1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #if defined(V8_TARGET_ARCH_MIPS)
31
32 #include "bootstrapper.h"
33 #include "code-stubs.h"
34 #include "codegen-inl.h"
35 #include "regexp-macro-assembler.h"
36
37 namespace v8 {
38 namespace internal {
39
40
41 #define __ ACCESS_MASM(masm)
42
43
Generate(MacroAssembler * masm)44 void ToNumberStub::Generate(MacroAssembler* masm) {
45 UNIMPLEMENTED_MIPS();
46 }
47
48
Generate(MacroAssembler * masm)49 void FastNewClosureStub::Generate(MacroAssembler* masm) {
50 UNIMPLEMENTED_MIPS();
51 }
52
53
Generate(MacroAssembler * masm)54 void FastNewContextStub::Generate(MacroAssembler* masm) {
55 UNIMPLEMENTED_MIPS();
56 }
57
58
Generate(MacroAssembler * masm)59 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
60 UNIMPLEMENTED_MIPS();
61 }
62
63
64 // Takes a Smi and converts to an IEEE 64 bit floating point value in two
65 // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
66 // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
67 // scratch register. Destroys the source register. No GC occurs during this
68 // stub so you don't have to set up the frame.
69 class ConvertToDoubleStub : public CodeStub {
70 public:
ConvertToDoubleStub(Register result_reg_1,Register result_reg_2,Register source_reg,Register scratch_reg)71 ConvertToDoubleStub(Register result_reg_1,
72 Register result_reg_2,
73 Register source_reg,
74 Register scratch_reg)
75 : result1_(result_reg_1),
76 result2_(result_reg_2),
77 source_(source_reg),
78 zeros_(scratch_reg) { }
79
80 private:
81 Register result1_;
82 Register result2_;
83 Register source_;
84 Register zeros_;
85
86 // Minor key encoding in 16 bits.
87 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
88 class OpBits: public BitField<Token::Value, 2, 14> {};
89
MajorKey()90 Major MajorKey() { return ConvertToDouble; }
MinorKey()91 int MinorKey() {
92 // Encode the parameters in a unique 16 bit value.
93 return result1_.code() +
94 (result2_.code() << 4) +
95 (source_.code() << 8) +
96 (zeros_.code() << 12);
97 }
98
99 void Generate(MacroAssembler* masm);
100
GetName()101 const char* GetName() { return "ConvertToDoubleStub"; }
102
103 #ifdef DEBUG
Print()104 void Print() { PrintF("ConvertToDoubleStub\n"); }
105 #endif
106 };
107
108
Generate(MacroAssembler * masm)109 void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
110 UNIMPLEMENTED_MIPS();
111 }
112
113
114 class FloatingPointHelper : public AllStatic {
115 public:
116
117 enum Destination {
118 kFPURegisters,
119 kCoreRegisters
120 };
121
122
123 // Loads smis from a0 and a1 (right and left in binary operations) into
124 // floating point registers. Depending on the destination the values ends up
125 // either f14 and f12 or in a2/a3 and a0/a1 respectively. If the destination
126 // is floating point registers FPU must be supported. If core registers are
127 // requested when FPU is supported f12 and f14 will be scratched.
128 static void LoadSmis(MacroAssembler* masm,
129 Destination destination,
130 Register scratch1,
131 Register scratch2);
132
133 // Loads objects from a0 and a1 (right and left in binary operations) into
134 // floating point registers. Depending on the destination the values ends up
135 // either f14 and f12 or in a2/a3 and a0/a1 respectively. If the destination
136 // is floating point registers FPU must be supported. If core registers are
137 // requested when FPU is supported f12 and f14 will still be scratched. If
138 // either a0 or a1 is not a number (not smi and not heap number object) the
139 // not_number label is jumped to with a0 and a1 intact.
140 static void LoadOperands(MacroAssembler* masm,
141 FloatingPointHelper::Destination destination,
142 Register heap_number_map,
143 Register scratch1,
144 Register scratch2,
145 Label* not_number);
146 // Loads the number from object into dst as a 32-bit integer if possible. If
147 // the object is not a 32-bit integer control continues at the label
148 // not_int32. If FPU is supported double_scratch is used but not scratch2.
