1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #ifdef WITH_JIT
17
18 /*
19 * Target independent portion of Android's Jit
20 */
21
22 #include "Dalvik.h"
23 #include "Jit.h"
24
25 #include "libdex/DexOpcodes.h"
26 #include <unistd.h>
27 #include <pthread.h>
28 #include <sys/time.h>
29 #include <signal.h>
30 #include "compiler/Compiler.h"
31 #include "compiler/CompilerUtility.h"
32 #include "compiler/CompilerIR.h"
33 #include <errno.h>
34
35 #if defined(WITH_SELF_VERIFICATION)
36 /* Allocate space for per-thread ShadowSpace data structures */
dvmSelfVerificationShadowSpaceAlloc(Thread * self)37 void* dvmSelfVerificationShadowSpaceAlloc(Thread* self)
38 {
39 self->shadowSpace = (ShadowSpace*) calloc(1, sizeof(ShadowSpace));
40 if (self->shadowSpace == NULL)
41 return NULL;
42
43 self->shadowSpace->registerSpaceSize = REG_SPACE;
44 self->shadowSpace->registerSpace =
45 (int*) calloc(self->shadowSpace->registerSpaceSize, sizeof(int));
46
47 return self->shadowSpace->registerSpace;
48 }
49
50 /* Free per-thread ShadowSpace data structures */
dvmSelfVerificationShadowSpaceFree(Thread * self)51 void dvmSelfVerificationShadowSpaceFree(Thread* self)
52 {
53 free(self->shadowSpace->registerSpace);
54 free(self->shadowSpace);
55 }
56
57 /*
58 * Save out PC, FP, thread state, and registers to shadow space.
59 * Return a pointer to the shadow space for JIT to use.
60 *
61 * The set of saved state from the Thread structure is:
62 * pc (Dalvik PC)
63 * fp (Dalvik FP)
64 * retval
65 * method
66 * methodClassDex
67 * interpStackEnd
68 */
dvmSelfVerificationSaveState(const u2 * pc,u4 * fp,Thread * self,int targetTrace)69 void* dvmSelfVerificationSaveState(const u2* pc, u4* fp,
70 Thread* self, int targetTrace)
71 {
72 ShadowSpace *shadowSpace = self->shadowSpace;
73 unsigned preBytes = self->interpSave.method->outsSize*4 +
74 sizeof(StackSaveArea);
75 unsigned postBytes = self->interpSave.method->registersSize*4;
76
77 //LOGD("### selfVerificationSaveState(%d) pc: %#x fp: %#x",
78 // self->threadId, (int)pc, (int)fp);
79
80 if (shadowSpace->selfVerificationState != kSVSIdle) {
81 LOGD("~~~ Save: INCORRECT PREVIOUS STATE(%d): %d",
82 self->threadId, shadowSpace->selfVerificationState);
83 LOGD("********** SHADOW STATE DUMP **********");
84 LOGD("PC: %#x FP: %#x", (int)pc, (int)fp);
85 }
86 shadowSpace->selfVerificationState = kSVSStart;
87
88 // Dynamically grow shadow register space if necessary
89 if (preBytes + postBytes > shadowSpace->registerSpaceSize * sizeof(u4)) {
90 free(shadowSpace->registerSpace);
91 shadowSpace->registerSpaceSize = (preBytes + postBytes) / sizeof(u4);
92 shadowSpace->registerSpace =
93 (int*) calloc(shadowSpace->registerSpaceSize, sizeof(u4));
94 }
95
96 // Remember original state
97 shadowSpace->startPC = pc;
98 shadowSpace->fp = fp;
99 shadowSpace->retval = self->interpSave.retval;
100 shadowSpace->interpStackEnd = self->interpStackEnd;
101
102 /*
103 * Store the original method here in case the trace ends with a
104 * return/invoke, the last method.
105 */
106 shadowSpace->method = self->interpSave.method;
107 shadowSpace->methodClassDex = self->interpSave.methodClassDex;
108
109 shadowSpace->shadowFP = shadowSpace->registerSpace +
110 shadowSpace->registerSpaceSize - postBytes/4;
111
112 self->interpSave.curFrame = (u4*)shadowSpace->shadowFP;
113 self->interpStackEnd = (u1*)shadowSpace->registerSpace;
114
115 // Create a copy of the stack
116 memcpy(((char*)shadowSpace->shadowFP)-preBytes, ((char*)fp)-preBytes,
117 preBytes+postBytes);
118
119 // Setup the shadowed heap space
120 shadowSpace->heapSpaceTail = shadowSpace->heapSpace;
121
122 // Reset trace length
123 shadowSpace->traceLength = 0;
124
125 return shadowSpace;
126 }
127
128 /*
129 * Save ending PC, FP and compiled code exit point to shadow space.
130 * Return a pointer to the shadow space for JIT to restore state.
131 */
dvmSelfVerificationRestoreState(const u2 * pc,u4 * fp,SelfVerificationState exitState,Thread * self)132 void* dvmSelfVerificationRestoreState(const u2* pc, u4* fp,
133 SelfVerificationState exitState,
134 Thread* self)
135 {
136 ShadowSpace *shadowSpace = self->shadowSpace;
137 shadowSpace->endPC = pc;
138 shadowSpace->endShadowFP = fp;
139 shadowSpace->jitExitState = exitState;
140
141 //LOGD("### selfVerificationRestoreState(%d) pc: %#x fp: %#x endPC: %#x",
142 // self->threadId, (int)shadowSpace->startPC, (int)shadowSpace->fp,
143 // (int)pc);
144
145 if (shadowSpace->selfVerificationState != kSVSStart) {
146 LOGD("~~~ Restore: INCORRECT PREVIOUS STATE(%d): %d",
147 self->threadId, shadowSpace->selfVerificationState);
148 LOGD("********** SHADOW STATE DUMP **********");
149 LOGD("Dalvik PC: %#x endPC: %#x", (int)shadowSpace->startPC,
150 (int)shadowSpace->endPC);
151 LOGD("Interp FP: %#x", (int)shadowSpace->fp);
152 LOGD("Shadow FP: %#x endFP: %#x", (int)shadowSpace->shadowFP,
153 (int)shadowSpace->endShadowFP);
154 }
155
156 // Special case when punting after a single instruction
157 if (exitState == kSVSPunt && pc == shadowSpace->startPC) {
158 shadowSpace->selfVerificationState = kSVSIdle;
159 } else {
160 shadowSpace->selfVerificationState = exitState;
161 }
162
163 /* Restore state before returning */
164 self->interpSave.pc = shadowSpace->startPC;
165 self->interpSave.curFrame = shadowSpace->fp;
166 self->interpSave.method = shadowSpace->method;
167 self->interpSave.methodClassDex = shadowSpace->methodClassDex;
168 self->interpSave.retval = shadowSpace->retval;
169 self->interpStackEnd = shadowSpace->interpStackEnd;
170
171 return shadowSpace;
172 }
173
174 /* Print contents of virtual registers */
selfVerificationPrintRegisters(int * addr,int * addrRef,int numWords)175 static void selfVerificationPrintRegisters(int* addr, int* addrRef,
176 int numWords)
177 {
178 int i;
179 for (i = 0; i < numWords; i++) {
180 LOGD("(v%d) 0x%8x%s", i, addr[i], addr[i] != addrRef[i] ? " X" : "");
181 }
182 }
183
184 /* Print values maintained in shadowSpace */
selfVerificationDumpState(const u2 * pc,Thread * self)185 static void selfVerificationDumpState(const u2* pc, Thread* self)
186 {
187 ShadowSpace* shadowSpace = self->shadowSpace;
188 StackSaveArea* stackSave = SAVEAREA_FROM_FP(self->interpSave.curFrame);
189 int frameBytes = (int) shadowSpace->registerSpace +
190 shadowSpace->registerSpaceSize*4 -
191 (int) shadowSpace->shadowFP;
192 int localRegs = 0;
193 int frameBytes2 = 0;
194 if ((uintptr_t)self->interpSave.curFrame < (uintptr_t)shadowSpace->fp) {
195 localRegs = (stackSave->method->registersSize -
196 stackSave->method->insSize)*4;
197 frameBytes2 = (int) shadowSpace->fp -
198 (int)self->interpSave.curFrame - localRegs;
199 }
200 LOGD("********** SHADOW STATE DUMP **********");
201 LOGD("CurrentPC: %#x, Offset: 0x%04x", (int)pc,
202 (int)(pc - stackSave->method->insns));
203 LOGD("Class: %s", shadowSpace->method->clazz->descriptor);
204 LOGD("Method: %s", shadowSpace->method->name);
