define KEY_LEN_BYTES 16
53 #define IV_LEN_BYTES 16
54 
55 #define KEY_LOC_PROP   "ro.crypto.keyfile.userdata"
56 #define KEY_IN_FOOTER  "footer"
57 
58 #define EXT4_FS 1
59 #define FAT_FS 2
60 
61 char *me = "cryptfs";
62 
63 static unsigned char saved_master_key[KEY_LEN_BYTES];
64 static char *saved_data_blkdev;
65 static char *saved_mount_point;
66 static int  master_key_saved = 0;
67 
ioctl_init(struct dm_ioctl * io,size_t dataSize,const char * name,unsigned flags)68 static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
69 {
70     memset(io, 0, dataSize);
71     io->data_size = dataSize;
72     io->data_start = sizeof(struct dm_ioctl);
73     io->version[0] = 4;
74     io->version[1] = 0;
75     io->version[2] = 0;
76     io->flags = flags;
77     if (name) {
78         strncpy(io->name, name, sizeof(io->name));
79     }
80 }
81 
get_fs_size(char * dev)82 static unsigned int get_fs_size(char *dev)
83 {
84     int fd, block_size;
85     struct ext4_super_block sb;
86     off64_t len;
87 
88     if ((fd = open(dev, O_RDONLY)) < 0) {
89         SLOGE("Cannot open device to get filesystem size ");
90         return 0;
91     }
92 
93     if (lseek64(fd, 1024, SEEK_SET) < 0) {
94         SLOGE("Cannot seek to superblock");
95         return 0;
96     }
97 
98     if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
99         SLOGE("Cannot read superblock");
100         return 0;
101     }
102 
103     close(fd);
104 
105     block_size = 1024 << sb.s_log_block_size;
106     /* compute length in bytes */
107     len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
108 
109     /* return length in sectors */
110     return (unsigned int) (len / 512);
111 }
112 
get_blkdev_size(int fd)113 static unsigned int get_blkdev_size(int fd)
114 {
115   unsigned int nr_sec;
116 
117   if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) {
118     nr_sec = 0;
119   }
120 
121   return nr_sec;
122 }
123 
124 /* key or salt can be NULL, in which case just skip writing that value.  Useful to
125  * update the failed mount count but not change the key.
126  */
put_crypt_ftr_and_key(char * real_blk_name,struct crypt_mnt_ftr * crypt_ftr,unsigned char * key,unsigned char * salt)127 static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
128                                   unsigned char *key, unsigned char *salt)
129 {
130   int fd;
131   unsigned int nr_sec, cnt;
132   off64_t off;
133   int rc = -1;
134   char *fname;
135   char key_loc[PROPERTY_VALUE_MAX];
136   struct stat statbuf;
137 
138   property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER);
139 
140   if (!strcmp(key_loc, KEY_IN_FOOTER)) {
141     fname = real_blk_name;
142     if ( (fd = open(fname, O_RDWR)) < 0) {
143       SLOGE("Cannot open real block device %s\n", fname);
144       return -1;
145     }
146 
147     if ( (nr_sec = get_blkdev_size(fd)) == 0) {
148       SLOGE("Cannot get size of block device %s\n", fname);
149       goto errout;
150     }
151 
152     /* If it's an encrypted Android partition, the last 16 Kbytes contain the
153      * encryption info footer and key, and plenty of bytes to spare for future
154      * growth.
155      */
156     off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
157 
158     if (lseek64(fd, off, SEEK_SET) == -1) {
159       SLOGE("Cannot seek to real block device footer\n");
160       goto errout;
161     }
162   } else if (key_loc[0] == '/') {
163     fname = key_loc;
164     if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) {
165       SLOGE("Cannot open footer file %s\n", fname);
166       return -1;
167     }
168   } else {
169     SLOGE("Unexpected value for" KEY_LOC_PROP "\n");
170     return -1;;
171   }
172 
173   if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
174     SLOGE("Cannot write real block device footer\n");
175     goto errout;
176   }
177 
178   if (key) {
179     if (crypt_ftr->keysize != KEY_LEN_BYTES) {
180       SLOGE("Keysize of %d bits not supported for real block device %s\n",
181             crypt_ftr->keysize*8, fname);
182       goto errout;
183     }
184 
185     if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
186       SLOGE("Cannot write key for real block device %s\n", fname);
187       goto errout;
188     }
189   }
190 
191   if (salt) {
192     /* Compute the offset from the last write to the salt */
193     off = KEY_TO_SALT_PADDING;
194     if (! key)
195       off += crypt_ftr->keysize;
196 
197     if (lseek64(fd, off, SEEK_CUR) == -1) {
198       SLOGE("Cannot seek to real block device salt \n");
199       goto errout;
200     }
201 
202     if ( (cnt = write(fd, salt, SALT_LEN)) != SALT_LEN) {
203       SLOGE("Cannot write salt for real block device %s\n", fname);
204       goto errout;
205     }
206   }
207 
208   fstat(fd, &statbuf);
209   /* If the keys are kept on a raw block device, do not try to truncate it. */
210   if (S_ISREG(statbuf.st_mode) && (key_loc[0] == '/')) {
211     if (ftruncate(fd, 0x4000)) {
212       SLOGE("Cannot set footer file size\n", fname);
213       goto errout;
214     }
215   }
216 
217   /* Success! */
218   rc = 0;
219 
220 errout:
221   close(fd);
222   return rc;
223 
224 }
225 
get_crypt_ftr_and_key(char * real_blk_name,struct crypt_mnt_ftr * crypt_ftr,unsigned char * key,unsigned char * salt)226 static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
227                                   unsigned char *key, unsigned char *salt)
228 {
229   int fd;
230   unsigned int nr_sec, cnt;
231   off64_t off;
232   int rc = -1;
233   char key_loc[PROPERTY_VALUE_MAX];
234   char *fname;
235   struct stat statbuf;
236 
237   property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER);
238 
239   if (!strcmp(key_loc, KEY_IN_FOOTER)) {
240     fname = real_blk_name;
241     if ( (fd = open(fname, O_RDONLY)) < 0) {
242       SLOGE("Cannot open real block device %s\n", fname);
243       return -1;
244     }
245 
246     if ( (nr_sec = get_blkdev_size(fd)) == 0) {
247       SLOGE("Cannot get size of block device %s\n", fname);
248       goto errout;
249     }
250 
251     /* If it's an encrypted Android partition, the last 16 Kbytes contain the
252      * encryption info footer and key, and plenty of bytes to spare for future
253      * growth.
