1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
17
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Module.h"
21 #include "llvm/ExecutionEngine/GenericValue.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MutexGuard.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/DynamicLibrary.h"
30 #include "llvm/Support/Host.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include <cmath>
34 #include <cstring>
35 using namespace llvm;
36
37 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
38 STATISTIC(NumGlobals , "Number of global vars initialized");
39
40 ExecutionEngine *(*ExecutionEngine::JITCtor)(
41 Module *M,
42 std::string *ErrorStr,
43 JITMemoryManager *JMM,
44 CodeGenOpt::Level OptLevel,
45 bool GVsWithCode,
46 TargetMachine *TM) = 0;
47 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
48 Module *M,
49 std::string *ErrorStr,
50 JITMemoryManager *JMM,
51 CodeGenOpt::Level OptLevel,
52 bool GVsWithCode,
53 TargetMachine *TM) = 0;
54 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
55 std::string *ErrorStr) = 0;
56
ExecutionEngine(Module * M)57 ExecutionEngine::ExecutionEngine(Module *M)
58 : EEState(*this),
59 LazyFunctionCreator(0),
60 ExceptionTableRegister(0),
61 ExceptionTableDeregister(0) {
62 CompilingLazily = false;
63 GVCompilationDisabled = false;
64 SymbolSearchingDisabled = false;
65 Modules.push_back(M);
66 assert(M && "Module is null?");
67 }
68
~ExecutionEngine()69 ExecutionEngine::~ExecutionEngine() {
70 clearAllGlobalMappings();
71 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
72 delete Modules[i];
73 }
74
DeregisterAllTables()75 void ExecutionEngine::DeregisterAllTables() {
76 if (ExceptionTableDeregister) {
77 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
78 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
79 for (; it != ite; ++it)
80 ExceptionTableDeregister(it->second);
81 AllExceptionTables.clear();
82 }
83 }
84
85 namespace {
86 /// \brief Helper class which uses a value handler to automatically deletes the
87 /// memory block when the GlobalVariable is destroyed.
88 class GVMemoryBlock : public CallbackVH {
GVMemoryBlock(const GlobalVariable * GV)89 GVMemoryBlock(const GlobalVariable *GV)
90 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
91
92 public:
93 /// \brief Returns the address the GlobalVariable should be written into. The
94 /// GVMemoryBlock object prefixes that.
Create(const GlobalVariable * GV,const TargetData & TD)95 static char *Create(const GlobalVariable *GV, const TargetData& TD) {
96 Type *ElTy = GV->getType()->getElementType();
97 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
98 void *RawMemory = ::operator new(
99 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
100 TD.getPreferredAlignment(GV))
101 + GVSize);
102 new(RawMemory) GVMemoryBlock(GV);
103 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
104 }
105
deleted()106 virtual void deleted() {
107 // We allocated with operator new and with some extra memory hanging off the
108 // end, so don't just delete this. I'm not sure if this is actually
109 // required.
110 this->~GVMemoryBlock();
111 ::operator delete(this);
112 }
113 };
114 } // anonymous namespace
115
getMemoryForGV(const GlobalVariable * GV)116 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
117 return GVMemoryBlock::Create(GV, *getTargetData());
118 }
119
removeModule(Module * M)120 bool ExecutionEngine::removeModule(Module *M) {
121 for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
122 E = Modules.end(); I != E; ++I) {
123 Module *Found = *I;
124 if (Found == M) {
125 Modules.erase(I);
126 clearGlobalMappingsFromModule(M);
127 return true;
128 }
129 }
130 return false;
131 }
132
FindFunctionNamed(const char * FnName)133 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
134 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
135 if (Function *F = Modules[i]->getFunction(FnName))
136 return F;
137 }
138 return 0;
139 }
140
141
RemoveMapping(const MutexGuard &,const GlobalValue * ToUnmap)142 void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
143 const GlobalValue *ToUnmap) {
144 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
145 void *OldVal;
146
147 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
148 // GlobalAddressMap.
149 if (I == GlobalAddressMap.end())
150 OldVal = 0;
151 else {
152 OldVal = I->second;
153 GlobalAddressMap.erase(I);
154 }
155
156 GlobalAddressReverseMap.erase(OldVal);
157 return OldVal;
158 }
159
addGlobalMapping(const GlobalValue * GV,void * Addr)160 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
161 MutexGuard locked(lock);
162
163 DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
164 << "\' to [" << Addr << "]\n";);
165 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
166 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
167 CurVal = Addr;
168
169 // If we are using the reverse mapping, add it too.
