1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision floating
11 // point values and provide a variety of arithmetic operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <limits.h>
22 #include <cstring>
23
24 using namespace llvm;
25
26 #define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
27
28 /* Assumed in hexadecimal significand parsing, and conversion to
29 hexadecimal strings. */
30 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
31 COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
32
33 namespace llvm {
34
35 /* Represents floating point arithmetic semantics. */
36 struct fltSemantics {
37 /* The largest E such that 2^E is representable; this matches the
38 definition of IEEE 754. */
39 exponent_t maxExponent;
40
41 /* The smallest E such that 2^E is a normalized number; this
42 matches the definition of IEEE 754. */
43 exponent_t minExponent;
44
45 /* Number of bits in the significand. This includes the integer
46 bit. */
47 unsigned int precision;
48
49 /* True if arithmetic is supported. */
50 unsigned int arithmeticOK;
51 };
52
53 const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, true };
54 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
55 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
56 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
57 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
58 const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
59
60 // The PowerPC format consists of two doubles. It does not map cleanly
61 // onto the usual format above. For now only storage of constants of
62 // this type is supported, no arithmetic.
63 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
64
65 /* A tight upper bound on number of parts required to hold the value
66 pow(5, power) is
67
68 power * 815 / (351 * integerPartWidth) + 1
69
70 However, whilst the result may require only this many parts,
71 because we are multiplying two values to get it, the
72 multiplication may require an extra part with the excess part
73 being zero (consider the trivial case of 1 * 1, tcFullMultiply
74 requires two parts to hold the single-part result). So we add an
75 extra one to guarantee enough space whilst multiplying. */
76 const unsigned int maxExponent = 16383;
77 const unsigned int maxPrecision = 113;
78 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
79 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
80 / (351 * integerPartWidth));
81 }
82
83 /* A bunch of private, handy routines. */
84
85 static inline unsigned int
partCountForBits(unsigned int bits)86 partCountForBits(unsigned int bits)
87 {
88 return ((bits) + integerPartWidth - 1) / integerPartWidth;
89 }
90
91 /* Returns 0U-9U. Return values >= 10U are not digits. */
92 static inline unsigned int
decDigitValue(unsigned int c)93 decDigitValue(unsigned int c)
94 {
95 return c - '0';
96 }
97
98 static unsigned int
hexDigitValue(unsigned int c)99 hexDigitValue(unsigned int c)
100 {
101 unsigned int r;
102
103 r = c - '0';
104 if (r <= 9)
105 return r;
106
107 r = c - 'A';
108 if (r <= 5)
109 return r + 10;
110
111 r = c - 'a';
112 if (r <= 5)
113 return r + 10;
114
115 return -1U;
116 }
117
118 static inline void
assertArithmeticOK(const llvm::fltSemantics & semantics)119 assertArithmeticOK(const llvm::fltSemantics &semantics) {
120 assert(semantics.arithmeticOK &&
121 "Compile-time arithmetic does not support these semantics");
122 }
123
124 /* Return the value of a decimal exponent of the form
125 [+-]ddddddd.