254      */
255     off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
256 
257     if (lseek64(fd, off, SEEK_SET) == -1) {
258       SLOGE("Cannot seek to real block device footer\n");
259       goto errout;
260     }
261   } else if (key_loc[0] == '/') {
262     fname = key_loc;
263     if ( (fd = open(fname, O_RDONLY)) < 0) {
264       SLOGE("Cannot open footer file %s\n", fname);
265       return -1;
266     }
267 
268     /* Make sure it's 16 Kbytes in length */
269     fstat(fd, &statbuf);
270     if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
271       SLOGE("footer file %s is not the expected size!\n", fname);
272       goto errout;
273     }
274   } else {
275     SLOGE("Unexpected value for" KEY_LOC_PROP "\n");
276     return -1;;
277   }
278 
279   if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
280     SLOGE("Cannot read real block device footer\n");
281     goto errout;
282   }
283 
284   if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
285     SLOGE("Bad magic for real block device %s\n", fname);
286     goto errout;
287   }
288 
289   if (crypt_ftr->major_version != 1) {
290     SLOGE("Cannot understand major version %d real block device footer\n",
291           crypt_ftr->major_version);
292     goto errout;
293   }
294 
295   if (crypt_ftr->minor_version != 0) {
296     SLOGW("Warning: crypto footer minor version %d, expected 0, continuing...\n",
297           crypt_ftr->minor_version);
298   }
299 
300   if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) {
301     /* the footer size is bigger than we expected.
302      * Skip to it's stated end so we can read the key.
303      */
304     if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr),  SEEK_CUR) == -1) {
305       SLOGE("Cannot seek to start of key\n");
306       goto errout;
307     }
308   }
309 
310   if (crypt_ftr->keysize != KEY_LEN_BYTES) {
311     SLOGE("Keysize of %d bits not supported for real block device %s\n",
312           crypt_ftr->keysize * 8, fname);
313     goto errout;
314   }
315 
316   if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
317     SLOGE("Cannot read key for real block device %s\n", fname);
318     goto errout;
319   }
320 
321   if (lseek64(fd, KEY_TO_SALT_PADDING, SEEK_CUR) == -1) {
322     SLOGE("Cannot seek to real block device salt\n");
323     goto errout;
324   }
325 
326   if ( (cnt = read(fd, salt, SALT_LEN)) != SALT_LEN) {
327     SLOGE("Cannot read salt for real block device %s\n", fname);
328     goto errout;
329   }
330 
331   /* Success! */
332   rc = 0;
333 
334 errout:
335   close(fd);
336   return rc;
337 }
338 
339 /* Convert a binary key of specified length into an ascii hex string equivalent,
340  * without the leading 0x and with null termination
341  */
convert_key_to_hex_ascii(unsigned char * master_key,unsigned int keysize,char * master_key_ascii)342 void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
343                               char *master_key_ascii)
344 {
345   unsigned int i, a;
346   unsigned char nibble;
347 
348   for (i=0, a=0; i<keysize; i++, a+=2) {
349     /* For each byte, write out two ascii hex digits */
350     nibble = (master_key[i] >> 4) & 0xf;
351     master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
352 
353     nibble = master_key[i] & 0xf;
354     master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
355   }
356 
357   /* Add the null termination */
358   master_key_ascii[a] = '\0';
359 
360 }
361 
create_crypto_blk_dev(struct crypt_mnt_ftr * crypt_ftr,unsigned char * master_key,char * real_blk_name,char * crypto_blk_name,const char * name)362 static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
363                                     char *real_blk_name, char *crypto_blk_name, const char *name)
364 {
365   char buffer[DM_CRYPT_BUF_SIZE];
366   char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
367   char *crypt_params;
368   struct dm_ioctl *io;
369   struct dm_target_spec *tgt;
370   unsigned int minor;
371   int fd;
372   int retval = -1;
373 
374   if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
375     SLOGE("Cannot open device-mapper\n");
376     goto errout;
377   }
378 
379   io = (struct dm_ioctl *) buffer;
380 
381   ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
382   if (ioctl(fd, DM_DEV_CREATE, io)) {
383     SLOGE("Cannot create dm-crypt device\n");
384     goto errout;
385   }
386 
387   /* Get the device status, in particular, the name of it's device file */
388   ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
389   if (ioctl(fd, DM_DEV_STATUS, io)) {
390     SLOGE("Cannot retrieve dm-crypt device status\n");
391     goto errout;
392   }
393   minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
394   snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
395 
396   /* Load the mapping table for this device */
397   tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
398 
399   ioctl_init(io, 4096, name, 0);
400   io->target_count = 1;
401   tgt->status = 0;
402   tgt->sector_start = 0;
403   tgt->length = crypt_ftr->fs_size;
404   strcpy(tgt->target_type, "crypt");
405 
406   crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
407   convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
408   sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name,
409           master_key_ascii, real_blk_name);
410   crypt_params += strlen(crypt_params) + 1;
411   crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
412   tgt->next = crypt_params - buffer;
413 
414   if (ioctl(fd, DM_TABLE_LOAD, io)) {
415       SLOGE("Cannot load dm-crypt mapping table.\n");
416       goto errout;
417   }
418 
419   /* Resume this device to activate it */
420   ioctl_init(io, 4096, name, 0);
421 
422   if (ioctl(fd, DM_DEV_SUSPEND, io)) {
423     SLOGE("Cannot resume the dm-crypt device\n");
424     goto errout;
425   }
426 
427   /* We made it here with no errors.  Woot! */
428   retval = 0;
429 
430 errout:
431   close(fd);   /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
432 
433   return retval;
434 }
435 
delete_crypto_blk_dev(char * name)436 static int delete_crypto_blk_dev(char *name)
437 {
438   int fd;
439   char buffer[DM_CRYPT_BUF_SIZE];
440   struct dm_ioctl *io;
441   int retval = -1;
442 
443   if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
444     SLOGE("Cannot open device-mapper\n");
445     goto errout;
446   }
447 
448   io = (struct dm_ioctl *) buffer;
449 
450   ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
451   if (ioctl(fd, DM_DEV_REMOVE, io)) {
452     SLOGE("Cannot remove dm-crypt device\n");
453     goto errout;
454   }
455 
456   /* We made it here with no errors.  Woot! */
457   retval = 0;
458 
459 errout:
460   close(fd);    /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
461 
462   return retval;
463 
464 }
465 
pbkdf2(char * passwd,unsigned char * salt,unsigned char * ikey)466 static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey)
467 {
468     /* Turn the password into a key and IV that can decrypt the master key */
469     PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN,
470                            HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
471 }
472 
encrypt_master_key(char * passwd,unsigned char * salt,unsigned char * decrypted_master_key,unsigned char * encrypted_master_key)473 static int encrypt_master_key(char *passwd, unsigned char *salt,
474                               unsigned char *decrypted_master_key,
475                               unsigned char *encrypted_master_key)
476 {
477     unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
478     EVP_CIPHER_CTX e_ctx;
479     int encrypted_len, final_len;
480 
481     /* Turn the password into a key and IV that can decrypt the master key */
482     pbkdf2(passwd, salt, ikey);
483 
484     /* Initialize the decryption engine */
485     if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
486         SLOGE("EVP_EncryptInit failed\n");
487         return -1;
488     }
489     EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
490 
491     /* Encrypt the master key */
492     if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
493                               decrypted_master_key, KEY_LEN_BYTES)) {
494         SLOGE("EVP_EncryptUpdate failed\n");
495         return -1;
496     }
497     if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
498         SLOGE("EVP_EncryptFinal failed\n");
499         return -1;
500     }
501 
502     if (encrypted_len + final_len != KEY_LEN_BYTES) {
503         SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
504         return -1;
505     } else {
506         return 0;
507     }
508 }
509 
decrypt_master_key(char * passwd,unsigned char * salt,unsigned char * encrypted_master_key,unsigned char * decrypted_master_key)510 static int decrypt_master_key(char *passwd, unsigned char *salt,
511                               unsigned char *encrypted_master_key,
512                               unsigned char *decrypted_master_key)
513 {
514   unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
515   EVP_CIPHER_CTX d_ctx;
516   int decrypted_len, final_len;
517 
518   /* Turn the password into a key and IV that can decrypt the master key */
519   pbkdf2(passwd, salt, ikey);
520 
521   /* Initialize the decryption engine */
522   if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
523     return -1;
524   }
525   EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
526   /* Decrypt the master key */
527   if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
528                             encrypted_master_key, KEY_LEN_BYTES)) {
529     return -1;
530   }
531   if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
532     return -1;
533   }
534 
535   if (decrypted_len + final_len != KEY_LEN_BYTES) {
536     return -1;
537   } else {
538     return 0;
539   }
540 }
541 
create_encrypted_random_key(char * passwd,unsigned char * master_key,unsigned char * salt)542 static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt)
543 {
544     int fd;
545     unsigned char key_buf[KEY_LEN_BYTES];
546     EVP_CIPHER_CTX e_ctx;
547     int encrypted_len, final_len;
548 
549     /* Get some random bits for a key */
550     fd = open("/dev/urandom", O_RDONLY);
551     read(fd, key_buf, sizeof(key_buf));
552     read(fd, salt, SALT_LEN);
553     close(fd);
554 
555     /* Now encrypt it with the password */
556     return encrypt_master_key(passwd, salt, key_buf, master_key);
557 }
558 
get_orig_mount_parms(char * mount_point,char * fs_type,char * real_blkdev,unsigned long * mnt_flags,char * fs_options)559 static int get_orig_mount_parms(char *mount_point, char *fs_type, char *real_blkdev,
560                                 unsigned long *mnt_flags, char *fs_options)
561 {
562   char mount_point2[PROPERTY_VALUE_MAX];
563   char fs_flags[PROPERTY_VALUE_MAX];
564 
565   property_get("ro.crypto.fs_type", fs_type, "");
566   property_get("ro.crypto.fs_real_blkdev", real_blkdev, "");
567   property_get("ro.crypto.fs_mnt_point", mount_point2, "");
568   property_get("ro.crypto.fs_options", fs_options, "");
569   property_get("ro.crypto.fs_flags", fs_flags, "");
570   *mnt_flags = strtol(fs_flags, 0, 0);
571 
572   if (strcmp(mount_point, mount_point2)) {
573     /* Consistency check.  These should match. If not, something odd happened. */
574     return -1;
575   }
576 
577   return 0;
578 }
579 
wait_and_unmount(char * mountpoint)580 static int wait_and_unmount(char *mountpoint)
581 {
582     int i, rc;
583 #define WAIT_UNMOUNT_COUNT 20
584 
585     /*  Now umount the tmpfs filesystem */
586     for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
587         if (umount(mountpoint)) {
588             if (errno == EINVAL) {
589                 /* EINVAL is returned if the directory is not a mountpoint,
590                  * i.e. there is no filesystem mounted there.  So just get out.