170 if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
171 AssertingVH<const GlobalValue> &V =
172 EEState.getGlobalAddressReverseMap(locked)[Addr];
173 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
174 V = GV;
175 }
176 }
177
clearAllGlobalMappings()178 void ExecutionEngine::clearAllGlobalMappings() {
179 MutexGuard locked(lock);
180
181 EEState.getGlobalAddressMap(locked).clear();
182 EEState.getGlobalAddressReverseMap(locked).clear();
183 }
184
clearGlobalMappingsFromModule(Module * M)185 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
186 MutexGuard locked(lock);
187
188 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
189 EEState.RemoveMapping(locked, FI);
190 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
191 GI != GE; ++GI)
192 EEState.RemoveMapping(locked, GI);
193 }
194
updateGlobalMapping(const GlobalValue * GV,void * Addr)195 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
196 MutexGuard locked(lock);
197
198 ExecutionEngineState::GlobalAddressMapTy &Map =
199 EEState.getGlobalAddressMap(locked);
200
201 // Deleting from the mapping?
202 if (Addr == 0)
203 return EEState.RemoveMapping(locked, GV);
204
205 void *&CurVal = Map[GV];
206 void *OldVal = CurVal;
207
208 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
209 EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
210 CurVal = Addr;
211
212 // If we are using the reverse mapping, add it too.
213 if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
214 AssertingVH<const GlobalValue> &V =
215 EEState.getGlobalAddressReverseMap(locked)[Addr];
216 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
217 V = GV;
218 }
219 return OldVal;
220 }
221
getPointerToGlobalIfAvailable(const GlobalValue * GV)222 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
223 MutexGuard locked(lock);
224
225 ExecutionEngineState::GlobalAddressMapTy::iterator I =
226 EEState.getGlobalAddressMap(locked).find(GV);
227 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
228 }
229
getGlobalValueAtAddress(void * Addr)230 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
231 MutexGuard locked(lock);
232
233 // If we haven't computed the reverse mapping yet, do so first.
234 if (EEState.getGlobalAddressReverseMap(locked).empty()) {
235 for (ExecutionEngineState::GlobalAddressMapTy::iterator
236 I = EEState.getGlobalAddressMap(locked).begin(),
237 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
238 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
239 I->second, I->first));
240 }
241
242 std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
243 EEState.getGlobalAddressReverseMap(locked).find(Addr);
244 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
245 }
246
247 namespace {
248 class ArgvArray {
249 char *Array;
250 std::vector<char*> Values;
251 public:
ArgvArray()252 ArgvArray() : Array(NULL) {}
~ArgvArray()253 ~ArgvArray() { clear(); }
clear()254 void clear() {
255 delete[] Array;
256 Array = NULL;
257 for (size_t I = 0, E = Values.size(); I != E; ++I) {
258 delete[] Values[I];
259 }
260 Values.clear();
261 }
262 /// Turn a vector of strings into a nice argv style array of pointers to null
263 /// terminated strings.
264 void *reset(LLVMContext &C, ExecutionEngine *EE,
265 const std::vector<std::string> &InputArgv);
266 };
267 } // anonymous namespace
reset(LLVMContext & C,ExecutionEngine * EE,const std::vector<std::string> & InputArgv)268 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
269 const std::vector<std::string> &InputArgv) {
270 clear(); // Free the old contents.
271 unsigned PtrSize = EE->getTargetData()->getPointerSize();
272 Array = new char[(InputArgv.size()+1)*PtrSize];
273
274 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
275 Type *SBytePtr = Type::getInt8PtrTy(C);
276
277 for (unsigned i = 0; i != InputArgv.size(); ++i) {
278 unsigned Size = InputArgv[i].size()+1;
279 char *Dest = new char[Size];
280 Values.push_back(Dest);
281 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
282
283 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
284 Dest[Size-1] = 0;
285
286 // Endian safe: Array[i] = (PointerTy)Dest;
287 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
288 SBytePtr);
289 }
290
291 // Null terminate it
292 EE->StoreValueToMemory(PTOGV(0),
293 (GenericValue*)(Array+InputArgv.size()*PtrSize),
294 SBytePtr);
295 return Array;
296 }
297
runStaticConstructorsDestructors(Module * module,bool isDtors)298 void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
299 bool isDtors) {
300 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
301 GlobalVariable *GV = module->getNamedGlobal(Name);
302
303 // If this global has internal linkage, or if it has a use, then it must be
304 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
305 // this is the case, don't execute any of the global ctors, __main will do
306 // it.
307 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
308
309 // Should be an array of '{ i32, void ()* }' structs. The first value is
310 // the init priority, which we ignore.