149 static void LoadNumberAsInteger(MacroAssembler* masm,
150 Register object,
151 Register dst,
152 Register heap_number_map,
153 Register scratch1,
154 Register scratch2,
155 FPURegister double_scratch,
156 Label* not_int32);
157 private:
158 static void LoadNumber(MacroAssembler* masm,
159 FloatingPointHelper::Destination destination,
160 Register object,
161 FPURegister dst,
162 Register dst1,
163 Register dst2,
164 Register heap_number_map,
165 Register scratch1,
166 Register scratch2,
167 Label* not_number);
168 };
169
170
LoadSmis(MacroAssembler * masm,FloatingPointHelper::Destination destination,Register scratch1,Register scratch2)171 void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
172 FloatingPointHelper::Destination destination,
173 Register scratch1,
174 Register scratch2) {
175 UNIMPLEMENTED_MIPS();
176 }
177
178
LoadOperands(MacroAssembler * masm,FloatingPointHelper::Destination destination,Register heap_number_map,Register scratch1,Register scratch2,Label * slow)179 void FloatingPointHelper::LoadOperands(
180 MacroAssembler* masm,
181 FloatingPointHelper::Destination destination,
182 Register heap_number_map,
183 Register scratch1,
184 Register scratch2,
185 Label* slow) {
186 UNIMPLEMENTED_MIPS();
187 }
188
189
LoadNumber(MacroAssembler * masm,Destination destination,Register object,FPURegister dst,Register dst1,Register dst2,Register heap_number_map,Register scratch1,Register scratch2,Label * not_number)190 void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
191 Destination destination,
192 Register object,
193 FPURegister dst,
194 Register dst1,
195 Register dst2,
196 Register heap_number_map,
197 Register scratch1,
198 Register scratch2,
199 Label* not_number) {
200 UNIMPLEMENTED_MIPS();
201 }
202
203
LoadNumberAsInteger(MacroAssembler * masm,Register object,Register dst,Register heap_number_map,Register scratch1,Register scratch2,FPURegister double_scratch,Label * not_int32)204 void FloatingPointHelper::LoadNumberAsInteger(MacroAssembler* masm,
205 Register object,
206 Register dst,
207 Register heap_number_map,
208 Register scratch1,
209 Register scratch2,
210 FPURegister double_scratch,
211 Label* not_int32) {
212 UNIMPLEMENTED_MIPS();
213 }
214
215
216 // See comment for class, this does NOT work for int32's that are in Smi range.
Generate(MacroAssembler * masm)217 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
218 UNIMPLEMENTED_MIPS();
219 }
220
221
EmitNanCheck(MacroAssembler * masm,Condition cc)222 void EmitNanCheck(MacroAssembler* masm, Condition cc) {
223 UNIMPLEMENTED_MIPS();
224 }
225
226
GenerateLookupNumberStringCache(MacroAssembler * masm,Register object,Register result,Register scratch1,Register scratch2,Register scratch3,bool object_is_smi,Label * not_found)227 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
228 Register object,
229 Register result,
230 Register scratch1,
231 Register scratch2,
232 Register scratch3,
233 bool object_is_smi,
234 Label* not_found) {
235 UNIMPLEMENTED_MIPS();
236 }
237
238
Generate(MacroAssembler * masm)239 void NumberToStringStub::Generate(MacroAssembler* masm) {
240 UNIMPLEMENTED_MIPS();
241 }
242
243
244 // On entry lhs_ (lhs) and rhs_ (rhs) are the things to be compared.
245 // On exit, v0 is 0, positive, or negative (smi) to indicate the result
246 // of the comparison.
Generate(MacroAssembler * masm)247 void CompareStub::Generate(MacroAssembler* masm) {
248 UNIMPLEMENTED_MIPS();
249 }
250
251
252 // This stub does not handle the inlined cases (Smis, Booleans, undefined).
253 // The stub returns zero for false, and a non-zero value for true.