591                  */
592                 break;
593             }
594             sleep(1);
595             i++;
596         } else {
597           break;
598         }
599     }
600 
601     if (i < WAIT_UNMOUNT_COUNT) {
602       SLOGD("unmounting %s succeeded\n", mountpoint);
603       rc = 0;
604     } else {
605       SLOGE("unmounting %s failed\n", mountpoint);
606       rc = -1;
607     }
608 
609     return rc;
610 }
611 
612 #define DATA_PREP_TIMEOUT 100
prep_data_fs(void)613 static int prep_data_fs(void)
614 {
615     int i;
616 
617     /* Do the prep of the /data filesystem */
618     property_set("vold.post_fs_data_done", "0");
619     property_set("vold.decrypt", "trigger_post_fs_data");
620     SLOGD("Just triggered post_fs_data\n");
621 
622     /* Wait a max of 25 seconds, hopefully it takes much less */
623     for (i=0; i<DATA_PREP_TIMEOUT; i++) {
624         char p[PROPERTY_VALUE_MAX];
625 
626         property_get("vold.post_fs_data_done", p, "0");
627         if (*p == '1') {
628             break;
629         } else {
630             usleep(250000);
631         }
632     }
633     if (i == DATA_PREP_TIMEOUT) {
634         /* Ugh, we failed to prep /data in time.  Bail. */
635         return -1;
636     } else {
637         SLOGD("post_fs_data done\n");
638         return 0;
639     }
640 }
641 
cryptfs_restart(void)642 int cryptfs_restart(void)
643 {
644     char fs_type[32];
645     char real_blkdev[MAXPATHLEN];
646     char crypto_blkdev[MAXPATHLEN];
647     char fs_options[256];
648     unsigned long mnt_flags;
649     struct stat statbuf;
650     int rc = -1, i;
651     static int restart_successful = 0;
652 
653     /* Validate that it's OK to call this routine */
654     if (! master_key_saved) {
655         SLOGE("Encrypted filesystem not validated, aborting");
656         return -1;
657     }
658 
659     if (restart_successful) {
660         SLOGE("System already restarted with encrypted disk, aborting");
661         return -1;
662     }
663 
664     /* Here is where we shut down the framework.  The init scripts
665      * start all services in one of three classes: core, main or late_start.
666      * On boot, we start core and main.  Now, we stop main, but not core,
667      * as core includes vold and a few other really important things that
668      * we need to keep running.  Once main has stopped, we should be able
669      * to umount the tmpfs /data, then mount the encrypted /data.
670      * We then restart the class main, and also the class late_start.
671      * At the moment, I've only put a few things in late_start that I know
672      * are not needed to bring up the framework, and that also cause problems
673      * with unmounting the tmpfs /data, but I hope to add add more services
674      * to the late_start class as we optimize this to decrease the delay
675      * till the user is asked for the password to the filesystem.
676      */
677 
678     /* The init files are setup to stop the class main when vold.decrypt is
679      * set to trigger_reset_main.
680      */
681     property_set("vold.decrypt", "trigger_reset_main");
682     SLOGD("Just asked init to shut down class main\n");
683 
684     /* Now that the framework is shutdown, we should be able to umount()
685      * the tmpfs filesystem, and mount the real one.
686      */
687 
688     property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
689     if (strlen(crypto_blkdev) == 0) {
690         SLOGE("fs_crypto_blkdev not set\n");
691         return -1;
692     }
693 
694     if (! get_orig_mount_parms(DATA_MNT_POINT, fs_type, real_blkdev, &mnt_flags, fs_options)) {
695         SLOGD("Just got orig mount parms\n");
696 
697         if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) {
698             /* If that succeeded, then mount the decrypted filesystem */
699             mount(crypto_blkdev, DATA_MNT_POINT, fs_type, mnt_flags, fs_options);
700 
701             property_set("vold.decrypt", "trigger_load_persist_props");
702             /* Create necessary paths on /data */
703             if (prep_data_fs()) {
704                 return -1;
705             }
706 
707             /* startup service classes main and late_start */
708             property_set("vold.decrypt", "trigger_restart_framework");
709             SLOGD("Just triggered restart_framework\n");
710 
711             /* Give it a few moments to get started */
712             sleep(1);
713         }
714     }
715 
716     if (rc == 0) {
717         restart_successful = 1;
718     }
719 
720     return rc;
721 }
722 
do_crypto_complete(char * mount_point)723 static int do_crypto_complete(char *mount_point)
724 {
725   struct crypt_mnt_ftr crypt_ftr;
726   unsigned char encrypted_master_key[32];
727   unsigned char salt[SALT_LEN];
728   char real_blkdev[MAXPATHLEN];
729   char fs_type[PROPERTY_VALUE_MAX];
730   char fs_options[PROPERTY_VALUE_MAX];
731   unsigned long mnt_flags;
732   char encrypted_state[PROPERTY_VALUE_MAX];
733 
734   property_get("ro.crypto.state", encrypted_state, "");
735   if (strcmp(encrypted_state, "encrypted") ) {
736     SLOGE("not running with encryption, aborting");
737     return 1;
738   }
739 
740   if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
741     SLOGE("Error reading original mount parms for mount point %s\n", mount_point);
742     return -1;
743   }
744 
745   if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
746     SLOGE("Error getting crypt footer and key\n");
747     return -1;
748   }
749 
750   if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
751     SLOGE("Encryption process didn't finish successfully\n");
752     return -2;  /* -2 is the clue to the UI that there is no usable data on the disk,
753                  * and give the user an option to wipe the disk */
754   }
755 
756   /* We passed the test! We shall diminish, and return to the west */
757   return 0;
758 }
759 
test_mount_encrypted_fs(char * passwd,char * mount_point,char * label)760 static int test_mount_encrypted_fs(char *passwd, char *mount_point, char *label)
761 {
762   struct crypt_mnt_ftr crypt_ftr;
763   /* Allocate enough space for a 256 bit key, but we may use less */
764   unsigned char encrypted_master_key[32], decrypted_master_key[32];
765   unsigned char salt[SALT_LEN];
766   char crypto_blkdev[MAXPATHLEN];
767   char real_blkdev[MAXPATHLEN];
768   char fs_type[PROPERTY_VALUE_MAX];
769   char fs_options[PROPERTY_VALUE_MAX];
770   char tmp_mount_point[64];
771   unsigned long mnt_flags;
772   unsigned int orig_failed_decrypt_count;
773   char encrypted_state[PROPERTY_VALUE_MAX];
774   int rc;
775 
776   property_get("ro.crypto.state", encrypted_state, "");
777   if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
778     SLOGE("encrypted fs already validated or not running with encryption, aborting");
779     return -1;
780   }
781 
782   if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
783     SLOGE("Error reading original mount parms for mount point %s\n", mount_point);
784     return -1;
785   }
786 
787   if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
788     SLOGE("Error getting crypt footer and key\n");
789     return -1;
790   }
791 
792   SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size);
793   orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count;
794 
795   if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
796     decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
797   }
798 
799   if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key,
800                                real_blkdev, crypto_blkdev, label)) {
801     SLOGE("Error creating decrypted block device\n");
802     return -1;
803   }
804 
805   /* If init detects an encrypted filesystme, it writes a file for each such
806    * encrypted fs into the tmpfs /data filesystem, and then the framework finds those
807    * files and passes that data to me */
808   /* Create a tmp mount point to try mounting the decryptd fs
809    * Since we're here, the mount_point should be a tmpfs filesystem, so make
810    * a directory in it to test mount the decrypted filesystem.