126
127 If the exponent overflows, returns a large exponent with the
128 appropriate sign. */
129 static int
readExponent(StringRef::iterator begin,StringRef::iterator end)130 readExponent(StringRef::iterator begin, StringRef::iterator end)
131 {
132 bool isNegative;
133 unsigned int absExponent;
134 const unsigned int overlargeExponent = 24000; /* FIXME. */
135 StringRef::iterator p = begin;
136
137 assert(p != end && "Exponent has no digits");
138
139 isNegative = (*p == '-');
140 if (*p == '-' || *p == '+') {
141 p++;
142 assert(p != end && "Exponent has no digits");
143 }
144
145 absExponent = decDigitValue(*p++);
146 assert(absExponent < 10U && "Invalid character in exponent");
147
148 for (; p != end; ++p) {
149 unsigned int value;
150
151 value = decDigitValue(*p);
152 assert(value < 10U && "Invalid character in exponent");
153
154 value += absExponent * 10;
155 if (absExponent >= overlargeExponent) {
156 absExponent = overlargeExponent;
157 p = end; /* outwit assert below */
158 break;
159 }
160 absExponent = value;
161 }
162
163 assert(p == end && "Invalid exponent in exponent");
164
165 if (isNegative)
166 return -(int) absExponent;
167 else
168 return (int) absExponent;
169 }
170
171 /* This is ugly and needs cleaning up, but I don't immediately see
172 how whilst remaining safe. */
173 static int
totalExponent(StringRef::iterator p,StringRef::iterator end,int exponentAdjustment)174 totalExponent(StringRef::iterator p, StringRef::iterator end,
175 int exponentAdjustment)
176 {
177 int unsignedExponent;
178 bool negative, overflow;
179 int exponent = 0;
180
181 assert(p != end && "Exponent has no digits");
182
183 negative = *p == '-';
184 if (*p == '-' || *p == '+') {
185 p++;
186 assert(p != end && "Exponent has no digits");
187 }
188
189 unsignedExponent = 0;
190 overflow = false;
191 for (; p != end; ++p) {
192 unsigned int value;
193
194 value = decDigitValue(*p);
195 assert(value < 10U && "Invalid character in exponent");
196
197 unsignedExponent = unsignedExponent * 10 + value;
198 if (unsignedExponent > 32767)
199 overflow = true;
200 }
201
202 if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
203 overflow = true;
204
205 if (!overflow) {
206 exponent = unsignedExponent;
207 if (negative)
208 exponent = -exponent;
209 exponent += exponentAdjustment;
210 if (exponent > 32767 || exponent < -32768)
211 overflow = true;
212 }
213
214 if (overflow)
215 exponent = negative ? -32768: 32767;
216
217 return exponent;
218 }
219
220 static StringRef::iterator
skipLeadingZeroesAndAnyDot(StringRef::iterator begin,StringRef::iterator end,StringRef::iterator * dot)221 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
222 StringRef::iterator *dot)
223 {
224 StringRef::iterator p = begin;
225 *dot = end;
226 while (*p == '0' && p != end)
227 p++;
228
229 if (*p == '.') {
230 *dot = p++;
231
232 assert(end - begin != 1 && "Significand has no digits");
233
234 while (*p == '0' && p != end)
235 p++;
236 }
237
238 return p;
239 }
240
241 /* Given a normal decimal floating point number of the form
242
243 dddd.dddd[eE][+-]ddd
244
245 where the decimal point and exponent are optional, fill out the
246 structure D. Exponent is appropriate if the significand is
247 treated as an integer, and normalizedExponent if the significand
248 is taken to have the decimal point after a single leading
249 non-zero digit.
250
251 If the value is zero, V->firstSigDigit points to a non-digit, and
252 the return exponent is zero.
253 */
254 struct decimalInfo {
255 const char *firstSigDigit;
256 const char *lastSigDigit;
257 int exponent;
258 int normalizedExponent;
259 };
260
261 static void
interpretDecimal(StringRef::iterator begin,StringRef::iterator end,decimalInfo * D)262 interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
263 decimalInfo *D)
264 {
265 StringRef::iterator dot = end;
266 StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
267
268 D->firstSigDigit = p;
269 D->exponent = 0;
270 D->normalizedExponent = 0;
271
272 for (; p != end; ++p) {
273 if (*p == '.') {
274 assert(dot == end && "String contains multiple dots");
275 dot = p++;
276 if (p == end)
277 break;
278 }
279 if (decDigitValue(*p) >= 10U)
280 break;
281 }
282
283 if (p != end) {
284 assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
285 assert(p != begin && "Significand has no digits");
286 assert((dot == end || p - begin != 1) && "Significand has no digits");
287
288 /* p points to the first non-digit in the string */
289 D->exponent = readExponent(p + 1, end);
290
291 /* Implied decimal point? */
292 if (dot == end)
293 dot = p;
294 }
295
296 /* If number is all zeroes accept any exponent. */
297 if (p != D->firstSigDigit) {
298 /* Drop insignificant trailing zeroes. */
299 if (p != begin) {
300 do
301 do
302 p--;
303 while (p != begin && *p == '0');
304 while (p != begin && *p == '.');
305 }
306
307 /* Adjust the exponents for any decimal point. */
308 D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
309 D->normalizedExponent = (D->exponent +
310 static_cast<exponent_t>((p - D->firstSigDigit)
311 - (dot > D->firstSigDigit && dot < p)));
312 }
313
314 D->lastSigDigit = p;
315 }
316
317 /* Return the trailing fraction of a hexadecimal number.
