• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_VECTOR_H
18 #define ANDROID_VECTOR_H
19 
20 #include <new>
21 #include <stdint.h>
22 #include <sys/types.h>
23 
24 #include <utils/Log.h>
25 #include <utils/VectorImpl.h>
26 #include <utils/TypeHelpers.h>
27 
28 // ---------------------------------------------------------------------------
29 
30 namespace android {
31 
32 template <typename TYPE>
33 class SortedVector;
34 
35 /*!
36  * The main templated vector class ensuring type safety
37  * while making use of VectorImpl.
38  * This is the class users want to use.
39  */
40 
41 template <class TYPE>
42 class Vector : private VectorImpl
43 {
44 public:
45             typedef TYPE    value_type;
46 
47     /*!
48      * Constructors and destructors
49      */
50 
51                             Vector();
52                             Vector(const Vector<TYPE>& rhs);
53     explicit                Vector(const SortedVector<TYPE>& rhs);
54     virtual                 ~Vector();
55 
56     /*! copy operator */
57             const Vector<TYPE>&     operator = (const Vector<TYPE>& rhs) const;
58             Vector<TYPE>&           operator = (const Vector<TYPE>& rhs);
59 
60             const Vector<TYPE>&     operator = (const SortedVector<TYPE>& rhs) const;
61             Vector<TYPE>&           operator = (const SortedVector<TYPE>& rhs);
62 
63             /*
64      * empty the vector
65      */
66 
clear()67     inline  void            clear()             { VectorImpl::clear(); }
68 
69     /*!
70      * vector stats
71      */
72 
73     //! returns number of items in the vector
size()74     inline  size_t          size() const                { return VectorImpl::size(); }
75     //! returns wether or not the vector is empty
isEmpty()76     inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
77     //! returns how many items can be stored without reallocating the backing store
capacity()78     inline  size_t          capacity() const            { return VectorImpl::capacity(); }
79     //! setst the capacity. capacity can never be reduced less than size()
setCapacity(size_t size)80     inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
81 
82     /*!
83      * C-style array access
84      */
85 
86     //! read-only C-style access
87     inline  const TYPE*     array() const;
88     //! read-write C-style access
89             TYPE*           editArray();
90 
91     /*!
92      * accessors
93      */
94 
95     //! read-only access to an item at a given index
96     inline  const TYPE&     operator [] (size_t index) const;
97     //! alternate name for operator []
98     inline  const TYPE&     itemAt(size_t index) const;
99     //! stack-usage of the vector. returns the top of the stack (last element)
100             const TYPE&     top() const;
101     //! same as operator [], but allows to access the vector backward (from the end) with a negative index
102             const TYPE&     mirrorItemAt(ssize_t index) const;
103 
104     /*!
105      * modifing the array
106      */
107 
108     //! copy-on write support, grants write access to an item
109             TYPE&           editItemAt(size_t index);
110     //! grants right acces to the top of the stack (last element)
111             TYPE&           editTop();
112 
113             /*!
114              * append/insert another vector
115              */
116 
117     //! insert another vector at a given index
118             ssize_t         insertVectorAt(const Vector<TYPE>& vector, size_t index);
119 
120     //! append another vector at the end of this one
121             ssize_t         appendVector(const Vector<TYPE>& vector);
122 
123 
124     //! insert an array at a given index
125             ssize_t         insertArrayAt(const TYPE* array, size_t index, size_t length);
126 
127     //! append an array at the end of this vector
128             ssize_t         appendArray(const TYPE* array, size_t length);
129 
130             /*!
131              * add/insert/replace items
132              */
133 
134     //! insert one or several items initialized with their default constructor
135     inline  ssize_t         insertAt(size_t index, size_t numItems = 1);
136     //! insert one or several items initialized from a prototype item
137             ssize_t         insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1);
138     //! pop the top of the stack (removes the last element). No-op if the stack's empty
139     inline  void            pop();
140     //! pushes an item initialized with its default constructor
141     inline  void            push();
142     //! pushes an item on the top of the stack
143             void            push(const TYPE& item);
144     //! same as push() but returns the index the item was added at (or an error)
145     inline  ssize_t         add();
146     //! same as push() but returns the index the item was added at (or an error)
147             ssize_t         add(const TYPE& item);
148     //! replace an item with a new one initialized with its default constructor
149     inline  ssize_t         replaceAt(size_t index);
150     //! replace an item with a new one
151             ssize_t         replaceAt(const TYPE& item, size_t index);
152 
153     /*!