205 LOGD("Dalvik PC: %#x endPC: %#x", (int)shadowSpace->startPC,
206 (int)shadowSpace->endPC);
207 LOGD("Interp FP: %#x endFP: %#x", (int)shadowSpace->fp,
208 (int)self->interpSave.curFrame);
209 LOGD("Shadow FP: %#x endFP: %#x", (int)shadowSpace->shadowFP,
210 (int)shadowSpace->endShadowFP);
211 LOGD("Frame1 Bytes: %d Frame2 Local: %d Bytes: %d", frameBytes,
212 localRegs, frameBytes2);
213 LOGD("Trace length: %d State: %d", shadowSpace->traceLength,
214 shadowSpace->selfVerificationState);
215 }
216
217 /* Print decoded instructions in the current trace */
selfVerificationDumpTrace(const u2 * pc,Thread * self)218 static void selfVerificationDumpTrace(const u2* pc, Thread* self)
219 {
220 ShadowSpace* shadowSpace = self->shadowSpace;
221 StackSaveArea* stackSave = SAVEAREA_FROM_FP(self->interpSave.curFrame);
222 int i, addr, offset;
223 DecodedInstruction *decInsn;
224
225 LOGD("********** SHADOW TRACE DUMP **********");
226 for (i = 0; i < shadowSpace->traceLength; i++) {
227 addr = shadowSpace->trace[i].addr;
228 offset = (int)((u2*)addr - stackSave->method->insns);
229 decInsn = &(shadowSpace->trace[i].decInsn);
230 /* Not properly decoding instruction, some registers may be garbage */
231 LOGD("%#x: (0x%04x) %s",
232 addr, offset, dexGetOpcodeName(decInsn->opcode));
233 }
234 }
235
236 /* Code is forced into this spin loop when a divergence is detected */
selfVerificationSpinLoop(ShadowSpace * shadowSpace)237 static void selfVerificationSpinLoop(ShadowSpace *shadowSpace)
238 {
239 const u2 *startPC = shadowSpace->startPC;
240 JitTraceDescription* desc = dvmCopyTraceDescriptor(startPC, NULL);
241 if (desc) {
242 dvmCompilerWorkEnqueue(startPC, kWorkOrderTraceDebug, desc);
243 /*
244 * This function effectively terminates the VM right here, so not
245 * freeing the desc pointer when the enqueuing fails is acceptable.
246 */
247 }
248 gDvmJit.selfVerificationSpin = true;
249 while(gDvmJit.selfVerificationSpin) sleep(10);
250 }
251
252 /*
253 * If here, we're re-interpreting an instruction that was included
254 * in a trace that was just executed. This routine is called for
255 * each instruction in the original trace, and compares state
256 * when it reaches the end point.
257 *
258 * TUNING: the interpretation mechanism now supports a counted
259 * single-step mechanism. If we were to associate an instruction
260 * count with each trace exit, we could just single-step the right
261 * number of cycles and then compare. This would improve detection
262 * of control divergences, as well as (slightly) simplify this code.
263 */
dvmCheckSelfVerification(const u2 * pc,Thread * self)264 void dvmCheckSelfVerification(const u2* pc, Thread* self)
265 {
266 ShadowSpace *shadowSpace = self->shadowSpace;
267 SelfVerificationState state = shadowSpace->selfVerificationState;
268
269 DecodedInstruction decInsn;
270 dexDecodeInstruction(pc, &decInsn);
271
272 //LOGD("### DbgIntp(%d): PC: %#x endPC: %#x state: %d len: %d %s",
273 // self->threadId, (int)pc, (int)shadowSpace->endPC, state,
274 // shadowSpace->traceLength, dexGetOpcodeName(decInsn.opcode));
275
276 if (state == kSVSIdle || state == kSVSStart) {
277 LOGD("~~~ DbgIntrp: INCORRECT PREVIOUS STATE(%d): %d",
278 self->threadId, state);
279 selfVerificationDumpState(pc, self);
280 selfVerificationDumpTrace(pc, self);
281 }
282
283 /*
284 * Generalize the self verification state to kSVSDebugInterp unless the
285 * entry reason is kSVSBackwardBranch or kSVSSingleStep.
286 */
287 if (state != kSVSBackwardBranch && state != kSVSSingleStep) {
288 shadowSpace->selfVerificationState = kSVSDebugInterp;
289 }
290
291 /*
292 * Check if the current pc matches the endPC. Only check for non-zero
293 * trace length when backward branches are involved.
294 */
295 if (pc == shadowSpace->endPC &&
296 (state == kSVSDebugInterp || state == kSVSSingleStep ||
297 (state == kSVSBackwardBranch && shadowSpace->traceLength != 0))) {
298
299 shadowSpace->selfVerificationState = kSVSIdle;
300
301 /* Check register space */
302 int frameBytes = (int) shadowSpace->registerSpace +
303 shadowSpace->registerSpaceSize*4 -
304 (int) shadowSpace->shadowFP;
305 if (memcmp(shadowSpace->fp, shadowSpace->shadowFP, frameBytes)) {
306 if (state == kSVSBackwardBranch) {
307 /* State mismatch on backward branch - try one more iteration */
308 shadowSpace->selfVerificationState = kSVSDebugInterp;
309 goto log_and_continue;
310 }
311 LOGD("~~~ DbgIntp(%d): REGISTERS DIVERGENCE!", self->threadId);
312 selfVerificationDumpState(pc, self);
313 selfVerificationDumpTrace(pc, self);
314 LOGD("*** Interp Registers: addr: %#x bytes: %d",
315 (int)shadowSpace->fp, frameBytes);
316 selfVerificationPrintRegisters((int*)shadowSpace->fp,
317 (int*)shadowSpace->shadowFP,
318 frameBytes/4);
319 LOGD("*** Shadow Registers: addr: %#x bytes: %d",
320 (int)shadowSpace->shadowFP, frameBytes);
321 selfVerificationPrintRegisters((int*)shadowSpace->shadowFP,
322 (int*)shadowSpace->fp,
323 frameBytes/4);
324 selfVerificationSpinLoop(shadowSpace);
325 }
326 /* Check new frame if it exists (invokes only) */
327 if ((uintptr_t)self->interpSave.curFrame < (uintptr_t)shadowSpace->fp) {
328 StackSaveArea* stackSave =
329 SAVEAREA_FROM_FP(self->interpSave.curFrame);
330 int localRegs = (stackSave->method->registersSize -
331 stackSave->method->insSize)*4;
332 int frameBytes2 = (int) shadowSpace->fp -
333 (int) self->interpSave.curFrame - localRegs;
334 if (memcmp(((char*)self->interpSave.curFrame)+localRegs,
335 ((char*)shadowSpace->endShadowFP)+localRegs, frameBytes2)) {
336 if (state == kSVSBackwardBranch) {
337 /*
338 * State mismatch on backward branch - try one more
339 * iteration.
340 */
341 shadowSpace->selfVerificationState = kSVSDebugInterp;
342 goto log_and_continue;
343 }
344 LOGD("~~~ DbgIntp(%d): REGISTERS (FRAME2) DIVERGENCE!",
345 self->threadId);
346 selfVerificationDumpState(pc, self);
347 selfVerificationDumpTrace(pc, self);
348 LOGD("*** Interp Registers: addr: %#x l: %d bytes: %d",
349 (int)self->interpSave.curFrame, localRegs, frameBytes2);
350 selfVerificationPrintRegisters((int*)self->interpSave.curFrame,
351 (int*)shadowSpace->endShadowFP,
352 (frameBytes2+localRegs)/4);
353 LOGD("*** Shadow Registers: addr: %#x l: %d bytes: %d",
354 (int)shadowSpace->endShadowFP, localRegs, frameBytes2);
355 selfVerificationPrintRegisters((int*)shadowSpace->endShadowFP,
356 (int*)self->interpSave.curFrame,
357 (frameBytes2+localRegs)/4);
358 selfVerificationSpinLoop(shadowSpace);
359 }
360 }
361
362 /* Check memory space */
363 bool memDiff = false;
364 ShadowHeap* heapSpacePtr;
365 for (heapSpacePtr = shadowSpace->heapSpace;
366 heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
367 int memData = *((unsigned int*) heapSpacePtr->addr);
368 if (heapSpacePtr->data != memData) {
369 if (state == kSVSBackwardBranch) {
370 /*
371 * State mismatch on backward branch - try one more
372 * iteration.
