• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file builds on the ADT/GraphTraits.h file to build generic depth
11 // first graph iterator.  This file exposes the following functions/types:
12 //
13 // df_begin/df_end/df_iterator
14 //   * Normal depth-first iteration - visit a node and then all of its children.
15 //
16 // idf_begin/idf_end/idf_iterator
17 //   * Depth-first iteration on the 'inverse' graph.
18 //
19 // df_ext_begin/df_ext_end/df_ext_iterator
20 //   * Normal depth-first iteration - visit a node and then all of its children.
21 //     This iterator stores the 'visited' set in an external set, which allows
22 //     it to be more efficient, and allows external clients to use the set for
23 //     other purposes.
24 //
25 // idf_ext_begin/idf_ext_end/idf_ext_iterator
26 //   * Depth-first iteration on the 'inverse' graph.
27 //     This iterator stores the 'visited' set in an external set, which allows
28 //     it to be more efficient, and allows external clients to use the set for
29 //     other purposes.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H
34 #define LLVM_ADT_DEPTHFIRSTITERATOR_H
35 
36 #include "llvm/ADT/GraphTraits.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/PointerIntPair.h"
39 #include <set>
40 #include <vector>
41 
42 namespace llvm {
43 
44 // df_iterator_storage - A private class which is used to figure out where to
45 // store the visited set.
46 template<class SetType, bool External>   // Non-external set
47 class df_iterator_storage {
48 public:
49   SetType Visited;
50 };
51 
52 template<class SetType>
53 class df_iterator_storage<SetType, true> {
54 public:
df_iterator_storage(SetType & VSet)55   df_iterator_storage(SetType &VSet) : Visited(VSet) {}
df_iterator_storage(const df_iterator_storage & S)56   df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {}
57   SetType &Visited;
58 };
59 
60 
61 // Generic Depth First Iterator
62 template<class GraphT,
63 class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
64          bool ExtStorage = false, class GT = GraphTraits<GraphT> >
65 class df_iterator : public std::iterator<std::forward_iterator_tag,
66                                          typename GT::NodeType, ptrdiff_t>,
67                     public df_iterator_storage<SetType, ExtStorage> {
68   typedef std::iterator<std::forward_iterator_tag,
69                         typename GT::NodeType, ptrdiff_t> super;
70 
71   typedef typename GT::NodeType          NodeType;
72   typedef typename GT::ChildIteratorType ChildItTy;
73   typedef PointerIntPair<NodeType*, 1>   PointerIntTy;
74 
75   // VisitStack - Used to maintain the ordering.  Top = current block
76   // First element is node pointer, second is the 'next child' to visit
77   // if the int in PointerIntTy is 0, the 'next child' to visit is invalid
78   std::vector<std::pair<PointerIntTy, ChildItTy> > VisitStack;
79 private:
df_iterator(NodeType * Node)80   inline df_iterator(NodeType *Node) {
81     this->Visited.insert(Node);
82     VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0),
83                                         GT::child_begin(Node)));
84   }
df_iterator()85   inline df_iterator() {
86     // End is when stack is empty
87   }
df_iterator(NodeType * Node,SetType & S)88   inline df_iterator(NodeType *Node, SetType &S)
89     : df_iterator_storage<SetType, ExtStorage>(S) {
90     if (!S.count(Node)) {
91       VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0),
92                                           GT::child_begin(Node)));
93       this->Visited.insert(Node);
94     }
95   }
df_iterator(SetType & S)96   inline df_iterator(SetType &S)
97     : df_iterator_storage<SetType, ExtStorage>(S) {
98     // End is when stack is empty
99   }
100 
toNext()101   inline void toNext() {
102     do {
103       std::pair<PointerIntTy, ChildItTy> &Top = VisitStack.back();
104       NodeType *Node = Top.first.getPointer();
105       ChildItTy &It  = Top.second;
106       if (!Top.first.getInt()) {
107         // now retrieve the real begin of the children before we dive in
108         It = GT::child_begin(Node);
109         Top.first.setInt(1);
110       }
111 
112       while (It != GT::child_end(Node)) {
113         NodeType *Next = *It++;
114         // Has our next sibling been visited?
115         if (Next && !this->Visited.count(Next)) {
116           // No, do it now.
117           this->Visited.insert(Next);
118           VisitStack.push_back(std::make_pair(PointerIntTy(Next, 0),
119                                               GT::child_begin(Next)));
120           return;
121         }
122       }
123 
124       // Oops, ran out of successors... go up a level on the stack.