Generate(MacroAssembler * masm)254 void ToBooleanStub::Generate(MacroAssembler* masm) {
255 UNIMPLEMENTED_MIPS();
256 }
257
258
259 // We fall into this code if the operands were Smis, but the result was
260 // not (eg. overflow). We branch into this code (to the not_smi label) if
261 // the operands were not both Smi. The operands are in lhs and rhs.
262 // To call the C-implemented binary fp operation routines we need to end up
263 // with the double precision floating point operands in a0 and a1 (for the
264 // value in a1) and a2 and a3 (for the value in a0).
HandleBinaryOpSlowCases(MacroAssembler * masm,Label * not_smi,Register lhs,Register rhs,const Builtins::JavaScript & builtin)265 void GenericBinaryOpStub::HandleBinaryOpSlowCases(MacroAssembler* masm,
266 Label* not_smi,
267 Register lhs,
268 Register rhs,
269 const Builtins::JavaScript& builtin) {
270 UNIMPLEMENTED_MIPS();
271 }
272
273
274 // For bitwise ops where the inputs are not both Smis we here try to determine
275 // whether both inputs are either Smis or at least heap numbers that can be
276 // represented by a 32 bit signed value. We truncate towards zero as required
277 // by the ES spec. If this is the case we do the bitwise op and see if the
278 // result is a Smi. If so, great, otherwise we try to find a heap number to
279 // write the answer into (either by allocating or by overwriting).
280 // On entry the operands are in lhs (x) and rhs (y). (Result = x op y).
281 // On exit the result is in v0.
HandleNonSmiBitwiseOp(MacroAssembler * masm,Register lhs,Register rhs)282 void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm,
283 Register lhs,
284 Register rhs) {
285 UNIMPLEMENTED_MIPS();
286 }
287
288
Generate(MacroAssembler * masm)289 void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
290 UNIMPLEMENTED_MIPS();
291 }
292
293
GenerateTypeTransition(MacroAssembler * masm)294 void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
295 UNIMPLEMENTED_MIPS();
296 }
297
298
GetBinaryOpStub(int key,BinaryOpIC::TypeInfo type_info)299 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
300 GenericBinaryOpStub stub(key, type_info);
301 return stub.GetCode();
302 }
303
304
GetTypeRecordingBinaryOpStub(int key,TRBinaryOpIC::TypeInfo type_info,TRBinaryOpIC::TypeInfo result_type_info)305 Handle<Code> GetTypeRecordingBinaryOpStub(int key,
306 TRBinaryOpIC::TypeInfo type_info,
307 TRBinaryOpIC::TypeInfo result_type_info) {
308 TypeRecordingBinaryOpStub stub(key, type_info, result_type_info);
309 return stub.GetCode();
310 }
311
312
GenerateTypeTransition(MacroAssembler * masm)313 void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
314 UNIMPLEMENTED_MIPS();
315 }
316
317
GenerateTypeTransitionWithSavedArgs(MacroAssembler * masm)318 void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs(
319 MacroAssembler* masm) {
320 UNIMPLEMENTED();
321 }
322
323
Generate(MacroAssembler * masm)324 void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) {
325 UNIMPLEMENTED_MIPS();
326 }
327
328
GetName()329 const char* TypeRecordingBinaryOpStub::GetName() {
330 UNIMPLEMENTED_MIPS();
331 return name_;
332 }
333
334
335
GenerateSmiSmiOperation(MacroAssembler * masm)336 void TypeRecordingBinaryOpStub::GenerateSmiSmiOperation(
337 MacroAssembler* masm) {
338 UNIMPLEMENTED_MIPS();
339 }
340
341
GenerateFPOperation(MacroAssembler * masm,bool smi_operands,Label * not_numbers,Label * gc_required)342 void TypeRecordingBinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
343 bool smi_operands,
344 Label* not_numbers,
345 Label* gc_required) {
346 UNIMPLEMENTED_MIPS();
347 }
348
349
350 // Generate the smi code. If the operation on smis are successful this return is
351 // generated. If the result is not a smi and heap number allocation is not
352 // requested the code falls through. If number allocation is requested but a
353 // heap number cannot be allocated the code jumps to the lable gc_required.