311 if (isa<ConstantAggregateZero>(GV->getInitializer()))
312 return;
313 ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());
314 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
315 if (isa<ConstantAggregateZero>(InitList->getOperand(i)))
316 continue;
317 ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i));
318
319 Constant *FP = CS->getOperand(1);
320 if (FP->isNullValue())
321 continue; // Found a sentinal value, ignore.
322
323 // Strip off constant expression casts.
324 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
325 if (CE->isCast())
326 FP = CE->getOperand(0);
327
328 // Execute the ctor/dtor function!
329 if (Function *F = dyn_cast<Function>(FP))
330 runFunction(F, std::vector<GenericValue>());
331
332 // FIXME: It is marginally lame that we just do nothing here if we see an
333 // entry we don't recognize. It might not be unreasonable for the verifier
334 // to not even allow this and just assert here.
335 }
336 }
337
runStaticConstructorsDestructors(bool isDtors)338 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
339 // Execute global ctors/dtors for each module in the program.
340 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
341 runStaticConstructorsDestructors(Modules[i], isDtors);
342 }
343
344 #ifndef NDEBUG
345 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
isTargetNullPtr(ExecutionEngine * EE,void * Loc)346 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
347 unsigned PtrSize = EE->getTargetData()->getPointerSize();
348 for (unsigned i = 0; i < PtrSize; ++i)
349 if (*(i + (uint8_t*)Loc))
350 return false;
351 return true;
352 }
353 #endif
354
runFunctionAsMain(Function * Fn,const std::vector<std::string> & argv,const char * const * envp)355 int ExecutionEngine::runFunctionAsMain(Function *Fn,
356 const std::vector<std::string> &argv,
357 const char * const * envp) {
358 std::vector<GenericValue> GVArgs;
359 GenericValue GVArgc;
360 GVArgc.IntVal = APInt(32, argv.size());
361
362 // Check main() type
363 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
364 FunctionType *FTy = Fn->getFunctionType();
365 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
366
367 // Check the argument types.
368 if (NumArgs > 3)
369 report_fatal_error("Invalid number of arguments of main() supplied");
370 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
371 report_fatal_error("Invalid type for third argument of main() supplied");
372 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
373 report_fatal_error("Invalid type for second argument of main() supplied");
374 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
375 report_fatal_error("Invalid type for first argument of main() supplied");
376 if (!FTy->getReturnType()->isIntegerTy() &&
377 !FTy->getReturnType()->isVoidTy())
378 report_fatal_error("Invalid return type of main() supplied");
379
380 ArgvArray CArgv;
381 ArgvArray CEnv;
382 if (NumArgs) {
383 GVArgs.push_back(GVArgc); // Arg #0 = argc.
384 if (NumArgs > 1) {
385 // Arg #1 = argv.
386 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
387 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
388 "argv[0] was null after CreateArgv");
389 if (NumArgs > 2) {
390 std::vector<std::string> EnvVars;
391 for (unsigned i = 0; envp[i]; ++i)
392 EnvVars.push_back(envp[i]);
393 // Arg #2 = envp.
394 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
395 }
396 }
397 }
398
399 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
400 }
401
create(Module * M,bool ForceInterpreter,std::string * ErrorStr,CodeGenOpt::Level OptLevel,bool GVsWithCode)402 ExecutionEngine *ExecutionEngine::create(Module *M,
403 bool ForceInterpreter,
404 std::string *ErrorStr,
405 CodeGenOpt::Level OptLevel,
406 bool GVsWithCode) {
407 return EngineBuilder(M)
408 .setEngineKind(ForceInterpreter
409 ? EngineKind::Interpreter
410 : EngineKind::JIT)
411 .setErrorStr(ErrorStr)
412 .setOptLevel(OptLevel)
413 .setAllocateGVsWithCode(GVsWithCode)
414 .create();
415 }
416
417 /// createJIT - This is the factory method for creating a JIT for the current
418 /// machine, it does not fall back to the interpreter. This takes ownership
419 /// of the module.
createJIT(Module * M,std::string * ErrorStr,JITMemoryManager * JMM,CodeGenOpt::Level OptLevel,bool GVsWithCode,Reloc::Model RM,CodeModel::Model CMM)420 ExecutionEngine *ExecutionEngine::createJIT(Module *M,
421 std::string *ErrorStr,
422 JITMemoryManager *JMM,
423 CodeGenOpt::Level OptLevel,
424 bool GVsWithCode,
425 Reloc::Model RM,
426 CodeModel::Model CMM) {
427 if (ExecutionEngine::JITCtor == 0) {
428 if (ErrorStr)
429 *ErrorStr = "JIT has not been linked in.";
430 return 0;
431 }
432
433 // Use the defaults for extra parameters. Users can use EngineBuilder to
434 // set them.