373 */
374 shadowSpace->selfVerificationState = kSVSDebugInterp;
375 goto log_and_continue;
376 }
377 LOGD("~~~ DbgIntp(%d): MEMORY DIVERGENCE!", self->threadId);
378 LOGD("Addr: %#x Intrp Data: %#x Jit Data: %#x",
379 heapSpacePtr->addr, memData, heapSpacePtr->data);
380 selfVerificationDumpState(pc, self);
381 selfVerificationDumpTrace(pc, self);
382 memDiff = true;
383 }
384 }
385 if (memDiff) selfVerificationSpinLoop(shadowSpace);
386
387
388 /*
389 * Success. If this shadowed trace included a single-stepped
390 * instruction, we need to stay in the interpreter for one
391 * more interpretation before resuming.
392 */
393 if (state == kSVSSingleStep) {
394 assert(self->jitResumeNPC != NULL);
395 assert(self->singleStepCount == 0);
396 self->singleStepCount = 1;
397 dvmEnableSubMode(self, kSubModeCountedStep);
398 }
399
400 /*
401 * Switch off shadow replay mode. The next shadowed trace
402 * execution will turn it back on.
403 */
404 dvmDisableSubMode(self, kSubModeJitSV);
405
406 self->jitState = kJitDone;
407 return;
408 }
409 log_and_continue:
410 /* If end not been reached, make sure max length not exceeded */
411 if (shadowSpace->traceLength >= JIT_MAX_TRACE_LEN) {
412 LOGD("~~~ DbgIntp(%d): CONTROL DIVERGENCE!", self->threadId);
413 LOGD("startPC: %#x endPC: %#x currPC: %#x",
414 (int)shadowSpace->startPC, (int)shadowSpace->endPC, (int)pc);
415 selfVerificationDumpState(pc, self);
416 selfVerificationDumpTrace(pc, self);
417 selfVerificationSpinLoop(shadowSpace);
418 return;
419 }
420 /* Log the instruction address and decoded instruction for debug */
421 shadowSpace->trace[shadowSpace->traceLength].addr = (int)pc;
422 shadowSpace->trace[shadowSpace->traceLength].decInsn = decInsn;
423 shadowSpace->traceLength++;
424 }
425 #endif
426
427 /*
428 * If one of our fixed tables or the translation buffer fills up,
429 * call this routine to avoid wasting cycles on future translation requests.
430 */
dvmJitStopTranslationRequests()431 void dvmJitStopTranslationRequests()
432 {
433 /*
434 * Note 1: This won't necessarily stop all translation requests, and
435 * operates on a delayed mechanism. Running threads look to the copy
436 * of this value in their private thread structures and won't see
437 * this change until it is refreshed (which happens on interpreter
438 * entry).
439 * Note 2: This is a one-shot memory leak on this table. Because this is a
440 * permanent off switch for Jit profiling, it is a one-time leak of 1K
441 * bytes, and no further attempt will be made to re-allocate it. Can't
442 * free it because some thread may be holding a reference.
443 */
444 gDvmJit.pProfTable = NULL;
445 dvmJitUpdateThreadStateAll();
446 }
447
448 #if defined(WITH_JIT_TUNING)
449 /* Convenience function to increment counter from assembly code */
dvmBumpNoChain(int from)450 void dvmBumpNoChain(int from)
451 {
452 gDvmJit.noChainExit[from]++;
453 }
454
455 /* Convenience function to increment counter from assembly code */
dvmBumpNormal()456 void dvmBumpNormal()
457 {
458 gDvmJit.normalExit++;
459 }
460
461 /* Convenience function to increment counter from assembly code */
dvmBumpPunt(int from)462 void dvmBumpPunt(int from)
463 {
464 gDvmJit.puntExit++;
465 }
466 #endif
467
468 /* Dumps debugging & tuning stats to the log */
dvmJitStats()469 void dvmJitStats()
470 {
471 int i;
472 int hit;
473 int not_hit;
474 int chains;
475 int stubs;
476 if (gDvmJit.pJitEntryTable) {
477 for (i=0, stubs=chains=hit=not_hit=0;
478 i < (int) gDvmJit.jitTableSize;
479 i++) {
480 if (gDvmJit.pJitEntryTable[i].dPC != 0) {
481 hit++;
482 if (gDvmJit.pJitEntryTable[i].codeAddress ==
483 dvmCompilerGetInterpretTemplate())
484 stubs++;
485 } else
486 not_hit++;
487 if (gDvmJit.pJitEntryTable[i].u.info.chain != gDvmJit.jitTableSize)
488 chains++;
489 }
490 LOGD("JIT: table size is %d, entries used is %d",
491 gDvmJit.jitTableSize, gDvmJit.jitTableEntriesUsed);
492 LOGD("JIT: %d traces, %d slots, %d chains, %d thresh, %s",
493 hit, not_hit + hit, chains, gDvmJit.threshold,
494 gDvmJit.blockingMode ? "Blocking" : "Non-blocking");
495
496 #if defined(WITH_JIT_TUNING)
497 LOGD("JIT: Code cache patches: %d", gDvmJit.codeCachePatches);
498
499 LOGD("JIT: Lookups: %d hits, %d misses; %d normal, %d punt",
500 gDvmJit.addrLookupsFound, gDvmJit.addrLookupsNotFound,
501 gDvmJit.normalExit, gDvmJit.puntExit);
502
503 LOGD("JIT: ICHits: %d", gDvmICHitCount);
504
505 LOGD("JIT: noChainExit: %d IC miss, %d interp callsite, "
506 "%d switch overflow",
507 gDvmJit.noChainExit[kInlineCacheMiss],
508 gDvmJit.noChainExit[kCallsiteInterpreted],
509 gDvmJit.noChainExit[kSwitchOverflow]);
510
511 LOGD("JIT: ICPatch: %d init, %d rejected, %d lock-free, %d queued, "
512 "%d dropped",
513 gDvmJit.icPatchInit, gDvmJit.icPatchRejected,
514 gDvmJit.icPatchLockFree, gDvmJit.icPatchQueued,
515 gDvmJit.icPatchDropped);
516
517 LOGD("JIT: Invoke: %d mono, %d poly, %d native, %d return",
518 gDvmJit.invokeMonomorphic, gDvmJit.invokePolymorphic,
519 gDvmJit.invokeNative, gDvmJit.returnOp);
520 LOGD("JIT: Inline: %d mgetter, %d msetter, %d pgetter, %d psetter",
521 gDvmJit.invokeMonoGetterInlined, gDvmJit.invokeMonoSetterInlined,
522 gDvmJit.invokePolyGetterInlined, gDvmJit.invokePolySetterInlined);
523 LOGD("JIT: Total compilation time: %llu ms", gDvmJit.jitTime / 1000);
524 LOGD("JIT: Avg unit compilation time: %llu us",
525 gDvmJit.numCompilations == 0 ? 0 :
526 gDvmJit.jitTime / gDvmJit.numCompilations);
527 LOGD("JIT: Potential GC blocked by compiler: max %llu us / "
528 "avg %llu us (%d)",
529 gDvmJit.maxCompilerThreadBlockGCTime,
530 gDvmJit.numCompilerThreadBlockGC == 0 ?
