1 /*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /*
18 * This file contains codegen and support common to all supported
19 * ARM variants. It is included by:
20 *
21 * Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 * which combines this common code with specific support found in the
24 * applicable directory below this one.
25 */
26
27 #include "compiler/Loop.h"
28
29 /* Array holding the entry offset of each template relative to the first one */
30 static intptr_t templateEntryOffsets[TEMPLATE_LAST_MARK];
31
32 /* Track exercised opcodes */
33 static int opcodeCoverage[kNumPackedOpcodes];
34
setMemRefType(ArmLIR * lir,bool isLoad,int memType)35 static void setMemRefType(ArmLIR *lir, bool isLoad, int memType)
36 {
37 u8 *maskPtr;
38 u8 mask = ENCODE_MEM;;
39 assert(EncodingMap[lir->opcode].flags & (IS_LOAD | IS_STORE));
40 if (isLoad) {
41 maskPtr = &lir->useMask;
42 } else {
43 maskPtr = &lir->defMask;
44 }
45 /* Clear out the memref flags */
46 *maskPtr &= ~mask;
47 /* ..and then add back the one we need */
48 switch(memType) {
49 case kLiteral:
50 assert(isLoad);
51 *maskPtr |= ENCODE_LITERAL;
52 break;
53 case kDalvikReg:
54 *maskPtr |= ENCODE_DALVIK_REG;
55 break;
56 case kHeapRef:
57 *maskPtr |= ENCODE_HEAP_REF;
58 break;
59 case kMustNotAlias:
60 /* Currently only loads can be marked as kMustNotAlias */
61 assert(!(EncodingMap[lir->opcode].flags & IS_STORE));
62 *maskPtr |= ENCODE_MUST_NOT_ALIAS;
63 break;
64 default:
65 LOGE("Jit: invalid memref kind - %d", memType);
66 assert(0); // Bail if debug build, set worst-case in the field
67 *maskPtr |= ENCODE_ALL;
68 }
69 }
70
71 /*
72 * Mark load/store instructions that access Dalvik registers through r5FP +
73 * offset.
74 */
annotateDalvikRegAccess(ArmLIR * lir,int regId,bool isLoad)75 static void annotateDalvikRegAccess(ArmLIR *lir, int regId, bool isLoad)
76 {
77 setMemRefType(lir, isLoad, kDalvikReg);
78
79 /*
80 * Store the Dalvik register id in aliasInfo. Mark he MSB if it is a 64-bit
81 * access.
82 */
83 lir->aliasInfo = regId;
84 if (DOUBLEREG(lir->operands[0])) {
85 lir->aliasInfo |= 0x80000000;
86 }
87 }
88
89 /*
90 * Decode the register id.
91 */
getRegMaskCommon(int reg)92 static inline u8 getRegMaskCommon(int reg)
93 {
94 u8 seed;
95 int shift;
96 int regId = reg & 0x1f;
97
98 /*
99 * Each double register is equal to a pair of single-precision FP registers
100 */
101 seed = DOUBLEREG(reg) ? 3 : 1;
102 /* FP register starts at bit position 16 */
103 shift = FPREG(reg) ? kFPReg0 : 0;
104 /* Expand the double register id into single offset */
105 shift += regId;
106 return (seed << shift);
107 }
108
109 /* External version of getRegMaskCommon */
dvmGetRegResourceMask(int reg)110 u8 dvmGetRegResourceMask(int reg)
111 {
112 return getRegMaskCommon(reg);
113 }
114
115 /*
116 * Mark the corresponding bit(s).
117 */
setupRegMask(u8 * mask,int reg)118 static inline void setupRegMask(u8 *mask, int reg)
119 {
120 *mask |= getRegMaskCommon(reg);
121 }
122
123 /*
124 * Set up the proper fields in the resource mask
125 */
setupResourceMasks(ArmLIR * lir)126 static void setupResourceMasks(ArmLIR *lir)
127 {
128 int opcode = lir->opcode;
129 int flags;
130
131 if (opcode <= 0) {
132 lir->useMask = lir->defMask = 0;
133 return;
134 }
135
136 flags = EncodingMap[lir->opcode].flags;
137
138 /* Set up the mask for resources that are updated */
139 if (flags & (IS_LOAD | IS_STORE)) {
140 /* Default to heap - will catch specialized classes later */
141 setMemRefType(lir, flags & IS_LOAD, kHeapRef);
142 }
143
144 /*
145 * Conservatively assume the branch here will call out a function that in
146 * turn will trash everything.