GenerateSmiCode(MacroAssembler * masm,Label * gc_required,SmiCodeGenerateHeapNumberResults allow_heapnumber_results)354 void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm,
355 Label* gc_required,
356 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
357 UNIMPLEMENTED_MIPS();
358 }
359
360
GenerateSmiStub(MacroAssembler * masm)361 void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
362 UNIMPLEMENTED_MIPS();
363 }
364
365
GenerateStringStub(MacroAssembler * masm)366 void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
367 UNIMPLEMENTED_MIPS();
368 }
369
370
GenerateInt32Stub(MacroAssembler * masm)371 void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
372 UNIMPLEMENTED_MIPS();
373 }
374
375
GenerateHeapNumberStub(MacroAssembler * masm)376 void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
377 UNIMPLEMENTED_MIPS();
378 }
379
380
GenerateGeneric(MacroAssembler * masm)381 void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
382 UNIMPLEMENTED_MIPS();
383 }
384
385
GenerateAddStrings(MacroAssembler * masm)386 void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
387 UNIMPLEMENTED_MIPS();
388 }
389
390
GenerateCallRuntime(MacroAssembler * masm)391 void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
392 UNIMPLEMENTED_MIPS();
393 }
394
395
GenerateHeapResultAllocation(MacroAssembler * masm,Register result,Register heap_number_map,Register scratch1,Register scratch2,Label * gc_required)396 void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation(
397 MacroAssembler* masm,
398 Register result,
399 Register heap_number_map,
400 Register scratch1,
401 Register scratch2,
402 Label* gc_required) {
403 UNIMPLEMENTED_MIPS();
404 }
405
406
GenerateRegisterArgsPush(MacroAssembler * masm)407 void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
408 UNIMPLEMENTED_MIPS();
409 }
410
411
412
Generate(MacroAssembler * masm)413 void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
414 UNIMPLEMENTED_MIPS();
415 }
416
417
RuntimeFunction()418 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
419 UNIMPLEMENTED_MIPS();
420 return Runtime::kAbort;
421 }
422
423
Generate(MacroAssembler * masm)424 void StackCheckStub::Generate(MacroAssembler* masm) {
425 UNIMPLEMENTED_MIPS();
426 }
427
428
Generate(MacroAssembler * masm)429 void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
430 UNIMPLEMENTED_MIPS();
431 }
432
433
NeedsImmovableCode()434 bool CEntryStub::NeedsImmovableCode() {
435 return true;
436 }
437
438
GenerateThrowTOS(MacroAssembler * masm)439 void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
440 UNIMPLEMENTED_MIPS();
441 }
442
443
GenerateThrowUncatchable(MacroAssembler * masm,UncatchableExceptionType type)444 void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
445 UncatchableExceptionType type) {
446 UNIMPLEMENTED_MIPS();
447 }
448
449
GenerateCore(MacroAssembler * masm,Label * throw_normal_exception,Label * throw_termination_exception,Label * throw_out_of_memory_exception,bool do_gc,bool always_allocate)450 void CEntryStub::GenerateCore(MacroAssembler* masm,
451 Label* throw_normal_exception,
452 Label* throw_termination_exception,
453 Label* throw_out_of_memory_exception,
454 bool do_gc,
455 bool always_allocate) {
456 UNIMPLEMENTED_MIPS();
457 }
458
459
Generate(MacroAssembler * masm)460 void CEntryStub::Generate(MacroAssembler* masm) {
461 UNIMPLEMENTED_MIPS();
462 }
463
464
GenerateBody(MacroAssembler * masm,bool is_construct)465 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
466 UNIMPLEMENTED_MIPS();
467 }
468
469
470 // Uses registers a0 to t0. Expected input is
471 // object in a0 (or at sp+1*kPointerSize) and function in
472 // a1 (or at sp), depending on whether or not
473 // args_in_registers() is true.