531 0 : gDvmJit.compilerThreadBlockGCTime /
532 gDvmJit.numCompilerThreadBlockGC,
533 gDvmJit.numCompilerThreadBlockGC);
534 #endif
535
536 LOGD("JIT: %d Translation chains, %d interp stubs",
537 gDvmJit.translationChains, stubs);
538 if (gDvmJit.profileMode == kTraceProfilingContinuous) {
539 dvmCompilerSortAndPrintTraceProfiles();
540 }
541 }
542 }
543
544
545 /* End current trace now & don't include current instruction */
dvmJitEndTraceSelect(Thread * self,const u2 * dPC)546 void dvmJitEndTraceSelect(Thread* self, const u2* dPC)
547 {
548 if (self->jitState == kJitTSelect) {
549 self->jitState = kJitTSelectEnd;
550 }
551 if (self->jitState == kJitTSelectEnd) {
552 // Clean up and finish now.
553 dvmCheckJit(dPC, self);
554 }
555 }
556
557 /*
558 * Find an entry in the JitTable, creating if necessary.
559 * Returns null if table is full.
560 */
lookupAndAdd(const u2 * dPC,bool callerLocked,bool isMethodEntry)561 static JitEntry *lookupAndAdd(const u2* dPC, bool callerLocked,
562 bool isMethodEntry)
563 {
564 u4 chainEndMarker = gDvmJit.jitTableSize;
565 u4 idx = dvmJitHash(dPC);
566
567 /*
568 * Walk the bucket chain to find an exact match for our PC and trace/method
569 * type
570 */
571 while ((gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) &&
572 ((gDvmJit.pJitEntryTable[idx].dPC != dPC) ||
573 (gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry !=
574 isMethodEntry))) {
575 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
576 }
577
578 if (gDvmJit.pJitEntryTable[idx].dPC != dPC ||
579 gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry != isMethodEntry) {
580 /*
581 * No match. Aquire jitTableLock and find the last
582 * slot in the chain. Possibly continue the chain walk in case
583 * some other thread allocated the slot we were looking
584 * at previuosly (perhaps even the dPC we're trying to enter).
585 */
586 if (!callerLocked)
587 dvmLockMutex(&gDvmJit.tableLock);
588 /*
589 * At this point, if .dPC is NULL, then the slot we're
590 * looking at is the target slot from the primary hash
591 * (the simple, and common case). Otherwise we're going
592 * to have to find a free slot and chain it.
593 */
594 ANDROID_MEMBAR_FULL(); /* Make sure we reload [].dPC after lock */
595 if (gDvmJit.pJitEntryTable[idx].dPC != NULL) {
596 u4 prev;
597 while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
598 if (gDvmJit.pJitEntryTable[idx].dPC == dPC &&
599 gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry ==
600 isMethodEntry) {
601 /* Another thread got there first for this dPC */
602 if (!callerLocked)
603 dvmUnlockMutex(&gDvmJit.tableLock);
604 return &gDvmJit.pJitEntryTable[idx];
605 }
606 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
607 }
608 /* Here, idx should be pointing to the last cell of an
609 * active chain whose last member contains a valid dPC */
610 assert(gDvmJit.pJitEntryTable[idx].dPC != NULL);
611 /* Linear walk to find a free cell and add it to the end */
612 prev = idx;
613 while (true) {
614 idx++;
615 if (idx == chainEndMarker)
616 idx = 0; /* Wraparound */
617 if ((gDvmJit.pJitEntryTable[idx].dPC == NULL) ||
618 (idx == prev))
619 break;
620 }
621 if (idx != prev) {
622 JitEntryInfoUnion oldValue;
623 JitEntryInfoUnion newValue;
624 /*
625 * Although we hold the lock so that noone else will
626 * be trying to update a chain field, the other fields
627 * packed into the word may be in use by other threads.
628 */
629 do {
630 oldValue = gDvmJit.pJitEntryTable[prev].u;
631 newValue = oldValue;
632 newValue.info.chain = idx;
633 } while (android_atomic_release_cas(oldValue.infoWord,
634 newValue.infoWord,
635 &gDvmJit.pJitEntryTable[prev].u.infoWord) != 0);
636 }
637 }
638 if (gDvmJit.pJitEntryTable[idx].dPC == NULL) {
639 gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry = isMethodEntry;
640 /*
641 * Initialize codeAddress and allocate the slot. Must
642 * happen in this order (since dPC is set, the entry is live.
643 */
644 android_atomic_release_store((int32_t)dPC,
645 (volatile int32_t *)(void *)&gDvmJit.pJitEntryTable[idx].dPC);
646 gDvmJit.pJitEntryTable[idx].dPC = dPC;
647 gDvmJit.jitTableEntriesUsed++;
648 } else {
649 /* Table is full */
650 idx = chainEndMarker;
651 }
652 if (!callerLocked)
653 dvmUnlockMutex(&gDvmJit.tableLock);
654 }
655 return (idx == chainEndMarker) ? NULL : &gDvmJit.pJitEntryTable[idx];
656 }
657
658 /* Dump a trace description */
dvmJitDumpTraceDesc(JitTraceDescription * trace)659 void dvmJitDumpTraceDesc(JitTraceDescription *trace)
660 {
661 int i;
662 bool done = false;
663 const u2* dpc;
664 const u2* dpcBase;
665 int curFrag = 0;
666 LOGD("===========================================");
667 LOGD("Trace dump %#x, Method %s off %#x",(int)trace,
668 trace->method->name,trace->trace[curFrag].info.frag.startOffset);
669 dpcBase = trace->method->insns;
670 while (!done) {
671 DecodedInstruction decInsn;
672 if (trace->trace[curFrag].isCode) {
673 LOGD("Frag[%d]- Insts: %d, start: %#x, hint: %#x, end: %d",
674 curFrag, trace->trace[curFrag].info.frag.numInsts,
675 trace->trace[curFrag].info.frag.startOffset,
676 trace->trace[curFrag].info.frag.hint,
677 trace->trace[curFrag].info.frag.runEnd);
678 dpc = dpcBase + trace->trace[curFrag].info.frag.startOffset;
679 for (i=0; i<trace->trace[curFrag].info.frag.numInsts; i++) {
680 dexDecodeInstruction(dpc, &decInsn);
681 LOGD(" 0x%04x - %s %#x",(dpc-dpcBase),
682 dexGetOpcodeName(decInsn.opcode),(int)dpc);
683 dpc += dexGetWidthFromOpcode(decInsn.opcode);
684 }
685 if (trace->trace[curFrag].info.frag.runEnd) {
686 done = true;
687 }
688 } else {
689 LOGD("Frag[%d]- META info: 0x%08x", curFrag,
690 (int)trace->trace[curFrag].info.meta);
691 }
692 curFrag++;
693 }
694 LOGD("-------------------------------------------");
695 }
696
697 /*
698 * Append the class ptr of "this" and the current method ptr to the current
699 * trace. That is, the trace runs will contain the following components:
700 * + trace run that ends with an invoke (existing entry)
701 * + thisClass (new)
702 * + calleeMethod (new)
703 */
insertClassMethodInfo(Thread * self,const ClassObject * thisClass,const Method * calleeMethod,const DecodedInstruction * insn)704 static void insertClassMethodInfo(Thread* self,
705 const ClassObject* thisClass,
706 const Method* calleeMethod,
707 const DecodedInstruction* insn)
708 {
709 int currTraceRun = ++self->currTraceRun;
710 self->trace[currTraceRun].info.meta = thisClass ?
711 (void *) thisClass->descriptor : NULL;
712 self->trace[currTraceRun].isCode = false;
713
714 currTraceRun = ++self->currTraceRun;
715 self->trace[currTraceRun].info.meta = thisClass ?
716 (void *) thisClass->classLoader : NULL;
717 self->trace[currTraceRun].isCode = false;
718
719 currTraceRun = ++self->currTraceRun;
720 self->trace[currTraceRun].info.meta = (void *) calleeMethod;
721 self->trace[currTraceRun].isCode = false;
722 }
723
724 /*
725 * Check if the next instruction following the invoke is a move-result and if
726 * so add it to the trace. That is, this will add the trace run that includes
727 * the move-result to the trace list.