318 DIGITVALUE is the first hex digit of the fraction, P points to
319 the next digit. */
320 static lostFraction
trailingHexadecimalFraction(StringRef::iterator p,StringRef::iterator end,unsigned int digitValue)321 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
322 unsigned int digitValue)
323 {
324 unsigned int hexDigit;
325
326 /* If the first trailing digit isn't 0 or 8 we can work out the
327 fraction immediately. */
328 if (digitValue > 8)
329 return lfMoreThanHalf;
330 else if (digitValue < 8 && digitValue > 0)
331 return lfLessThanHalf;
332
333 /* Otherwise we need to find the first non-zero digit. */
334 while (*p == '0')
335 p++;
336
337 assert(p != end && "Invalid trailing hexadecimal fraction!");
338
339 hexDigit = hexDigitValue(*p);
340
341 /* If we ran off the end it is exactly zero or one-half, otherwise
342 a little more. */
343 if (hexDigit == -1U)
344 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
345 else
346 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
347 }
348
349 /* Return the fraction lost were a bignum truncated losing the least
350 significant BITS bits. */
351 static lostFraction
lostFractionThroughTruncation(const integerPart * parts,unsigned int partCount,unsigned int bits)352 lostFractionThroughTruncation(const integerPart *parts,
353 unsigned int partCount,
354 unsigned int bits)
355 {
356 unsigned int lsb;
357
358 lsb = APInt::tcLSB(parts, partCount);
359
360 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
361 if (bits <= lsb)
362 return lfExactlyZero;
363 if (bits == lsb + 1)
364 return lfExactlyHalf;
365 if (bits <= partCount * integerPartWidth &&
366 APInt::tcExtractBit(parts, bits - 1))
367 return lfMoreThanHalf;
368
369 return lfLessThanHalf;
370 }
371
372 /* Shift DST right BITS bits noting lost fraction. */
373 static lostFraction
shiftRight(integerPart * dst,unsigned int parts,unsigned int bits)374 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
375 {
376 lostFraction lost_fraction;
377
378 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
379
380 APInt::tcShiftRight(dst, parts, bits);
381
382 return lost_fraction;
383 }
384
385 /* Combine the effect of two lost fractions. */
386 static lostFraction
combineLostFractions(lostFraction moreSignificant,lostFraction lessSignificant)387 combineLostFractions(lostFraction moreSignificant,
388 lostFraction lessSignificant)
389 {
390 if (lessSignificant != lfExactlyZero) {
391 if (moreSignificant == lfExactlyZero)
392 moreSignificant = lfLessThanHalf;
393 else if (moreSignificant == lfExactlyHalf)
394 moreSignificant = lfMoreThanHalf;
395 }
396
397 return moreSignificant;
398 }
399
400 /* The error from the true value, in half-ulps, on multiplying two
401 floating point numbers, which differ from the value they
402 approximate by at most HUE1 and HUE2 half-ulps, is strictly less
403 than the returned value.