811    */
812   sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
813   mkdir(tmp_mount_point, 0755);
814   if ( mount(crypto_blkdev, tmp_mount_point, "ext4", MS_RDONLY, "") ) {
815     SLOGE("Error temp mounting decrypted block device\n");
816     delete_crypto_blk_dev(label);
817     crypt_ftr.failed_decrypt_count++;
818   } else {
819     /* Success, so just umount and we'll mount it properly when we restart
820      * the framework.
821      */
822     umount(tmp_mount_point);
823     crypt_ftr.failed_decrypt_count  = 0;
824   }
825 
826   if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) {
827     put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
828   }
829 
830   if (crypt_ftr.failed_decrypt_count) {
831     /* We failed to mount the device, so return an error */
832     rc = crypt_ftr.failed_decrypt_count;
833 
834   } else {
835     /* Woot!  Success!  Save the name of the crypto block device
836      * so we can mount it when restarting the framework.
837      */
838     property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
839 
840     /* Also save a the master key so we can reencrypted the key
841      * the key when we want to change the password on it.
842      */
843     memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
844     saved_data_blkdev = strdup(real_blkdev);
845     saved_mount_point = strdup(mount_point);
846     master_key_saved = 1;
847     rc = 0;
848   }
849 
850   return rc;
851 }
852 
853 /* Called by vold when it wants to undo the crypto mapping of a volume it
854  * manages.  This is usually in response to a factory reset, when we want
855  * to undo the crypto mapping so the volume is formatted in the clear.
856  */
cryptfs_revert_volume(const char * label)857 int cryptfs_revert_volume(const char *label)
858 {
859     return delete_crypto_blk_dev((char *)label);
860 }
861 
862 /*
863  * Called by vold when it's asked to mount an encrypted, nonremovable volume.
864  * Setup a dm-crypt mapping, use the saved master key from
865  * setting up the /data mapping, and return the new device path.
866  */
cryptfs_setup_volume(const char * label,int major,int minor,char * crypto_sys_path,unsigned int max_path,int * new_major,int * new_minor)867 int cryptfs_setup_volume(const char *label, int major, int minor,
868                          char *crypto_sys_path, unsigned int max_path,
869                          int *new_major, int *new_minor)
870 {
871     char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN];
872     struct crypt_mnt_ftr sd_crypt_ftr;
873     unsigned char key[32], salt[32];
874     struct stat statbuf;
875     int nr_sec, fd;
876 
877     sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor);
878 
879     /* Just want the footer, but gotta get it all */
880     get_crypt_ftr_and_key(saved_data_blkdev, &sd_crypt_ftr, key, salt);
881 
882     /* Update the fs_size field to be the size of the volume */
883     fd = open(real_blkdev, O_RDONLY);
884     nr_sec = get_blkdev_size(fd);
885     close(fd);
886     if (nr_sec == 0) {
887         SLOGE("Cannot get size of volume %s\n", real_blkdev);
888         return -1;
889     }
890 
891     sd_crypt_ftr.fs_size = nr_sec;
892     create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev,
893                           crypto_blkdev, label);
894 
895     stat(crypto_blkdev, &statbuf);
896     *new_major = MAJOR(statbuf.st_rdev);
897     *new_minor = MINOR(statbuf.st_rdev);
898 
899     /* Create path to sys entry for this block device */
900     snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1);
901 
902     return 0;
903 }
904 
cryptfs_crypto_complete(void)905 int cryptfs_crypto_complete(void)
906 {
907   return do_crypto_complete("/data");
908 }
909 
cryptfs_check_passwd(char * passwd)910 int cryptfs_check_passwd(char *passwd)
911 {
912     int rc = -1;
913 
914     rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata");
915 
916     return rc;
917 }
918 
cryptfs_verify_passwd(char * passwd)919 int cryptfs_verify_passwd(char *passwd)
920 {
921     struct crypt_mnt_ftr crypt_ftr;
922     /* Allocate enough space for a 256 bit key, but we may use less */
923     unsigned char encrypted_master_key[32], decrypted_master_key[32];
924     unsigned char salt[SALT_LEN];
925     char real_blkdev[MAXPATHLEN];
926     char fs_type[PROPERTY_VALUE_MAX];
927     char fs_options[PROPERTY_VALUE_MAX];
928     unsigned long mnt_flags;
929     char encrypted_state[PROPERTY_VALUE_MAX];
930     int rc;
931 
932     property_get("ro.crypto.state", encrypted_state, "");
933     if (strcmp(encrypted_state, "encrypted") ) {
934         SLOGE("device not encrypted, aborting");
935         return -2;
936     }
937 
938     if (!master_key_saved) {
939         SLOGE("encrypted fs not yet mounted, aborting");
940         return -1;
941     }
942 
943     if (!saved_mount_point) {
944         SLOGE("encrypted fs failed to save mount point, aborting");
945         return -1;
946     }
947 
948     if (get_orig_mount_parms(saved_mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
949         SLOGE("Error reading original mount parms for mount point %s\n", saved_mount_point);
950         return -1;
951     }
952 
953     if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
954         SLOGE("Error getting crypt footer and key\n");
955         return -1;
956     }
957 
958     if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
959         /* If the device has no password, then just say the password is valid */
960         rc = 0;
961     } else {
962         decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
963         if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
964             /* They match, the password is correct */
965             rc = 0;
966         } else {
967             /* If incorrect, sleep for a bit to prevent dictionary attacks */
968             sleep(1);
969             rc = 1;
970         }
971     }
972 
973     return rc;
974 }
975 
976 /* Initialize a crypt_mnt_ftr structure.  The keysize is
977  * defaulted to 16 bytes, and the filesystem size to 0.