728 *
729 * + trace run that ends with an invoke (existing entry)
730 * + thisClass (existing entry)
731 * + calleeMethod (existing entry)
732 * + move result (new)
733 *
734 * lastPC, len, offset are all from the preceding invoke instruction
735 */
insertMoveResult(const u2 * lastPC,int len,int offset,Thread * self)736 static void insertMoveResult(const u2 *lastPC, int len, int offset,
737 Thread *self)
738 {
739 DecodedInstruction nextDecInsn;
740 const u2 *moveResultPC = lastPC + len;
741
742 dexDecodeInstruction(moveResultPC, &nextDecInsn);
743 if ((nextDecInsn.opcode != OP_MOVE_RESULT) &&
744 (nextDecInsn.opcode != OP_MOVE_RESULT_WIDE) &&
745 (nextDecInsn.opcode != OP_MOVE_RESULT_OBJECT))
746 return;
747
748 /* We need to start a new trace run */
749 int currTraceRun = ++self->currTraceRun;
750 self->currRunHead = moveResultPC;
751 self->trace[currTraceRun].info.frag.startOffset = offset + len;
752 self->trace[currTraceRun].info.frag.numInsts = 1;
753 self->trace[currTraceRun].info.frag.runEnd = false;
754 self->trace[currTraceRun].info.frag.hint = kJitHintNone;
755 self->trace[currTraceRun].isCode = true;
756 self->totalTraceLen++;
757
758 self->currRunLen = dexGetWidthFromInstruction(moveResultPC);
759 }
760
761 /*
762 * Adds to the current trace request one instruction at a time, just
763 * before that instruction is interpreted. This is the primary trace
764 * selection function. NOTE: return instruction are handled a little
765 * differently. In general, instructions are "proposed" to be added
766 * to the current trace prior to interpretation. If the interpreter
767 * then successfully completes the instruction, is will be considered
768 * part of the request. This allows us to examine machine state prior
769 * to interpretation, and also abort the trace request if the instruction
770 * throws or does something unexpected. However, return instructions
771 * will cause an immediate end to the translation request - which will
772 * be passed to the compiler before the return completes. This is done
773 * in response to special handling of returns by the interpreter (and
774 * because returns cannot throw in a way that causes problems for the
775 * translated code.
776 */
dvmCheckJit(const u2 * pc,Thread * self)777 void dvmCheckJit(const u2* pc, Thread* self)
778 {
779 const ClassObject *thisClass = self->callsiteClass;
780 const Method* curMethod = self->methodToCall;
781 int flags, len;
782 int allDone = false;
783 /* Stay in break/single-stop mode for the next instruction */
784 bool stayOneMoreInst = false;
785
786 /* Prepare to handle last PC and stage the current PC & method*/
787 const u2 *lastPC = self->lastPC;
788
789 self->lastPC = pc;
790
791 switch (self->jitState) {
792 int offset;
793 DecodedInstruction decInsn;
794 case kJitTSelect:
795 /* First instruction - just remember the PC and exit */
796 if (lastPC == NULL) break;
797 /* Grow the trace around the last PC if jitState is kJitTSelect */
798 dexDecodeInstruction(lastPC, &decInsn);
799
800 /*
801 * Treat {PACKED,SPARSE}_SWITCH as trace-ending instructions due
802 * to the amount of space it takes to generate the chaining
803 * cells.
804 */
805 if (self->totalTraceLen != 0 &&
806 (decInsn.opcode == OP_PACKED_SWITCH ||
807 decInsn.opcode == OP_SPARSE_SWITCH)) {
808 self->jitState = kJitTSelectEnd;
809 break;
810 }
811
812 #if defined(SHOW_TRACE)
813 LOGD("TraceGen: adding %s. lpc:%#x, pc:%#x",
814 dexGetOpcodeName(decInsn.opcode), (int)lastPC, (int)pc);
815 #endif
816 flags = dexGetFlagsFromOpcode(decInsn.opcode);
817 len = dexGetWidthFromInstruction(lastPC);
818 offset = lastPC - self->traceMethod->insns;
819 assert((unsigned) offset <
820 dvmGetMethodInsnsSize(self->traceMethod));
821 if (lastPC != self->currRunHead + self->currRunLen) {
822 int currTraceRun;
823 /* We need to start a new trace run */
824 currTraceRun = ++self->currTraceRun;
825 self->currRunLen = 0;
826 self->currRunHead = (u2*)lastPC;
827 self->trace[currTraceRun].info.frag.startOffset = offset;
828 self->trace[currTraceRun].info.frag.numInsts = 0;
829 self->trace[currTraceRun].info.frag.runEnd = false;
830 self->trace[currTraceRun].info.frag.hint = kJitHintNone;
831 self->trace[currTraceRun].isCode = true;
832 }
833 self->trace[self->currTraceRun].info.frag.numInsts++;
834 self->totalTraceLen++;
835 self->currRunLen += len;
836
837 /*
838 * If the last instruction is an invoke, we will try to sneak in
839 * the move-result* (if existent) into a separate trace run.
840 */
841 {
842 int needReservedRun = (flags & kInstrInvoke) ? 1 : 0;
843
844 /* Will probably never hit this with the current trace builder */
845 if (self->currTraceRun ==
846 (MAX_JIT_RUN_LEN - 1 - needReservedRun)) {
847 self->jitState = kJitTSelectEnd;
848 }
849 }
850
851 if (!dexIsGoto(flags) &&
852 ((flags & (kInstrCanBranch |
853 kInstrCanSwitch |
854 kInstrCanReturn |
855 kInstrInvoke)) != 0)) {
856 self->jitState = kJitTSelectEnd;
857 #if defined(SHOW_TRACE)
858 LOGD("TraceGen: ending on %s, basic block end",
859 dexGetOpcodeName(decInsn.opcode));
860 #endif
861
862 /*
863 * If the current invoke is a {virtual,interface}, get the
864 * current class/method pair into the trace as well.
865 * If the next instruction is a variant of move-result, insert
866 * it to the trace too.
867 */
868 if (flags & kInstrInvoke) {
869 insertClassMethodInfo(self, thisClass, curMethod,
870 &decInsn);
871 insertMoveResult(lastPC, len, offset, self);
872 }
873 }
874 /* Break on throw or self-loop */
875 if ((decInsn.opcode == OP_THROW) || (lastPC == pc)){
876 self->jitState = kJitTSelectEnd;
877 }
878 if (self->totalTraceLen >= JIT_MAX_TRACE_LEN) {
879 self->jitState = kJitTSelectEnd;
880 }
881 if ((flags & kInstrCanReturn) != kInstrCanReturn) {
882 break;
883 }
884 else {
885 /*
886 * Last instruction is a return - stay in the dbg interpreter
887 * for one more instruction if it is a non-void return, since
888 * we don't want to start a trace with move-result as the first
889 * instruction (which is already included in the trace
890 * containing the invoke.
891 */
892 if (decInsn.opcode != OP_RETURN_VOID) {
893 stayOneMoreInst = true;
894 }
895 }
896 /* NOTE: intentional fallthrough for returns */
897 case kJitTSelectEnd:
898 {
899 /* Empty trace - set to bail to interpreter */
900 if (self->totalTraceLen == 0) {
901 dvmJitSetCodeAddr(self->currTraceHead,
902 dvmCompilerGetInterpretTemplate(),
903 dvmCompilerGetInterpretTemplateSet(),
904 false /* Not method entry */, 0);
905 self->jitState = kJitDone;
906 allDone = true;
907 break;
908 }
909
910 int lastTraceDesc = self->currTraceRun;
911
912 /* Extend a new empty desc if the last slot is meta info */
913 if (!self->trace[lastTraceDesc].isCode) {
914 lastTraceDesc = ++self->currTraceRun;
915 self->trace[lastTraceDesc].info.frag.startOffset = 0;
916 self->trace[lastTraceDesc].info.frag.numInsts = 0;
917 self->trace[lastTraceDesc].info.frag.hint = kJitHintNone;
918 self->trace[lastTraceDesc].isCode = true;
919 }
920
921 /* Mark the end of the trace runs */
922 self->trace[lastTraceDesc].info.frag.runEnd = true;
923
924 JitTraceDescription* desc =
925 (JitTraceDescription*)malloc(sizeof(JitTraceDescription) +
926 sizeof(JitTraceRun) * (self->currTraceRun+1));
927
928 if (desc == NULL) {
929 LOGE("Out of memory in trace selection");
930 dvmJitStopTranslationRequests();
931 self->jitState = kJitDone;
932 allDone = true;
933 break;
934 }
935
936 desc->method = self->traceMethod;
937 memcpy((char*)&(desc->trace[0]),
938 (char*)&(self->trace[0]),
939 sizeof(JitTraceRun) * (self->currTraceRun+1));
940 #if defined(SHOW_TRACE)
941 LOGD("TraceGen: trace done, adding to queue");
942 dvmJitDumpTraceDesc(desc);
943 #endif
944 if (dvmCompilerWorkEnqueue(
945 self->currTraceHead,kWorkOrderTrace,desc)) {
946 /* Work order successfully enqueued */
947 if (gDvmJit.blockingMode) {
948 dvmCompilerDrainQueue();
949 }
950 } else {
951 /*
952 * Make sure the descriptor for the abandoned work order is
953 * freed.
