• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * Thread support.
19  */
20 #include "Dalvik.h"
21 #include "os/os.h"
22 
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <sys/time.h>
26 #include <sys/types.h>
27 #include <sys/resource.h>
28 #include <sys/mman.h>
29 #include <signal.h>
30 #include <errno.h>
31 #include <fcntl.h>
32 
33 #if defined(HAVE_PRCTL)
34 #include <sys/prctl.h>
35 #endif
36 
37 #if defined(WITH_SELF_VERIFICATION)
38 #include "interp/Jit.h"         // need for self verification
39 #endif
40 
41 
42 /* desktop Linux needs a little help with gettid() */
43 #if defined(HAVE_GETTID) && !defined(HAVE_ANDROID_OS)
44 #define __KERNEL__
45 # include <linux/unistd.h>
46 #ifdef _syscall0
47 _syscall0(pid_t,gettid)
48 #else
49 pid_t gettid() { return syscall(__NR_gettid);}
50 #endif
51 #undef __KERNEL__
52 #endif
53 
54 // Change this to enable logging on cgroup errors
55 #define ENABLE_CGROUP_ERR_LOGGING 0
56 
57 // change this to LOGV/LOGD to debug thread activity
58 #define LOG_THREAD  LOGVV
59 
60 /*
61 Notes on Threading
62 
63 All threads are native pthreads.  All threads, except the JDWP debugger
64 thread, are visible to code running in the VM and to the debugger.  (We
65 don't want the debugger to try to manipulate the thread that listens for
66 instructions from the debugger.)  Internal VM threads are in the "system"
67 ThreadGroup, all others are in the "main" ThreadGroup, per convention.
68 
69 The GC only runs when all threads have been suspended.  Threads are
70 expected to suspend themselves, using a "safe point" mechanism.  We check
71 for a suspend request at certain points in the main interpreter loop,
72 and on requests coming in from native code (e.g. all JNI functions).
73 Certain debugger events may inspire threads to self-suspend.
74 
75 Native methods must use JNI calls to modify object references to avoid
76 clashes with the GC.  JNI doesn't provide a way for native code to access
77 arrays of objects as such -- code must always get/set individual entries --
78 so it should be possible to fully control access through JNI.
79 
80 Internal native VM threads, such as the finalizer thread, must explicitly
81 check for suspension periodically.  In most cases they will be sound
82 asleep on a condition variable, and won't notice the suspension anyway.
83 
84 Threads may be suspended by the GC, debugger, or the SIGQUIT listener
85 thread.  The debugger may suspend or resume individual threads, while the
86 GC always suspends all threads.  Each thread has a "suspend count" that
87 is incremented on suspend requests and decremented on resume requests.
88 When the count is zero, the thread is runnable.  This allows us to fulfill
89 a debugger requirement: if the debugger suspends a thread, the thread is
90 not allowed to run again until the debugger resumes it (or disconnects,
91 in which case we must resume all debugger-suspended threads).
92 
93 Paused threads sleep on a condition variable, and are awoken en masse.
94 Certain "slow" VM operations, such as starting up a new thread, will be
95 done in a separate "VMWAIT" state, so that the rest of the VM doesn't
96 freeze up waiting for the operation to finish.  Threads must check for
97 pending suspension when leaving VMWAIT.
98 
99 Because threads suspend themselves while interpreting code or when native
100 code makes JNI calls, there is no risk of suspending while holding internal
101 VM locks.  All threads can enter a suspended (or native-code-only) state.
102 Also, we don't have to worry about object references existing solely
103 in hardware registers.
104 
105 We do, however, have to worry about objects that were allocated internally
106 and aren't yet visible to anything else in the VM.  If we allocate an
107 object, and then go to sleep on a mutex after changing to a non-RUNNING
108 state (e.g. while trying to allocate a second object), the first object
109 could be garbage-collected out from under us while we sleep.  To manage
110 this, we automatically add all allocated objects to an internal object
111 tracking list, and only remove them when we know we won't be suspended
112 before the object appears in the GC root set.
113 
114 The debugger may choose to suspend or resume a single thread, which can
115 lead to application-level deadlocks; this is expected behavior.  The VM
116 will only check for suspension of single threads when the debugger is
117 active (the java.lang.Thread calls for this are deprecated and hence are
118 not supported).  Resumption of a single thread is handled by decrementing
119 the thread's suspend count and sending a broadcast signal to the condition
120 variable.  (This will cause all threads to wake up and immediately go back
121 to sleep, which isn't tremendously efficient, but neither is having the
122 debugger attached.)
123 
124 The debugger is not allowed to resume threads suspended by the GC.  This
125 is trivially enforced by ignoring debugger requests while the GC is running
126 (the JDWP thread is suspended during GC).
127 
128 The VM maintains a Thread struct for every pthread known to the VM.  There
129 is a java/lang/Thread object associated with every Thread.  At present,
130 there is no safe way to go from a Thread object to a Thread struct except by
131 locking and scanning the list; this is necessary because the lifetimes of
132 the two are not closely coupled.  We may want to change this behavior,
133 though at present the only performance impact is on the debugger (see
134 threadObjToThread()).  See also notes about dvmDetachCurrentThread().
135 */
136 /*
137 Alternate implementation (signal-based):
138 
139 Threads run without safe points -- zero overhead.  The VM uses a signal
140 (e.g. pthread_kill(SIGUSR1)) to notify threads of suspension or resumption.
141 
142 The trouble with using signals to suspend threads is that it means a thread
143 can be in the middle of an operation when garbage collection starts.
144 To prevent some sticky situations, we have to introduce critical sections
145 to the VM code.
146 
147 Critical sections temporarily block suspension for a given thread.
148 The thread must move to a non-blocked state (and self-suspend) after
149 finishing its current task.  If the thread blocks on a resource held
150 by a suspended thread, we're hosed.
151 
152 One approach is to require that no blocking operations, notably
153 acquisition of mutexes, can be performed within a critical section.
154 This is too limiting.  For example, if thread A gets suspended while
155 holding the thread list lock, it will prevent the GC or debugger from
156 being able to safely access the thread list.  We need to wrap the critical
157 section around the entire operation (enter critical, get lock, do stuff,
158 release lock, exit critical).
159 
160 A better approach is to declare that certain resources can only be held
161 within critical sections.  A thread that enters a critical section and
162 then gets blocked on the thread list lock knows that the thread it is
163 waiting for is also in a critical section, and will release the lock
164 before suspending itself.  Eventually all threads will complete their
165 operations and self-suspend.  For this to work, the VM must:
166 
167  (1) Determine the set of resources that may be accessed from the GC or
168      debugger threads.  The mutexes guarding those go into the "critical
169      resource set" (CRS).
170  (2) Ensure that no resource in the CRS can be acquired outside of a
171      critical section.  This can be verified with an assert().
172  (3) Ensure that only resources in the CRS can be held while in a critical
173      section.  This is harder to enforce.
174 
175 If any of these conditions are not met, deadlock can ensue when grabbing
176 resources in the GC or debugger (#1) or waiting for threads to suspend
177 (#2,#3).  (You won't actually deadlock in the GC, because if the semantics
178 above are followed you don't need to lock anything in the GC.  The risk is
179 rather that the GC will access data structures in an intermediate state.)
180 
181 This approach requires more care and awareness in the VM than
182 safe-pointing.  Because the GC and debugger are fairly intrusive, there
183 really aren't any internal VM resources that aren't shared.  Thus, the
184 enter/exit critical calls can be added to internal mutex wrappers, which
185 makes it easy to get #1 and #2 right.
186 
187 An ordering should be established for all locks to avoid deadlocks.
188 
189 Monitor locks, which are also implemented with pthread calls, should not
190 cause any problems here.  Threads fighting over such locks will not be in
191 critical sections and can be suspended freely.
192 
193 This can get tricky if we ever need exclusive access to VM and non-VM
194 resources at the same time.  It's not clear if this is a real concern.
195 
196 There are (at least) two ways to handle the incoming signals:
197 
198  (a) Always accept signals.  If we're in a critical section, the signal
199      handler just returns without doing anything (the "suspend level"
200      should have been incremented before the signal was sent).  Otherwise,
201      if the "suspend level" is nonzero, we go to sleep.
202  (b) Block signals in critical sections.  This ensures that we can't be
203      interrupted in a critical section, but requires pthread_sigmask()
204      calls on entry and exit.
205 
206 This is a choice between blocking the message and blocking the messenger.
207 Because UNIX signals are unreliable (you can only know that you have been
208 signaled, not whether you were signaled once or 10 times), the choice is
209 not significant for correctness.  The choice depends on the efficiency
210 of pthread_sigmask() and the desire to actually block signals.  Either way,
211 it is best to ensure that there is only one indication of "blocked";
212 having two (i.e. block signals and set a flag, then only send a signal
213 if the flag isn't set) can lead to race conditions.
214 
215 The signal handler must take care to copy registers onto the stack (via
216 setjmp), so that stack scans find all references.  Because we have to scan
217 native stacks, "exact" GC is not possible with this approach.
218 
219 Some other concerns with flinging signals around:
220  - Odd interactions with some debuggers (e.g. gdb on the Mac)
221  - Restrictions on some standard library calls during GC (e.g. don't
222    use printf on stdout to print GC debug messages)
223 */
224 
225 #define kMaxThreadId        ((1 << 16) - 1)
226 #define kMainThreadId       1
227 
228 
229 static Thread* allocThread(int interpStackSize);
230 static bool prepareThread(Thread* thread);
231 static void setThreadSelf(Thread* thread);
232 static void unlinkThread(Thread* thread);
233 static void freeThread(Thread* thread);
234 static void assignThreadId(Thread* thread);
235 static bool createFakeEntryFrame(Thread* thread);
236 static bool createFakeRunFrame(Thread* thread);
237 static void* interpThreadStart(void* arg);
238 static void* internalThreadStart(void* arg);
239 static void threadExitUncaughtException(Thread* thread, Object* group);
240 static void threadExitCheck(void* arg);
241 static void waitForThreadSuspend(Thread* self, Thread* thread);
242 
243 /*
244  * Initialize thread list and main thread's environment.  We need to set
245  * up some basic stuff so that dvmThreadSelf() will work when we start
246  * loading classes (e.g. to check for exceptions).
247  */
dvmThreadStartup()248 bool dvmThreadStartup()
249 {
250     Thread* thread;
251 
252     /* allocate a TLS slot */
253     if (pthread_key_create(&gDvm.pthreadKeySelf, threadExitCheck) != 0) {
254         LOGE("ERROR: pthread_key_create failed");
255         return false;
256     }
257 
258     /* test our pthread lib */
259     if (pthread_getspecific(gDvm.pthreadKeySelf) != NULL)
260         LOGW("WARNING: newly-created pthread TLS slot is not NULL");
261 
262     /* prep thread-related locks and conditions */
263     dvmInitMutex(&gDvm.threadListLock);
264     pthread_cond_init(&gDvm.threadStartCond, NULL);
265     pthread_cond_init(&gDvm.vmExitCond, NULL);
266     dvmInitMutex(&gDvm._threadSuspendLock);
267     dvmInitMutex(&gDvm.threadSuspendCountLock);
268     pthread_cond_init(&gDvm.threadSuspendCountCond, NULL);
269 
270     /*
271      * Dedicated monitor for Thread.sleep().
272      * TODO: change this to an Object* so we don't have to expose this
273      * call, and we interact better with JDWP monitor calls.  Requires
274      * deferring the object creation to much later (e.g. final "main"
275      * thread prep) or until first use.
276      */
277     gDvm.threadSleepMon = dvmCreateMonitor(NULL);
278 
279     gDvm.threadIdMap = dvmAllocBitVector(kMaxThreadId, false);
280 
281     thread = allocThread(gDvm.stackSize);
282     if (thread == NULL)
283         return false;
284 
285     /* switch mode for when we run initializers */
286     thread->status = THREAD_RUNNING;
287 
288     /*
289      * We need to assign the threadId early so we can lock/notify
290      * object monitors.  We'll set the "threadObj" field later.
291      */
292     prepareThread(thread);
293     gDvm.threadList = thread;
294 
295 #ifdef COUNT_PRECISE_METHODS
296     gDvm.preciseMethods = dvmPointerSetAlloc(200);
297 #endif
298 
299     return true;
300 }
301 
302 /*
303  * All threads should be stopped by now.  Clean up some thread globals.
304  */
dvmThreadShutdown()305 void dvmThreadShutdown()
306 {
307     if (gDvm.threadList != NULL) {
308         /*
309          * If we walk through the thread list and try to free the
310          * lingering thread structures (which should only be for daemon
311          * threads), the daemon threads may crash if they execute before
312          * the process dies.  Let them leak.
313          */
314         freeThread(gDvm.threadList);
315         gDvm.threadList = NULL;
316     }
317 
318     dvmFreeBitVector(gDvm.threadIdMap);
319 
320     dvmFreeMonitorList();
321 
322     pthread_key_delete(gDvm.pthreadKeySelf);
323 }
324 
325 
326 /*
327  * Grab the suspend count global lock.
328  */
lockThreadSuspendCount()329 static inline void lockThreadSuspendCount()
330 {
331     /*
332      * Don't try to change to VMWAIT here.  When we change back to RUNNING
333      * we have to check for a pending suspend, which results in grabbing
334      * this lock recursively.  Doesn't work with "fast" pthread mutexes.
335      *
336      * This lock is always held for very brief periods, so as long as
337      * mutex ordering is respected we shouldn't stall.
338      */
339     dvmLockMutex(&gDvm.threadSuspendCountLock);
340 }
341 
342 /*
343  * Release the suspend count global lock.
344  */
unlockThreadSuspendCount()345 static inline void unlockThreadSuspendCount()
346 {
347     dvmUnlockMutex(&gDvm.threadSuspendCountLock);
348 }
349 
350 /*
351  * Grab the thread list global lock.
352  *
353  * This is held while "suspend all" is trying to make everybody stop.  If
354  * the shutdown is in progress, and somebody tries to grab the lock, they'll
355  * have to wait for the GC to finish.  Therefore it's important that the
356  * thread not be in RUNNING mode.
357  *
358  * We don't have to check to see if we should be suspended once we have
359  * the lock.  Nobody can suspend all threads without holding the thread list
360  * lock while they do it, so by definition there isn't a GC in progress.
361  *
362  * This function deliberately avoids the use of dvmChangeStatus(),
363  * which could grab threadSuspendCountLock.  To avoid deadlock, threads
364  * are required to grab the thread list lock before the thread suspend
365  * count lock.  (See comment in DvmGlobals.)
366  *
367  * TODO: consider checking for suspend after acquiring the lock, and
368  * backing off if set.  As stated above, it can't happen during normal
369  * execution, but it *can* happen during shutdown when daemon threads
370  * are being suspended.
371  */
dvmLockThreadList(Thread * self)372 void dvmLockThreadList(Thread* self)
373 {
374     ThreadStatus oldStatus;
375 
376     if (self == NULL)       /* try to get it from TLS */
377         self = dvmThreadSelf();
378 
379     if (self != NULL) {
380         oldStatus = self->status;
381         self->status = THREAD_VMWAIT;
382     } else {
383         /* happens during VM shutdown */
384         oldStatus = THREAD_UNDEFINED;  // shut up gcc
385     }
386 
387     dvmLockMutex(&gDvm.threadListLock);
388 
389     if (self != NULL)
390         self->status = oldStatus;
391 }
392 
393 /*
394  * Try to lock the thread list.
395  *
396  * Returns "true" if we locked it.  This is a "fast" mutex, so if the
397  * current thread holds the lock this will fail.
398  */
dvmTryLockThreadList()399 bool dvmTryLockThreadList()
400 {
401     return (dvmTryLockMutex(&gDvm.threadListLock) == 0);
402 }
403 
404 /*
405  * Release the thread list global lock.
406  */
dvmUnlockThreadList()407 void dvmUnlockThreadList()
408 {
409     dvmUnlockMutex(&gDvm.threadListLock);
410 }
411 
412 /*
413  * Convert SuspendCause to a string.
414  */
getSuspendCauseStr(SuspendCause why)415 static const char* getSuspendCauseStr(SuspendCause why)
416 {
417     switch (why) {
418     case SUSPEND_NOT:               return "NOT?";
419     case SUSPEND_FOR_GC:            return "gc";
420     case SUSPEND_FOR_DEBUG:         return "debug";
421     case SUSPEND_FOR_DEBUG_EVENT:   return "debug-event";
422     case SUSPEND_FOR_STACK_DUMP:    return "stack-dump";
423     case SUSPEND_FOR_VERIFY:        return "verify";
424     case SUSPEND_FOR_HPROF:         return "hprof";
425 #if defined(WITH_JIT)
426     case SUSPEND_FOR_TBL_RESIZE:    return "table-resize";
427     case SUSPEND_FOR_IC_PATCH:      return "inline-cache-patch";
428     case SUSPEND_FOR_CC_RESET:      return "reset-code-cache";
429     case SUSPEND_FOR_REFRESH:       return "refresh jit status";
430 #endif
431     default:                        return "UNKNOWN";
432     }
433 }
434 
435 /*
436  * Grab the "thread suspend" lock.  This is required to prevent the
437  * GC and the debugger from simultaneously suspending all threads.