435 StringRef MArch = "";
436 StringRef MCPU = "";
437 SmallVector<std::string, 1> MAttrs;
438
439 TargetMachine *TM =
440 EngineBuilder::selectTarget(M, MArch, MCPU, MAttrs, RM, ErrorStr);
441 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
442 TM->setCodeModel(CMM);
443
444 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, GVsWithCode, TM);
445 }
446
create()447 ExecutionEngine *EngineBuilder::create() {
448 // Make sure we can resolve symbols in the program as well. The zero arg
449 // to the function tells DynamicLibrary to load the program, not a library.
450 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
451 return 0;
452
453 // If the user specified a memory manager but didn't specify which engine to
454 // create, we assume they only want the JIT, and we fail if they only want
455 // the interpreter.
456 if (JMM) {
457 if (WhichEngine & EngineKind::JIT)
458 WhichEngine = EngineKind::JIT;
459 else {
460 if (ErrorStr)
461 *ErrorStr = "Cannot create an interpreter with a memory manager.";
462 return 0;
463 }
464 }
465
466 // Unless the interpreter was explicitly selected or the JIT is not linked,
467 // try making a JIT.
468 if (WhichEngine & EngineKind::JIT) {
469 if (TargetMachine *TM = EngineBuilder::selectTarget(M, MArch, MCPU, MAttrs,
470 RelocModel, ErrorStr)) {
471 TM->setCodeModel(CMModel);
472
473 if (UseMCJIT && ExecutionEngine::MCJITCtor) {
474 ExecutionEngine *EE =
475 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel,
476 AllocateGVsWithCode, TM);
477 if (EE) return EE;
478 } else if (ExecutionEngine::JITCtor) {
479 ExecutionEngine *EE =
480 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel,
481 AllocateGVsWithCode, TM);
482 if (EE) return EE;
483 }
484 }
485 }
486
487 // If we can't make a JIT and we didn't request one specifically, try making
488 // an interpreter instead.
489 if (WhichEngine & EngineKind::Interpreter) {
490 if (ExecutionEngine::InterpCtor)
491 return ExecutionEngine::InterpCtor(M, ErrorStr);
492 if (ErrorStr)
493 *ErrorStr = "Interpreter has not been linked in.";
494 return 0;
495 }
496
497 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
498 if (ErrorStr)
499 *ErrorStr = "JIT has not been linked in.";
500 }
501
502 return 0;
503 }
504
getPointerToGlobal(const GlobalValue * GV)505 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
506 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
507 return getPointerToFunction(F);
508
509 MutexGuard locked(lock);
510 if (void *P = EEState.getGlobalAddressMap(locked)[GV])
511 return P;
512
513 // Global variable might have been added since interpreter started.
514 if (GlobalVariable *GVar =
515 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
516 EmitGlobalVariable(GVar);
517 else
518 llvm_unreachable("Global hasn't had an address allocated yet!");
519
520 return EEState.getGlobalAddressMap(locked)[GV];
521 }
522
523 /// \brief Converts a Constant* into a GenericValue, including handling of
524 /// ConstantExpr values.
getConstantValue(const Constant * C)525 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
526 // If its undefined, return the garbage.
527 if (isa<UndefValue>(C)) {
528 GenericValue Result;
529 switch (C->getType()->getTypeID()) {
530 case Type::IntegerTyID:
531 case Type::X86_FP80TyID:
532 case Type::FP128TyID:
533 case Type::PPC_FP128TyID:
534 // Although the value is undefined, we still have to construct an APInt
535 // with the correct bit width.
536 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
537 break;
538 default:
539 break;
540 }
541 return Result;
542 }
543
544 // Otherwise, if the value is a ConstantExpr...