147 */
148 if (flags & IS_BRANCH) {
149 lir->defMask = lir->useMask = ENCODE_ALL;
150 return;
151 }
152
153 if (flags & REG_DEF0) {
154 setupRegMask(&lir->defMask, lir->operands[0]);
155 }
156
157 if (flags & REG_DEF1) {
158 setupRegMask(&lir->defMask, lir->operands[1]);
159 }
160
161 if (flags & REG_DEF_SP) {
162 lir->defMask |= ENCODE_REG_SP;
163 }
164
165 if (flags & REG_DEF_LR) {
166 lir->defMask |= ENCODE_REG_LR;
167 }
168
169 if (flags & REG_DEF_LIST0) {
170 lir->defMask |= ENCODE_REG_LIST(lir->operands[0]);
171 }
172
173 if (flags & REG_DEF_LIST1) {
174 lir->defMask |= ENCODE_REG_LIST(lir->operands[1]);
175 }
176
177 if (flags & SETS_CCODES) {
178 lir->defMask |= ENCODE_CCODE;
179 }
180
181 /* Conservatively treat the IT block */
182 if (flags & IS_IT) {
183 lir->defMask = ENCODE_ALL;
184 }
185
186 if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) {
187 int i;
188
189 for (i = 0; i < 4; i++) {
190 if (flags & (1 << (kRegUse0 + i))) {
191 setupRegMask(&lir->useMask, lir->operands[i]);
192 }
193 }
194 }
195
196 if (flags & REG_USE_PC) {
197 lir->useMask |= ENCODE_REG_PC;
198 }
199
200 if (flags & REG_USE_SP) {
201 lir->useMask |= ENCODE_REG_SP;
202 }
203
204 if (flags & REG_USE_LIST0) {
205 lir->useMask |= ENCODE_REG_LIST(lir->operands[0]);
206 }
207
208 if (flags & REG_USE_LIST1) {
209 lir->useMask |= ENCODE_REG_LIST(lir->operands[1]);
210 }
211
212 if (flags & USES_CCODES) {
213 lir->useMask |= ENCODE_CCODE;
214 }
215
216 /* Fixup for kThumbPush/lr and kThumbPop/pc */
217 if (opcode == kThumbPush || opcode == kThumbPop) {
218 u8 r8Mask = getRegMaskCommon(r8);
219 if ((opcode == kThumbPush) && (lir->useMask & r8Mask)) {
220 lir->useMask &= ~r8Mask;
221 lir->useMask |= ENCODE_REG_LR;
222 } else if ((opcode == kThumbPop) && (lir->defMask & r8Mask)) {
223 lir->defMask &= ~r8Mask;
224 lir->defMask |= ENCODE_REG_PC;
225 }
226 }
227 }
228
229 /*
230 * Set up the accurate resource mask for branch instructions
231 */
relaxBranchMasks(ArmLIR * lir)232 static void relaxBranchMasks(ArmLIR *lir)
233 {
234 int flags = EncodingMap[lir->opcode].flags;
235
236 /* Make sure only branch instructions are passed here */
237 assert(flags & IS_BRANCH);
238
239 lir->useMask = lir->defMask = ENCODE_REG_PC;
240
241 if (flags & REG_DEF_LR) {
242 lir->defMask |= ENCODE_REG_LR;
243 }
244
245 if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) {
246 int i;
247
248 for (i = 0; i < 4; i++) {
249 if (flags & (1 << (kRegUse0 + i))) {
250 setupRegMask(&lir->useMask, lir->operands[i]);
251 }
252 }
253 }
254
255 if (flags & USES_CCODES) {
256 lir->useMask |= ENCODE_CCODE;
257 }
258 }
259
260 /*
261 * The following are building blocks to construct low-level IRs with 0 - 4
262 * operands.