438  *
439  * If we fail to get the lock, somebody else is trying to suspend all
440  * threads -- including us.  If we go to sleep on the lock we'll deadlock
441  * the VM.  Loop until we get it or somebody puts us to sleep.
442  */
lockThreadSuspend(const char * who,SuspendCause why)443 static void lockThreadSuspend(const char* who, SuspendCause why)
444 {
445     const int kSpinSleepTime = 3*1000*1000;        /* 3s */
446     u8 startWhen = 0;       // init req'd to placate gcc
447     int sleepIter = 0;
448     int cc;
449 
450     do {
451         cc = dvmTryLockMutex(&gDvm._threadSuspendLock);
452         if (cc != 0) {
453             Thread* self = dvmThreadSelf();
454 
455             if (!dvmCheckSuspendPending(self)) {
456                 /*
457                  * Could be that a resume-all is in progress, and something
458                  * grabbed the CPU when the wakeup was broadcast.  The thread
459                  * performing the resume hasn't had a chance to release the
460                  * thread suspend lock.  (We release before the broadcast,
461                  * so this should be a narrow window.)
462                  *
463                  * Could be we hit the window as a suspend was started,
464                  * and the lock has been grabbed but the suspend counts
465                  * haven't been incremented yet.
466                  *
467                  * Could be an unusual JNI thread-attach thing.
468                  *
469                  * Could be the debugger telling us to resume at roughly
470                  * the same time we're posting an event.
471                  *
472                  * Could be two app threads both want to patch predicted
473                  * chaining cells around the same time.
474                  */
475                 LOGI("threadid=%d ODD: want thread-suspend lock (%s:%s),"
476                      " it's held, no suspend pending",
477                     self->threadId, who, getSuspendCauseStr(why));
478             } else {
479                 /* we suspended; reset timeout */
480                 sleepIter = 0;
481             }
482 
483             /* give the lock-holder a chance to do some work */
484             if (sleepIter == 0)
485                 startWhen = dvmGetRelativeTimeUsec();
486             if (!dvmIterativeSleep(sleepIter++, kSpinSleepTime, startWhen)) {
487                 LOGE("threadid=%d: couldn't get thread-suspend lock (%s:%s),"
488                      " bailing",
489                     self->threadId, who, getSuspendCauseStr(why));
490                 /* threads are not suspended, thread dump could crash */
491                 dvmDumpAllThreads(false);
492                 dvmAbort();
493             }
494         }
495     } while (cc != 0);
496     assert(cc == 0);
497 }
498 
499 /*
500  * Release the "thread suspend" lock.
501  */
unlockThreadSuspend()502 static inline void unlockThreadSuspend()
503 {
504     dvmUnlockMutex(&gDvm._threadSuspendLock);
505 }
506 
507 
508 /*
509  * Kill any daemon threads that still exist.  All of ours should be
510  * stopped, so these should be Thread objects or JNI-attached threads
511  * started by the application.  Actively-running threads are likely
512  * to crash the process if they continue to execute while the VM
513  * shuts down, so we really need to kill or suspend them.  (If we want
514  * the VM to restart within this process, we need to kill them, but that
515  * leaves open the possibility of orphaned resources.)
516  *
517  * Waiting for the thread to suspend may be unwise at this point, but
518  * if one of these is wedged in a critical section then we probably
519  * would've locked up on the last GC attempt.
520  *
521  * It's possible for this function to get called after a failed
522  * initialization, so be careful with assumptions about the environment.
523  *
524  * This will be called from whatever thread calls DestroyJavaVM, usually
525  * but not necessarily the main thread.  It's likely, but not guaranteed,
526  * that the current thread has already been cleaned up.
527  */
dvmSlayDaemons()528 void dvmSlayDaemons()
529 {
530     Thread* self = dvmThreadSelf();     // may be null
531     Thread* target;
532     int threadId = 0;
533     bool doWait = false;
534 
535     dvmLockThreadList(self);
536 
537     if (self != NULL)
538         threadId = self->threadId;
539 
540     target = gDvm.threadList;
541     while (target != NULL) {
542         if (target == self) {
543             target = target->next;
544             continue;
545         }
546 
547         if (!dvmGetFieldBoolean(target->threadObj,
548                 gDvm.offJavaLangThread_daemon))
549         {
550             /* should never happen; suspend it with the rest */
551             LOGW("threadid=%d: non-daemon id=%d still running at shutdown?!",
552                 threadId, target->threadId);
553         }
554 
555         std::string threadName(dvmGetThreadName(target));
556         LOGV("threadid=%d: suspending daemon id=%d name='%s'",
557                 threadId, target->threadId, threadName.c_str());
558 
559         /* mark as suspended */
560         lockThreadSuspendCount();
561         dvmAddToSuspendCounts(target, 1, 0);
562         unlockThreadSuspendCount();
563         doWait = true;
564 
565         target = target->next;
566     }
567 
568     //dvmDumpAllThreads(false);
569 
570     /*
571      * Unlock the thread list, relocking it later if necessary.  It's
572      * possible a thread is in VMWAIT after calling dvmLockThreadList,
573      * and that function *doesn't* check for pending suspend after
574      * acquiring the lock.  We want to let them finish their business
575      * and see the pending suspend before we continue here.
576      *
577      * There's no guarantee of mutex fairness, so this might not work.
578      * (The alternative is to have dvmLockThreadList check for suspend
579      * after acquiring the lock and back off, something we should consider.)
580      */
581     dvmUnlockThreadList();
582 
583     if (doWait) {
584         bool complained = false;
585 
586         usleep(200 * 1000);
587 
588         dvmLockThreadList(self);
589 
590         /*
591          * Sleep for a bit until the threads have suspended.  We're trying
592          * to exit, so don't wait for too long.
593          */
594         int i;
595         for (i = 0; i < 10; i++) {
596             bool allSuspended = true;
597 
598             target = gDvm.threadList;
599             while (target != NULL) {
600                 if (target == self) {
601                     target = target->next;
602                     continue;
603                 }
604 
605                 if (target->status == THREAD_RUNNING) {
606                     if (!complained)
607                         LOGD("threadid=%d not ready yet", target->threadId);
608                     allSuspended = false;
609                     /* keep going so we log each running daemon once */
610                 }
611 
612                 target = target->next;
613             }
614 
615             if (allSuspended) {
616                 LOGV("threadid=%d: all daemons have suspended", threadId);
617                 break;
618             } else {
619                 if (!complained) {
620                     complained = true;
621                     LOGD("threadid=%d: waiting briefly for daemon suspension",
622                         threadId);
623                 }
624             }
625 
626             usleep(200 * 1000);
627         }
628         dvmUnlockThreadList();
629     }
630 
631 #if 0   /* bad things happen if they come out of JNI or "spuriously" wake up */
632     /*
633      * Abandon the threads and recover their resources.
634      */
635     target = gDvm.threadList;
636     while (target != NULL) {
637         Thread* nextTarget = target->next;
638         unlinkThread(target);
639         freeThread(target);
640         target = nextTarget;
641     }
642 #endif
643 
644     //dvmDumpAllThreads(true);
645 }
646 
647 
648 /*
649  * Finish preparing the parts of the Thread struct required to support
650  * JNI registration.
651  */
dvmPrepMainForJni(JNIEnv * pEnv)652 bool dvmPrepMainForJni(JNIEnv* pEnv)
653 {
654     Thread* self;
655 
656     /* main thread is always first in list at this point */
657     self = gDvm.threadList;
658     assert(self->threadId == kMainThreadId);
659 
660     /* create a "fake" JNI frame at the top of the main thread interp stack */
661     if (!createFakeEntryFrame(self))
662         return false;
663 
664     /* fill these in, since they weren't ready at dvmCreateJNIEnv time */
665     dvmSetJniEnvThreadId(pEnv, self);
666     dvmSetThreadJNIEnv(self, (JNIEnv*) pEnv);
667 
668     return true;
669 }
670 
671 
672 /*
673  * Finish preparing the main thread, allocating some objects to represent
674  * it.  As part of doing so, we finish initializing Thread and ThreadGroup.
675  * This will execute some interpreted code (e.g. class initializers).
676  */
dvmPrepMainThread()677 bool dvmPrepMainThread()
678 {
679     Thread* thread;
680     Object* groupObj;
681     Object* threadObj;
682     Object* vmThreadObj;
683     StringObject* threadNameStr;
684     Method* init;
685     JValue unused;
686 
687     LOGV("+++ finishing prep on main VM thread");
688 
689     /* main thread is always first in list at this point */
690     thread = gDvm.threadList;
691     assert(thread->threadId == kMainThreadId);
692 
693     /*
694      * Make sure the classes are initialized.  We have to do this before
695      * we create an instance of them.
696      */
697     if (!dvmInitClass(gDvm.classJavaLangClass)) {
698         LOGE("'Class' class failed to initialize");
699         return false;
700     }
701     if (!dvmInitClass(gDvm.classJavaLangThreadGroup) ||
702         !dvmInitClass(gDvm.classJavaLangThread) ||
703         !dvmInitClass(gDvm.classJavaLangVMThread))
704     {
705         LOGE("thread classes failed to initialize");
706         return false;
707     }
708 
709     groupObj = dvmGetMainThreadGroup();
710     if (groupObj == NULL)
711         return false;
712 
713     /*
714      * Allocate and construct a Thread with the internal-creation
715      * constructor.
716      */
717     threadObj = dvmAllocObject(gDvm.classJavaLangThread, ALLOC_DEFAULT);
718     if (threadObj == NULL) {
719         LOGE("unable to allocate main thread object");
720         return false;
721     }
722     dvmReleaseTrackedAlloc(threadObj, NULL);
723 
724     threadNameStr = dvmCreateStringFromCstr("main");
725     if (threadNameStr == NULL)
726         return false;
727     dvmReleaseTrackedAlloc((Object*)threadNameStr, NULL);
728 
729     init = dvmFindDirectMethodByDescriptor(gDvm.classJavaLangThread, "<init>",
730             "(Ljava/lang/ThreadGroup;Ljava/lang/String;IZ)V");
731     assert(init != NULL);
732     dvmCallMethod(thread, init, threadObj, &unused, groupObj, threadNameStr,
733         THREAD_NORM_PRIORITY, false);
734     if (dvmCheckException(thread)) {
735         LOGE("exception thrown while constructing main thread object");
736         return false;
737     }
738 
739     /*
740      * Allocate and construct a VMThread.
741      */
742     vmThreadObj = dvmAllocObject(gDvm.classJavaLangVMThread, ALLOC_DEFAULT);
743     if (vmThreadObj == NULL) {
744         LOGE("unable to allocate main vmthread object");
745         return false;
746     }
747     dvmReleaseTrackedAlloc(vmThreadObj, NULL);
748 
749     init = dvmFindDirectMethodByDescriptor(gDvm.classJavaLangVMThread, "<init>",
750             "(Ljava/lang/Thread;)V");
751     dvmCallMethod(thread, init, vmThreadObj, &unused, threadObj);
752     if (dvmCheckException(thread)) {
753         LOGE("exception thrown while constructing main vmthread object");
754         return false;
755     }
756 
757     /* set the VMThread.vmData field to our Thread struct */
758     assert(gDvm.offJavaLangVMThread_vmData != 0);
759     dvmSetFieldInt(vmThreadObj, gDvm.offJavaLangVMThread_vmData, (u4)thread);
760 
761     /*
762      * Stuff the VMThread back into the Thread.  From this point on, other
763      * Threads will see that this Thread is running (at least, they would,
764      * if there were any).
765      */
766     dvmSetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread,
767         vmThreadObj);
768 
769     thread->threadObj = threadObj;
770 
771     /*
772      * Set the "context class loader" field in the system class loader.
773      *
774      * Retrieving the system class loader will cause invocation of
775      * ClassLoader.getSystemClassLoader(), which could conceivably call
776      * Thread.currentThread(), so we want the Thread to be fully configured
777      * before we do this.
778      */
779     Object* systemLoader = dvmGetSystemClassLoader();
780     if (systemLoader == NULL) {
781         LOGW("WARNING: system class loader is NULL (setting main ctxt)");
782         /* keep going? */
783     } else {
784         dvmSetFieldObject(threadObj, gDvm.offJavaLangThread_contextClassLoader,
785             systemLoader);
786         dvmReleaseTrackedAlloc(systemLoader, NULL);
787     }
788 
789     /* include self in non-daemon threads (mainly for AttachCurrentThread) */
790     gDvm.nonDaemonThreadCount++;
791 
792     return true;
793 }
794 
795 
796 /*
797  * Alloc and initialize a Thread struct.
798  *
799  * Does not create any objects, just stuff on the system (malloc) heap.
800  */
allocThread(int interpStackSize)801 static Thread* allocThread(int interpStackSize)
802 {
803     Thread* thread;
804     u1* stackBottom;
805 
806     thread = (Thread*) calloc(1, sizeof(Thread));
807     if (thread == NULL)
808         return NULL;
809 
810     /* Check sizes and alignment */
811     assert((((uintptr_t)&thread->interpBreak.all) & 0x7) == 0);
812     assert(sizeof(thread->interpBreak) == sizeof(thread->interpBreak.all));
813 
814 
815 #if defined(WITH_SELF_VERIFICATION)
816     if (dvmSelfVerificationShadowSpaceAlloc(thread) == NULL)
817         return NULL;
818 #endif
819 
820     assert(interpStackSize >= kMinStackSize && interpStackSize <=kMaxStackSize);
821 
822     thread->status = THREAD_INITIALIZING;
823 
824     /*
825      * Allocate and initialize the interpreted code stack.  We essentially
826      * "lose" the alloc pointer, which points at the bottom of the stack,
827      * but we can get it back later because we know how big the stack is.
828      *
829      * The stack must be aligned on a 4-byte boundary.
830      */
831 #ifdef MALLOC_INTERP_STACK
832     stackBottom = (u1*) malloc(interpStackSize);
833     if (stackBottom == NULL) {
834 #if defined(WITH_SELF_VERIFICATION)
835         dvmSelfVerificationShadowSpaceFree(thread);
836 #endif
837         free(thread);
838         return NULL;
839     }
840     memset(stackBottom, 0xc5, interpStackSize);     // stop valgrind complaints
841 #else
842     stackBottom = (u1*) mmap(NULL, interpStackSize, PROT_READ | PROT_WRITE,
843         MAP_PRIVATE | MAP_ANON, -1, 0);
844     if (stackBottom == MAP_FAILED) {
845 #if defined(WITH_SELF_VERIFICATION)
846         dvmSelfVerificationShadowSpaceFree(thread);
847 #endif
848         free(thread);
849         return NULL;
850     }
851 #endif
852 
853     assert(((u4)stackBottom & 0x03) == 0); // looks like our malloc ensures this
854     thread->interpStackSize = interpStackSize;
855     thread->interpStackStart = stackBottom + interpStackSize;
856     thread->interpStackEnd = stackBottom + STACK_OVERFLOW_RESERVE;
857 
858 #ifndef DVM_NO_ASM_INTERP
859     thread->mainHandlerTable = dvmAsmInstructionStart;
860     thread->altHandlerTable = dvmAsmAltInstructionStart;
861     thread->interpBreak.ctl.curHandlerTable = thread->mainHandlerTable;
862 #endif
863 
864     /* give the thread code a chance to set things up */
865     dvmInitInterpStack(thread, interpStackSize);
866 
867     /* One-time setup for interpreter/JIT state */
868     dvmInitInterpreterState(thread);
869 
870     return thread;
871 }
872 
873 /*
874  * Get a meaningful thread ID.  At present this only has meaning under Linux,
875  * where getpid() and gettid() sometimes agree and sometimes don't depending
876  * on your thread model (try "export LD_ASSUME_KERNEL=2.4.19").
877  */
dvmGetSysThreadId()878 pid_t dvmGetSysThreadId()
879 {
880 #ifdef HAVE_GETTID
881     return gettid();
882 #else
883     return getpid();
884 #endif
885 }
886 
887 /*
888  * Finish initialization of a Thread struct.
889  *
890  * This must be called while executing in the new thread, but before the
891  * thread is added to the thread list.
892  *
893  * NOTE: The threadListLock must be held by the caller (needed for
894  * assignThreadId()).
895  */
prepareThread(Thread * thread)896 static bool prepareThread(Thread* thread)
897 {
898     assignThreadId(thread);
899     thread->handle = pthread_self();
900     thread->systemTid = dvmGetSysThreadId();
901 
902     //LOGI("SYSTEM TID IS %d (pid is %d)", (int) thread->systemTid,
903     //    (int) getpid());
904     /*
905      * If we were called by dvmAttachCurrentThread, the self value is
906      * already correctly established as "thread".
907      */
908     setThreadSelf(thread);
909 
910     LOGV("threadid=%d: interp stack at %p",
911         thread->threadId, thread->interpStackStart - thread->interpStackSize);
912 
913     /*
914      * Initialize invokeReq.
915      */
916     dvmInitMutex(&thread->invokeReq.lock);
917     pthread_cond_init(&thread->invokeReq.cv, NULL);
918 
919     /*
920      * Initialize our reference tracking tables.