Generate(MacroAssembler * masm)474 void InstanceofStub::Generate(MacroAssembler* masm) {
475 UNIMPLEMENTED_MIPS();
476 }
477
478
GenerateReadElement(MacroAssembler * masm)479 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
480 UNIMPLEMENTED_MIPS();
481 }
482
483
GenerateNewObject(MacroAssembler * masm)484 void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
485 UNIMPLEMENTED_MIPS();
486 }
487
488
Generate(MacroAssembler * masm)489 void RegExpExecStub::Generate(MacroAssembler* masm) {
490 UNIMPLEMENTED_MIPS();
491 }
492
493
Generate(MacroAssembler * masm)494 void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
495 UNIMPLEMENTED_MIPS();
496 }
497
498
Generate(MacroAssembler * masm)499 void CallFunctionStub::Generate(MacroAssembler* masm) {
500 UNIMPLEMENTED_MIPS();
501 }
502
503
504 // Unfortunately you have to run without snapshots to see most of these
505 // names in the profile since most compare stubs end up in the snapshot.
GetName()506 const char* CompareStub::GetName() {
507 UNIMPLEMENTED_MIPS();
508 return name_;
509 }
510
511
MinorKey()512 int CompareStub::MinorKey() {
513 UNIMPLEMENTED_MIPS();
514 return 0;
515 }
516
517
518 // StringCharCodeAtGenerator
519
GenerateFast(MacroAssembler * masm)520 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
521 UNIMPLEMENTED_MIPS();
522 }
523
524
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)525 void StringCharCodeAtGenerator::GenerateSlow(
526 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
527 UNIMPLEMENTED_MIPS();
528 }
529
530
531 // -------------------------------------------------------------------------
532 // StringCharFromCodeGenerator
533
GenerateFast(MacroAssembler * masm)534 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
535 UNIMPLEMENTED_MIPS();
536 }
537
538
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)539 void StringCharFromCodeGenerator::GenerateSlow(
540 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
541 UNIMPLEMENTED_MIPS();
542 }
543
544
545 // -------------------------------------------------------------------------
546 // StringCharAtGenerator
547
GenerateFast(MacroAssembler * masm)548 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
549 UNIMPLEMENTED_MIPS();
550 }
551
552
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)553 void StringCharAtGenerator::GenerateSlow(
554 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
555 UNIMPLEMENTED_MIPS();
556 }
557
558
559 class StringHelper : public AllStatic {
560 public:
561 // Generate code for copying characters using a simple loop. This should only
562 // be used in places where the number of characters is small and the
563 // additional setup and checking in GenerateCopyCharactersLong adds too much
564 // overhead. Copying of overlapping regions is not supported.
565 // Dest register ends at the position after the last character written.
566 static void GenerateCopyCharacters(MacroAssembler* masm,
567 Register dest,
568 Register src,
569 Register count,
570 Register scratch,
571 bool ascii);
572
573 // Generate code for copying a large number of characters. This function
574 // is allowed to spend extra time setting up conditions to make copying
575 // faster. Copying of overlapping regions is not supported.
576 // Dest register ends at the position after the last character written.
577 static void GenerateCopyCharactersLong(MacroAssembler* masm,
578 Register dest,
579 Register src,
580 Register count,
581 Register scratch1,
582 Register scratch2,
583 Register scratch3,
584 Register scratch4,
585 Register scratch5,
586 int flags);
587
588
589 // Probe the symbol table for a two character string. If the string is
590 // not found by probing a jump to the label not_found is performed. This jump
591 // does not guarantee that the string is not in the symbol table. If the
592 // string is found the code falls through with the string in register r0.
593 // Contents of both c1 and c2 registers are modified. At the exit c1 is
594 // guaranteed to contain halfword with low and high bytes equal to
595 // initial contents of c1 and c2 respectively.
596 static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
597 Register c1,
598 Register c2,
599 Register scratch1,
600 Register scratch2,
601 Register scratch3,
602 Register scratch4,
603 Register scratch5,
604 Label* not_found);
605
606 // Generate string hash.