404
405 See "How to Read Floating Point Numbers Accurately" by William D
406 Clinger. */
407 static unsigned int
HUerrBound(bool inexactMultiply,unsigned int HUerr1,unsigned int HUerr2)408 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
409 {
410 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
411
412 if (HUerr1 + HUerr2 == 0)
413 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
414 else
415 return inexactMultiply + 2 * (HUerr1 + HUerr2);
416 }
417
418 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
419 when the least significant BITS are truncated. BITS cannot be
420 zero. */
421 static integerPart
ulpsFromBoundary(const integerPart * parts,unsigned int bits,bool isNearest)422 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
423 {
424 unsigned int count, partBits;
425 integerPart part, boundary;
426
427 assert(bits != 0);
428
429 bits--;
430 count = bits / integerPartWidth;
431 partBits = bits % integerPartWidth + 1;
432
433 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
434
435 if (isNearest)
436 boundary = (integerPart) 1 << (partBits - 1);
437 else
438 boundary = 0;
439
440 if (count == 0) {
441 if (part - boundary <= boundary - part)
442 return part - boundary;
443 else
444 return boundary - part;
445 }
446
447 if (part == boundary) {
448 while (--count)
449 if (parts[count])
450 return ~(integerPart) 0; /* A lot. */
451
452 return parts[0];
453 } else if (part == boundary - 1) {
454 while (--count)
455 if (~parts[count])
456 return ~(integerPart) 0; /* A lot. */
457
458 return -parts[0];
459 }
460
461 return ~(integerPart) 0; /* A lot. */
462 }
463
464 /* Place pow(5, power) in DST, and return the number of parts used.
465 DST must be at least one part larger than size of the answer. */
466 static unsigned int
powerOf5(integerPart * dst,unsigned int power)467 powerOf5(integerPart *dst, unsigned int power)
468 {
469 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
470 15625, 78125 };
471 integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
472 pow5s[0] = 78125 * 5;
473
474 unsigned int partsCount[16] = { 1 };
475 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
476 unsigned int result;
477 assert(power <= maxExponent);
478
479 p1 = dst;
480 p2 = scratch;
481
482 *p1 = firstEightPowers[power & 7];
483 power >>= 3;
484
485 result = 1;
486 pow5 = pow5s;
487
488 for (unsigned int n = 0; power; power >>= 1, n++) {
489 unsigned int pc;
490
491 pc = partsCount[n];
492
493 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
494 if (pc == 0) {
495 pc = partsCount[n - 1];
496 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
497 pc *= 2;
498 if (pow5[pc - 1] == 0)
499 pc--;
500 partsCount[n] = pc;
501 }
502
503 if (power & 1) {
504 integerPart *tmp;
505
506 APInt::tcFullMultiply(p2, p1, pow5, result, pc);
507 result += pc;
508 if (p2[result - 1] == 0)
509 result--;
510
511 /* Now result is in p1 with partsCount parts and p2 is scratch
512 space. */
513 tmp = p1, p1 = p2, p2 = tmp;
514 }
515
516 pow5 += pc;
517 }
518
519 if (p1 != dst)
520 APInt::tcAssign(dst, p1, result);
521
522 return result;
523 }
524
525 /* Zero at the end to avoid modular arithmetic when adding one; used
526 when rounding up during hexadecimal output. */
527 static const char hexDigitsLower[] = "0123456789abcdef0";
528 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
529 static const char infinityL[] = "infinity";
530 static const char infinityU[] = "INFINITY";
531 static const char NaNL[] = "nan";
532 static const char NaNU[] = "NAN";
533
534 /* Write out an integerPart in hexadecimal, starting with the most
535 significant nibble. Write out exactly COUNT hexdigits, return