921      *
922      * Most threads won't use jniMonitorRefTable, so we clear out the
923      * structure but don't call the init function (which allocs storage).
924      */
925     if (!thread->jniLocalRefTable.init(kJniLocalRefMin,
926             kJniLocalRefMax, kIndirectKindLocal)) {
927         return false;
928     }
929     if (!dvmInitReferenceTable(&thread->internalLocalRefTable,
930             kInternalRefDefault, kInternalRefMax))
931         return false;
932 
933     memset(&thread->jniMonitorRefTable, 0, sizeof(thread->jniMonitorRefTable));
934 
935     pthread_cond_init(&thread->waitCond, NULL);
936     dvmInitMutex(&thread->waitMutex);
937 
938     /* Initialize safepoint callback mechanism */
939     dvmInitMutex(&thread->callbackMutex);
940 
941     return true;
942 }
943 
944 /*
945  * Remove a thread from the internal list.
946  * Clear out the links to make it obvious that the thread is
947  * no longer on the list.  Caller must hold gDvm.threadListLock.
948  */
unlinkThread(Thread * thread)949 static void unlinkThread(Thread* thread)
950 {
951     LOG_THREAD("threadid=%d: removing from list", thread->threadId);
952     if (thread == gDvm.threadList) {
953         assert(thread->prev == NULL);
954         gDvm.threadList = thread->next;
955     } else {
956         assert(thread->prev != NULL);
957         thread->prev->next = thread->next;
958     }
959     if (thread->next != NULL)
960         thread->next->prev = thread->prev;
961     thread->prev = thread->next = NULL;
962 }
963 
964 /*
965  * Free a Thread struct, and all the stuff allocated within.
966  */
freeThread(Thread * thread)967 static void freeThread(Thread* thread)
968 {
969     if (thread == NULL)
970         return;
971 
972     /* thread->threadId is zero at this point */
973     LOGVV("threadid=%d: freeing", thread->threadId);
974 
975     if (thread->interpStackStart != NULL) {
976         u1* interpStackBottom;
977 
978         interpStackBottom = thread->interpStackStart;
979         interpStackBottom -= thread->interpStackSize;
980 #ifdef MALLOC_INTERP_STACK
981         free(interpStackBottom);
982 #else
983         if (munmap(interpStackBottom, thread->interpStackSize) != 0)
984             LOGW("munmap(thread stack) failed");
985 #endif
986     }
987 
988     thread->jniLocalRefTable.destroy();
989     dvmClearReferenceTable(&thread->internalLocalRefTable);
990     if (&thread->jniMonitorRefTable.table != NULL)
991         dvmClearReferenceTable(&thread->jniMonitorRefTable);
992 
993 #if defined(WITH_SELF_VERIFICATION)
994     dvmSelfVerificationShadowSpaceFree(thread);
995 #endif
996     free(thread);
997 }
998 
999 /*
1000  * Like pthread_self(), but on a Thread*.
1001  */
dvmThreadSelf()1002 Thread* dvmThreadSelf()
1003 {
1004     return (Thread*) pthread_getspecific(gDvm.pthreadKeySelf);
1005 }
1006 
1007 /*
1008  * Explore our sense of self.  Stuffs the thread pointer into TLS.
1009  */
setThreadSelf(Thread * thread)1010 static void setThreadSelf(Thread* thread)
1011 {
1012     int cc;
1013 
1014     cc = pthread_setspecific(gDvm.pthreadKeySelf, thread);
1015     if (cc != 0) {
1016         /*
1017          * Sometimes this fails under Bionic with EINVAL during shutdown.
1018          * This can happen if the timing is just right, e.g. a thread
1019          * fails to attach during shutdown, but the "fail" path calls
1020          * here to ensure we clean up after ourselves.
1021          */
1022         if (thread != NULL) {
1023             LOGE("pthread_setspecific(%p) failed, err=%d", thread, cc);
1024             dvmAbort();     /* the world is fundamentally hosed */
1025         }
1026     }
1027 }
1028 
1029 /*
1030  * This is associated with the pthreadKeySelf key.  It's called by the
1031  * pthread library when a thread is exiting and the "self" pointer in TLS
1032  * is non-NULL, meaning the VM hasn't had a chance to clean up.  In normal
1033  * operation this will not be called.
1034  *
1035  * This is mainly of use to ensure that we don't leak resources if, for
1036  * example, a thread attaches itself to us with AttachCurrentThread and
1037  * then exits without notifying the VM.
1038  *
1039  * We could do the detach here instead of aborting, but this will lead to
1040  * portability problems.  Other implementations do not do this check and
1041  * will simply be unaware that the thread has exited, leading to resource
1042  * leaks (and, if this is a non-daemon thread, an infinite hang when the
1043  * VM tries to shut down).
1044  *
1045  * Because some implementations may want to use the pthread destructor
1046  * to initiate the detach, and the ordering of destructors is not defined,
1047  * we want to iterate a couple of times to give those a chance to run.
1048  */
threadExitCheck(void * arg)1049 static void threadExitCheck(void* arg)
1050 {
1051     const int kMaxCount = 2;
1052 
1053     Thread* self = (Thread*) arg;
1054     assert(self != NULL);
1055 
1056     LOGV("threadid=%d: threadExitCheck(%p) count=%d",
1057         self->threadId, arg, self->threadExitCheckCount);
1058 
1059     if (self->status == THREAD_ZOMBIE) {
1060         LOGW("threadid=%d: Weird -- shouldn't be in threadExitCheck",
1061             self->threadId);
1062         return;
1063     }
1064 
1065     if (self->threadExitCheckCount < kMaxCount) {
1066         /*
1067          * Spin a couple of times to let other destructors fire.
1068          */
1069         LOGD("threadid=%d: thread exiting, not yet detached (count=%d)",
1070             self->threadId, self->threadExitCheckCount);
1071         self->threadExitCheckCount++;
1072         int cc = pthread_setspecific(gDvm.pthreadKeySelf, self);
1073         if (cc != 0) {
1074             LOGE("threadid=%d: unable to re-add thread to TLS",
1075                 self->threadId);
1076             dvmAbort();
1077         }
1078     } else {
1079         LOGE("threadid=%d: native thread exited without detaching",
1080             self->threadId);
1081         dvmAbort();
1082     }
1083 }
1084 
1085 
1086 /*
1087  * Assign the threadId.  This needs to be a small integer so that our
1088  * "thin" locks fit in a small number of bits.
1089  *
1090  * We reserve zero for use as an invalid ID.
1091  *
1092  * This must be called with threadListLock held.
1093  */
assignThreadId(Thread * thread)1094 static void assignThreadId(Thread* thread)
1095 {
1096     /*
1097      * Find a small unique integer.  threadIdMap is a vector of
1098      * kMaxThreadId bits;  dvmAllocBit() returns the index of a
1099      * bit, meaning that it will always be < kMaxThreadId.
1100      */
1101     int num = dvmAllocBit(gDvm.threadIdMap);
1102     if (num < 0) {
1103         LOGE("Ran out of thread IDs");
1104         dvmAbort();     // TODO: make this a non-fatal error result
1105     }
1106 
1107     thread->threadId = num + 1;
1108 
1109     assert(thread->threadId != 0);
1110 }
1111 
1112 /*
1113  * Give back the thread ID.
1114  */
releaseThreadId(Thread * thread)1115 static void releaseThreadId(Thread* thread)
1116 {
1117     assert(thread->threadId > 0);
1118     dvmClearBit(gDvm.threadIdMap, thread->threadId - 1);
1119     thread->threadId = 0;
1120 }
1121 
1122 
1123 /*
1124  * Add a stack frame that makes it look like the native code in the main
1125  * thread was originally invoked from interpreted code.  This gives us a
1126  * place to hang JNI local references.  The VM spec says (v2 5.2) that the
1127  * VM begins by executing "main" in a class, so in a way this brings us
1128  * closer to the spec.
1129  */
createFakeEntryFrame(Thread * thread)1130 static bool createFakeEntryFrame(Thread* thread)
1131 {
1132     /*
1133      * Because we are creating a frame that represents application code, we
1134      * want to stuff the application class loader into the method's class
1135      * loader field, even though we're using the system class loader to
1136      * load it.  This makes life easier over in JNI FindClass (though it
1137      * could bite us in other ways).
1138      *
1139      * Unfortunately this is occurring too early in the initialization,
1140      * of necessity coming before JNI is initialized, and we're not quite
1141      * ready to set up the application class loader.  Also, overwriting
1142      * the class' defining classloader pointer seems unwise.
1143      *
1144      * Instead, we save a pointer to the method and explicitly check for
1145      * it in FindClass.  The method is private so nobody else can call it.
1146      */
1147 
1148     assert(thread->threadId == kMainThreadId);      /* main thread only */
1149 
1150     if (!dvmPushJNIFrame(thread, gDvm.methDalvikSystemNativeStart_main))
1151         return false;
1152 
1153     /*
1154      * Null out the "String[] args" argument.
1155      */
1156     assert(gDvm.methDalvikSystemNativeStart_main->registersSize == 1);
1157     u4* framePtr = (u4*) thread->interpSave.curFrame;
1158     framePtr[0] = 0;
1159 
1160     return true;
1161 }
1162 
1163 
1164 /*
1165  * Add a stack frame that makes it look like the native thread has been
1166  * executing interpreted code.  This gives us a place to hang JNI local
1167  * references.
1168  */
createFakeRunFrame(Thread * thread)1169 static bool createFakeRunFrame(Thread* thread)
1170 {
1171     return dvmPushJNIFrame(thread, gDvm.methDalvikSystemNativeStart_run);
1172 }
1173 
1174 /*
1175  * Helper function to set the name of the current thread
1176  */
setThreadName(const char * threadName)1177 static void setThreadName(const char *threadName)
1178 {
1179     int hasAt = 0;
1180     int hasDot = 0;
1181     const char *s = threadName;
1182     while (*s) {
1183         if (*s == '.') hasDot = 1;
1184         else if (*s == '@') hasAt = 1;
1185         s++;
1186     }
1187     int len = s - threadName;
1188     if (len < 15 || hasAt || !hasDot) {
1189         s = threadName;
1190     } else {
1191         s = threadName + len - 15;
1192     }
1193 #if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
1194     /* pthread_setname_np fails rather than truncating long strings */
1195     char buf[16];       // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
1196     strncpy(buf, s, sizeof(buf)-1);
1197     buf[sizeof(buf)-1] = '\0';
1198     int err = pthread_setname_np(pthread_self(), buf);
1199     if (err != 0) {
1200         LOGW("Unable to set the name of current thread to '%s': %s",
1201             buf, strerror(err));
1202     }
1203 #elif defined(HAVE_PRCTL)
1204     prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
1205 #else
1206     LOGD("No way to set current thread's name (%s)", s);
1207 #endif
1208 }
1209 
1210 /*
1211  * Create a thread as a result of java.lang.Thread.start().
1212  *
1213  * We do have to worry about some concurrency problems, e.g. programs
1214  * that try to call Thread.start() on the same object from multiple threads.
1215  * (This will fail for all but one, but we have to make sure that it succeeds
1216  * for exactly one.)
1217  *
1218  * Some of the complexity here arises from our desire to mimic the
1219  * Thread vs. VMThread class decomposition we inherited.  We've been given
1220  * a Thread, and now we need to create a VMThread and then populate both
1221  * objects.  We also need to create one of our internal Thread objects.
1222  *
1223  * Pass in a stack size of 0 to get the default.
1224  *
1225  * The "threadObj" reference must be pinned by the caller to prevent the GC
1226  * from moving it around (e.g. added to the tracked allocation list).
1227  */
dvmCreateInterpThread(Object * threadObj,int reqStackSize)1228 bool dvmCreateInterpThread(Object* threadObj, int reqStackSize)
1229 {
1230     assert(threadObj != NULL);
1231 
1232     Thread* self = dvmThreadSelf();
1233     int stackSize;
1234     if (reqStackSize == 0)
1235         stackSize = gDvm.stackSize;
1236     else if (reqStackSize < kMinStackSize)
1237         stackSize = kMinStackSize;
1238     else if (reqStackSize > kMaxStackSize)
1239         stackSize = kMaxStackSize;
1240     else
1241         stackSize = reqStackSize;
1242 
1243     pthread_attr_t threadAttr;
1244     pthread_attr_init(&threadAttr);
1245     pthread_attr_setdetachstate(&threadAttr, PTHREAD_CREATE_DETACHED);
1246 
1247     /*
1248      * To minimize the time spent in the critical section, we allocate the
1249      * vmThread object here.
1250      */
1251     Object* vmThreadObj = dvmAllocObject(gDvm.classJavaLangVMThread, ALLOC_DEFAULT);
1252     if (vmThreadObj == NULL)
1253         return false;
1254 
1255     Thread* newThread = allocThread(stackSize);
1256     if (newThread == NULL) {
1257         dvmReleaseTrackedAlloc(vmThreadObj, NULL);
1258         return false;
1259     }
1260 
1261     newThread->threadObj = threadObj;
1262 
1263     assert(newThread->status == THREAD_INITIALIZING);
1264 
1265     /*
1266      * We need to lock out other threads while we test and set the
1267      * "vmThread" field in java.lang.Thread, because we use that to determine
1268      * if this thread has been started before.  We use the thread list lock
1269      * because it's handy and we're going to need to grab it again soon
1270      * anyway.
1271      */
1272     dvmLockThreadList(self);
1273 
1274     if (dvmGetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread) != NULL) {
1275         dvmUnlockThreadList();
1276         dvmThrowIllegalThreadStateException(
1277             "thread has already been started");
1278         freeThread(newThread);
1279         dvmReleaseTrackedAlloc(vmThreadObj, NULL);
1280     }
1281 
1282     /*
1283      * There are actually three data structures: Thread (object), VMThread
1284      * (object), and Thread (C struct).  All of them point to at least one
1285      * other.
1286      *
1287      * As soon as "VMThread.vmData" is assigned, other threads can start
1288      * making calls into us (e.g. setPriority).
1289      */
1290     dvmSetFieldInt(vmThreadObj, gDvm.offJavaLangVMThread_vmData, (u4)newThread);
1291     dvmSetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread, vmThreadObj);
1292 
1293     /*
1294      * Thread creation might take a while, so release the lock.
1295      */
1296     dvmUnlockThreadList();
1297 
1298     ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
1299     pthread_t threadHandle;
1300     int cc = pthread_create(&threadHandle, &threadAttr, interpThreadStart,
1301                             newThread);
1302     dvmChangeStatus(self, oldStatus);
1303 
1304     if (cc != 0) {
1305         /*
1306          * Failure generally indicates that we have exceeded system
1307          * resource limits.  VirtualMachineError is probably too severe,
1308          * so use OutOfMemoryError.
1309          */
1310         LOGE("Thread creation failed (err=%s)", strerror(errno));
1311 
1312         dvmSetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread, NULL);
1313 
1314         dvmThrowOutOfMemoryError("thread creation failed");
1315         goto fail;
1316     }
1317 
1318     /*
1319      * We need to wait for the thread to start.  Otherwise, depending on
1320      * the whims of the OS scheduler, we could return and the code in our
1321      * thread could try to do operations on the new thread before it had
1322      * finished starting.
1323      *
1324      * The new thread will lock the thread list, change its state to
1325      * THREAD_STARTING, broadcast to gDvm.threadStartCond, and then sleep
1326      * on gDvm.threadStartCond (which uses the thread list lock).  This
1327      * thread (the parent) will either see that the thread is already ready
1328      * after we grab the thread list lock, or will be awakened from the
1329      * condition variable on the broadcast.
1330      *
1331      * We don't want to stall the rest of the VM while the new thread
1332      * starts, which can happen if the GC wakes up at the wrong moment.
1333      * So, we change our own status to VMWAIT, and self-suspend if
1334      * necessary after we finish adding the new thread.
1335      *
1336      *
1337      * We have to deal with an odd race with the GC/debugger suspension
1338      * mechanism when creating a new thread.  The information about whether
1339      * or not a thread should be suspended is contained entirely within
1340      * the Thread struct; this is usually cleaner to deal with than having
1341      * one or more globally-visible suspension flags.  The trouble is that
1342      * we could create the thread while the VM is trying to suspend all
1343      * threads.  The suspend-count won't be nonzero for the new thread,
1344      * so dvmChangeStatus(THREAD_RUNNING) won't cause a suspension.
1345      *
1346      * The easiest way to deal with this is to prevent the new thread from
1347      * running until the parent says it's okay.  This results in the
1348      * following (correct) sequence of events for a "badly timed" GC
1349      * (where '-' is us, 'o' is the child, and '+' is some other thread):
1350      *
1351      *  - call pthread_create()
1352      *  - lock thread list
1353      *  - put self into THREAD_VMWAIT so GC doesn't wait for us
1354      *  - sleep on condition var (mutex = thread list lock) until child starts
1355      *  + GC triggered by another thread
1356      *  + thread list locked; suspend counts updated; thread list unlocked
1357      *  + loop waiting for all runnable threads to suspend
1358      *  + success, start GC
1359      *  o child thread wakes, signals condition var to wake parent
1360      *  o child waits for parent ack on condition variable
1361      *  - we wake up, locking thread list
1362      *  - add child to thread list
1363      *  - unlock thread list
1364      *  - change our state back to THREAD_RUNNING; GC causes us to suspend
1365      *  + GC finishes; all threads in thread list are resumed
1366      *  - lock thread list
1367      *  - set child to THREAD_VMWAIT, and signal it to start
1368      *  - unlock thread list
1369      *  o child resumes
1370      *  o child changes state to THREAD_RUNNING
1371      *
1372      * The above shows the GC starting up during thread creation, but if
1373      * it starts anywhere after VMThread.create() is called it will
1374      * produce the same series of events.