954 */
955 free(desc);
956 }
957 self->jitState = kJitDone;
958 allDone = true;
959 }
960 break;
961 case kJitDone:
962 allDone = true;
963 break;
964 case kJitNot:
965 allDone = true;
966 break;
967 default:
968 LOGE("Unexpected JIT state: %d", self->jitState);
969 dvmAbort();
970 break;
971 }
972
973 /*
974 * If we're done with trace selection, switch off the control flags.
975 */
976 if (allDone) {
977 dvmDisableSubMode(self, kSubModeJitTraceBuild);
978 if (stayOneMoreInst) {
979 // Clear jitResumeNPC explicitly since we know we don't need it
980 // here.
981 self->jitResumeNPC = NULL;
982 // Keep going in single-step mode for at least one more inst
983 if (self->singleStepCount == 0)
984 self->singleStepCount = 1;
985 dvmEnableSubMode(self, kSubModeCountedStep);
986 }
987 }
988 return;
989 }
990
dvmJitFindEntry(const u2 * pc,bool isMethodEntry)991 JitEntry *dvmJitFindEntry(const u2* pc, bool isMethodEntry)
992 {
993 int idx = dvmJitHash(pc);
994
995 /* Expect a high hit rate on 1st shot */
996 if ((gDvmJit.pJitEntryTable[idx].dPC == pc) &&
997 (gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry == isMethodEntry))
998 return &gDvmJit.pJitEntryTable[idx];
999 else {
1000 int chainEndMarker = gDvmJit.jitTableSize;
1001 while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
1002 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
1003 if ((gDvmJit.pJitEntryTable[idx].dPC == pc) &&
1004 (gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry ==
1005 isMethodEntry))
1006 return &gDvmJit.pJitEntryTable[idx];
1007 }
1008 }
1009 return NULL;
1010 }
1011
1012 /*
1013 * Walk through the JIT profile table and find the corresponding JIT code, in
1014 * the specified format (ie trace vs method). This routine needs to be fast.
1015 */
getCodeAddrCommon(const u2 * dPC,bool methodEntry)1016 void* getCodeAddrCommon(const u2* dPC, bool methodEntry)
1017 {
1018 int idx = dvmJitHash(dPC);
1019 const u2* pc = gDvmJit.pJitEntryTable[idx].dPC;
1020 if (pc != NULL) {
1021 bool hideTranslation = dvmJitHideTranslation();
1022 if (pc == dPC &&
1023 gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry == methodEntry) {
1024 int offset = (gDvmJit.profileMode >= kTraceProfilingContinuous) ?
1025 0 : gDvmJit.pJitEntryTable[idx].u.info.profileOffset;
1026 intptr_t codeAddress =
1027 (intptr_t)gDvmJit.pJitEntryTable[idx].codeAddress;
1028 #if defined(WITH_JIT_TUNING)
1029 gDvmJit.addrLookupsFound++;
1030 #endif
1031 return hideTranslation || !codeAddress ? NULL :
1032 (void *)(codeAddress + offset);
1033 } else {
1034 int chainEndMarker = gDvmJit.jitTableSize;
1035 while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
1036 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
1037 if (gDvmJit.pJitEntryTable[idx].dPC == dPC &&
1038 gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry ==
1039 methodEntry) {
1040 int offset = (gDvmJit.profileMode >=
1041 kTraceProfilingContinuous) ? 0 :
1042 gDvmJit.pJitEntryTable[idx].u.info.profileOffset;
1043 intptr_t codeAddress =
1044 (intptr_t)gDvmJit.pJitEntryTable[idx].codeAddress;
1045 #if defined(WITH_JIT_TUNING)
1046 gDvmJit.addrLookupsFound++;
1047 #endif
1048 return hideTranslation || !codeAddress ? NULL :
1049 (void *)(codeAddress + offset);
1050 }
1051 }
1052 }
1053 }
1054 #if defined(WITH_JIT_TUNING)
1055 gDvmJit.addrLookupsNotFound++;
1056 #endif
1057 return NULL;
1058 }
1059
1060 /*
1061 * If a translated code address, in trace format, exists for the davik byte code
1062 * pointer return it.
1063 */
dvmJitGetTraceAddr(const u2 * dPC)1064 void* dvmJitGetTraceAddr(const u2* dPC)
1065 {
1066 return getCodeAddrCommon(dPC, false /* method entry */);
1067 }
1068
1069 /*
1070 * If a translated code address, in whole-method format, exists for the davik
1071 * byte code pointer return it.
1072 */
dvmJitGetMethodAddr(const u2 * dPC)1073 void* dvmJitGetMethodAddr(const u2* dPC)
1074 {
1075 return getCodeAddrCommon(dPC, true /* method entry */);
1076 }
1077
1078 /*
1079 * Similar to dvmJitGetTraceAddr, but returns null if the calling
1080 * thread is in a single-step mode.
1081 */
dvmJitGetTraceAddrThread(const u2 * dPC,Thread * self)1082 void* dvmJitGetTraceAddrThread(const u2* dPC, Thread* self)
1083 {
1084 return (self->interpBreak.ctl.breakFlags != 0) ? NULL :
1085 getCodeAddrCommon(dPC, false /* method entry */);
1086 }
1087
1088 /*
1089 * Similar to dvmJitGetMethodAddr, but returns null if the calling
1090 * thread is in a single-step mode.
1091 */
dvmJitGetMethodAddrThread(const u2 * dPC,Thread * self)1092 void* dvmJitGetMethodAddrThread(const u2* dPC, Thread* self)
1093 {
1094 return (self->interpBreak.ctl.breakFlags != 0) ? NULL :
1095 getCodeAddrCommon(dPC, true /* method entry */);
1096 }
1097
1098 /*
1099 * Register the translated code pointer into the JitTable.
1100 * NOTE: Once a codeAddress field transitions from initial state to
1101 * JIT'd code, it must not be altered without first halting all
1102 * threads. We defer the setting of the profile prefix size until
1103 * after the new code address is set to ensure that the prefix offset
1104 * is never applied to the initial interpret-only translation. All
1105 * translations with non-zero profile prefixes will still be correct
1106 * if entered as if the profile offset is 0, but the interpret-only
1107 * template cannot handle a non-zero prefix.
1108 * NOTE: JitTable must not be in danger of reset while this
1109 * code is executing. see Issue 4271784 for details.
1110 */
dvmJitSetCodeAddr(const u2 * dPC,void * nPC,JitInstructionSetType set,bool isMethodEntry,int profilePrefixSize)1111 void dvmJitSetCodeAddr(const u2* dPC, void *nPC, JitInstructionSetType set,
1112 bool isMethodEntry, int profilePrefixSize)
1113 {
1114 JitEntryInfoUnion oldValue;
1115 JitEntryInfoUnion newValue;
1116 /*
1117 * Get the JitTable slot for this dPC (or create one if JitTable
1118 * has been reset between the time the trace was requested and
1119 * now.
1120 */
1121 JitEntry *jitEntry = isMethodEntry ?
1122 lookupAndAdd(dPC, false /* caller holds tableLock */, isMethodEntry) :
1123 dvmJitFindEntry(dPC, isMethodEntry);
1124 assert(jitEntry);
1125 /* Note: order of update is important */
1126 do {
1127 oldValue = jitEntry->u;
1128 newValue = oldValue;
1129 newValue.info.isMethodEntry = isMethodEntry;
1130 newValue.info.instructionSet = set;
1131 newValue.info.profileOffset = profilePrefixSize;
1132 } while (android_atomic_release_cas(
1133 oldValue.infoWord, newValue.infoWord,
1134 &jitEntry->u.infoWord) != 0);
1135 jitEntry->codeAddress = nPC;
1136 }
1137
1138 /*
1139 * Determine if valid trace-bulding request is active. If so, set
1140 * the proper flags in interpBreak and return. Trace selection will
1141 * then begin normally via dvmCheckBefore.