263 */
newLIR0(CompilationUnit * cUnit,ArmOpcode opcode)264 static ArmLIR *newLIR0(CompilationUnit *cUnit, ArmOpcode opcode)
265 {
266 ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
267 assert(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & NO_OPERAND));
268 insn->opcode = opcode;
269 setupResourceMasks(insn);
270 dvmCompilerAppendLIR(cUnit, (LIR *) insn);
271 return insn;
272 }
273
newLIR1(CompilationUnit * cUnit,ArmOpcode opcode,int dest)274 static ArmLIR *newLIR1(CompilationUnit *cUnit, ArmOpcode opcode,
275 int dest)
276 {
277 ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
278 assert(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_UNARY_OP));
279 insn->opcode = opcode;
280 insn->operands[0] = dest;
281 setupResourceMasks(insn);
282 dvmCompilerAppendLIR(cUnit, (LIR *) insn);
283 return insn;
284 }
285
newLIR2(CompilationUnit * cUnit,ArmOpcode opcode,int dest,int src1)286 static ArmLIR *newLIR2(CompilationUnit *cUnit, ArmOpcode opcode,
287 int dest, int src1)
288 {
289 ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
290 assert(isPseudoOpcode(opcode) ||
291 (EncodingMap[opcode].flags & IS_BINARY_OP));
292 insn->opcode = opcode;
293 insn->operands[0] = dest;
294 insn->operands[1] = src1;
295 setupResourceMasks(insn);
296 dvmCompilerAppendLIR(cUnit, (LIR *) insn);
297 return insn;
298 }
299
newLIR3(CompilationUnit * cUnit,ArmOpcode opcode,int dest,int src1,int src2)300 static ArmLIR *newLIR3(CompilationUnit *cUnit, ArmOpcode opcode,
301 int dest, int src1, int src2)
302 {
303 ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
304 if (!(EncodingMap[opcode].flags & IS_TERTIARY_OP)) {
305 LOGE("Bad LIR3: %s[%d]",EncodingMap[opcode].name,opcode);
306 }
307 assert(isPseudoOpcode(opcode) ||
308 (EncodingMap[opcode].flags & IS_TERTIARY_OP));
309 insn->opcode = opcode;
310 insn->operands[0] = dest;
311 insn->operands[1] = src1;
312 insn->operands[2] = src2;
313 setupResourceMasks(insn);
314 dvmCompilerAppendLIR(cUnit, (LIR *) insn);
315 return insn;
316 }
317
318 #if defined(_ARMV7_A) || defined(_ARMV7_A_NEON)
newLIR4(CompilationUnit * cUnit,ArmOpcode opcode,int dest,int src1,int src2,int info)319 static ArmLIR *newLIR4(CompilationUnit *cUnit, ArmOpcode opcode,
320 int dest, int src1, int src2, int info)
321 {
322 ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
323 assert(isPseudoOpcode(opcode) ||
324 (EncodingMap[opcode].flags & IS_QUAD_OP));
325 insn->opcode = opcode;
326 insn->operands[0] = dest;
327 insn->operands[1] = src1;
328 insn->operands[2] = src2;
329 insn->operands[3] = info;
330 setupResourceMasks(insn);
331 dvmCompilerAppendLIR(cUnit, (LIR *) insn);
332 return insn;
333 }
334 #endif
335
336 /*
337 * If the next instruction is a move-result or move-result-long,
338 * return the target Dalvik sReg[s] and convert the next to a
339 * nop. Otherwise, return INVALID_SREG. Used to optimize method inlining.
340 */
inlinedTarget(CompilationUnit * cUnit,MIR * mir,bool fpHint)341 static RegLocation inlinedTarget(CompilationUnit *cUnit, MIR *mir,
342 bool fpHint)
343 {
344 if (mir->next &&
345 ((mir->next->dalvikInsn.opcode == OP_MOVE_RESULT) ||
346 (mir->next->dalvikInsn.opcode == OP_MOVE_RESULT_OBJECT))) {
347 mir->next->dalvikInsn.opcode = OP_NOP;
348 return dvmCompilerGetDest(cUnit, mir->next, 0);
349 } else {
350 RegLocation res = LOC_DALVIK_RETURN_VAL;
351 res.fp = fpHint;
352 return res;
353 }
354 }
355
356 /*
357 * Search the existing constants in the literal pool for an exact or close match
358 * within specified delta (greater or equal to 0).