1375      *
1376      * Once the child is in the thread list, it will be suspended and
1377      * resumed like any other thread.  In the above scenario the resume-all
1378      * code will try to resume the new thread, which was never actually
1379      * suspended, and try to decrement the child's thread suspend count to -1.
1380      * We can catch this in the resume-all code.
1381      *
1382      * Bouncing back and forth between threads like this adds a small amount
1383      * of scheduler overhead to thread startup.
1384      *
1385      * One alternative to having the child wait for the parent would be
1386      * to have the child inherit the parents' suspension count.  This
1387      * would work for a GC, since we can safely assume that the parent
1388      * thread didn't cause it, but we must only do so if the parent suspension
1389      * was caused by a suspend-all.  If the parent was being asked to
1390      * suspend singly by the debugger, the child should not inherit the value.
1391      *
1392      * We could also have a global "new thread suspend count" that gets
1393      * picked up by new threads before changing state to THREAD_RUNNING.
1394      * This would be protected by the thread list lock and set by a
1395      * suspend-all.
1396      */
1397     dvmLockThreadList(self);
1398     assert(self->status == THREAD_RUNNING);
1399     self->status = THREAD_VMWAIT;
1400     while (newThread->status != THREAD_STARTING)
1401         pthread_cond_wait(&gDvm.threadStartCond, &gDvm.threadListLock);
1402 
1403     LOG_THREAD("threadid=%d: adding to list", newThread->threadId);
1404     newThread->next = gDvm.threadList->next;
1405     if (newThread->next != NULL)
1406         newThread->next->prev = newThread;
1407     newThread->prev = gDvm.threadList;
1408     gDvm.threadList->next = newThread;
1409 
1410     /* Add any existing global modes to the interpBreak control */
1411     dvmInitializeInterpBreak(newThread);
1412 
1413     if (!dvmGetFieldBoolean(threadObj, gDvm.offJavaLangThread_daemon))
1414         gDvm.nonDaemonThreadCount++;        // guarded by thread list lock
1415 
1416     dvmUnlockThreadList();
1417 
1418     /* change status back to RUNNING, self-suspending if necessary */
1419     dvmChangeStatus(self, THREAD_RUNNING);
1420 
1421     /*
1422      * Tell the new thread to start.
1423      *
1424      * We must hold the thread list lock before messing with another thread.
1425      * In the general case we would also need to verify that newThread was
1426      * still in the thread list, but in our case the thread has not started
1427      * executing user code and therefore has not had a chance to exit.
1428      *
1429      * We move it to VMWAIT, and it then shifts itself to RUNNING, which
1430      * comes with a suspend-pending check.
1431      */
1432     dvmLockThreadList(self);
1433 
1434     assert(newThread->status == THREAD_STARTING);
1435     newThread->status = THREAD_VMWAIT;
1436     pthread_cond_broadcast(&gDvm.threadStartCond);
1437 
1438     dvmUnlockThreadList();
1439 
1440     dvmReleaseTrackedAlloc(vmThreadObj, NULL);
1441     return true;
1442 
1443 fail:
1444     freeThread(newThread);
1445     dvmReleaseTrackedAlloc(vmThreadObj, NULL);
1446     return false;
1447 }
1448 
1449 /*
1450  * pthread entry function for threads started from interpreted code.
1451  */
interpThreadStart(void * arg)1452 static void* interpThreadStart(void* arg)
1453 {
1454     Thread* self = (Thread*) arg;
1455 
1456     std::string threadName(dvmGetThreadName(self));
1457     setThreadName(threadName.c_str());
1458 
1459     /*
1460      * Finish initializing the Thread struct.
1461      */
1462     dvmLockThreadList(self);
1463     prepareThread(self);
1464 
1465     LOG_THREAD("threadid=%d: created from interp", self->threadId);
1466 
1467     /*
1468      * Change our status and wake our parent, who will add us to the
1469      * thread list and advance our state to VMWAIT.
1470      */
1471     self->status = THREAD_STARTING;
1472     pthread_cond_broadcast(&gDvm.threadStartCond);
1473 
1474     /*
1475      * Wait until the parent says we can go.  Assuming there wasn't a
1476      * suspend pending, this will happen immediately.  When it completes,
1477      * we're full-fledged citizens of the VM.
1478      *
1479      * We have to use THREAD_VMWAIT here rather than THREAD_RUNNING
1480      * because the pthread_cond_wait below needs to reacquire a lock that
1481      * suspend-all is also interested in.  If we get unlucky, the parent could
1482      * change us to THREAD_RUNNING, then a GC could start before we get
1483      * signaled, and suspend-all will grab the thread list lock and then
1484      * wait for us to suspend.  We'll be in the tail end of pthread_cond_wait
1485      * trying to get the lock.
1486      */
1487     while (self->status != THREAD_VMWAIT)
1488         pthread_cond_wait(&gDvm.threadStartCond, &gDvm.threadListLock);
1489 
1490     dvmUnlockThreadList();
1491 
1492     /*
1493      * Add a JNI context.
1494      */
1495     self->jniEnv = dvmCreateJNIEnv(self);
1496 
1497     /*
1498      * Change our state so the GC will wait for us from now on.  If a GC is
1499      * in progress this call will suspend us.
1500      */
1501     dvmChangeStatus(self, THREAD_RUNNING);
1502 
1503     /*
1504      * Notify the debugger & DDM.  The debugger notification may cause
1505      * us to suspend ourselves (and others).  The thread state may change
1506      * to VMWAIT briefly if network packets are sent.
1507      */
1508     if (gDvm.debuggerConnected)
1509         dvmDbgPostThreadStart(self);
1510 
1511     /*
1512      * Set the system thread priority according to the Thread object's
1513      * priority level.  We don't usually need to do this, because both the
1514      * Thread object and system thread priorities inherit from parents.  The
1515      * tricky case is when somebody creates a Thread object, calls
1516      * setPriority(), and then starts the thread.  We could manage this with
1517      * a "needs priority update" flag to avoid the redundant call.
1518      */
1519     int priority = dvmGetFieldInt(self->threadObj,
1520                         gDvm.offJavaLangThread_priority);
1521     dvmChangeThreadPriority(self, priority);
1522 
1523     /*
1524      * Execute the "run" method.
1525      *
1526      * At this point our stack is empty, so somebody who comes looking for
1527      * stack traces right now won't have much to look at.  This is normal.
1528      */
1529     Method* run = self->threadObj->clazz->vtable[gDvm.voffJavaLangThread_run];
1530     JValue unused;
1531 
1532     LOGV("threadid=%d: calling run()", self->threadId);
1533     assert(strcmp(run->name, "run") == 0);
1534     dvmCallMethod(self, run, self->threadObj, &unused);
1535     LOGV("threadid=%d: exiting", self->threadId);
1536 
1537     /*
1538      * Remove the thread from various lists, report its death, and free
1539      * its resources.
1540      */
1541     dvmDetachCurrentThread();
1542 
1543     return NULL;
1544 }
1545 
1546 /*
1547  * The current thread is exiting with an uncaught exception.  The
1548  * Java programming language allows the application to provide a
1549  * thread-exit-uncaught-exception handler for the VM, for a specific
1550  * Thread, and for all threads in a ThreadGroup.
1551  *
1552  * Version 1.5 added the per-thread handler.  We need to call
1553  * "uncaughtException" in the handler object, which is either the
1554  * ThreadGroup object or the Thread-specific handler.
1555  *
1556  * This should only be called when an exception is pending.  Before
1557  * returning, the exception will be cleared.
1558  */
threadExitUncaughtException(Thread * self,Object * group)1559 static void threadExitUncaughtException(Thread* self, Object* group)
1560 {
1561     Object* exception;
1562     Object* handlerObj;
1563     Method* uncaughtHandler;
1564 
1565     LOGW("threadid=%d: thread exiting with uncaught exception (group=%p)",
1566         self->threadId, group);
1567     assert(group != NULL);
1568 
1569     /*
1570      * Get a pointer to the exception, then clear out the one in the
1571      * thread.  We don't want to have it set when executing interpreted code.
1572      */
1573     exception = dvmGetException(self);
1574     assert(exception != NULL);
1575     dvmAddTrackedAlloc(exception, self);
1576     dvmClearException(self);
1577 
1578     /*
1579      * Get the Thread's "uncaughtHandler" object.  Use it if non-NULL;
1580      * else use "group" (which is an instance of UncaughtExceptionHandler).
1581      * The ThreadGroup will handle it directly or call the default
1582      * uncaught exception handler.
1583      */
1584     handlerObj = dvmGetFieldObject(self->threadObj,
1585             gDvm.offJavaLangThread_uncaughtHandler);
1586     if (handlerObj == NULL)
1587         handlerObj = group;
1588 
1589     /*
1590      * Find the "uncaughtException" method in this object.  The method
1591      * was declared in the Thread.UncaughtExceptionHandler interface.
1592      */
1593     uncaughtHandler = dvmFindVirtualMethodHierByDescriptor(handlerObj->clazz,
1594             "uncaughtException", "(Ljava/lang/Thread;Ljava/lang/Throwable;)V");
1595 
1596     if (uncaughtHandler != NULL) {
1597         //LOGI("+++ calling %s.uncaughtException",
1598         //     handlerObj->clazz->descriptor);
1599         JValue unused;
1600         dvmCallMethod(self, uncaughtHandler, handlerObj, &unused,
1601             self->threadObj, exception);
1602     } else {
1603         /* should be impossible, but handle it anyway */
1604         LOGW("WARNING: no 'uncaughtException' method in class %s",
1605             handlerObj->clazz->descriptor);
1606         dvmSetException(self, exception);
1607         dvmLogExceptionStackTrace();
1608     }
1609 
1610     /* if the uncaught handler threw, clear it */
1611     dvmClearException(self);
1612 
1613     dvmReleaseTrackedAlloc(exception, self);
1614 
1615     /* Remove this thread's suspendCount from global suspendCount sum */
1616     lockThreadSuspendCount();
1617     dvmAddToSuspendCounts(self, -self->suspendCount, 0);
1618     unlockThreadSuspendCount();
1619 }
1620 
1621 
1622 /*
1623  * Create an internal VM thread, for things like JDWP and finalizers.
1624  *
1625  * The easiest way to do this is create a new thread and then use the
1626  * JNI AttachCurrentThread implementation.
1627  *
1628  * This does not return until after the new thread has begun executing.
1629  */
dvmCreateInternalThread(pthread_t * pHandle,const char * name,InternalThreadStart func,void * funcArg)1630 bool dvmCreateInternalThread(pthread_t* pHandle, const char* name,
1631     InternalThreadStart func, void* funcArg)
1632 {
1633     InternalStartArgs* pArgs;
1634     Object* systemGroup;
1635     pthread_attr_t threadAttr;
1636     volatile Thread* newThread = NULL;
1637     volatile int createStatus = 0;
1638 
1639     systemGroup = dvmGetSystemThreadGroup();
1640     if (systemGroup == NULL)
1641         return false;
1642 
1643     pArgs = (InternalStartArgs*) malloc(sizeof(*pArgs));
1644     pArgs->func = func;
1645     pArgs->funcArg = funcArg;
1646     pArgs->name = strdup(name);     // storage will be owned by new thread
1647     pArgs->group = systemGroup;
1648     pArgs->isDaemon = true;
1649     pArgs->pThread = &newThread;
1650     pArgs->pCreateStatus = &createStatus;
1651 
1652     pthread_attr_init(&threadAttr);
1653     //pthread_attr_setdetachstate(&threadAttr, PTHREAD_CREATE_DETACHED);
1654 
1655     if (pthread_create(pHandle, &threadAttr, internalThreadStart,
1656             pArgs) != 0)
1657     {
1658         LOGE("internal thread creation failed");
1659         free(pArgs->name);
1660         free(pArgs);
1661         return false;
1662     }
1663 
1664     /*
1665      * Wait for the child to start.  This gives us an opportunity to make
1666      * sure that the thread started correctly, and allows our caller to
1667      * assume that the thread has started running.
1668      *
1669      * Because we aren't holding a lock across the thread creation, it's
1670      * possible that the child will already have completed its
1671      * initialization.  Because the child only adjusts "createStatus" while
1672      * holding the thread list lock, the initial condition on the "while"
1673      * loop will correctly avoid the wait if this occurs.
1674      *
1675      * It's also possible that we'll have to wait for the thread to finish
1676      * being created, and as part of allocating a Thread object it might
1677      * need to initiate a GC.  We switch to VMWAIT while we pause.
1678      */
1679     Thread* self = dvmThreadSelf();
1680     ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
1681     dvmLockThreadList(self);
1682     while (createStatus == 0)
1683         pthread_cond_wait(&gDvm.threadStartCond, &gDvm.threadListLock);
1684 
1685     if (newThread == NULL) {
1686         LOGW("internal thread create failed (createStatus=%d)", createStatus);
1687         assert(createStatus < 0);
1688         /* don't free pArgs -- if pthread_create succeeded, child owns it */
1689         dvmUnlockThreadList();
1690         dvmChangeStatus(self, oldStatus);
1691         return false;
1692     }
1693 
1694     /* thread could be in any state now (except early init states) */
1695     //assert(newThread->status == THREAD_RUNNING);
1696 
1697     dvmUnlockThreadList();
1698     dvmChangeStatus(self, oldStatus);
1699 
1700     return true;
1701 }
1702 
1703 /*
1704  * pthread entry function for internally-created threads.
1705  *
1706  * We are expected to free "arg" and its contents.  If we're a daemon
1707  * thread, and we get cancelled abruptly when the VM shuts down, the
1708  * storage won't be freed.  If this becomes a concern we can make a copy
1709  * on the stack.
1710  */
internalThreadStart(void * arg)1711 static void* internalThreadStart(void* arg)
1712 {
1713     InternalStartArgs* pArgs = (InternalStartArgs*) arg;
1714     JavaVMAttachArgs jniArgs;
1715 
1716     jniArgs.version = JNI_VERSION_1_2;
1717     jniArgs.name = pArgs->name;
1718     jniArgs.group = reinterpret_cast<jobject>(pArgs->group);
1719 
1720     setThreadName(pArgs->name);
1721 
1722     /* use local jniArgs as stack top */
1723     if (dvmAttachCurrentThread(&jniArgs, pArgs->isDaemon)) {
1724         /*
1725          * Tell the parent of our success.
1726          *
1727          * threadListLock is the mutex for threadStartCond.
1728          */
1729         dvmLockThreadList(dvmThreadSelf());
1730         *pArgs->pCreateStatus = 1;
1731         *pArgs->pThread = dvmThreadSelf();
1732         pthread_cond_broadcast(&gDvm.threadStartCond);
1733         dvmUnlockThreadList();
1734 
1735         LOG_THREAD("threadid=%d: internal '%s'",
1736             dvmThreadSelf()->threadId, pArgs->name);
1737 
1738         /* execute */
1739         (*pArgs->func)(pArgs->funcArg);
1740 
1741         /* detach ourselves */
1742         dvmDetachCurrentThread();
1743     } else {
1744         /*
1745          * Tell the parent of our failure.  We don't have a Thread struct,
1746          * so we can't be suspended, so we don't need to enter a critical
1747          * section.
1748          */
1749         dvmLockThreadList(dvmThreadSelf());
1750         *pArgs->pCreateStatus = -1;
1751         assert(*pArgs->pThread == NULL);
1752         pthread_cond_broadcast(&gDvm.threadStartCond);
1753         dvmUnlockThreadList();
1754 
1755         assert(*pArgs->pThread == NULL);
1756     }
1757 
1758     free(pArgs->name);
1759     free(pArgs);
1760     return NULL;
1761 }
1762 
1763 /*
1764  * Attach the current thread to the VM.
1765  *
1766  * Used for internally-created threads and JNI's AttachCurrentThread.
1767  */
dvmAttachCurrentThread(const JavaVMAttachArgs * pArgs,bool isDaemon)1768 bool dvmAttachCurrentThread(const JavaVMAttachArgs* pArgs, bool isDaemon)
1769 {
1770     Thread* self = NULL;
1771     Object* threadObj = NULL;
1772     Object* vmThreadObj = NULL;
1773     StringObject* threadNameStr = NULL;
1774     Method* init;
1775     bool ok, ret;
1776 
1777     /* allocate thread struct, and establish a basic sense of self */
1778     self = allocThread(gDvm.stackSize);
1779     if (self == NULL)
1780         goto fail;
1781     setThreadSelf(self);
1782 
1783     /*
1784      * Finish our thread prep.  We need to do this before adding ourselves
1785      * to the thread list or invoking any interpreted code.  prepareThread()
1786      * requires that we hold the thread list lock.