1142 */
dvmJitCheckTraceRequest(Thread * self)1143 void dvmJitCheckTraceRequest(Thread* self)
1144 {
1145 int i;
1146 /*
1147 * A note on trace "hotness" filtering:
1148 *
1149 * Our first level trigger is intentionally loose - we need it to
1150 * fire easily not just to identify potential traces to compile, but
1151 * also to allow re-entry into the code cache.
1152 *
1153 * The 2nd level filter (done here) exists to be selective about
1154 * what we actually compile. It works by requiring the same
1155 * trace head "key" (defined as filterKey below) to appear twice in
1156 * a relatively short period of time. The difficulty is defining the
1157 * shape of the filterKey. Unfortunately, there is no "one size fits
1158 * all" approach.
1159 *
1160 * For spiky execution profiles dominated by a smallish
1161 * number of very hot loops, we would want the second-level filter
1162 * to be very selective. A good selective filter is requiring an
1163 * exact match of the Dalvik PC. In other words, defining filterKey as:
1164 * intptr_t filterKey = (intptr_t)self->interpSave.pc
1165 *
1166 * However, for flat execution profiles we do best when aggressively
1167 * translating. A heuristically decent proxy for this is to use
1168 * the value of the method pointer containing the trace as the filterKey.
1169 * Intuitively, this is saying that once any trace in a method appears hot,
1170 * immediately translate any other trace from that same method that
1171 * survives the first-level filter. Here, filterKey would be defined as:
1172 * intptr_t filterKey = (intptr_t)self->interpSave.method
1173 *
1174 * The problem is that we can't easily detect whether we're dealing
1175 * with a spiky or flat profile. If we go with the "pc" match approach,
1176 * flat profiles perform poorly. If we go with the loose "method" match,
1177 * we end up generating a lot of useless translations. Probably the
1178 * best approach in the future will be to retain profile information
1179 * across runs of each application in order to determine it's profile,
1180 * and then choose once we have enough history.
1181 *
1182 * However, for now we've decided to chose a compromise filter scheme that
1183 * includes elements of both. The high order bits of the filter key
1184 * are drawn from the enclosing method, and are combined with a slice
1185 * of the low-order bits of the Dalvik pc of the trace head. The
1186 * looseness of the filter can be adjusted by changing with width of
1187 * the Dalvik pc slice (JIT_TRACE_THRESH_FILTER_PC_BITS). The wider
1188 * the slice, the tighter the filter.
1189 *
1190 * Note: the fixed shifts in the function below reflect assumed word
1191 * alignment for method pointers, and half-word alignment of the Dalvik pc.
1192 * for method pointers and half-word alignment for dalvik pc.
1193 */
1194 u4 methodKey = (u4)self->interpSave.method <<
1195 (JIT_TRACE_THRESH_FILTER_PC_BITS - 2);
1196 u4 pcKey = ((u4)self->interpSave.pc >> 1) &
1197 ((1 << JIT_TRACE_THRESH_FILTER_PC_BITS) - 1);
1198 intptr_t filterKey = (intptr_t)(methodKey | pcKey);
1199
1200 // Shouldn't be here if already building a trace.
1201 assert((self->interpBreak.ctl.subMode & kSubModeJitTraceBuild)==0);
1202
1203 /* Check if the JIT request can be handled now */
1204 if ((gDvmJit.pJitEntryTable != NULL) &&
1205 ((self->interpBreak.ctl.breakFlags & kInterpSingleStep) == 0)){
1206 /* Bypass the filter for hot trace requests or during stress mode */
1207 if (self->jitState == kJitTSelectRequest &&
1208 gDvmJit.threshold > 6) {
1209 /* Two-level filtering scheme */
1210 for (i=0; i< JIT_TRACE_THRESH_FILTER_SIZE; i++) {
1211 if (filterKey == self->threshFilter[i]) {
1212 self->threshFilter[i] = 0; // Reset filter entry
1213 break;
1214 }
1215 }
1216 if (i == JIT_TRACE_THRESH_FILTER_SIZE) {
1217 /*
1218 * Use random replacement policy - otherwise we could miss a
1219 * large loop that contains more traces than the size of our
1220 * filter array.
1221 */
1222 i = rand() % JIT_TRACE_THRESH_FILTER_SIZE;
1223 self->threshFilter[i] = filterKey;
1224 self->jitState = kJitDone;
1225 }
1226 }
1227
1228 /* If the compiler is backlogged, cancel any JIT actions */
1229 if (gDvmJit.compilerQueueLength >= gDvmJit.compilerHighWater) {
1230 self->jitState = kJitDone;
1231 }
1232
1233 /*
1234 * Check for additional reasons that might force the trace select
1235 * request to be dropped
1236 */
1237 if (self->jitState == kJitTSelectRequest ||
1238 self->jitState == kJitTSelectRequestHot) {
1239 if (dvmJitFindEntry(self->interpSave.pc, false)) {
1240 /* In progress - nothing do do */
1241 self->jitState = kJitDone;
1242 } else {
1243 JitEntry *slot = lookupAndAdd(self->interpSave.pc,
1244 false /* lock */,
1245 false /* method entry */);
1246 if (slot == NULL) {
1247 /*
1248 * Table is full. This should have been
1249 * detected by the compiler thread and the table
1250 * resized before we run into it here. Assume bad things
1251 * are afoot and disable profiling.
1252 */
1253 self->jitState = kJitDone;
1254 LOGD("JIT: JitTable full, disabling profiling");
1255 dvmJitStopTranslationRequests();
1256 }
1257 }
1258 }
1259
1260 switch (self->jitState) {
1261 case kJitTSelectRequest:
1262 case kJitTSelectRequestHot:
1263 self->jitState = kJitTSelect;
1264 self->traceMethod = self->interpSave.method;
1265 self->currTraceHead = self->interpSave.pc;
1266 self->currTraceRun = 0;
1267 self->totalTraceLen = 0;
1268 self->currRunHead = self->interpSave.pc;
1269 self->currRunLen = 0;
1270 self->trace[0].info.frag.startOffset =
1271 self->interpSave.pc - self->interpSave.method->insns;
1272 self->trace[0].info.frag.numInsts = 0;
1273 self->trace[0].info.frag.runEnd = false;
1274 self->trace[0].info.frag.hint = kJitHintNone;
1275 self->trace[0].isCode = true;
1276 self->lastPC = 0;
1277 /* Turn on trace selection mode */
1278 dvmEnableSubMode(self, kSubModeJitTraceBuild);
1279 #if defined(SHOW_TRACE)
1280 LOGD("Starting trace for %s at %#x",
1281 self->interpSave.method->name, (int)self->interpSave.pc);
1282 #endif
1283 break;
1284 case kJitDone:
1285 break;
1286 default:
1287 LOGE("Unexpected JIT state: %d", self->jitState);
1288 dvmAbort();
1289 }
1290 } else {
1291 /* Cannot build trace this time */
1292 self->jitState = kJitDone;
1293 }
1294 }
1295
1296 /*
1297 * Resizes the JitTable. Must be a power of 2, and returns true on failure.
1298 * Stops all threads, and thus is a heavyweight operation. May only be called
1299 * by the compiler thread.