978  * Presumably, at a minimum, the caller will update the
979  * filesystem size and crypto_type_name after calling this function.
980  */
cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr * ftr)981 static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
982 {
983     ftr->magic = CRYPT_MNT_MAGIC;
984     ftr->major_version = 1;
985     ftr->minor_version = 0;
986     ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
987     ftr->flags = 0;
988     ftr->keysize = KEY_LEN_BYTES;
989     ftr->spare1 = 0;
990     ftr->fs_size = 0;
991     ftr->failed_decrypt_count = 0;
992     ftr->crypto_type_name[0] = '\0';
993 }
994 
cryptfs_enable_wipe(char * crypto_blkdev,off64_t size,int type)995 static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
996 {
997     char cmdline[256];
998     int rc = -1;
999 
1000     if (type == EXT4_FS) {
1001         snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s",
1002                  size * 512, crypto_blkdev);
1003         SLOGI("Making empty filesystem with command %s\n", cmdline);
1004     } else if (type== FAT_FS) {
1005         snprintf(cmdline, sizeof(cmdline), "/system/bin/newfs_msdos -F 32 -O android -c 8 -s %lld %s",
1006                  size, crypto_blkdev);
1007         SLOGI("Making empty filesystem with command %s\n", cmdline);
1008     } else {
1009         SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
1010         return -1;
1011     }
1012 
1013     if (system(cmdline)) {
1014       SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev);
1015     } else {
1016       SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev);
1017       rc = 0;
1018     }
1019 
1020     return rc;
1021 }
1022 
unix_read(int fd,void * buff,int len)1023 static inline int unix_read(int  fd, void*  buff, int  len)
1024 {
1025     int  ret;
1026     do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR);
1027     return ret;
1028 }
1029 
unix_write(int fd,const void * buff,int len)1030 static inline int unix_write(int  fd, const void*  buff, int  len)
1031 {
1032     int  ret;
1033     do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR);
1034     return ret;
1035 }
1036 
1037 #define CRYPT_INPLACE_BUFSIZE 4096
1038 #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512)
cryptfs_enable_inplace(char * crypto_blkdev,char * real_blkdev,off64_t size,off64_t * size_already_done,off64_t tot_size)1039 static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size,
1040                                   off64_t *size_already_done, off64_t tot_size)
1041 {
1042     int realfd, cryptofd;
1043     char *buf[CRYPT_INPLACE_BUFSIZE];
1044     int rc = -1;
1045     off64_t numblocks, i, remainder;
1046     off64_t one_pct, cur_pct, new_pct;
1047     off64_t blocks_already_done, tot_numblocks;
1048 
1049     if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) {
1050         SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
1051         return -1;
1052     }
1053 
1054     if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
1055         SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1056         close(realfd);
1057         return -1;
1058     }
1059 
1060     /* This is pretty much a simple loop of reading 4K, and writing 4K.
1061      * The size passed in is the number of 512 byte sectors in the filesystem.
1062      * So compute the number of whole 4K blocks we should read/write,
1063      * and the remainder.
1064      */
1065     numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
1066     remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
1067     tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
1068     blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
1069 
1070     SLOGE("Encrypting filesystem in place...");
1071 
1072     one_pct = tot_numblocks / 100;
1073     cur_pct = 0;
1074     /* process the majority of the filesystem in blocks */
1075     for (i=0; i<numblocks; i++) {
1076         new_pct = (i + blocks_already_done) / one_pct;
1077         if (new_pct > cur_pct) {
1078             char buf[8];
1079 
1080             cur_pct = new_pct;
1081             snprintf(buf, sizeof(buf), "%lld", cur_pct);
1082             property_set("vold.encrypt_progress", buf);
1083         }
1084         if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
1085             SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev);
1086             goto errout;
1087         }
1088         if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
1089             SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1090             goto errout;
1091         }
1092     }
1093 
1094     /* Do any remaining sectors */
1095     for (i=0; i<remainder; i++) {
1096         if (unix_read(realfd, buf, 512) <= 0) {
1097             SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev);
1098             goto errout;
1099         }
1100         if (unix_write(cryptofd, buf, 512) <= 0) {
1101             SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1102             goto errout;
1103         }
1104     }
1105 
1106     *size_already_done += size;
1107     rc = 0;
1108 
1109 errout:
1110     close(realfd);
1111     close(cryptofd);
1112 
1113     return rc;
1114 }
1115 
1116 #define CRYPTO_ENABLE_WIPE 1
1117 #define CRYPTO_ENABLE_INPLACE 2
1118 
1119 #define FRAMEWORK_BOOT_WAIT 60
1120 
should_encrypt(struct volume_info * volume)1121 static inline int should_encrypt(struct volume_info *volume)
1122 {
1123     return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) ==
1124             (VOL_ENCRYPTABLE | VOL_NONREMOVABLE);
1125 }
1126 
cryptfs_enable(char * howarg,char * passwd)1127 int cryptfs_enable(char *howarg, char *passwd)
1128 {
1129     int how = 0;
1130     char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN], sd_crypto_blkdev[MAXPATHLEN];
1131     char fs_type[PROPERTY_VALUE_MAX], fs_options[PROPERTY_VALUE_MAX],
1132          mount_point[PROPERTY_VALUE_MAX];
1133     unsigned long mnt_flags, nr_sec;
1134     unsigned char master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES];
1135     unsigned char salt[SALT_LEN];