1787      */
1788     dvmLockThreadList(self);
1789     ok = prepareThread(self);
1790     dvmUnlockThreadList();
1791     if (!ok)
1792         goto fail;
1793 
1794     self->jniEnv = dvmCreateJNIEnv(self);
1795     if (self->jniEnv == NULL)
1796         goto fail;
1797 
1798     /*
1799      * Create a "fake" JNI frame at the top of the main thread interp stack.
1800      * It isn't really necessary for the internal threads, but it gives
1801      * the debugger something to show.  It is essential for the JNI-attached
1802      * threads.
1803      */
1804     if (!createFakeRunFrame(self))
1805         goto fail;
1806 
1807     /*
1808      * The native side of the thread is ready; add it to the list.  Once
1809      * it's on the list the thread is visible to the JDWP code and the GC.
1810      */
1811     LOG_THREAD("threadid=%d: adding to list (attached)", self->threadId);
1812 
1813     dvmLockThreadList(self);
1814 
1815     self->next = gDvm.threadList->next;
1816     if (self->next != NULL)
1817         self->next->prev = self;
1818     self->prev = gDvm.threadList;
1819     gDvm.threadList->next = self;
1820     if (!isDaemon)
1821         gDvm.nonDaemonThreadCount++;
1822 
1823     dvmUnlockThreadList();
1824 
1825     /*
1826      * Switch state from initializing to running.
1827      *
1828      * It's possible that a GC began right before we added ourselves
1829      * to the thread list, and is still going.  That means our thread
1830      * suspend count won't reflect the fact that we should be suspended.
1831      * To deal with this, we transition to VMWAIT, pulse the heap lock,
1832      * and then advance to RUNNING.  That will ensure that we stall until
1833      * the GC completes.
1834      *
1835      * Once we're in RUNNING, we're like any other thread in the VM (except
1836      * for the lack of an initialized threadObj).  We're then free to
1837      * allocate and initialize objects.
1838      */
1839     assert(self->status == THREAD_INITIALIZING);
1840     dvmChangeStatus(self, THREAD_VMWAIT);
1841     dvmLockMutex(&gDvm.gcHeapLock);
1842     dvmUnlockMutex(&gDvm.gcHeapLock);
1843     dvmChangeStatus(self, THREAD_RUNNING);
1844 
1845     /*
1846      * Create Thread and VMThread objects.
1847      */
1848     threadObj = dvmAllocObject(gDvm.classJavaLangThread, ALLOC_DEFAULT);
1849     vmThreadObj = dvmAllocObject(gDvm.classJavaLangVMThread, ALLOC_DEFAULT);
1850     if (threadObj == NULL || vmThreadObj == NULL)
1851         goto fail_unlink;
1852 
1853     /*
1854      * This makes threadObj visible to the GC.  We still have it in the
1855      * tracked allocation table, so it can't move around on us.
1856      */
1857     self->threadObj = threadObj;
1858     dvmSetFieldInt(vmThreadObj, gDvm.offJavaLangVMThread_vmData, (u4)self);
1859 
1860     /*
1861      * Create a string for the thread name.
1862      */
1863     if (pArgs->name != NULL) {
1864         threadNameStr = dvmCreateStringFromCstr(pArgs->name);
1865         if (threadNameStr == NULL) {
1866             assert(dvmCheckException(dvmThreadSelf()));
1867             goto fail_unlink;
1868         }
1869     }
1870 
1871     init = dvmFindDirectMethodByDescriptor(gDvm.classJavaLangThread, "<init>",
1872             "(Ljava/lang/ThreadGroup;Ljava/lang/String;IZ)V");
1873     if (init == NULL) {
1874         assert(dvmCheckException(self));
1875         goto fail_unlink;
1876     }
1877 
1878     /*
1879      * Now we're ready to run some interpreted code.
1880      *
1881      * We need to construct the Thread object and set the VMThread field.
1882      * Setting VMThread tells interpreted code that we're alive.
1883      *
1884      * Call the (group, name, priority, daemon) constructor on the Thread.
1885      * This sets the thread's name and adds it to the specified group, and
1886      * provides values for priority and daemon (which are normally inherited
1887      * from the current thread).
1888      */
1889     JValue unused;
1890     dvmCallMethod(self, init, threadObj, &unused, (Object*)pArgs->group,
1891             threadNameStr, os_getThreadPriorityFromSystem(), isDaemon);
1892     if (dvmCheckException(self)) {
1893         LOGE("exception thrown while constructing attached thread object");
1894         goto fail_unlink;
1895     }
1896 
1897     /*
1898      * Set the VMThread field, which tells interpreted code that we're alive.
1899      *
1900      * The risk of a thread start collision here is very low; somebody
1901      * would have to be deliberately polling the ThreadGroup list and
1902      * trying to start threads against anything it sees, which would
1903      * generally cause problems for all thread creation.  However, for
1904      * correctness we test "vmThread" before setting it.
1905      *
1906      * TODO: this still has a race, it's just smaller.  Not sure this is
1907      * worth putting effort into fixing.  Need to hold a lock while
1908      * fiddling with the field, or maybe initialize the Thread object in a
1909      * way that ensures another thread can't call start() on it.
1910      */
1911     if (dvmGetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread) != NULL) {
1912         LOGW("WOW: thread start hijack");
1913         dvmThrowIllegalThreadStateException(
1914             "thread has already been started");
1915         /* We don't want to free anything associated with the thread
1916          * because someone is obviously interested in it.  Just let
1917          * it go and hope it will clean itself up when its finished.
1918          * This case should never happen anyway.
1919          *
1920          * Since we're letting it live, we need to finish setting it up.
1921          * We just have to let the caller know that the intended operation
1922          * has failed.
1923          *
1924          * [ This seems strange -- stepping on the vmThread object that's
1925          * already present seems like a bad idea.  TODO: figure this out. ]
1926          */
1927         ret = false;
1928     } else {
1929         ret = true;
1930     }
1931     dvmSetFieldObject(threadObj, gDvm.offJavaLangThread_vmThread, vmThreadObj);
1932 
1933     /* we can now safely un-pin these */
1934     dvmReleaseTrackedAlloc(threadObj, self);
1935     dvmReleaseTrackedAlloc(vmThreadObj, self);
1936     dvmReleaseTrackedAlloc((Object*)threadNameStr, self);
1937 
1938     LOG_THREAD("threadid=%d: attached from native, name=%s",
1939         self->threadId, pArgs->name);
1940 
1941     /* tell the debugger & DDM */
1942     if (gDvm.debuggerConnected)
1943         dvmDbgPostThreadStart(self);
1944 
1945     return ret;
1946 
1947 fail_unlink:
1948     dvmLockThreadList(self);
1949     unlinkThread(self);
1950     if (!isDaemon)
1951         gDvm.nonDaemonThreadCount--;
1952     dvmUnlockThreadList();
1953     /* fall through to "fail" */
1954 fail:
1955     dvmReleaseTrackedAlloc(threadObj, self);
1956     dvmReleaseTrackedAlloc(vmThreadObj, self);
1957     dvmReleaseTrackedAlloc((Object*)threadNameStr, self);
1958     if (self != NULL) {
1959         if (self->jniEnv != NULL) {
1960             dvmDestroyJNIEnv(self->jniEnv);
1961             self->jniEnv = NULL;
1962         }
1963         freeThread(self);
1964     }
1965     setThreadSelf(NULL);
1966     return false;
1967 }
1968 
1969 /*
1970  * Detach the thread from the various data structures, notify other threads
1971  * that are waiting to "join" it, and free up all heap-allocated storage.
1972  *
1973  * Used for all threads.
1974  *
1975  * When we get here the interpreted stack should be empty.  The JNI 1.6 spec
1976  * requires us to enforce this for the DetachCurrentThread call, probably
1977  * because it also says that DetachCurrentThread causes all monitors
1978  * associated with the thread to be released.  (Because the stack is empty,
1979  * we only have to worry about explicit JNI calls to MonitorEnter.)
1980  *
1981  * THOUGHT:
1982  * We might want to avoid freeing our internal Thread structure until the
1983  * associated Thread/VMThread objects get GCed.  Our Thread is impossible to
1984  * get to once the thread shuts down, but there is a small possibility of
1985  * an operation starting in another thread before this thread halts, and
1986  * finishing much later (perhaps the thread got stalled by a weird OS bug).
1987  * We don't want something like Thread.isInterrupted() crawling through
1988  * freed storage.  Can do with a Thread finalizer, or by creating a
1989  * dedicated ThreadObject class for java/lang/Thread and moving all of our
1990  * state into that.
1991  */
dvmDetachCurrentThread()1992 void dvmDetachCurrentThread()
1993 {
1994     Thread* self = dvmThreadSelf();
1995     Object* vmThread;
1996     Object* group;
1997 
1998     /*
1999      * Make sure we're not detaching a thread that's still running.  (This
2000      * could happen with an explicit JNI detach call.)
2001      *
2002      * A thread created by interpreted code will finish with a depth of
2003      * zero, while a JNI-attached thread will have the synthetic "stack
2004      * starter" native method at the top.
2005      */
2006     int curDepth = dvmComputeExactFrameDepth(self->interpSave.curFrame);
2007     if (curDepth != 0) {
2008         bool topIsNative = false;
2009 
2010         if (curDepth == 1) {
2011             /* not expecting a lingering break frame; just look at curFrame */
2012             assert(!dvmIsBreakFrame((u4*)self->interpSave.curFrame));
2013             StackSaveArea* ssa = SAVEAREA_FROM_FP(self->interpSave.curFrame);
2014             if (dvmIsNativeMethod(ssa->method))
2015                 topIsNative = true;
2016         }
2017 
2018         if (!topIsNative) {
2019             LOGE("ERROR: detaching thread with interp frames (count=%d)",
2020                 curDepth);
2021             dvmDumpThread(self, false);
2022             dvmAbort();
2023         }
2024     }
2025 
2026     group = dvmGetFieldObject(self->threadObj, gDvm.offJavaLangThread_group);
2027     LOG_THREAD("threadid=%d: detach (group=%p)", self->threadId, group);
2028 
2029     /*
2030      * Release any held monitors.  Since there are no interpreted stack
2031      * frames, the only thing left are the monitors held by JNI MonitorEnter
2032      * calls.
2033      */
2034     dvmReleaseJniMonitors(self);
2035 
2036     /*
2037      * Do some thread-exit uncaught exception processing if necessary.
2038      */
2039     if (dvmCheckException(self))
2040         threadExitUncaughtException(self, group);
2041 
2042     /*
2043      * Remove the thread from the thread group.
2044      */
2045     if (group != NULL) {
2046         Method* removeThread =
2047             group->clazz->vtable[gDvm.voffJavaLangThreadGroup_removeThread];
2048         JValue unused;
2049         dvmCallMethod(self, removeThread, group, &unused, self->threadObj);
2050     }
2051 
2052     /*
2053      * Clear the vmThread reference in the Thread object.  Interpreted code
2054      * will now see that this Thread is not running.  As this may be the
2055      * only reference to the VMThread object that the VM knows about, we
2056      * have to create an internal reference to it first.
2057      */
2058     vmThread = dvmGetFieldObject(self->threadObj,
2059                     gDvm.offJavaLangThread_vmThread);
2060     dvmAddTrackedAlloc(vmThread, self);
2061     dvmSetFieldObject(self->threadObj, gDvm.offJavaLangThread_vmThread, NULL);
2062 
2063     /* clear out our struct Thread pointer, since it's going away */
2064     dvmSetFieldObject(vmThread, gDvm.offJavaLangVMThread_vmData, NULL);
2065 
2066     /*
2067      * Tell the debugger & DDM.  This may cause the current thread or all
2068      * threads to suspend.
2069      *
2070      * The JDWP spec is somewhat vague about when this happens, other than
2071      * that it's issued by the dying thread, which may still appear in
2072      * an "all threads" listing.
2073      */
2074     if (gDvm.debuggerConnected)
2075         dvmDbgPostThreadDeath(self);
2076 
2077     /*
2078      * Thread.join() is implemented as an Object.wait() on the VMThread
2079      * object.  Signal anyone who is waiting.
2080      */
2081     dvmLockObject(self, vmThread);
2082     dvmObjectNotifyAll(self, vmThread);
2083     dvmUnlockObject(self, vmThread);
2084 
2085     dvmReleaseTrackedAlloc(vmThread, self);
2086     vmThread = NULL;
2087 
2088     /*
2089      * We're done manipulating objects, so it's okay if the GC runs in
2090      * parallel with us from here out.  It's important to do this if
2091      * profiling is enabled, since we can wait indefinitely.
2092      */
2093     volatile void* raw = reinterpret_cast<volatile void*>(&self->status);
2094     volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
2095     android_atomic_release_store(THREAD_VMWAIT, addr);
2096 
2097     /*
2098      * If we're doing method trace profiling, we don't want threads to exit,
2099      * because if they do we'll end up reusing thread IDs.  This complicates
2100      * analysis and makes it impossible to have reasonable output in the
2101      * "threads" section of the "key" file.
2102      *
2103      * We need to do this after Thread.join() completes, or other threads
2104      * could get wedged.  Since self->threadObj is still valid, the Thread
2105      * object will not get GCed even though we're no longer in the ThreadGroup
2106      * list (which is important since the profiling thread needs to get
2107      * the thread's name).
2108      */
2109     MethodTraceState* traceState = &gDvm.methodTrace;
2110 
2111     dvmLockMutex(&traceState->startStopLock);
2112     if (traceState->traceEnabled) {
2113         LOGI("threadid=%d: waiting for method trace to finish",
2114             self->threadId);
2115         while (traceState->traceEnabled) {
2116             dvmWaitCond(&traceState->threadExitCond,
2117                         &traceState->startStopLock);
2118         }
2119     }
2120     dvmUnlockMutex(&traceState->startStopLock);
2121 
2122     dvmLockThreadList(self);
2123 
2124     /*
2125      * Lose the JNI context.
2126      */
2127     dvmDestroyJNIEnv(self->jniEnv);
2128     self->jniEnv = NULL;
2129 
2130     self->status = THREAD_ZOMBIE;
2131 
2132     /*
2133      * Remove ourselves from the internal thread list.
2134      */
2135     unlinkThread(self);
2136 
2137     /*
2138      * If we're the last one standing, signal anybody waiting in
2139      * DestroyJavaVM that it's okay to exit.
2140      */
2141     if (!dvmGetFieldBoolean(self->threadObj, gDvm.offJavaLangThread_daemon)) {
2142         gDvm.nonDaemonThreadCount--;        // guarded by thread list lock
2143 
2144         if (gDvm.nonDaemonThreadCount == 0) {
2145             int cc;
2146 
2147             LOGV("threadid=%d: last non-daemon thread", self->threadId);
2148             //dvmDumpAllThreads(false);
2149             // cond var guarded by threadListLock, which we already hold
2150             cc = pthread_cond_signal(&gDvm.vmExitCond);
2151             assert(cc == 0);
2152         }
2153     }
2154 
2155     LOGV("threadid=%d: bye!", self->threadId);
2156     releaseThreadId(self);
2157     dvmUnlockThreadList();
2158 
2159     setThreadSelf(NULL);
2160 
2161     freeThread(self);
2162 }
2163 
2164 
2165 /*
2166  * Suspend a single thread.  Do not use to suspend yourself.
2167  *
2168  * This is used primarily for debugger/DDMS activity.  Does not return
2169  * until the thread has suspended or is in a "safe" state (e.g. executing
2170  * native code outside the VM).
2171  *
2172  * The thread list lock should be held before calling here -- it's not
2173  * entirely safe to hang on to a Thread* from another thread otherwise.
2174  * (We'd need to grab it here anyway to avoid clashing with a suspend-all.)
2175  */
dvmSuspendThread(Thread * thread)2176 void dvmSuspendThread(Thread* thread)
2177 {
2178     assert(thread != NULL);
2179     assert(thread != dvmThreadSelf());
2180     //assert(thread->handle != dvmJdwpGetDebugThread(gDvm.jdwpState));
2181 
2182     lockThreadSuspendCount();
2183     dvmAddToSuspendCounts(thread, 1, 1);
2184 
2185     LOG_THREAD("threadid=%d: suspend++, now=%d",
2186         thread->threadId, thread->suspendCount);
2187     unlockThreadSuspendCount();
2188 
2189     waitForThreadSuspend(dvmThreadSelf(), thread);
2190 }
2191 
2192 /*
2193  * Reduce the suspend count of a thread.  If it hits zero, tell it to
2194  * resume.
2195  *
2196  * Used primarily for debugger/DDMS activity.  The thread in question
2197  * might have been suspended singly or as part of a suspend-all operation.
2198  *
2199  * The thread list lock should be held before calling here -- it's not
2200  * entirely safe to hang on to a Thread* from another thread otherwise.
2201  * (We'd need to grab it here anyway to avoid clashing with a suspend-all.)