154      * remove items
155      */
156 
157     //! remove several items
158     inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
159     //! remove one item
removeAt(size_t index)160     inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
161 
162     /*!
163      * sort (stable) the array
164      */
165 
166      typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs);
167      typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state);
168 
169      inline status_t        sort(compar_t cmp);
170      inline status_t        sort(compar_r_t cmp, void* state);
171 
172      // for debugging only
getItemSize()173      inline size_t getItemSize() const { return itemSize(); }
174 
175 
176      /*
177       * these inlines add some level of compatibility with STL. eventually
178       * we should probably turn things around.
179       */
180      typedef TYPE* iterator;
181      typedef TYPE const* const_iterator;
182 
begin()183      inline iterator begin() { return editArray(); }
end()184      inline iterator end()   { return editArray() + size(); }
begin()185      inline const_iterator begin() const { return array(); }
end()186      inline const_iterator end() const   { return array() + size(); }
reserve(size_t n)187      inline void reserve(size_t n) { setCapacity(n); }
empty()188      inline bool empty() const{ return isEmpty(); }
push_back(const TYPE & item)189      inline void push_back(const TYPE& item)  { insertAt(item, size()); }
push_front(const TYPE & item)190      inline void push_front(const TYPE& item) { insertAt(item, 0); }
erase(iterator pos)191      inline iterator erase(iterator pos) {
192          return begin() + removeItemsAt(pos-array());
193      }
194 
195 protected:
196     virtual void    do_construct(void* storage, size_t num) const;
197     virtual void    do_destroy(void* storage, size_t num) const;
198     virtual void    do_copy(void* dest, const void* from, size_t num) const;
199     virtual void    do_splat(void* dest, const void* item, size_t num) const;
200     virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
201     virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
202 };
203 
204 
205 // ---------------------------------------------------------------------------
206 // No user serviceable parts from here...
207 // ---------------------------------------------------------------------------
208 
209 template<class TYPE> inline
Vector()210 Vector<TYPE>::Vector()
211     : VectorImpl(sizeof(TYPE),
212                 ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
213                 |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
214                 |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
215                 )
216 {
217 }
218 
219 template<class TYPE> inline
Vector(const Vector<TYPE> & rhs)220 Vector<TYPE>::Vector(const Vector<TYPE>& rhs)
221     : VectorImpl(rhs) {
222 }
223 
224 template<class TYPE> inline
Vector(const SortedVector<TYPE> & rhs)225 Vector<TYPE>::Vector(const SortedVector<TYPE>& rhs)
226     : VectorImpl(static_cast<const VectorImpl&>(rhs)) {
227 }
228 
229 template<class TYPE> inline
~Vector()230 Vector<TYPE>::~Vector() {
231     finish_vector();
232 }
233 
234 template<class TYPE> inline
235 Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) {
236     VectorImpl::operator = (rhs);
237     return *this;
238 }
239 
240 template<class TYPE> inline
241 const Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) const {
242     VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
243     return *this;
244 }
245 
246 template<class TYPE> inline
247 Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
248     VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
249     return *this;
250 }
251 
252 template<class TYPE> inline
253 const Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
254     VectorImpl::operator = (rhs);
255     return *this;
256 }
257 
258 template<class TYPE> inline
array()259 const TYPE* Vector<TYPE>::array() const {
260     return static_cast<const TYPE *>(arrayImpl());
261 }
262 
263 template<class TYPE> inline
editArray()264 TYPE* Vector<TYPE>::editArray() {
265     return static_cast<TYPE *>(editArrayImpl());
266 }
267 
268 
269 template<class TYPE> inline
270 const TYPE& Vector<TYPE>::operator[](size_t index) const {
271     LOG_FATAL_IF( index>=size(),
272                   "itemAt: index %d is past size %d", (int)index, (int)size() );
273     return *(array() + index);
274 }
275 
276 template<class TYPE> inline
itemAt(size_t index)277 const TYPE& Vector<TYPE>::itemAt(size_t index) const {
278     return operator[](index);
279 }
280 
281 template<class TYPE> inline
mirrorItemAt(ssize_t index)282 const TYPE& Vector<TYPE>::mirrorItemAt(ssize_t index) const {
283     LOG_FATAL_IF( (index>0 ? index : -index)>=size(),
284                   "mirrorItemAt: index %d is past size %d",
285                   (int)index, (int)size() );