545 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
546 Constant *Op0 = CE->getOperand(0);
547 switch (CE->getOpcode()) {
548 case Instruction::GetElementPtr: {
549 // Compute the index
550 GenericValue Result = getConstantValue(Op0);
551 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
552 uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices);
553
554 char* tmp = (char*) Result.PointerVal;
555 Result = PTOGV(tmp + Offset);
556 return Result;
557 }
558 case Instruction::Trunc: {
559 GenericValue GV = getConstantValue(Op0);
560 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
561 GV.IntVal = GV.IntVal.trunc(BitWidth);
562 return GV;
563 }
564 case Instruction::ZExt: {
565 GenericValue GV = getConstantValue(Op0);
566 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
567 GV.IntVal = GV.IntVal.zext(BitWidth);
568 return GV;
569 }
570 case Instruction::SExt: {
571 GenericValue GV = getConstantValue(Op0);
572 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
573 GV.IntVal = GV.IntVal.sext(BitWidth);
574 return GV;
575 }
576 case Instruction::FPTrunc: {
577 // FIXME long double
578 GenericValue GV = getConstantValue(Op0);
579 GV.FloatVal = float(GV.DoubleVal);
580 return GV;
581 }
582 case Instruction::FPExt:{
583 // FIXME long double
584 GenericValue GV = getConstantValue(Op0);
585 GV.DoubleVal = double(GV.FloatVal);
586 return GV;
587 }
588 case Instruction::UIToFP: {
589 GenericValue GV = getConstantValue(Op0);
590 if (CE->getType()->isFloatTy())
591 GV.FloatVal = float(GV.IntVal.roundToDouble());
592 else if (CE->getType()->isDoubleTy())
593 GV.DoubleVal = GV.IntVal.roundToDouble();
594 else if (CE->getType()->isX86_FP80Ty()) {
595 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
596 (void)apf.convertFromAPInt(GV.IntVal,
597 false,
598 APFloat::rmNearestTiesToEven);
599 GV.IntVal = apf.bitcastToAPInt();
600 }
601 return GV;
602 }
603 case Instruction::SIToFP: {
604 GenericValue GV = getConstantValue(Op0);
605 if (CE->getType()->isFloatTy())
606 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
607 else if (CE->getType()->isDoubleTy())
608 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
609 else if (CE->getType()->isX86_FP80Ty()) {
610 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
611 (void)apf.convertFromAPInt(GV.IntVal,
612 true,
613 APFloat::rmNearestTiesToEven);
614 GV.IntVal = apf.bitcastToAPInt();
615 }
616 return GV;
617 }
618 case Instruction::FPToUI: // double->APInt conversion handles sign
619 case Instruction::FPToSI: {
620 GenericValue GV = getConstantValue(Op0);
621 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
622 if (Op0->getType()->isFloatTy())
623 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
624 else if (Op0->getType()->isDoubleTy())
625 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
626 else if (Op0->getType()->isX86_FP80Ty()) {
627 APFloat apf = APFloat(GV.IntVal);
628 uint64_t v;
629 bool ignored;
630 (void)apf.convertToInteger(&v, BitWidth,
631 CE->getOpcode()==Instruction::FPToSI,
632 APFloat::rmTowardZero, &ignored);
633 GV.IntVal = v; // endian?
634 }
635 return GV;
636 }
637 case Instruction::PtrToInt: {
638 GenericValue GV = getConstantValue(Op0);
639 uint32_t PtrWidth = TD->getPointerSizeInBits();
640 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
641 return GV;
642 }
643 case Instruction::IntToPtr: {
644 GenericValue GV = getConstantValue(Op0);
645 uint32_t PtrWidth = TD->getPointerSizeInBits();
646 if (PtrWidth != GV.IntVal.getBitWidth())
647 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
648 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
649 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
650 return GV;
651 }
652 case Instruction::BitCast: {
653 GenericValue GV = getConstantValue(Op0);
654 Type* DestTy = CE->getType();
655 switch (Op0->getType()->getTypeID()) {
656 default: llvm_unreachable("Invalid bitcast operand");
657 case Type::IntegerTyID:
658 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
659 if (DestTy->isFloatTy())
660 GV.FloatVal = GV.IntVal.bitsToFloat();
661 else if (DestTy->isDoubleTy())
662 GV.DoubleVal = GV.IntVal.bitsToDouble();
663 break;
664 case Type::FloatTyID:
665 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
666 GV.IntVal = APInt::floatToBits(GV.FloatVal);
667 break;
668 case Type::DoubleTyID:
669 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
670 GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
671 break;
672 case Type::PointerTyID:
673 assert(DestTy->isPointerTy() && "Invalid bitcast");
674 break; // getConstantValue(Op0) above already converted it
675 }
676 return GV;
677 }
678 case Instruction::Add:
679 case Instruction::FAdd:
680 case Instruction::Sub:
681 case Instruction::FSub:
682 case Instruction::Mul:
683 case Instruction::FMul:
684 case Instruction::UDiv:
685 case Instruction::SDiv:
686 case Instruction::URem:
687 case Instruction::SRem:
688 case Instruction::And:
689 case Instruction::Or:
690 case Instruction::Xor: {
691 GenericValue LHS = getConstantValue(Op0);
692 GenericValue RHS = getConstantValue(CE->getOperand(1));
693 GenericValue GV;
694 switch (CE->getOperand(0)->getType()->getTypeID()) {