2202  */
dvmResumeThread(Thread * thread)2203 void dvmResumeThread(Thread* thread)
2204 {
2205     assert(thread != NULL);
2206     assert(thread != dvmThreadSelf());
2207     //assert(thread->handle != dvmJdwpGetDebugThread(gDvm.jdwpState));
2208 
2209     lockThreadSuspendCount();
2210     if (thread->suspendCount > 0) {
2211         dvmAddToSuspendCounts(thread, -1, -1);
2212     } else {
2213         LOG_THREAD("threadid=%d:  suspendCount already zero",
2214             thread->threadId);
2215     }
2216 
2217     LOG_THREAD("threadid=%d: suspend--, now=%d",
2218         thread->threadId, thread->suspendCount);
2219 
2220     if (thread->suspendCount == 0) {
2221         dvmBroadcastCond(&gDvm.threadSuspendCountCond);
2222     }
2223 
2224     unlockThreadSuspendCount();
2225 }
2226 
2227 /*
2228  * Suspend yourself, as a result of debugger activity.
2229  */
dvmSuspendSelf(bool jdwpActivity)2230 void dvmSuspendSelf(bool jdwpActivity)
2231 {
2232     Thread* self = dvmThreadSelf();
2233 
2234     /* debugger thread must not suspend itself due to debugger activity! */
2235     assert(gDvm.jdwpState != NULL);
2236     if (self->handle == dvmJdwpGetDebugThread(gDvm.jdwpState)) {
2237         assert(false);
2238         return;
2239     }
2240 
2241     /*
2242      * Collisions with other suspends aren't really interesting.  We want
2243      * to ensure that we're the only one fiddling with the suspend count
2244      * though.
2245      */
2246     lockThreadSuspendCount();
2247     dvmAddToSuspendCounts(self, 1, 1);
2248 
2249     /*
2250      * Suspend ourselves.
2251      */
2252     assert(self->suspendCount > 0);
2253     self->status = THREAD_SUSPENDED;
2254     LOG_THREAD("threadid=%d: self-suspending (dbg)", self->threadId);
2255 
2256     /*
2257      * Tell JDWP that we've completed suspension.  The JDWP thread can't
2258      * tell us to resume before we're fully asleep because we hold the
2259      * suspend count lock.
2260      *
2261      * If we got here via waitForDebugger(), don't do this part.
2262      */
2263     if (jdwpActivity) {
2264         //LOGI("threadid=%d: clearing wait-for-event (my handle=%08x)",
2265         //    self->threadId, (int) self->handle);
2266         dvmJdwpClearWaitForEventThread(gDvm.jdwpState);
2267     }
2268 
2269     while (self->suspendCount != 0) {
2270         dvmWaitCond(&gDvm.threadSuspendCountCond,
2271                     &gDvm.threadSuspendCountLock);
2272         if (self->suspendCount != 0) {
2273             /*
2274              * The condition was signaled but we're still suspended.  This
2275              * can happen if the debugger lets go while a SIGQUIT thread
2276              * dump event is pending (assuming SignalCatcher was resumed for
2277              * just long enough to try to grab the thread-suspend lock).
2278              */
2279             LOGD("threadid=%d: still suspended after undo (sc=%d dc=%d)",
2280                 self->threadId, self->suspendCount, self->dbgSuspendCount);
2281         }
2282     }
2283     assert(self->suspendCount == 0 && self->dbgSuspendCount == 0);
2284     self->status = THREAD_RUNNING;
2285     LOG_THREAD("threadid=%d: self-reviving (dbg), status=%d",
2286         self->threadId, self->status);
2287 
2288     unlockThreadSuspendCount();
2289 }
2290 
2291 /*
2292  * Dump the state of the current thread and that of another thread that
2293  * we think is wedged.
2294  */
dumpWedgedThread(Thread * thread)2295 static void dumpWedgedThread(Thread* thread)
2296 {
2297     dvmDumpThread(dvmThreadSelf(), false);
2298     dvmPrintNativeBackTrace();
2299 
2300     // dumping a running thread is risky, but could be useful
2301     dvmDumpThread(thread, true);
2302 
2303     // stop now and get a core dump
2304     //abort();
2305 }
2306 
2307 /*
2308  * If the thread is running at below-normal priority, temporarily elevate
2309  * it to "normal".
2310  *
2311  * Returns zero if no changes were made.  Otherwise, returns bit flags
2312  * indicating what was changed, storing the previous values in the
2313  * provided locations.
2314  */
dvmRaiseThreadPriorityIfNeeded(Thread * thread,int * pSavedThreadPrio,SchedPolicy * pSavedThreadPolicy)2315 int dvmRaiseThreadPriorityIfNeeded(Thread* thread, int* pSavedThreadPrio,
2316     SchedPolicy* pSavedThreadPolicy)
2317 {
2318     errno = 0;
2319     *pSavedThreadPrio = getpriority(PRIO_PROCESS, thread->systemTid);
2320     if (errno != 0) {
2321         LOGW("Unable to get priority for threadid=%d sysTid=%d",
2322             thread->threadId, thread->systemTid);
2323         return 0;
2324     }
2325     if (get_sched_policy(thread->systemTid, pSavedThreadPolicy) != 0) {
2326         LOGW("Unable to get policy for threadid=%d sysTid=%d",
2327             thread->threadId, thread->systemTid);
2328         return 0;
2329     }
2330 
2331     int changeFlags = 0;
2332 
2333     /*
2334      * Change the priority if we're in the background group.
2335      */
2336     if (*pSavedThreadPolicy == SP_BACKGROUND) {
2337         if (set_sched_policy(thread->systemTid, SP_FOREGROUND) != 0) {
2338             LOGW("Couldn't set fg policy on tid %d", thread->systemTid);
2339         } else {
2340             changeFlags |= kChangedPolicy;
2341             LOGD("Temporarily moving tid %d to fg (was %d)",
2342                 thread->systemTid, *pSavedThreadPolicy);
2343         }
2344     }
2345 
2346     /*
2347      * getpriority() returns the "nice" value, so larger numbers indicate
2348      * lower priority, with 0 being normal.
2349      */
2350     if (*pSavedThreadPrio > 0) {
2351         const int kHigher = 0;
2352         if (setpriority(PRIO_PROCESS, thread->systemTid, kHigher) != 0) {
2353             LOGW("Couldn't raise priority on tid %d to %d",
2354                 thread->systemTid, kHigher);
2355         } else {
2356             changeFlags |= kChangedPriority;
2357             LOGD("Temporarily raised priority on tid %d (%d -> %d)",
2358                 thread->systemTid, *pSavedThreadPrio, kHigher);
2359         }
2360     }
2361 
2362     return changeFlags;
2363 }
2364 
2365 /*
2366  * Reset the priority values for the thread in question.
2367  */
dvmResetThreadPriority(Thread * thread,int changeFlags,int savedThreadPrio,SchedPolicy savedThreadPolicy)2368 void dvmResetThreadPriority(Thread* thread, int changeFlags,
2369     int savedThreadPrio, SchedPolicy savedThreadPolicy)
2370 {
2371     if ((changeFlags & kChangedPolicy) != 0) {
2372         if (set_sched_policy(thread->systemTid, savedThreadPolicy) != 0) {
2373             LOGW("NOTE: couldn't reset tid %d to (%d)",
2374                 thread->systemTid, savedThreadPolicy);
2375         } else {
2376             LOGD("Restored policy of %d to %d",
2377                 thread->systemTid, savedThreadPolicy);
2378         }
2379     }
2380 
2381     if ((changeFlags & kChangedPriority) != 0) {
2382         if (setpriority(PRIO_PROCESS, thread->systemTid, savedThreadPrio) != 0)
2383         {
2384             LOGW("NOTE: couldn't reset priority on thread %d to %d",
2385                 thread->systemTid, savedThreadPrio);
2386         } else {
2387             LOGD("Restored priority on %d to %d",
2388                 thread->systemTid, savedThreadPrio);
2389         }
2390     }
2391 }
2392 
2393 /*
2394  * Wait for another thread to see the pending suspension and stop running.
2395  * It can either suspend itself or go into a non-running state such as
2396  * VMWAIT or NATIVE in which it cannot interact with the GC.
2397  *
2398  * If we're running at a higher priority, sched_yield() may not do anything,
2399  * so we need to sleep for "long enough" to guarantee that the other
2400  * thread has a chance to finish what it's doing.  Sleeping for too short
2401  * a period (e.g. less than the resolution of the sleep clock) might cause
2402  * the scheduler to return immediately, so we want to start with a
2403  * "reasonable" value and expand.
2404  *
2405  * This does not return until the other thread has stopped running.
2406  * Eventually we time out and the VM aborts.
2407  *
2408  * This does not try to detect the situation where two threads are
2409  * waiting for each other to suspend.  In normal use this is part of a
2410  * suspend-all, which implies that the suspend-all lock is held, or as
2411  * part of a debugger action in which the JDWP thread is always the one
2412  * doing the suspending.  (We may need to re-evaluate this now that
2413  * getThreadStackTrace is implemented as suspend-snapshot-resume.)
2414  *
2415  * TODO: track basic stats about time required to suspend VM.
2416  */
2417 #define FIRST_SLEEP (250*1000)    /* 0.25s */
2418 #define MORE_SLEEP  (750*1000)    /* 0.75s */
waitForThreadSuspend(Thread * self,Thread * thread)2419 static void waitForThreadSuspend(Thread* self, Thread* thread)
2420 {
2421     const int kMaxRetries = 10;
2422     int spinSleepTime = FIRST_SLEEP;
2423     bool complained = false;
2424     int priChangeFlags = 0;
2425     int savedThreadPrio = -500;
2426     SchedPolicy savedThreadPolicy = SP_FOREGROUND;
2427 
2428     int sleepIter = 0;
2429     int retryCount = 0;
2430     u8 startWhen = 0;       // init req'd to placate gcc
2431     u8 firstStartWhen = 0;
2432 
2433     while (thread->status == THREAD_RUNNING) {
2434         if (sleepIter == 0) {           // get current time on first iteration
2435             startWhen = dvmGetRelativeTimeUsec();
2436             if (firstStartWhen == 0)    // first iteration of first attempt
2437                 firstStartWhen = startWhen;
2438 
2439             /*
2440              * After waiting for a bit, check to see if the target thread is
2441              * running at a reduced priority.  If so, bump it up temporarily
2442              * to give it more CPU time.
2443              */
2444             if (retryCount == 2) {
2445                 assert(thread->systemTid != 0);
2446                 priChangeFlags = dvmRaiseThreadPriorityIfNeeded(thread,
2447                     &savedThreadPrio, &savedThreadPolicy);
2448             }
2449         }
2450 
2451 #if defined (WITH_JIT)
2452         /*
2453          * If we're still waiting after the first timeout, unchain all
2454          * translations iff:
2455          *   1) There are new chains formed since the last unchain
2456          *   2) The top VM frame of the running thread is running JIT'ed code
2457          */
2458         if (gDvmJit.pJitEntryTable && retryCount > 0 &&
2459             gDvmJit.hasNewChain && thread->inJitCodeCache) {
2460             LOGD("JIT unchain all for threadid=%d", thread->threadId);
2461             dvmJitUnchainAll();
2462         }
2463 #endif
2464 
2465         /*
2466          * Sleep briefly.  The iterative sleep call returns false if we've
2467          * exceeded the total time limit for this round of sleeping.
2468          */
2469         if (!dvmIterativeSleep(sleepIter++, spinSleepTime, startWhen)) {
2470             if (spinSleepTime != FIRST_SLEEP) {
2471                 LOGW("threadid=%d: spin on suspend #%d threadid=%d (pcf=%d)",
2472                     self->threadId, retryCount,
2473                     thread->threadId, priChangeFlags);
2474                 if (retryCount > 1) {
2475                     /* stack trace logging is slow; skip on first iter */
2476                     dumpWedgedThread(thread);
2477                 }
2478                 complained = true;
2479             }
2480 
2481             // keep going; could be slow due to valgrind
2482             sleepIter = 0;
2483             spinSleepTime = MORE_SLEEP;
2484 
2485             if (retryCount++ == kMaxRetries) {
2486                 LOGE("Fatal spin-on-suspend, dumping threads");
2487                 dvmDumpAllThreads(false);
2488 
2489                 /* log this after -- long traces will scroll off log */
2490                 LOGE("threadid=%d: stuck on threadid=%d, giving up",
2491                     self->threadId, thread->threadId);
2492 
2493                 /* try to get a debuggerd dump from the spinning thread */
2494                 dvmNukeThread(thread);
2495                 /* abort the VM */
2496                 dvmAbort();
2497             }
2498         }
2499     }
2500 
2501     if (complained) {
2502         LOGW("threadid=%d: spin on suspend resolved in %lld msec",
2503             self->threadId,
2504             (dvmGetRelativeTimeUsec() - firstStartWhen) / 1000);
2505         //dvmDumpThread(thread, false);   /* suspended, so dump is safe */
2506     }
2507     if (priChangeFlags != 0) {
2508         dvmResetThreadPriority(thread, priChangeFlags, savedThreadPrio,
2509             savedThreadPolicy);
2510     }
2511 }
2512 
2513 /*
2514  * Suspend all threads except the current one.  This is used by the GC,
2515  * the debugger, and by any thread that hits a "suspend all threads"
2516  * debugger event (e.g. breakpoint or exception).
2517  *
2518  * If thread N hits a "suspend all threads" breakpoint, we don't want it
2519  * to suspend the JDWP thread.  For the GC, we do, because the debugger can
2520  * create objects and even execute arbitrary code.  The "why" argument
2521  * allows the caller to say why the suspension is taking place.
2522  *
2523  * This can be called when a global suspend has already happened, due to
2524  * various debugger gymnastics, so keeping an "everybody is suspended" flag
2525  * doesn't work.
2526  *
2527  * DO NOT grab any locks before calling here.  We grab & release the thread
2528  * lock and suspend lock here (and we're not using recursive threads), and
2529  * we might have to self-suspend if somebody else beats us here.
2530  *
2531  * We know the current thread is in the thread list, because we attach the
2532  * thread before doing anything that could cause VM suspension (like object
2533  * allocation).
2534  */
dvmSuspendAllThreads(SuspendCause why)2535 void dvmSuspendAllThreads(SuspendCause why)
2536 {
2537     Thread* self = dvmThreadSelf();
2538     Thread* thread;
2539 
2540     assert(why != 0);
2541 
2542     /*
2543      * Start by grabbing the thread suspend lock.  If we can't get it, most
2544      * likely somebody else is in the process of performing a suspend or
2545      * resume, so lockThreadSuspend() will cause us to self-suspend.
2546      *
2547      * We keep the lock until all other threads are suspended.
2548      */
2549     lockThreadSuspend("susp-all", why);
2550 
2551     LOG_THREAD("threadid=%d: SuspendAll starting", self->threadId);
2552 
2553     /*
2554      * This is possible if the current thread was in VMWAIT mode when a
2555      * suspend-all happened, and then decided to do its own suspend-all.
2556      * This can happen when a couple of threads have simultaneous events
2557      * of interest to the debugger.
2558      */
2559     //assert(self->suspendCount == 0);
2560 
2561     /*
2562      * Increment everybody's suspend count (except our own).
2563      */
2564     dvmLockThreadList(self);
2565 
2566     lockThreadSuspendCount();
2567     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
2568         if (thread == self)
2569             continue;
2570 
2571         /* debugger events don't suspend JDWP thread */
2572         if ((why == SUSPEND_FOR_DEBUG || why == SUSPEND_FOR_DEBUG_EVENT) &&
2573             thread->handle == dvmJdwpGetDebugThread(gDvm.jdwpState))
2574             continue;
2575 
2576         dvmAddToSuspendCounts(thread, 1,
2577                               (why == SUSPEND_FOR_DEBUG ||
2578                               why == SUSPEND_FOR_DEBUG_EVENT)
2579                               ? 1 : 0);
2580     }
2581     unlockThreadSuspendCount();
2582 
2583     /*
2584      * Wait for everybody in THREAD_RUNNING state to stop.  Other states
2585      * indicate the code is either running natively or sleeping quietly.
2586      * Any attempt to transition back to THREAD_RUNNING will cause a check
2587      * for suspension, so it should be impossible for anything to execute
2588      * interpreted code or modify objects (assuming native code plays nicely).
2589      *
2590      * It's also okay if the thread transitions to a non-RUNNING state.
2591      *
2592      * Note we released the threadSuspendCountLock before getting here,
2593      * so if another thread is fiddling with its suspend count (perhaps
2594      * self-suspending for the debugger) it won't block while we're waiting
2595      * in here.
2596      */
2597     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
2598         if (thread == self)
2599             continue;
2600 
2601         /* debugger events don't suspend JDWP thread */
2602         if ((why == SUSPEND_FOR_DEBUG || why == SUSPEND_FOR_DEBUG_EVENT) &&
2603             thread->handle == dvmJdwpGetDebugThread(gDvm.jdwpState))
2604             continue;
2605 
2606         /* wait for the other thread to see the pending suspend */
2607         waitForThreadSuspend(self, thread);
2608 
2609         LOG_THREAD("threadid=%d:   threadid=%d status=%d sc=%d dc=%d",
2610             self->threadId, thread->threadId, thread->status,
2611             thread->suspendCount, thread->dbgSuspendCount);
2612     }
2613 
2614     dvmUnlockThreadList();
2615     unlockThreadSuspend();
2616 
2617     LOG_THREAD("threadid=%d: SuspendAll complete", self->threadId);
2618 }
2619 
2620 /*
2621  * Resume all threads that are currently suspended.