359 */
scanLiteralPool(LIR * dataTarget,int value,unsigned int delta)360 static ArmLIR *scanLiteralPool(LIR *dataTarget, int value, unsigned int delta)
361 {
362 while (dataTarget) {
363 if (((unsigned) (value - ((ArmLIR *) dataTarget)->operands[0])) <=
364 delta)
365 return (ArmLIR *) dataTarget;
366 dataTarget = dataTarget->next;
367 }
368 return NULL;
369 }
370
371 /*
372 * The following are building blocks to insert constants into the pool or
373 * instruction streams.
374 */
375
376 /* Add a 32-bit constant either in the constant pool or mixed with code */
addWordData(CompilationUnit * cUnit,LIR ** constantListP,int value)377 static ArmLIR *addWordData(CompilationUnit *cUnit, LIR **constantListP,
378 int value)
379 {
380 /* Add the constant to the literal pool */
381 if (constantListP) {
382 ArmLIR *newValue = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
383 newValue->operands[0] = value;
384 newValue->generic.next = *constantListP;
385 *constantListP = (LIR *) newValue;
386 return newValue;
387 } else {
388 /* Add the constant in the middle of code stream */
389 newLIR1(cUnit, kArm16BitData, (value & 0xffff));
390 newLIR1(cUnit, kArm16BitData, (value >> 16));
391 }
392 return NULL;
393 }
394
inlinedTargetWide(CompilationUnit * cUnit,MIR * mir,bool fpHint)395 static RegLocation inlinedTargetWide(CompilationUnit *cUnit, MIR *mir,
396 bool fpHint)
397 {
398 if (mir->next &&
399 (mir->next->dalvikInsn.opcode == OP_MOVE_RESULT_WIDE)) {
400 mir->next->dalvikInsn.opcode = OP_NOP;
401 return dvmCompilerGetDestWide(cUnit, mir->next, 0, 1);
402 } else {
403 RegLocation res = LOC_DALVIK_RETURN_VAL_WIDE;
404 res.fp = fpHint;
405 return res;
406 }
407 }
408
409
410 /*
411 * Generate an kArmPseudoBarrier marker to indicate the boundary of special
412 * blocks.
413 */
genBarrier(CompilationUnit * cUnit)414 static void genBarrier(CompilationUnit *cUnit)
415 {
416 ArmLIR *barrier = newLIR0(cUnit, kArmPseudoBarrier);
417 /* Mark all resources as being clobbered */
418 barrier->defMask = -1;
419 }
420
421 /* Create the PC reconstruction slot if not already done */
genCheckCommon(CompilationUnit * cUnit,int dOffset,ArmLIR * branch,ArmLIR * pcrLabel)422 static ArmLIR *genCheckCommon(CompilationUnit *cUnit, int dOffset,
423 ArmLIR *branch,
424 ArmLIR *pcrLabel)
425 {
426 /* Forget all def info (because we might rollback here. Bug #2367397 */
427 dvmCompilerResetDefTracking(cUnit);
428
429 /* Set up the place holder to reconstruct this Dalvik PC */
430 if (pcrLabel == NULL) {
431 int dPC = (int) (cUnit->method->insns + dOffset);
432 pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
433 pcrLabel->opcode = kArmPseudoPCReconstructionCell;
434 pcrLabel->operands[0] = dPC;
435 pcrLabel->operands[1] = dOffset;
436 /* Insert the place holder to the growable list */
437 dvmInsertGrowableList(&cUnit->pcReconstructionList,
438 (intptr_t) pcrLabel);
439 }
440 /* Branch to the PC reconstruction code */
441 branch->generic.target = (LIR *) pcrLabel;
442
443 /* Clear the conservative flags for branches that punt to the interpreter */
444 relaxBranchMasks(branch);
445
446 return pcrLabel;
447 }
448