695 default: llvm_unreachable("Bad add type!");
696 case Type::IntegerTyID:
697 switch (CE->getOpcode()) {
698 default: llvm_unreachable("Invalid integer opcode");
699 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
700 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
701 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
702 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
703 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
704 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
705 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
706 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
707 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
708 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
709 }
710 break;
711 case Type::FloatTyID:
712 switch (CE->getOpcode()) {
713 default: llvm_unreachable("Invalid float opcode");
714 case Instruction::FAdd:
715 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
716 case Instruction::FSub:
717 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
718 case Instruction::FMul:
719 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
720 case Instruction::FDiv:
721 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
722 case Instruction::FRem:
723 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
724 }
725 break;
726 case Type::DoubleTyID:
727 switch (CE->getOpcode()) {
728 default: llvm_unreachable("Invalid double opcode");
729 case Instruction::FAdd:
730 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
731 case Instruction::FSub:
732 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
733 case Instruction::FMul:
734 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
735 case Instruction::FDiv:
736 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
737 case Instruction::FRem:
738 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
739 }
740 break;
741 case Type::X86_FP80TyID:
742 case Type::PPC_FP128TyID:
743 case Type::FP128TyID: {
744 APFloat apfLHS = APFloat(LHS.IntVal);
745 switch (CE->getOpcode()) {
746 default: llvm_unreachable("Invalid long double opcode");
747 case Instruction::FAdd:
748 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
749 GV.IntVal = apfLHS.bitcastToAPInt();
750 break;
751 case Instruction::FSub:
752 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
753 GV.IntVal = apfLHS.bitcastToAPInt();
754 break;
755 case Instruction::FMul:
756 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
757 GV.IntVal = apfLHS.bitcastToAPInt();
758 break;
759 case Instruction::FDiv:
760 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
761 GV.IntVal = apfLHS.bitcastToAPInt();
762 break;
763 case Instruction::FRem:
764 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
765 GV.IntVal = apfLHS.bitcastToAPInt();
766 break;
767 }
768 }
769 break;
770 }
771 return GV;
772 }
773 default:
774 break;
775 }
776
777 SmallString<256> Msg;
778 raw_svector_ostream OS(Msg);
779 OS << "ConstantExpr not handled: " << *CE;
780 report_fatal_error(OS.str());
781 }
782
783 // Otherwise, we have a simple constant.
784 GenericValue Result;
785 switch (C->getType()->getTypeID()) {
786 case Type::FloatTyID:
787 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
788 break;
789 case Type::DoubleTyID:
790 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
791 break;
792 case Type::X86_FP80TyID:
793 case Type::FP128TyID:
794 case Type::PPC_FP128TyID:
795 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
796 break;
797 case Type::IntegerTyID:
798 Result.IntVal = cast<ConstantInt>(C)->getValue();
799 break;
800 case Type::PointerTyID:
801 if (isa<ConstantPointerNull>(C))
802 Result.PointerVal = 0;
803 else if (const Function *F = dyn_cast<Function>(C))
804 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
805 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
806 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
807 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
808 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
809 BA->getBasicBlock())));
810 else
811 llvm_unreachable("Unknown constant pointer type!");
812 break;
813 default:
814 SmallString<256> Msg;
815 raw_svector_ostream OS(Msg);
816 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
817 report_fatal_error(OS.str());
818 }
819
820 return Result;
821 }
822
823 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
824 /// with the integer held in IntVal.
StoreIntToMemory(const APInt & IntVal,uint8_t * Dst,unsigned StoreBytes)825 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
826 unsigned StoreBytes) {
827 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
828 uint8_t *Src = (uint8_t *)IntVal.getRawData();
829
830 if (sys::isLittleEndianHost()) {
831 // Little-endian host - the source is ordered from LSB to MSB. Order the
832 // destination from LSB to MSB: Do a straight copy.
833 memcpy(Dst, Src, StoreBytes);
834 } else {
835 // Big-endian host - the source is an array of 64 bit words ordered from
836 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
837 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
838 while (StoreBytes > sizeof(uint64_t)) {
839 StoreBytes -= sizeof(uint64_t);
840 // May not be aligned so use memcpy.