2622  *
2623  * The "why" must match with the previous suspend.
2624  */
dvmResumeAllThreads(SuspendCause why)2625 void dvmResumeAllThreads(SuspendCause why)
2626 {
2627     Thread* self = dvmThreadSelf();
2628     Thread* thread;
2629     int cc;
2630 
2631     lockThreadSuspend("res-all", why);  /* one suspend/resume at a time */
2632     LOG_THREAD("threadid=%d: ResumeAll starting", self->threadId);
2633 
2634     /*
2635      * Decrement the suspend counts for all threads.  No need for atomic
2636      * writes, since nobody should be moving until we decrement the count.
2637      * We do need to hold the thread list because of JNI attaches.
2638      */
2639     dvmLockThreadList(self);
2640     lockThreadSuspendCount();
2641     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
2642         if (thread == self)
2643             continue;
2644 
2645         /* debugger events don't suspend JDWP thread */
2646         if ((why == SUSPEND_FOR_DEBUG || why == SUSPEND_FOR_DEBUG_EVENT) &&
2647             thread->handle == dvmJdwpGetDebugThread(gDvm.jdwpState))
2648         {
2649             continue;
2650         }
2651 
2652         if (thread->suspendCount > 0) {
2653             dvmAddToSuspendCounts(thread, -1,
2654                                   (why == SUSPEND_FOR_DEBUG ||
2655                                   why == SUSPEND_FOR_DEBUG_EVENT)
2656                                   ? -1 : 0);
2657         } else {
2658             LOG_THREAD("threadid=%d:  suspendCount already zero",
2659                 thread->threadId);
2660         }
2661     }
2662     unlockThreadSuspendCount();
2663     dvmUnlockThreadList();
2664 
2665     /*
2666      * In some ways it makes sense to continue to hold the thread-suspend
2667      * lock while we issue the wakeup broadcast.  It allows us to complete
2668      * one operation before moving on to the next, which simplifies the
2669      * thread activity debug traces.
2670      *
2671      * This approach caused us some difficulty under Linux, because the
2672      * condition variable broadcast not only made the threads runnable,
2673      * but actually caused them to execute, and it was a while before
2674      * the thread performing the wakeup had an opportunity to release the
2675      * thread-suspend lock.
2676      *
2677      * This is a problem because, when a thread tries to acquire that
2678      * lock, it times out after 3 seconds.  If at some point the thread
2679      * is told to suspend, the clock resets; but since the VM is still
2680      * theoretically mid-resume, there's no suspend pending.  If, for
2681      * example, the GC was waking threads up while the SIGQUIT handler
2682      * was trying to acquire the lock, we would occasionally time out on
2683      * a busy system and SignalCatcher would abort.
2684      *
2685      * We now perform the unlock before the wakeup broadcast.  The next
2686      * suspend can't actually start until the broadcast completes and
2687      * returns, because we're holding the thread-suspend-count lock, but the
2688      * suspending thread is now able to make progress and we avoid the abort.
2689      *
2690      * (Technically there is a narrow window between when we release
2691      * the thread-suspend lock and grab the thread-suspend-count lock.
2692      * This could cause us to send a broadcast to threads with nonzero
2693      * suspend counts, but this is expected and they'll all just fall
2694      * right back to sleep.  It's probably safe to grab the suspend-count
2695      * lock before releasing thread-suspend, since we're still following
2696      * the correct order of acquisition, but it feels weird.)
2697      */
2698 
2699     LOG_THREAD("threadid=%d: ResumeAll waking others", self->threadId);
2700     unlockThreadSuspend();
2701 
2702     /*
2703      * Broadcast a notification to all suspended threads, some or all of
2704      * which may choose to wake up.  No need to wait for them.
2705      */
2706     lockThreadSuspendCount();
2707     cc = pthread_cond_broadcast(&gDvm.threadSuspendCountCond);
2708     assert(cc == 0);
2709     unlockThreadSuspendCount();
2710 
2711     LOG_THREAD("threadid=%d: ResumeAll complete", self->threadId);
2712 }
2713 
2714 /*
2715  * Undo any debugger suspensions.  This is called when the debugger
2716  * disconnects.
2717  */
dvmUndoDebuggerSuspensions()2718 void dvmUndoDebuggerSuspensions()
2719 {
2720     Thread* self = dvmThreadSelf();
2721     Thread* thread;
2722     int cc;
2723 
2724     lockThreadSuspend("undo", SUSPEND_FOR_DEBUG);
2725     LOG_THREAD("threadid=%d: UndoDebuggerSusp starting", self->threadId);
2726 
2727     /*
2728      * Decrement the suspend counts for all threads.  No need for atomic
2729      * writes, since nobody should be moving until we decrement the count.
2730      * We do need to hold the thread list because of JNI attaches.
2731      */
2732     dvmLockThreadList(self);
2733     lockThreadSuspendCount();
2734     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
2735         if (thread == self)
2736             continue;
2737 
2738         /* debugger events don't suspend JDWP thread */
2739         if (thread->handle == dvmJdwpGetDebugThread(gDvm.jdwpState)) {
2740             assert(thread->dbgSuspendCount == 0);
2741             continue;
2742         }
2743 
2744         assert(thread->suspendCount >= thread->dbgSuspendCount);
2745         dvmAddToSuspendCounts(thread, -thread->dbgSuspendCount,
2746                               -thread->dbgSuspendCount);
2747     }
2748     unlockThreadSuspendCount();
2749     dvmUnlockThreadList();
2750 
2751     /*
2752      * Broadcast a notification to all suspended threads, some or all of
2753      * which may choose to wake up.  No need to wait for them.
2754      */
2755     lockThreadSuspendCount();
2756     cc = pthread_cond_broadcast(&gDvm.threadSuspendCountCond);
2757     assert(cc == 0);
2758     unlockThreadSuspendCount();
2759 
2760     unlockThreadSuspend();
2761 
2762     LOG_THREAD("threadid=%d: UndoDebuggerSusp complete", self->threadId);
2763 }
2764 
2765 /*
2766  * Determine if a thread is suspended.
2767  *
2768  * As with all operations on foreign threads, the caller should hold
2769  * the thread list lock before calling.
2770  *
2771  * If the thread is suspending or waking, these fields could be changing
2772  * out from under us (or the thread could change state right after we
2773  * examine it), making this generally unreliable.  This is chiefly
2774  * intended for use by the debugger.
2775  */
dvmIsSuspended(const Thread * thread)2776 bool dvmIsSuspended(const Thread* thread)
2777 {
2778     /*
2779      * The thread could be:
2780      *  (1) Running happily.  status is RUNNING, suspendCount is zero.
2781      *      Return "false".
2782      *  (2) Pending suspend.  status is RUNNING, suspendCount is nonzero.
2783      *      Return "false".
2784      *  (3) Suspended.  suspendCount is nonzero, and status is !RUNNING.
2785      *      Return "true".
2786      *  (4) Waking up.  suspendCount is zero, status is SUSPENDED
2787      *      Return "false" (since it could change out from under us, unless
2788      *      we hold suspendCountLock).
2789      */
2790 
2791     return (thread->suspendCount != 0 &&
2792             thread->status != THREAD_RUNNING);
2793 }
2794 
2795 /*
2796  * Wait until another thread self-suspends.  This is specifically for
2797  * synchronization between the JDWP thread and a thread that has decided
2798  * to suspend itself after sending an event to the debugger.
2799  *
2800  * Threads that encounter "suspend all" events work as well -- the thread
2801  * in question suspends everybody else and then itself.
2802  *
2803  * We can't hold a thread lock here or in the caller, because we could
2804  * get here just before the to-be-waited-for-thread issues a "suspend all".
2805  * There's an opportunity for badness if the thread we're waiting for exits
2806  * and gets cleaned up, but since the thread in question is processing a
2807  * debugger event, that's not really a possibility.  (To avoid deadlock,
2808  * it's important that we not be in THREAD_RUNNING while we wait.)
2809  */
dvmWaitForSuspend(Thread * thread)2810 void dvmWaitForSuspend(Thread* thread)
2811 {
2812     Thread* self = dvmThreadSelf();
2813 
2814     LOG_THREAD("threadid=%d: waiting for threadid=%d to sleep",
2815         self->threadId, thread->threadId);
2816 
2817     assert(thread->handle != dvmJdwpGetDebugThread(gDvm.jdwpState));
2818     assert(thread != self);
2819     assert(self->status != THREAD_RUNNING);
2820 
2821     waitForThreadSuspend(self, thread);
2822 
2823     LOG_THREAD("threadid=%d: threadid=%d is now asleep",
2824         self->threadId, thread->threadId);
2825 }
2826 
2827 /*
2828  * Check to see if we need to suspend ourselves.  If so, go to sleep on
2829  * a condition variable.
2830  *
2831  * Returns "true" if we suspended ourselves.
2832  */
fullSuspendCheck(Thread * self)2833 static bool fullSuspendCheck(Thread* self)
2834 {
2835     assert(self != NULL);
2836     assert(self->suspendCount >= 0);
2837 
2838     /*
2839      * Grab gDvm.threadSuspendCountLock.  This gives us exclusive write
2840      * access to self->suspendCount.
2841      */
2842     lockThreadSuspendCount();   /* grab gDvm.threadSuspendCountLock */
2843 
2844     bool needSuspend = (self->suspendCount != 0);
2845     if (needSuspend) {
2846         LOG_THREAD("threadid=%d: self-suspending", self->threadId);
2847         ThreadStatus oldStatus = self->status;      /* should be RUNNING */
2848         self->status = THREAD_SUSPENDED;
2849 
2850         while (self->suspendCount != 0) {
2851             /*
2852              * Wait for wakeup signal, releasing lock.  The act of releasing
2853              * and re-acquiring the lock provides the memory barriers we
2854              * need for correct behavior on SMP.
2855              */
2856             dvmWaitCond(&gDvm.threadSuspendCountCond,
2857                     &gDvm.threadSuspendCountLock);
2858         }
2859         assert(self->suspendCount == 0 && self->dbgSuspendCount == 0);
2860         self->status = oldStatus;
2861         LOG_THREAD("threadid=%d: self-reviving, status=%d",
2862             self->threadId, self->status);
2863     }
2864 
2865     unlockThreadSuspendCount();
2866 
2867     return needSuspend;
2868 }
2869 
2870 /*
2871  * Check to see if a suspend is pending.  If so, suspend the current
2872  * thread, and return "true" after we have been resumed.
2873  */
dvmCheckSuspendPending(Thread * self)2874 bool dvmCheckSuspendPending(Thread* self)
2875 {
2876     assert(self != NULL);
2877     if (self->suspendCount == 0) {
2878         return false;
2879     } else {
2880         return fullSuspendCheck(self);
2881     }
2882 }
2883 
2884 /*
2885  * Update our status.
2886  *
2887  * The "self" argument, which may be NULL, is accepted as an optimization.
2888  *
2889  * Returns the old status.
2890  */
dvmChangeStatus(Thread * self,ThreadStatus newStatus)2891 ThreadStatus dvmChangeStatus(Thread* self, ThreadStatus newStatus)
2892 {
2893     ThreadStatus oldStatus;
2894 
2895     if (self == NULL)
2896         self = dvmThreadSelf();
2897 
2898     LOGVV("threadid=%d: (status %d -> %d)",
2899         self->threadId, self->status, newStatus);
2900 
2901     oldStatus = self->status;
2902     if (oldStatus == newStatus)
2903         return oldStatus;
2904 
2905     if (newStatus == THREAD_RUNNING) {
2906         /*
2907          * Change our status to THREAD_RUNNING.  The transition requires
2908          * that we check for pending suspension, because the VM considers
2909          * us to be "asleep" in all other states, and another thread could
2910          * be performing a GC now.
2911          *
2912          * The order of operations is very significant here.  One way to
2913          * do this wrong is:
2914          *
2915          *   GCing thread                   Our thread (in NATIVE)
2916          *   ------------                   ----------------------
2917          *                                  check suspend count (== 0)
2918          *   dvmSuspendAllThreads()
2919          *   grab suspend-count lock
2920          *   increment all suspend counts
2921          *   release suspend-count lock
2922          *   check thread state (== NATIVE)
2923          *   all are suspended, begin GC
2924          *                                  set state to RUNNING
2925          *                                  (continue executing)
2926          *
2927          * We can correct this by grabbing the suspend-count lock and
2928          * performing both of our operations (check suspend count, set
2929          * state) while holding it, now we need to grab a mutex on every
2930          * transition to RUNNING.
2931          *
2932          * What we do instead is change the order of operations so that
2933          * the transition to RUNNING happens first.  If we then detect
2934          * that the suspend count is nonzero, we switch to SUSPENDED.
2935          *
2936          * Appropriate compiler and memory barriers are required to ensure
2937          * that the operations are observed in the expected order.
2938          *
2939          * This does create a small window of opportunity where a GC in
2940          * progress could observe what appears to be a running thread (if
2941          * it happens to look between when we set to RUNNING and when we
2942          * switch to SUSPENDED).  At worst this only affects assertions
2943          * and thread logging.  (We could work around it with some sort
2944          * of intermediate "pre-running" state that is generally treated
2945          * as equivalent to running, but that doesn't seem worthwhile.)
2946          *
2947          * We can also solve this by combining the "status" and "suspend
2948          * count" fields into a single 32-bit value.  This trades the
2949          * store/load barrier on transition to RUNNING for an atomic RMW
2950          * op on all transitions and all suspend count updates (also, all
2951          * accesses to status or the thread count require bit-fiddling).
2952          * It also eliminates the brief transition through RUNNING when
2953          * the thread is supposed to be suspended.  This is possibly faster
2954          * on SMP and slightly more correct, but less convenient.
2955          */
2956         volatile void* raw = reinterpret_cast<volatile void*>(&self->status);
2957         volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
2958         android_atomic_acquire_store(newStatus, addr);
2959         if (self->suspendCount != 0) {
2960             fullSuspendCheck(self);
2961         }
2962     } else {
2963         /*
2964          * Not changing to THREAD_RUNNING.  No additional work required.
2965          *
2966          * We use a releasing store to ensure that, if we were RUNNING,
2967          * any updates we previously made to objects on the managed heap
2968          * will be observed before the state change.
2969          */
2970         assert(newStatus != THREAD_SUSPENDED);
2971         volatile void* raw = reinterpret_cast<volatile void*>(&self->status);
2972         volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw);
2973         android_atomic_release_store(newStatus, addr);
2974     }
2975 
2976     return oldStatus;
2977 }
2978 
2979 /*
2980  * Get a statically defined thread group from a field in the ThreadGroup
2981  * Class object.  Expected arguments are "mMain" and "mSystem".
2982  */
getStaticThreadGroup(const char * fieldName)2983 static Object* getStaticThreadGroup(const char* fieldName)
2984 {
2985     StaticField* groupField;
2986     Object* groupObj;
2987 
2988     groupField = dvmFindStaticField(gDvm.classJavaLangThreadGroup,
2989         fieldName, "Ljava/lang/ThreadGroup;");
2990     if (groupField == NULL) {
2991         LOGE("java.lang.ThreadGroup does not have an '%s' field", fieldName);
2992         dvmThrowInternalError("bad definition for ThreadGroup");
2993         return NULL;
2994     }
2995     groupObj = dvmGetStaticFieldObject(groupField);
2996     if (groupObj == NULL) {
2997         LOGE("java.lang.ThreadGroup.%s not initialized", fieldName);
2998         dvmThrowInternalError(NULL);
2999         return NULL;
3000     }
3001 
3002     return groupObj;
3003 }
dvmGetSystemThreadGroup()3004 Object* dvmGetSystemThreadGroup()
3005 {
3006     return getStaticThreadGroup("mSystem");
3007 }
dvmGetMainThreadGroup()3008 Object* dvmGetMainThreadGroup()
3009 {
3010     return getStaticThreadGroup("mMain");
3011 }
3012 
3013 /*
3014  * Given a VMThread object, return the associated Thread*.
3015  *
3016  * NOTE: if the thread detaches, the struct Thread will disappear, and
3017  * we will be touching invalid data.  For safety, lock the thread list
3018  * before calling this.
3019  */
dvmGetThreadFromThreadObject(Object * vmThreadObj)3020 Thread* dvmGetThreadFromThreadObject(Object* vmThreadObj)
3021 {
3022     int vmData;
3023 
3024     vmData = dvmGetFieldInt(vmThreadObj, gDvm.offJavaLangVMThread_vmData);
3025 
3026     if (false) {
3027         Thread* thread = gDvm.threadList;
3028         while (thread != NULL) {
3029             if ((Thread*)vmData == thread)
3030                 break;
3031 
3032             thread = thread->next;
3033         }
3034 
3035         if (thread == NULL) {
3036             LOGW("WARNING: vmThreadObj=%p has thread=%p, not in thread list",
3037                 vmThreadObj, (Thread*)vmData);
3038             vmData = 0;
3039         }
3040     }
3041 
3042     return (Thread*) vmData;
3043 }
3044 
3045 /*
3046  * Given a pthread handle, return the associated Thread*.