286     return *(array() + ((index<0) ? (size()-index) : index));
287 }
288 
289 template<class TYPE> inline
top()290 const TYPE& Vector<TYPE>::top() const {
291     return *(array() + size() - 1);
292 }
293 
294 template<class TYPE> inline
editItemAt(size_t index)295 TYPE& Vector<TYPE>::editItemAt(size_t index) {
296     return *( static_cast<TYPE *>(editItemLocation(index)) );
297 }
298 
299 template<class TYPE> inline
editTop()300 TYPE& Vector<TYPE>::editTop() {
301     return *( static_cast<TYPE *>(editItemLocation(size()-1)) );
302 }
303 
304 template<class TYPE> inline
insertVectorAt(const Vector<TYPE> & vector,size_t index)305 ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) {
306     return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index);
307 }
308 
309 template<class TYPE> inline
appendVector(const Vector<TYPE> & vector)310 ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) {
311     return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector));
312 }
313 
314 template<class TYPE> inline
insertArrayAt(const TYPE * array,size_t index,size_t length)315 ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) {
316     return VectorImpl::insertArrayAt(array, index, length);
317 }
318 
319 template<class TYPE> inline
appendArray(const TYPE * array,size_t length)320 ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) {
321     return VectorImpl::appendArray(array, length);
322 }
323 
324 template<class TYPE> inline
insertAt(const TYPE & item,size_t index,size_t numItems)325 ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) {
326     return VectorImpl::insertAt(&item, index, numItems);
327 }
328 
329 template<class TYPE> inline
push(const TYPE & item)330 void Vector<TYPE>::push(const TYPE& item) {
331     return VectorImpl::push(&item);
332 }
333 
334 template<class TYPE> inline
add(const TYPE & item)335 ssize_t Vector<TYPE>::add(const TYPE& item) {
336     return VectorImpl::add(&item);
337 }
338 
339 template<class TYPE> inline
replaceAt(const TYPE & item,size_t index)340 ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) {
341     return VectorImpl::replaceAt(&item, index);
342 }
343 
344 template<class TYPE> inline
insertAt(size_t index,size_t numItems)345 ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) {
346     return VectorImpl::insertAt(index, numItems);
347 }
348 
349 template<class TYPE> inline
pop()350 void Vector<TYPE>::pop() {
351     VectorImpl::pop();
352 }
353 
354 template<class TYPE> inline
push()355 void Vector<TYPE>::push() {
356     VectorImpl::push();
357 }
358 
359 template<class TYPE> inline
add()360 ssize_t Vector<TYPE>::add() {
361     return VectorImpl::add();
362 }
363 
364 template<class TYPE> inline
replaceAt(size_t index)365 ssize_t Vector<TYPE>::replaceAt(size_t index) {
366     return VectorImpl::replaceAt(index);
367 }
368 
369 template<class TYPE> inline
removeItemsAt(size_t index,size_t count)370 ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) {
371     return VectorImpl::removeItemsAt(index, count);
372 }
373 
374 template<class TYPE> inline
sort(Vector<TYPE>::compar_t cmp)375 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) {
376     return VectorImpl::sort((VectorImpl::compar_t)cmp);
377 }
378 
379 template<class TYPE> inline
sort(Vector<TYPE>::compar_r_t cmp,void * state)380 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) {
381     return VectorImpl::sort((VectorImpl::compar_r_t)cmp, state);
382 }
383 
384 // ---------------------------------------------------------------------------
385 
386 template<class TYPE>
do_construct(void * storage,size_t num)387 void Vector<TYPE>::do_construct(void* storage, size_t num) const {
388     construct_type( reinterpret_cast<TYPE*>(storage), num );
389 }
390 
391 template<class TYPE>
do_destroy(void * storage,size_t num)392 void Vector<TYPE>::do_destroy(void* storage, size_t num) const {
393     destroy_type( reinterpret_cast<TYPE*>(storage), num );
394 }
395 
396 template<class TYPE>
do_copy(void * dest,const void * from,size_t num)397 void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
398     copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
399 }
400 
401 template<class TYPE>
do_splat(void * dest,const void * item,size_t num)402 void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
403     splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
404 }
405 
406 template<class TYPE>
do_move_forward(void * dest,const void * from,size_t num)407 void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
408     move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
409 }
410 
411 template<class TYPE>
do_move_backward(void * dest,const void * from,size_t num)412 void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
413     move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
414 }
415 
416 }; // namespace android
417 
418 
419 // ---------------------------------------------------------------------------
420 
421 #endif // ANDROID_VECTOR_H
422