125       VisitStack.pop_back();
126     } while (!VisitStack.empty());
127   }
128 
129 public:
130   typedef typename super::pointer pointer;
131   typedef df_iterator<GraphT, SetType, ExtStorage, GT> _Self;
132 
133   // Provide static begin and end methods as our public "constructors"
begin(const GraphT & G)134   static inline _Self begin(const GraphT& G) {
135     return _Self(GT::getEntryNode(G));
136   }
end(const GraphT & G)137   static inline _Self end(const GraphT& G) { return _Self(); }
138 
139   // Static begin and end methods as our public ctors for external iterators
begin(const GraphT & G,SetType & S)140   static inline _Self begin(const GraphT& G, SetType &S) {
141     return _Self(GT::getEntryNode(G), S);
142   }
end(const GraphT & G,SetType & S)143   static inline _Self end(const GraphT& G, SetType &S) { return _Self(S); }
144 
145   inline bool operator==(const _Self& x) const {
146     return VisitStack == x.VisitStack;
147   }
148   inline bool operator!=(const _Self& x) const { return !operator==(x); }
149 
150   inline pointer operator*() const {
151     return VisitStack.back().first.getPointer();
152   }
153 
154   // This is a nonstandard operator-> that dereferences the pointer an extra
155   // time... so that you can actually call methods ON the Node, because
156   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
157   //
158   inline NodeType *operator->() const { return operator*(); }
159 
160   inline _Self& operator++() {   // Preincrement
161     toNext();
162     return *this;
163   }
164 
165   // skips all children of the current node and traverses to next node
166   //
skipChildren()167   inline _Self& skipChildren() {
168     VisitStack.pop_back();
169     if (!VisitStack.empty())
170       toNext();
171     return *this;
172   }
173 
174   inline _Self operator++(int) { // Postincrement
175     _Self tmp = *this; ++*this; return tmp;
176   }
177 
178   // nodeVisited - return true if this iterator has already visited the
179   // specified node.  This is public, and will probably be used to iterate over
180   // nodes that a depth first iteration did not find: ie unreachable nodes.
181   //
nodeVisited(NodeType * Node)182   inline bool nodeVisited(NodeType *Node) const {
183     return this->Visited.count(Node) != 0;
184   }
185 
186   /// getPathLength - Return the length of the path from the entry node to the
187   /// current node, counting both nodes.
getPathLength()188   unsigned getPathLength() const { return VisitStack.size(); }
189 
190   /// getPath - Return the n'th node in the path from the the entry node to the
191   /// current node.
getPath(unsigned n)192   NodeType *getPath(unsigned n) const {
193     return VisitStack[n].first.getPointer();
194   }
195 };
196 
197 
198 // Provide global constructors that automatically figure out correct types...
199 //
200 template <class T>
df_begin(const T & G)201 df_iterator<T> df_begin(const T& G) {
202   return df_iterator<T>::begin(G);
203 }
204 
205 template <class T>
df_end(const T & G)206 df_iterator<T> df_end(const T& G) {
207   return df_iterator<T>::end(G);
208 }
209 
210 // Provide global definitions of external depth first iterators...
211 template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeType*> >
212 struct df_ext_iterator : public df_iterator<T, SetTy, true> {
df_ext_iteratordf_ext_iterator213   df_ext_iterator(const df_iterator<T, SetTy, true> &V)
214     : df_iterator<T, SetTy, true>(V) {}
215 };
216 
217 template <class T, class SetTy>
df_ext_begin(const T & G,SetTy & S)218 df_ext_iterator<T, SetTy> df_ext_begin(const T& G, SetTy &S) {
219   return df_ext_iterator<T, SetTy>::begin(G, S);
220 }
221 
222 template <class T, class SetTy>
df_ext_end(const T & G,SetTy & S)223 df_ext_iterator<T, SetTy> df_ext_end(const T& G, SetTy &S) {
224   return df_ext_iterator<T, SetTy>::end(G, S);
225 }
226 
227 
228 // Provide global definitions of inverse depth first iterators...
229 template <class T,
230   class SetTy = llvm::SmallPtrSet<typename GraphTraits<T>::NodeType*, 8>,
231           bool External = false>
232 struct idf_iterator : public df_iterator<Inverse<T>, SetTy, External> {
idf_iteratoridf_iterator233   idf_iterator(const df_iterator<Inverse<T>, SetTy, External> &V)
234     : df_iterator<Inverse<T>, SetTy, External>(V) {}
235 };
236 
237 template <class T>
idf_begin(const T & G)238 idf_iterator<T> idf_begin(const T& G) {
239   return idf_iterator<T>::begin(Inverse<T>(G));
240 }
241 
242 template <class T>
idf_end(const T & G)243 idf_iterator<T> idf_end(const T& G){
244   return idf_iterator<T>::end(Inverse<T>(G));
245 }
246 
247 // Provide global definitions of external inverse depth first iterators...
248 template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeType*> >
249 struct idf_ext_iterator : public idf_iterator<T, SetTy, true> {
idf_ext_iteratoridf_ext_iterator250   idf_ext_iterator(const idf_iterator<T, SetTy, true> &V)
251     : idf_iterator<T, SetTy, true>(V) {}
idf_ext_iteratoridf_ext_iterator252   idf_ext_iterator(const df_iterator<Inverse<T>, SetTy, true> &V)
253     : idf_iterator<T, SetTy, true>(V) {}
254 };
255 
256 template <class T, class SetTy>
idf_ext_begin(const T & G,SetTy & S)257 idf_ext_iterator<T, SetTy> idf_ext_begin(const T& G, SetTy &S) {
258   return idf_ext_iterator<T, SetTy>::begin(Inverse<T>(G), S);
259 }
260 
261 template <class T, class SetTy>
idf_ext_end(const T & G,SetTy & S)262 idf_ext_iterator<T, SetTy> idf_ext_end(const T& G, SetTy &S) {
263   return idf_ext_iterator<T, SetTy>::end(Inverse<T>(G), S);
264 }
265 
266 } // End llvm namespace
267 
268 #endif
269