536 COUNT. */
537 static unsigned int
partAsHex(char * dst,integerPart part,unsigned int count,const char * hexDigitChars)538 partAsHex (char *dst, integerPart part, unsigned int count,
539 const char *hexDigitChars)
540 {
541 unsigned int result = count;
542
543 assert(count != 0 && count <= integerPartWidth / 4);
544
545 part >>= (integerPartWidth - 4 * count);
546 while (count--) {
547 dst[count] = hexDigitChars[part & 0xf];
548 part >>= 4;
549 }
550
551 return result;
552 }
553
554 /* Write out an unsigned decimal integer. */
555 static char *
writeUnsignedDecimal(char * dst,unsigned int n)556 writeUnsignedDecimal (char *dst, unsigned int n)
557 {
558 char buff[40], *p;
559
560 p = buff;
561 do
562 *p++ = '0' + n % 10;
563 while (n /= 10);
564
565 do
566 *dst++ = *--p;
567 while (p != buff);
568
569 return dst;
570 }
571
572 /* Write out a signed decimal integer. */
573 static char *
writeSignedDecimal(char * dst,int value)574 writeSignedDecimal (char *dst, int value)
575 {
576 if (value < 0) {
577 *dst++ = '-';
578 dst = writeUnsignedDecimal(dst, -(unsigned) value);
579 } else
580 dst = writeUnsignedDecimal(dst, value);
581
582 return dst;
583 }
584
585 /* Constructors. */
586 void
initialize(const fltSemantics * ourSemantics)587 APFloat::initialize(const fltSemantics *ourSemantics)
588 {
589 unsigned int count;
590
591 semantics = ourSemantics;
592 count = partCount();
593 if (count > 1)
594 significand.parts = new integerPart[count];
595 }
596
597 void
freeSignificand()598 APFloat::freeSignificand()
599 {
600 if (partCount() > 1)
601 delete [] significand.parts;
602 }
603
604 void
assign(const APFloat & rhs)605 APFloat::assign(const APFloat &rhs)
606 {
607 assert(semantics == rhs.semantics);
608
609 sign = rhs.sign;
610 category = rhs.category;
611 exponent = rhs.exponent;
612 sign2 = rhs.sign2;
613 exponent2 = rhs.exponent2;
614 if (category == fcNormal || category == fcNaN)
615 copySignificand(rhs);
616 }
617
618 void
copySignificand(const APFloat & rhs)619 APFloat::copySignificand(const APFloat &rhs)
620 {
621 assert(category == fcNormal || category == fcNaN);
622 assert(rhs.partCount() >= partCount());
623
624 APInt::tcAssign(significandParts(), rhs.significandParts(),
625 partCount());
626 }
627
628 /* Make this number a NaN, with an arbitrary but deterministic value
629 for the significand. If double or longer, this is a signalling NaN,
630 which may not be ideal. If float, this is QNaN(0). */
makeNaN(bool SNaN,bool Negative,const APInt * fill)631 void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
632 {
633 category = fcNaN;
634 sign = Negative;
635
636 integerPart *significand = significandParts();
637 unsigned numParts = partCount();
638
639 // Set the significand bits to the fill.
640 if (!fill || fill->getNumWords() < numParts)
641 APInt::tcSet(significand, 0, numParts);
642 if (fill) {
643 APInt::tcAssign(significand, fill->getRawData(),
644 std::min(fill->getNumWords(), numParts));
645
646 // Zero out the excess bits of the significand.
647 unsigned bitsToPreserve = semantics->precision - 1;
648 unsigned part = bitsToPreserve / 64;
649 bitsToPreserve %= 64;
650 significand[part] &= ((1ULL << bitsToPreserve) - 1);
651 for (part++; part != numParts; ++part)
652 significand[part] = 0;
653 }
654
655 unsigned QNaNBit = semantics->precision - 2;
656
657 if (SNaN) {
658 // We always have to clear the QNaN bit to make it an SNaN.
659 APInt::tcClearBit(significand, QNaNBit);
660
661 // If there are no bits set in the payload, we have to set
662 // *something* to make it a NaN instead of an infinity;
663 // conventionally, this is the next bit down from the QNaN bit.