841 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
842 Src += sizeof(uint64_t);
843 }
844
845 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
846 }
847 }
848
StoreValueToMemory(const GenericValue & Val,GenericValue * Ptr,Type * Ty)849 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
850 GenericValue *Ptr, Type *Ty) {
851 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
852
853 switch (Ty->getTypeID()) {
854 case Type::IntegerTyID:
855 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
856 break;
857 case Type::FloatTyID:
858 *((float*)Ptr) = Val.FloatVal;
859 break;
860 case Type::DoubleTyID:
861 *((double*)Ptr) = Val.DoubleVal;
862 break;
863 case Type::X86_FP80TyID:
864 memcpy(Ptr, Val.IntVal.getRawData(), 10);
865 break;
866 case Type::PointerTyID:
867 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
868 if (StoreBytes != sizeof(PointerTy))
869 memset(&(Ptr->PointerVal), 0, StoreBytes);
870
871 *((PointerTy*)Ptr) = Val.PointerVal;
872 break;
873 default:
874 dbgs() << "Cannot store value of type " << *Ty << "!\n";
875 }
876
877 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
878 // Host and target are different endian - reverse the stored bytes.
879 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
880 }
881
882 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
883 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
LoadIntFromMemory(APInt & IntVal,uint8_t * Src,unsigned LoadBytes)884 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
885 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
886 uint8_t *Dst = (uint8_t *)IntVal.getRawData();
887
888 if (sys::isLittleEndianHost())
889 // Little-endian host - the destination must be ordered from LSB to MSB.
890 // The source is ordered from LSB to MSB: Do a straight copy.
891 memcpy(Dst, Src, LoadBytes);
892 else {
893 // Big-endian - the destination is an array of 64 bit words ordered from
894 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
895 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
896 // a word.
897 while (LoadBytes > sizeof(uint64_t)) {
898 LoadBytes -= sizeof(uint64_t);
899 // May not be aligned so use memcpy.
900 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
901 Dst += sizeof(uint64_t);
902 }
903
904 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
905 }
906 }
907
908 /// FIXME: document
909 ///
LoadValueFromMemory(GenericValue & Result,GenericValue * Ptr,Type * Ty)910 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
911 GenericValue *Ptr,
912 Type *Ty) {
913 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
914
915 switch (Ty->getTypeID()) {
916 case Type::IntegerTyID:
917 // An APInt with all words initially zero.
918 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
919 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
920 break;
921 case Type::FloatTyID:
922 Result.FloatVal = *((float*)Ptr);
923 break;
924 case Type::DoubleTyID:
925 Result.DoubleVal = *((double*)Ptr);
926 break;
927 case Type::PointerTyID:
928 Result.PointerVal = *((PointerTy*)Ptr);
929 break;
930 case Type::X86_FP80TyID: {
931 // This is endian dependent, but it will only work on x86 anyway.
932 // FIXME: Will not trap if loading a signaling NaN.
933 uint64_t y[2];
934 memcpy(y, Ptr, 10);
935 Result.IntVal = APInt(80, y);
936 break;
937 }
938 default:
939 SmallString<256> Msg;
940 raw_svector_ostream OS(Msg);
941 OS << "Cannot load value of type " << *Ty << "!";
942 report_fatal_error(OS.str());
943 }
944 }
945
InitializeMemory(const Constant * Init,void * Addr)946 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
947 DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
948 DEBUG(Init->dump());
949 if (isa<UndefValue>(Init)) {
950 return;
951 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
952 unsigned ElementSize =
953 getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
954 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
955 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
956 return;
957 } else if (isa<ConstantAggregateZero>(Init)) {
958 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
959 return;
960 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
961 unsigned ElementSize =
962 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
963 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
964 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
965 return;
966 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
967 const StructLayout *SL =
968 getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
969 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
970 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
971 return;
972 } else if (Init->getType()->isFirstClassType()) {
973 GenericValue Val = getConstantValue(Init);
974 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
975 return;
976 }
977
978 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
979 llvm_unreachable("Unknown constant type to initialize memory with!");
980 }
981
982 /// EmitGlobals - Emit all of the global variables to memory, storing their
983 /// addresses into GlobalAddress. This must make sure to copy the contents of
984 /// their initializers into the memory.
emitGlobals()985 void ExecutionEngine::emitGlobals() {
986 // Loop over all of the global variables in the program, allocating the memory
987 // to hold them. If there is more than one module, do a prepass over globals
988 // to figure out how the different modules should link together.
989 std::map<std::pair<std::string, Type*>,
990 const GlobalValue*> LinkedGlobalsMap;
991
992 if (Modules.size() != 1) {
993 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
994 Module &M = *Modules[m];
995 for (Module::const_global_iterator I = M.global_begin(),
996 E = M.global_end(); I != E; ++I) {
997 const GlobalValue *GV = I;
998 if (GV->hasLocalLinkage() || GV->isDeclaration() ||
999 GV->hasAppendingLinkage() || !GV->hasName())
1000 continue;// Ignore external globals and globals with internal linkage.