3047  * Caller must hold the thread list lock.
3048  *
3049  * Returns NULL if the thread was not found.
3050  */
dvmGetThreadByHandle(pthread_t handle)3051 Thread* dvmGetThreadByHandle(pthread_t handle)
3052 {
3053     Thread* thread;
3054     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
3055         if (thread->handle == handle)
3056             break;
3057     }
3058     return thread;
3059 }
3060 
3061 /*
3062  * Given a threadId, return the associated Thread*.
3063  * Caller must hold the thread list lock.
3064  *
3065  * Returns NULL if the thread was not found.
3066  */
dvmGetThreadByThreadId(u4 threadId)3067 Thread* dvmGetThreadByThreadId(u4 threadId)
3068 {
3069     Thread* thread;
3070     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
3071         if (thread->threadId == threadId)
3072             break;
3073     }
3074     return thread;
3075 }
3076 
dvmChangeThreadPriority(Thread * thread,int newPriority)3077 void dvmChangeThreadPriority(Thread* thread, int newPriority)
3078 {
3079     os_changeThreadPriority(thread, newPriority);
3080 }
3081 
3082 /*
3083  * Return true if the thread is on gDvm.threadList.
3084  * Caller should not hold gDvm.threadListLock.
3085  */
dvmIsOnThreadList(const Thread * thread)3086 bool dvmIsOnThreadList(const Thread* thread)
3087 {
3088     bool ret = false;
3089 
3090     dvmLockThreadList(NULL);
3091     if (thread == gDvm.threadList) {
3092         ret = true;
3093     } else {
3094         ret = thread->prev != NULL || thread->next != NULL;
3095     }
3096     dvmUnlockThreadList();
3097 
3098     return ret;
3099 }
3100 
3101 /*
3102  * Dump a thread to the log file -- just calls dvmDumpThreadEx() with an
3103  * output target.
3104  */
dvmDumpThread(Thread * thread,bool isRunning)3105 void dvmDumpThread(Thread* thread, bool isRunning)
3106 {
3107     DebugOutputTarget target;
3108 
3109     dvmCreateLogOutputTarget(&target, ANDROID_LOG_INFO, LOG_TAG);
3110     dvmDumpThreadEx(&target, thread, isRunning);
3111 }
3112 
3113 /*
3114  * Try to get the scheduler group.
3115  *
3116  * The data from /proc/<pid>/cgroup looks (something) like:
3117  *  2:cpu:/bg_non_interactive
3118  *  1:cpuacct:/
3119  *
3120  * We return the part on the "cpu" line after the '/', which will be an
3121  * empty string for the default cgroup.  If the string is longer than
3122  * "bufLen", the string will be truncated.
3123  *
3124  * On error, -1 is returned, and an error description will be stored in
3125  * the buffer.
3126  */
getSchedulerGroup(int tid,char * buf,size_t bufLen)3127 static int getSchedulerGroup(int tid, char* buf, size_t bufLen)
3128 {
3129 #ifdef HAVE_ANDROID_OS
3130     char pathBuf[32];
3131     char lineBuf[256];
3132     FILE *fp;
3133 
3134     snprintf(pathBuf, sizeof(pathBuf), "/proc/%d/cgroup", tid);
3135     if ((fp = fopen(pathBuf, "r")) == NULL) {
3136         snprintf(buf, bufLen, "[fopen-error:%d]", errno);
3137         return -1;
3138     }
3139 
3140     while (fgets(lineBuf, sizeof(lineBuf) -1, fp) != NULL) {
3141         char* subsys;
3142         char* grp;
3143         size_t len;
3144 
3145         /* Junk the first field */
3146         subsys = strchr(lineBuf, ':');
3147         if (subsys == NULL) {
3148             goto out_bad_data;
3149         }
3150 
3151         if (strncmp(subsys, ":cpu:", 5) != 0) {
3152             /* Not the subsys we're looking for */
3153             continue;
3154         }
3155 
3156         grp = strchr(subsys, '/');
3157         if (grp == NULL) {
3158             goto out_bad_data;
3159         }
3160         grp++; /* Drop the leading '/' */
3161 
3162         len = strlen(grp);
3163         grp[len-1] = '\0'; /* Drop the trailing '\n' */
3164 
3165         if (bufLen <= len) {
3166             len = bufLen - 1;
3167         }
3168         strncpy(buf, grp, len);
3169         buf[len] = '\0';
3170         fclose(fp);
3171         return 0;
3172     }
3173 
3174     snprintf(buf, bufLen, "[no-cpu-subsys]");
3175     fclose(fp);
3176     return -1;
3177 
3178 out_bad_data:
3179     LOGE("Bad cgroup data {%s}", lineBuf);
3180     snprintf(buf, bufLen, "[data-parse-failed]");
3181     fclose(fp);
3182     return -1;
3183 
3184 #else
3185     snprintf(buf, bufLen, "[n/a]");
3186     return -1;
3187 #endif
3188 }
3189 
3190 /*
3191  * Convert ThreadStatus to a string.
3192  */
dvmGetThreadStatusStr(ThreadStatus status)3193 const char* dvmGetThreadStatusStr(ThreadStatus status)
3194 {
3195     switch (status) {
3196     case THREAD_ZOMBIE:         return "ZOMBIE";
3197     case THREAD_RUNNING:        return "RUNNABLE";
3198     case THREAD_TIMED_WAIT:     return "TIMED_WAIT";
3199     case THREAD_MONITOR:        return "MONITOR";
3200     case THREAD_WAIT:           return "WAIT";
3201     case THREAD_INITIALIZING:   return "INITIALIZING";
3202     case THREAD_STARTING:       return "STARTING";
3203     case THREAD_NATIVE:         return "NATIVE";
3204     case THREAD_VMWAIT:         return "VMWAIT";
3205     case THREAD_SUSPENDED:      return "SUSPENDED";
3206     default:                    return "UNKNOWN";
3207     }
3208 }
3209 
3210 /*
3211  * Print information about the specified thread.
3212  *
3213  * Works best when the thread in question is "self" or has been suspended.
3214  * When dumping a separate thread that's still running, set "isRunning" to
3215  * use a more cautious thread dump function.
3216  */
dvmDumpThreadEx(const DebugOutputTarget * target,Thread * thread,bool isRunning)3217 void dvmDumpThreadEx(const DebugOutputTarget* target, Thread* thread,
3218     bool isRunning)
3219 {
3220     Object* threadObj;
3221     Object* groupObj;
3222     StringObject* nameStr;
3223     char* threadName = NULL;
3224     char* groupName = NULL;
3225     char schedulerGroupBuf[32];
3226     bool isDaemon;
3227     int priority;               // java.lang.Thread priority
3228     int policy;                 // pthread policy
3229     struct sched_param sp;      // pthread scheduling parameters
3230     char schedstatBuf[64];      // contents of /proc/[pid]/task/[tid]/schedstat
3231 
3232     /*
3233      * Get the java.lang.Thread object.  This function gets called from
3234      * some weird debug contexts, so it's possible that there's a GC in
3235      * progress on some other thread.  To decrease the chances of the
3236      * thread object being moved out from under us, we add the reference
3237      * to the tracked allocation list, which pins it in place.
3238      *
3239      * If threadObj is NULL, the thread is still in the process of being
3240      * attached to the VM, and there's really nothing interesting to
3241      * say about it yet.
3242      */
3243     threadObj = thread->threadObj;
3244     if (threadObj == NULL) {
3245         LOGI("Can't dump thread %d: threadObj not set", thread->threadId);
3246         return;
3247     }
3248     dvmAddTrackedAlloc(threadObj, NULL);
3249 
3250     nameStr = (StringObject*) dvmGetFieldObject(threadObj,
3251                 gDvm.offJavaLangThread_name);
3252     threadName = dvmCreateCstrFromString(nameStr);
3253 
3254     priority = dvmGetFieldInt(threadObj, gDvm.offJavaLangThread_priority);
3255     isDaemon = dvmGetFieldBoolean(threadObj, gDvm.offJavaLangThread_daemon);
3256 
3257     if (pthread_getschedparam(pthread_self(), &policy, &sp) != 0) {
3258         LOGW("Warning: pthread_getschedparam failed");
3259         policy = -1;
3260         sp.sched_priority = -1;
3261     }
3262     if (getSchedulerGroup(thread->systemTid, schedulerGroupBuf,
3263                 sizeof(schedulerGroupBuf)) == 0 &&
3264             schedulerGroupBuf[0] == '\0') {
3265         strcpy(schedulerGroupBuf, "default");
3266     }
3267 
3268     /* a null value for group is not expected, but deal with it anyway */
3269     groupObj = (Object*) dvmGetFieldObject(threadObj,
3270                 gDvm.offJavaLangThread_group);
3271     if (groupObj != NULL) {
3272         nameStr = (StringObject*)
3273             dvmGetFieldObject(groupObj, gDvm.offJavaLangThreadGroup_name);
3274         groupName = dvmCreateCstrFromString(nameStr);
3275     }
3276     if (groupName == NULL)
3277         groupName = strdup("(null; initializing?)");
3278 
3279     dvmPrintDebugMessage(target,
3280         "\"%s\"%s prio=%d tid=%d %s%s\n",
3281         threadName, isDaemon ? " daemon" : "",
3282         priority, thread->threadId, dvmGetThreadStatusStr(thread->status),
3283 #if defined(WITH_JIT)
3284         thread->inJitCodeCache ? " JIT" : ""
3285 #else
3286         ""
3287 #endif
3288         );
3289     dvmPrintDebugMessage(target,
3290         "  | group=\"%s\" sCount=%d dsCount=%d obj=%p self=%p\n",
3291         groupName, thread->suspendCount, thread->dbgSuspendCount,
3292         thread->threadObj, thread);
3293     dvmPrintDebugMessage(target,
3294         "  | sysTid=%d nice=%d sched=%d/%d cgrp=%s handle=%d\n",
3295         thread->systemTid, getpriority(PRIO_PROCESS, thread->systemTid),
3296         policy, sp.sched_priority, schedulerGroupBuf, (int)thread->handle);
3297 
3298     /* get some bits from /proc/self/stat */
3299     ProcStatData procStatData;
3300     if (!dvmGetThreadStats(&procStatData, thread->systemTid)) {
3301         /* failed, use zeroed values */
3302         memset(&procStatData, 0, sizeof(procStatData));
3303     }
3304 
3305     /* grab the scheduler stats for this thread */
3306     snprintf(schedstatBuf, sizeof(schedstatBuf), "/proc/self/task/%d/schedstat",
3307              thread->systemTid);
3308     int schedstatFd = open(schedstatBuf, O_RDONLY);
3309     strcpy(schedstatBuf, "0 0 0");          /* show this if open/read fails */
3310     if (schedstatFd >= 0) {
3311         ssize_t bytes;
3312         bytes = read(schedstatFd, schedstatBuf, sizeof(schedstatBuf) - 1);
3313         close(schedstatFd);
3314         if (bytes >= 1) {
3315             schedstatBuf[bytes-1] = '\0';   /* remove trailing newline */
3316         }
3317     }
3318 
3319     /* show what we got */
3320     dvmPrintDebugMessage(target,
3321         "  | schedstat=( %s ) utm=%lu stm=%lu core=%d\n",
3322         schedstatBuf, procStatData.utime, procStatData.stime,
3323         procStatData.processor);
3324 
3325     if (isRunning)
3326         dvmDumpRunningThreadStack(target, thread);
3327     else
3328         dvmDumpThreadStack(target, thread);
3329 
3330     dvmReleaseTrackedAlloc(threadObj, NULL);
3331     free(threadName);
3332     free(groupName);
3333 }
3334 
dvmGetThreadName(Thread * thread)3335 std::string dvmGetThreadName(Thread* thread) {
3336     if (thread->threadObj == NULL) {
3337         LOGW("threadObj is NULL, name not available");
3338         return "-unknown-";
3339     }
3340 
3341     StringObject* nameObj = (StringObject*)
3342         dvmGetFieldObject(thread->threadObj, gDvm.offJavaLangThread_name);
3343     return dvmCreateCstrFromString(nameObj);
3344 }
3345 
3346 /*
3347  * Dump all threads to the log file -- just calls dvmDumpAllThreadsEx() with
3348  * an output target.
3349  */
dvmDumpAllThreads(bool grabLock)3350 void dvmDumpAllThreads(bool grabLock)
3351 {
3352     DebugOutputTarget target;
3353 
3354     dvmCreateLogOutputTarget(&target, ANDROID_LOG_INFO, LOG_TAG);
3355     dvmDumpAllThreadsEx(&target, grabLock);
3356 }
3357 
3358 /*
3359  * Print information about all known threads.  Assumes they have been
3360  * suspended (or are in a non-interpreting state, e.g. WAIT or NATIVE).
3361  *
3362  * If "grabLock" is true, we grab the thread lock list.  This is important
3363  * to do unless the caller already holds the lock.
3364  */
dvmDumpAllThreadsEx(const DebugOutputTarget * target,bool grabLock)3365 void dvmDumpAllThreadsEx(const DebugOutputTarget* target, bool grabLock)
3366 {
3367     Thread* thread;
3368 
3369     dvmPrintDebugMessage(target, "DALVIK THREADS:\n");
3370 
3371 #ifdef HAVE_ANDROID_OS
3372     dvmPrintDebugMessage(target,
3373         "(mutexes: tll=%x tsl=%x tscl=%x ghl=%x)\n",
3374         gDvm.threadListLock.value,
3375         gDvm._threadSuspendLock.value,
3376         gDvm.threadSuspendCountLock.value,
3377         gDvm.gcHeapLock.value);
3378 #endif
3379 
3380     if (grabLock)
3381         dvmLockThreadList(dvmThreadSelf());
3382 
3383     thread = gDvm.threadList;
3384     while (thread != NULL) {
3385         dvmDumpThreadEx(target, thread, false);
3386 
3387         /* verify link */
3388         assert(thread->next == NULL || thread->next->prev == thread);
3389 
3390         thread = thread->next;
3391     }
3392 
3393     if (grabLock)
3394         dvmUnlockThreadList();
3395 }
3396 
3397 /*
3398  * Nuke the target thread from orbit.
3399  *
3400  * The idea is to send a "crash" signal to the target thread so that
3401  * debuggerd will take notice and dump an appropriate stack trace.
3402  * Because of the way debuggerd works, we have to throw the same signal
3403  * at it twice.
3404  *
3405  * This does not necessarily cause the entire process to stop, but once a
3406  * thread has been nuked the rest of the system is likely to be unstable.
3407  * This returns so that some limited set of additional operations may be
3408  * performed, but it's advisable (and expected) to call dvmAbort soon.
3409  * (This is NOT a way to simply cancel a thread.)
3410  */
dvmNukeThread(Thread * thread)3411 void dvmNukeThread(Thread* thread)
3412 {
3413     int killResult;
3414 
3415     /* suppress the heapworker watchdog to assist anyone using a debugger */
3416     gDvm.nativeDebuggerActive = true;
3417 
3418     /*
3419      * Send the signals, separated by a brief interval to allow debuggerd
3420      * to work its magic.  An uncommon signal like SIGFPE or SIGSTKFLT
3421      * can be used instead of SIGSEGV to avoid making it look like the
3422      * code actually crashed at the current point of execution.
3423      *
3424      * (Observed behavior: with SIGFPE, debuggerd will dump the target
3425      * thread and then the thread that calls dvmAbort.  With SIGSEGV,
3426      * you don't get the second stack trace; possibly something in the
3427      * kernel decides that a signal has already been sent and it's time
3428      * to just kill the process.  The position in the current thread is
3429      * generally known, so the second dump is not useful.)
3430      *
3431      * The target thread can continue to execute between the two signals.
3432      * (The first just causes debuggerd to attach to it.)
3433      */
3434     LOGD("threadid=%d: sending two SIGSTKFLTs to threadid=%d (tid=%d) to"
3435          " cause debuggerd dump",
3436         dvmThreadSelf()->threadId, thread->threadId, thread->systemTid);
3437     killResult = pthread_kill(thread->handle, SIGSTKFLT);
3438     if (killResult != 0) {
3439         LOGD("NOTE: pthread_kill #1 failed: %s", strerror(killResult));
3440     }
3441     usleep(2 * 1000 * 1000);    // TODO: timed-wait until debuggerd attaches
3442     killResult = pthread_kill(thread->handle, SIGSTKFLT);
3443     if (killResult != 0) {
3444         LOGD("NOTE: pthread_kill #2 failed: %s", strerror(killResult));
3445     }
3446     LOGD("Sent, pausing to let debuggerd run");
3447     usleep(8 * 1000 * 1000);    // TODO: timed-wait until debuggerd finishes
3448 
3449     /* ignore SIGSEGV so the eventual dmvAbort() doesn't notify debuggerd */
3450     signal(SIGSEGV, SIG_IGN);
3451     LOGD("Continuing");
3452 }
3453