664 if (APInt::tcIsZero(significand, numParts))
665 APInt::tcSetBit(significand, QNaNBit - 1);
666 } else {
667 // We always have to set the QNaN bit to make it a QNaN.
668 APInt::tcSetBit(significand, QNaNBit);
669 }
670
671 // For x87 extended precision, we want to make a NaN, not a
672 // pseudo-NaN. Maybe we should expose the ability to make
673 // pseudo-NaNs?
674 if (semantics == &APFloat::x87DoubleExtended)
675 APInt::tcSetBit(significand, QNaNBit + 1);
676 }
677
makeNaN(const fltSemantics & Sem,bool SNaN,bool Negative,const APInt * fill)678 APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
679 const APInt *fill) {
680 APFloat value(Sem, uninitialized);
681 value.makeNaN(SNaN, Negative, fill);
682 return value;
683 }
684
685 APFloat &
operator =(const APFloat & rhs)686 APFloat::operator=(const APFloat &rhs)
687 {
688 if (this != &rhs) {
689 if (semantics != rhs.semantics) {
690 freeSignificand();
691 initialize(rhs.semantics);
692 }
693 assign(rhs);
694 }
695
696 return *this;
697 }
698
699 bool
bitwiseIsEqual(const APFloat & rhs) const700 APFloat::bitwiseIsEqual(const APFloat &rhs) const {
701 if (this == &rhs)
702 return true;
703 if (semantics != rhs.semantics ||
704 category != rhs.category ||
705 sign != rhs.sign)
706 return false;
707 if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
708 sign2 != rhs.sign2)
709 return false;
710 if (category==fcZero || category==fcInfinity)
711 return true;
712 else if (category==fcNormal && exponent!=rhs.exponent)
713 return false;
714 else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
715 exponent2!=rhs.exponent2)
716 return false;
717 else {
718 int i= partCount();
719 const integerPart* p=significandParts();
720 const integerPart* q=rhs.significandParts();
721 for (; i>0; i--, p++, q++) {
722 if (*p != *q)
723 return false;
724 }
725 return true;
726 }
727 }
728
APFloat(const fltSemantics & ourSemantics,integerPart value)729 APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
730 : exponent2(0), sign2(0) {
731 assertArithmeticOK(ourSemantics);
732 initialize(&ourSemantics);
733 sign = 0;
734 zeroSignificand();
735 exponent = ourSemantics.precision - 1;
736 significandParts()[0] = value;
737 normalize(rmNearestTiesToEven, lfExactlyZero);
738 }
739
APFloat(const fltSemantics & ourSemantics)740 APFloat::APFloat(const fltSemantics &ourSemantics) : exponent2(0), sign2(0) {
741 assertArithmeticOK(ourSemantics);
742 initialize(&ourSemantics);
743 category = fcZero;
744 sign = false;
745 }
746
APFloat(const fltSemantics & ourSemantics,uninitializedTag tag)747 APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag)
748 : exponent2(0), sign2(0) {
749 assertArithmeticOK(ourSemantics);
750 // Allocates storage if necessary but does not initialize it.
751 initialize(&ourSemantics);
752 }
753
APFloat(const fltSemantics & ourSemantics,fltCategory ourCategory,bool negative)754 APFloat::APFloat(const fltSemantics &ourSemantics,
755 fltCategory ourCategory, bool negative)
756 : exponent2(0), sign2(0) {
757 assertArithmeticOK(ourSemantics);
758 initialize(&ourSemantics);
759 category = ourCategory;
760 sign = negative;
761 if (category == fcNormal)
762 category = fcZero;
763 else if (ourCategory == fcNaN)
764 makeNaN();
765 }
766
APFloat(const fltSemantics & ourSemantics,StringRef text)767 APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text)
768 : exponent2(0), sign2(0) {
769 assertArithmeticOK(ourSemantics);
770 initialize(&ourSemantics);
771 convertFromString(text, rmNearestTiesToEven);
772 }
773
APFloat(const APFloat & rhs)774 APFloat::APFloat(const APFloat &rhs) : exponent2(0), sign2(0) {
775 initialize(rhs.semantics);
776 assign(rhs);
777 }
778
~APFloat()779 APFloat::~APFloat()
780 {
781 freeSignificand();
782 }
783
784 // Profile - This method 'profiles' an APFloat for use with FoldingSet.