1136     int rc=-1, fd, i, ret;
1137     struct crypt_mnt_ftr crypt_ftr, sd_crypt_ftr;;
1138     char tmpfs_options[PROPERTY_VALUE_MAX];
1139     char encrypted_state[PROPERTY_VALUE_MAX];
1140     char lockid[32] = { 0 };
1141     char key_loc[PROPERTY_VALUE_MAX];
1142     char fuse_sdcard[PROPERTY_VALUE_MAX];
1143     char *sd_mnt_point;
1144     char sd_blk_dev[256] = { 0 };
1145     int num_vols;
1146     struct volume_info *vol_list = 0;
1147     off64_t cur_encryption_done=0, tot_encryption_size=0;
1148 
1149     property_get("ro.crypto.state", encrypted_state, "");
1150     if (strcmp(encrypted_state, "unencrypted")) {
1151         SLOGE("Device is already running encrypted, aborting");
1152         goto error_unencrypted;
1153     }
1154 
1155     property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER);
1156 
1157     if (!strcmp(howarg, "wipe")) {
1158       how = CRYPTO_ENABLE_WIPE;
1159     } else if (! strcmp(howarg, "inplace")) {
1160       how = CRYPTO_ENABLE_INPLACE;
1161     } else {
1162       /* Shouldn't happen, as CommandListener vets the args */
1163       goto error_unencrypted;
1164     }
1165 
1166     get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options);
1167 
1168     /* Get the size of the real block device */
1169     fd = open(real_blkdev, O_RDONLY);
1170     if ( (nr_sec = get_blkdev_size(fd)) == 0) {
1171         SLOGE("Cannot get size of block device %s\n", real_blkdev);
1172         goto error_unencrypted;
1173     }
1174     close(fd);
1175 
1176     /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
1177     if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
1178         unsigned int fs_size_sec, max_fs_size_sec;
1179 
1180         fs_size_sec = get_fs_size(real_blkdev);
1181         max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
1182 
1183         if (fs_size_sec > max_fs_size_sec) {
1184             SLOGE("Orig filesystem overlaps crypto footer region.  Cannot encrypt in place.");
1185             goto error_unencrypted;
1186         }
1187     }
1188 
1189     /* Get a wakelock as this may take a while, and we don't want the
1190      * device to sleep on us.  We'll grab a partial wakelock, and if the UI
1191      * wants to keep the screen on, it can grab a full wakelock.
1192      */
1193     snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
1194     acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);
1195 
1196      /* Get the sdcard mount point */
1197      sd_mnt_point = getenv("EXTERNAL_STORAGE");
1198      if (! sd_mnt_point) {
1199          sd_mnt_point = "/mnt/sdcard";
1200      }
1201 
1202     num_vols=vold_getNumDirectVolumes();
1203     vol_list = malloc(sizeof(struct volume_info) * num_vols);
1204     vold_getDirectVolumeList(vol_list);
1205 
1206     for (i=0; i<num_vols; i++) {
1207         if (should_encrypt(&vol_list[i])) {
1208             fd = open(vol_list[i].blk_dev, O_RDONLY);
1209             if ( (vol_list[i].size = get_blkdev_size(fd)) == 0) {
1210                 SLOGE("Cannot get size of block device %s\n", vol_list[i].blk_dev);
1211                 goto error_unencrypted;
1212             }
1213             close(fd);
1214 
1215             ret=vold_disableVol(vol_list[i].label);
1216             if ((ret < 0) && (ret != UNMOUNT_NOT_MOUNTED_ERR)) {
1217                 /* -2 is returned when the device exists but is not currently mounted.
1218                  * ignore the error and continue. */
1219                 SLOGE("Failed to unmount volume %s\n", vol_list[i].label);
1220                 goto error_unencrypted;
1221             }
1222         }
1223     }
1224 
1225     /* The init files are setup to stop the class main and late start when
1226      * vold sets trigger_shutdown_framework.
1227      */
1228     property_set("vold.decrypt", "trigger_shutdown_framework");
1229     SLOGD("Just asked init to shut down class main\n");
1230 
1231     property_get("ro.crypto.fuse_sdcard", fuse_sdcard, "");
1232     if (!strcmp(fuse_sdcard, "true")) {
1233         /* This is a device using the fuse layer to emulate the sdcard semantics
1234          * on top of the userdata partition.  vold does not manage it, it is managed
1235          * by the sdcard service.  The sdcard service was killed by the property trigger
1236          * above, so just unmount it now.  We must do this _AFTER_ killing the framework,
1237          * unlike the case for vold managed devices above.
1238          */
1239         if (wait_and_unmount(sd_mnt_point)) {
1240             goto error_shutting_down;
1241         }
1242     }
1243 
1244     /* Now unmount the /data partition. */
1245     if (wait_and_unmount(DATA_MNT_POINT)) {
1246         goto error_shutting_down;
1247     }
1248 
1249     /* Do extra work for a better UX when doing the long inplace encryption */
1250     if (how == CRYPTO_ENABLE_INPLACE) {
1251         /* Now that /data is unmounted, we need to mount a tmpfs
1252          * /data, set a property saying we're doing inplace encryption,
1253          * and restart the framework.
1254          */
1255         property_get("ro.crypto.tmpfs_options", tmpfs_options, "");
1256         if (mount("tmpfs", DATA_MNT_POINT, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV,
1257             tmpfs_options) < 0) {
1258             goto error_shutting_down;
1259         }
1260         /* Tells the framework that inplace encryption is starting */
1261         property_set("vold.encrypt_progress", "0");
1262 
1263         /* restart the framework. */
1264         /* Create necessary paths on /data */
1265         if (prep_data_fs()) {
1266             goto error_shutting_down;
1267         }
1268 
1269         /* startup service classes main and late_start */
1270         property_set("vold.decrypt", "trigger_restart_min_framework");
1271         SLOGD("Just triggered restart_min_framework\n");
1272 
1273         /* OK, the framework is restarted and will soon be showing a
1274          * progress bar.  Time to setup an encrypted mapping, and
1275          * either write a new filesystem, or encrypt in place updating
1276          * the progress bar as we work.