1300 */
dvmJitResizeJitTable(unsigned int size)1301 bool dvmJitResizeJitTable( unsigned int size )
1302 {
1303 JitEntry *pNewTable;
1304 JitEntry *pOldTable;
1305 JitEntry tempEntry;
1306 unsigned int oldSize;
1307 unsigned int i;
1308
1309 assert(gDvmJit.pJitEntryTable != NULL);
1310 assert(size && !(size & (size - 1))); /* Is power of 2? */
1311
1312 LOGI("Jit: resizing JitTable from %d to %d", gDvmJit.jitTableSize, size);
1313
1314 if (size <= gDvmJit.jitTableSize) {
1315 return true;
1316 }
1317
1318 /* Make sure requested size is compatible with chain field width */
1319 tempEntry.u.info.chain = size;
1320 if (tempEntry.u.info.chain != size) {
1321 LOGD("Jit: JitTable request of %d too big", size);
1322 return true;
1323 }
1324
1325 pNewTable = (JitEntry*)calloc(size, sizeof(*pNewTable));
1326 if (pNewTable == NULL) {
1327 return true;
1328 }
1329 for (i=0; i< size; i++) {
1330 pNewTable[i].u.info.chain = size; /* Initialize chain termination */
1331 }
1332
1333 /* Stop all other interpreting/jit'ng threads */
1334 dvmSuspendAllThreads(SUSPEND_FOR_TBL_RESIZE);
1335
1336 pOldTable = gDvmJit.pJitEntryTable;
1337 oldSize = gDvmJit.jitTableSize;
1338
1339 dvmLockMutex(&gDvmJit.tableLock);
1340 gDvmJit.pJitEntryTable = pNewTable;
1341 gDvmJit.jitTableSize = size;
1342 gDvmJit.jitTableMask = size - 1;
1343 gDvmJit.jitTableEntriesUsed = 0;
1344
1345 for (i=0; i < oldSize; i++) {
1346 if (pOldTable[i].dPC) {
1347 JitEntry *p;
1348 u2 chain;
1349 p = lookupAndAdd(pOldTable[i].dPC, true /* holds tableLock*/,
1350 pOldTable[i].u.info.isMethodEntry);
1351 p->codeAddress = pOldTable[i].codeAddress;
1352 /* We need to preserve the new chain field, but copy the rest */
1353 chain = p->u.info.chain;
1354 p->u = pOldTable[i].u;
1355 p->u.info.chain = chain;
1356 }
1357 }
1358
1359 dvmUnlockMutex(&gDvmJit.tableLock);
1360
1361 free(pOldTable);
1362
1363 /* Restart the world */
1364 dvmResumeAllThreads(SUSPEND_FOR_TBL_RESIZE);
1365
1366 return false;
1367 }
1368
1369 /*
1370 * Reset the JitTable to the initial clean state.
1371 */
dvmJitResetTable()1372 void dvmJitResetTable()
1373 {
1374 JitEntry *jitEntry = gDvmJit.pJitEntryTable;
1375 unsigned int size = gDvmJit.jitTableSize;
1376 unsigned int i;
1377
1378 dvmLockMutex(&gDvmJit.tableLock);
1379
1380 /* Note: If need to preserve any existing counts. Do so here. */
1381 if (gDvmJit.pJitTraceProfCounters) {
1382 for (i=0; i < JIT_PROF_BLOCK_BUCKETS; i++) {
1383 if (gDvmJit.pJitTraceProfCounters->buckets[i])
1384 memset((void *) gDvmJit.pJitTraceProfCounters->buckets[i],
1385 0, sizeof(JitTraceCounter_t) * JIT_PROF_BLOCK_ENTRIES);
1386 }
1387 gDvmJit.pJitTraceProfCounters->next = 0;
1388 }
1389
1390 memset((void *) jitEntry, 0, sizeof(JitEntry) * size);
1391 for (i=0; i< size; i++) {
1392 jitEntry[i].u.info.chain = size; /* Initialize chain termination */
1393 }
1394 gDvmJit.jitTableEntriesUsed = 0;
1395 dvmUnlockMutex(&gDvmJit.tableLock);
1396 }
1397
1398 /*
1399 * Return the address of the next trace profile counter. This address
1400 * will be embedded in the generated code for the trace, and thus cannot
1401 * change while the trace exists.
1402 */
dvmJitNextTraceCounter()1403 JitTraceCounter_t *dvmJitNextTraceCounter()
1404 {
1405 int idx = gDvmJit.pJitTraceProfCounters->next / JIT_PROF_BLOCK_ENTRIES;
1406 int elem = gDvmJit.pJitTraceProfCounters->next % JIT_PROF_BLOCK_ENTRIES;
1407 JitTraceCounter_t *res;
1408 /* Lazily allocate blocks of counters */
1409 if (!gDvmJit.pJitTraceProfCounters->buckets[idx]) {
1410 JitTraceCounter_t *p =
1411 (JitTraceCounter_t*) calloc(JIT_PROF_BLOCK_ENTRIES, sizeof(*p));
1412 if (!p) {
1413 LOGE("Failed to allocate block of trace profile counters");
1414 dvmAbort();
1415 }
1416 gDvmJit.pJitTraceProfCounters->buckets[idx] = p;
1417 }
1418 res = &gDvmJit.pJitTraceProfCounters->buckets[idx][elem];
1419 gDvmJit.pJitTraceProfCounters->next++;
1420 return res;
1421 }
1422
1423 /*
1424 * Float/double conversion requires clamping to min and max of integer form. If
1425 * target doesn't support this normally, use these.
1426 */
dvmJitd2l(double d)1427 s8 dvmJitd2l(double d)
1428 {
1429 static const double kMaxLong = (double)(s8)0x7fffffffffffffffULL;
1430 static const double kMinLong = (double)(s8)0x8000000000000000ULL;
1431 if (d >= kMaxLong)
1432 return (s8)0x7fffffffffffffffULL;
1433 else if (d <= kMinLong)
1434 return (s8)0x8000000000000000ULL;
1435 else if (d != d) // NaN case
1436 return 0;
1437 else
1438 return (s8)d;
1439 }
1440
dvmJitf2l(float f)1441 s8 dvmJitf2l(float f)
1442 {
1443 static const float kMaxLong = (float)(s8)0x7fffffffffffffffULL;
1444 static const float kMinLong = (float)(s8)0x8000000000000000ULL;
1445 if (f >= kMaxLong)
1446 return (s8)0x7fffffffffffffffULL;
1447 else if (f <= kMinLong)
1448 return (s8)0x8000000000000000ULL;
1449 else if (f != f) // NaN case
1450 return 0;
1451 else
1452 return (s8)f;
1453 }
1454
1455 /* Should only be called by the compiler thread */
dvmJitChangeProfileMode(TraceProfilingModes newState)1456 void dvmJitChangeProfileMode(TraceProfilingModes newState)
1457 {
1458 if (gDvmJit.profileMode != newState) {
1459 gDvmJit.profileMode = newState;
1460 dvmJitUnchainAll();
1461 }
1462 }
1463
dvmJitTraceProfilingOn()1464 void dvmJitTraceProfilingOn()
1465 {
1466 if (gDvmJit.profileMode == kTraceProfilingPeriodicOff)
1467 dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
1468 (void*) kTraceProfilingPeriodicOn);
1469 else if (gDvmJit.profileMode == kTraceProfilingDisabled)
1470 dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
1471 (void*) kTraceProfilingContinuous);
1472 }
1473
dvmJitTraceProfilingOff()1474 void dvmJitTraceProfilingOff()
1475 {
1476 if (gDvmJit.profileMode == kTraceProfilingPeriodicOn)
1477 dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
1478 (void*) kTraceProfilingPeriodicOff);
1479 else if (gDvmJit.profileMode == kTraceProfilingContinuous)
1480 dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
1481 (void*) kTraceProfilingDisabled);
1482 }
1483
1484 /*
1485 * Update JIT-specific info in Thread structure for a single thread
1486 */
dvmJitUpdateThreadStateSingle(Thread * thread)1487 void dvmJitUpdateThreadStateSingle(Thread* thread)
1488 {
1489 thread->pJitProfTable = gDvmJit.pProfTable;
1490 thread->jitThreshold = gDvmJit.threshold;
1491 }
1492
1493 /*
1494 * Walk through the thread list and refresh all local copies of
1495 * JIT global state (which was placed there for fast access).
1496 */
dvmJitUpdateThreadStateAll()1497 void dvmJitUpdateThreadStateAll()
1498 {
1499 Thread* self = dvmThreadSelf();
1500 Thread* thread;
1501
1502 dvmLockThreadList(self);
1503 for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
1504 dvmJitUpdateThreadStateSingle(thread);
1505 }
1506 dvmUnlockThreadList();
1507
1508 }
1509 #endif /* WITH_JIT */
1510