607 static void GenerateHashInit(MacroAssembler* masm,
608 Register hash,
609 Register character);
610
611 static void GenerateHashAddCharacter(MacroAssembler* masm,
612 Register hash,
613 Register character);
614
615 static void GenerateHashGetHash(MacroAssembler* masm,
616 Register hash);
617
618 private:
619 DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
620 };
621
622
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,bool ascii)623 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
624 Register dest,
625 Register src,
626 Register count,
627 Register scratch,
628 bool ascii) {
629 UNIMPLEMENTED_MIPS();
630 }
631
632
633 enum CopyCharactersFlags {
634 COPY_ASCII = 1,
635 DEST_ALWAYS_ALIGNED = 2
636 };
637
638
GenerateCopyCharactersLong(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5,int flags)639 void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
640 Register dest,
641 Register src,
642 Register count,
643 Register scratch1,
644 Register scratch2,
645 Register scratch3,
646 Register scratch4,
647 Register scratch5,
648 int flags) {
649 UNIMPLEMENTED_MIPS();
650 }
651
652
GenerateTwoCharacterSymbolTableProbe(MacroAssembler * masm,Register c1,Register c2,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5,Label * not_found)653 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
654 Register c1,
655 Register c2,
656 Register scratch1,
657 Register scratch2,
658 Register scratch3,
659 Register scratch4,
660 Register scratch5,
661 Label* not_found) {
662 UNIMPLEMENTED_MIPS();
663 }
664
665
GenerateHashInit(MacroAssembler * masm,Register hash,Register character)666 void StringHelper::GenerateHashInit(MacroAssembler* masm,
667 Register hash,
668 Register character) {
669 UNIMPLEMENTED_MIPS();
670 }
671
672
GenerateHashAddCharacter(MacroAssembler * masm,Register hash,Register character)673 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
674 Register hash,
675 Register character) {
676 UNIMPLEMENTED_MIPS();
677 }
678
679
GenerateHashGetHash(MacroAssembler * masm,Register hash)680 void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
681 Register hash) {
682 UNIMPLEMENTED_MIPS();
683 }
684
685
Generate(MacroAssembler * masm)686 void SubStringStub::Generate(MacroAssembler* masm) {
687 UNIMPLEMENTED_MIPS();
688 }
689
690
GenerateCompareFlatAsciiStrings(MacroAssembler * masm,Register right,Register left,Register scratch1,Register scratch2,Register scratch3,Register scratch4)691 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
692 Register right,
693 Register left,
694 Register scratch1,
695 Register scratch2,
696 Register scratch3,
697 Register scratch4) {
698 UNIMPLEMENTED_MIPS();
699 }
700
701
Generate(MacroAssembler * masm)702 void StringCompareStub::Generate(MacroAssembler* masm) {
703 UNIMPLEMENTED_MIPS();
704 }
705
706
Generate(MacroAssembler * masm)707 void StringAddStub::Generate(MacroAssembler* masm) {
708 UNIMPLEMENTED_MIPS();
709 }
710
711
GenerateSmis(MacroAssembler * masm)712 void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
713 UNIMPLEMENTED_MIPS();
714 }
715
716
GenerateHeapNumbers(MacroAssembler * masm)717 void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
718 UNIMPLEMENTED_MIPS();
719 }
720
721
GenerateObjects(MacroAssembler * masm)722 void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
723 UNIMPLEMENTED_MIPS();
724 }
725
726
GenerateMiss(MacroAssembler * masm)727 void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
728 UNIMPLEMENTED_MIPS();
729 }
730
731
GenerateFastPixelArrayLoad(MacroAssembler * masm,Register receiver,Register key,Register elements_map,Register elements,Register scratch1,Register scratch2,Register result,Label * not_pixel_array,Label * key_not_smi,Label * out_of_range)732 void GenerateFastPixelArrayLoad(MacroAssembler* masm,
733 Register receiver,
734 Register key,
735 Register elements_map,
736 Register elements,
737 Register scratch1,
738 Register scratch2,
739 Register result,
740 Label* not_pixel_array,
741 Label* key_not_smi,
742 Label* out_of_range) {
743 UNIMPLEMENTED_MIPS();
744 }
745
746
747 #undef __
748
749 } } // namespace v8::internal
750
751 #endif // V8_TARGET_ARCH_MIPS
752
753