1277          */
1278     }
1279 
1280     /* Start the actual work of making an encrypted filesystem */
1281     /* Initialize a crypt_mnt_ftr for the partition */
1282     cryptfs_init_crypt_mnt_ftr(&crypt_ftr);
1283     if (!strcmp(key_loc, KEY_IN_FOOTER)) {
1284         crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
1285     } else {
1286         crypt_ftr.fs_size = nr_sec;
1287     }
1288     crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
1289     strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
1290 
1291     /* Make an encrypted master key */
1292     if (create_encrypted_random_key(passwd, master_key, salt)) {
1293         SLOGE("Cannot create encrypted master key\n");
1294         goto error_unencrypted;
1295     }
1296 
1297     /* Write the key to the end of the partition */
1298     put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, master_key, salt);
1299 
1300     decrypt_master_key(passwd, salt, master_key, decrypted_master_key);
1301     create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
1302                           "userdata");
1303 
1304     /* The size of the userdata partition, and add in the vold volumes below */
1305     tot_encryption_size = crypt_ftr.fs_size;
1306 
1307     /* setup crypto mapping for all encryptable volumes handled by vold */
1308     for (i=0; i<num_vols; i++) {
1309         if (should_encrypt(&vol_list[i])) {
1310             vol_list[i].crypt_ftr = crypt_ftr; /* gotta love struct assign */
1311             vol_list[i].crypt_ftr.fs_size = vol_list[i].size;
1312             create_crypto_blk_dev(&vol_list[i].crypt_ftr, decrypted_master_key,
1313                                   vol_list[i].blk_dev, vol_list[i].crypto_blkdev,
1314                                   vol_list[i].label);
1315             tot_encryption_size += vol_list[i].size;
1316         }
1317     }
1318 
1319     if (how == CRYPTO_ENABLE_WIPE) {
1320         rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr.fs_size, EXT4_FS);
1321         /* Encrypt all encryptable volumes handled by vold */
1322         if (!rc) {
1323             for (i=0; i<num_vols; i++) {
1324                 if (should_encrypt(&vol_list[i])) {
1325                     rc = cryptfs_enable_wipe(vol_list[i].crypto_blkdev,
1326                                              vol_list[i].crypt_ftr.fs_size, FAT_FS);
1327                 }
1328             }
1329         }
1330     } else if (how == CRYPTO_ENABLE_INPLACE) {
1331         rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr.fs_size,
1332                                     &cur_encryption_done, tot_encryption_size);
1333         /* Encrypt all encryptable volumes handled by vold */
1334         if (!rc) {
1335             for (i=0; i<num_vols; i++) {
1336                 if (should_encrypt(&vol_list[i])) {
1337                     rc = cryptfs_enable_inplace(vol_list[i].crypto_blkdev,
1338                                                 vol_list[i].blk_dev,
1339                                                 vol_list[i].crypt_ftr.fs_size,
1340                                                 &cur_encryption_done, tot_encryption_size);
1341                 }
1342             }
1343         }
1344         if (!rc) {
1345             /* The inplace routine never actually sets the progress to 100%
1346              * due to the round down nature of integer division, so set it here */
1347             property_set("vold.encrypt_progress", "100");
1348         }
1349     } else {
1350         /* Shouldn't happen */
1351         SLOGE("cryptfs_enable: internal error, unknown option\n");
1352         goto error_unencrypted;
1353     }
1354 
1355     /* Undo the dm-crypt mapping whether we succeed or not */
1356     delete_crypto_blk_dev("userdata");
1357     for (i=0; i<num_vols; i++) {
1358         if (should_encrypt(&vol_list[i])) {
1359             delete_crypto_blk_dev(vol_list[i].label);
1360         }
1361     }
1362 
1363     free(vol_list);
1364 
1365     if (! rc) {
1366         /* Success */
1367 
1368         /* Clear the encryption in progres flag in the footer */
1369         crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
1370         put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
1371 
1372         sleep(2); /* Give the UI a chance to show 100% progress */
1373         android_reboot(ANDROID_RB_RESTART, 0, 0);
1374     } else {
1375         property_set("vold.encrypt_progress", "error_partially_encrypted");
1376         release_wake_lock(lockid);
1377         return -1;
1378     }
1379 
1380     /* hrm, the encrypt step claims success, but the reboot failed.
1381      * This should not happen.
1382      * Set the property and return.  Hope the framework can deal with it.
1383      */
1384     property_set("vold.encrypt_progress", "error_reboot_failed");
1385     release_wake_lock(lockid);
1386     return rc;
1387 
1388 error_unencrypted:
1389     free(vol_list);
1390     property_set("vold.encrypt_progress", "error_not_encrypted");
1391     if (lockid[0]) {
1392         release_wake_lock(lockid);
1393     }
1394     return -1;
1395 
1396 error_shutting_down:
1397     /* we failed, and have not encrypted anthing, so the users's data is still intact,
1398      * but the framework is stopped and not restarted to show the error, so it's up to
1399      * vold to restart the system.
1400      */
1401     SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system");
1402     android_reboot(ANDROID_RB_RESTART, 0, 0);
1403 
1404     /* shouldn't get here */
1405     property_set("vold.encrypt_progress", "error_shutting_down");
1406     free(vol_list);
1407     if (lockid[0]) {
1408         release_wake_lock(lockid);
1409     }
1410     return -1;
1411 }
1412 
cryptfs_changepw(char * newpw)1413 int cryptfs_changepw(char *newpw)
1414 {
1415     struct crypt_mnt_ftr crypt_ftr;
1416     unsigned char encrypted_master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES];
1417     unsigned char salt[SALT_LEN];
1418     char real_blkdev[MAXPATHLEN];
1419 
1420     /* This is only allowed after we've successfully decrypted the master key */
1421     if (! master_key_saved) {
1422         SLOGE("Key not saved, aborting");
1423         return -1;
1424     }
1425 
1426     property_get("ro.crypto.fs_real_blkdev", real_blkdev, "");
1427     if (strlen(real_blkdev) == 0) {
1428         SLOGE("Can't find real blkdev");
1429         return -1;
1430     }
1431 
1432     /* get key */
1433     if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
1434       SLOGE("Error getting crypt footer and key");
1435       return -1;
1436     }
1437 
1438     encrypt_master_key(newpw, salt, saved_master_key, encrypted_master_key);
1439 
1440     /* save the key */
1441     put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt);
1442 
1443     return 0;
1444 }
1445