1001
1002 const GlobalValue *&GVEntry =
1003 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1004
1005 // If this is the first time we've seen this global, it is the canonical
1006 // version.
1007 if (!GVEntry) {
1008 GVEntry = GV;
1009 continue;
1010 }
1011
1012 // If the existing global is strong, never replace it.
1013 if (GVEntry->hasExternalLinkage() ||
1014 GVEntry->hasDLLImportLinkage() ||
1015 GVEntry->hasDLLExportLinkage())
1016 continue;
1017
1018 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1019 // symbol. FIXME is this right for common?
1020 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1021 GVEntry = GV;
1022 }
1023 }
1024 }
1025
1026 std::vector<const GlobalValue*> NonCanonicalGlobals;
1027 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1028 Module &M = *Modules[m];
1029 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1030 I != E; ++I) {
1031 // In the multi-module case, see what this global maps to.
1032 if (!LinkedGlobalsMap.empty()) {
1033 if (const GlobalValue *GVEntry =
1034 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1035 // If something else is the canonical global, ignore this one.
1036 if (GVEntry != &*I) {
1037 NonCanonicalGlobals.push_back(I);
1038 continue;
1039 }
1040 }
1041 }
1042
1043 if (!I->isDeclaration()) {
1044 addGlobalMapping(I, getMemoryForGV(I));
1045 } else {
1046 // External variable reference. Try to use the dynamic loader to
1047 // get a pointer to it.
1048 if (void *SymAddr =
1049 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1050 addGlobalMapping(I, SymAddr);
1051 else {
1052 report_fatal_error("Could not resolve external global address: "
1053 +I->getName());
1054 }
1055 }
1056 }
1057
1058 // If there are multiple modules, map the non-canonical globals to their
1059 // canonical location.
1060 if (!NonCanonicalGlobals.empty()) {
1061 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1062 const GlobalValue *GV = NonCanonicalGlobals[i];
1063 const GlobalValue *CGV =
1064 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1065 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1066 assert(Ptr && "Canonical global wasn't codegen'd!");
1067 addGlobalMapping(GV, Ptr);
1068 }
1069 }
1070
1071 // Now that all of the globals are set up in memory, loop through them all
1072 // and initialize their contents.
1073 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1074 I != E; ++I) {
1075 if (!I->isDeclaration()) {
1076 if (!LinkedGlobalsMap.empty()) {
1077 if (const GlobalValue *GVEntry =
1078 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1079 if (GVEntry != &*I) // Not the canonical variable.
1080 continue;
1081 }
1082 EmitGlobalVariable(I);
1083 }
1084 }
1085 }
1086 }
1087
1088 // EmitGlobalVariable - This method emits the specified global variable to the
1089 // address specified in GlobalAddresses, or allocates new memory if it's not
1090 // already in the map.
EmitGlobalVariable(const GlobalVariable * GV)1091 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1092 void *GA = getPointerToGlobalIfAvailable(GV);
1093
1094 if (GA == 0) {
1095 // If it's not already specified, allocate memory for the global.
1096 GA = getMemoryForGV(GV);
1097 addGlobalMapping(GV, GA);
1098 }
1099
1100 // Don't initialize if it's thread local, let the client do it.
1101 if (!GV->isThreadLocal())
1102 InitializeMemory(GV->getInitializer(), GA);
1103
1104 Type *ElTy = GV->getType()->getElementType();
1105 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1106 NumInitBytes += (unsigned)GVSize;
1107 ++NumGlobals;
1108 }
1109
ExecutionEngineState(ExecutionEngine & EE)1110 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1111 : EE(EE), GlobalAddressMap(this) {
1112 }
1113
1114 sys::Mutex *
getMutex(ExecutionEngineState * EES)1115 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
1116 return &EES->EE.lock;
1117 }
1118
onDelete(ExecutionEngineState * EES,const GlobalValue * Old)1119 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
1120 const GlobalValue *Old) {
1121 void *OldVal = EES->GlobalAddressMap.lookup(Old);
1122 EES->GlobalAddressReverseMap.erase(OldVal);
1123 }
1124
onRAUW(ExecutionEngineState *,const GlobalValue *,const GlobalValue *)1125 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
1126 const GlobalValue *,
1127 const GlobalValue *) {
1128 assert(false && "The ExecutionEngine doesn't know how to handle a"
1129 " RAUW on a value it has a global mapping for.");
1130 }
1131