Profile(FoldingSetNodeID & ID) const785 void APFloat::Profile(FoldingSetNodeID& ID) const {
786 ID.Add(bitcastToAPInt());
787 }
788
789 unsigned int
partCount() const790 APFloat::partCount() const
791 {
792 return partCountForBits(semantics->precision + 1);
793 }
794
795 unsigned int
semanticsPrecision(const fltSemantics & semantics)796 APFloat::semanticsPrecision(const fltSemantics &semantics)
797 {
798 return semantics.precision;
799 }
800
801 const integerPart *
significandParts() const802 APFloat::significandParts() const
803 {
804 return const_cast<APFloat *>(this)->significandParts();
805 }
806
807 integerPart *
significandParts()808 APFloat::significandParts()
809 {
810 assert(category == fcNormal || category == fcNaN);
811
812 if (partCount() > 1)
813 return significand.parts;
814 else
815 return &significand.part;
816 }
817
818 void
zeroSignificand()819 APFloat::zeroSignificand()
820 {
821 category = fcNormal;
822 APInt::tcSet(significandParts(), 0, partCount());
823 }
824
825 /* Increment an fcNormal floating point number's significand. */
826 void
incrementSignificand()827 APFloat::incrementSignificand()
828 {
829 integerPart carry;
830
831 carry = APInt::tcIncrement(significandParts(), partCount());
832
833 /* Our callers should never cause us to overflow. */
834 assert(carry == 0);
835 }
836
837 /* Add the significand of the RHS. Returns the carry flag. */
838 integerPart
addSignificand(const APFloat & rhs)839 APFloat::addSignificand(const APFloat &rhs)
840 {
841 integerPart *parts;
842
843 parts = significandParts();
844
845 assert(semantics == rhs.semantics);
846 assert(exponent == rhs.exponent);
847
848 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
849 }
850
851 /* Subtract the significand of the RHS with a borrow flag. Returns
852 the borrow flag. */
853 integerPart
subtractSignificand(const APFloat & rhs,integerPart borrow)854 APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
855 {
856 integerPart *parts;
857
858 parts = significandParts();
859
860 assert(semantics == rhs.semantics);
861 assert(exponent == rhs.exponent);
862
863 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
864 partCount());
865 }
866
867 /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
868 on to the full-precision result of the multiplication. Returns the
869 lost fraction. */
870 lostFraction
multiplySignificand(const APFloat & rhs,const APFloat * addend)871 APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
872 {
873 unsigned int omsb; // One, not zero, based MSB.
874 unsigned int partsCount, newPartsCount, precision;
875 integerPart *lhsSignificand;
876 integerPart scratch[4];
877 integerPart *fullSignificand;
878 lostFraction lost_fraction;
879 bool ignored;
880
881 assert(semantics == rhs.semantics);
882
883 precision = semantics->precision;
884 newPartsCount = partCountForBits(precision * 2);
885
886 if (newPartsCount > 4)
887 fullSignificand = new integerPart[newPartsCount];
888 else
889 fullSignificand = scratch;
890
891 lhsSignificand = significandParts();
892 partsCount = partCount();
893
894 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
895 rhs.significandParts(), partsCount, partsCount);
896
897 lost_fraction = lfExactlyZero;
898 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
899 exponent += rhs.exponent;
900
901 if (addend) {
902 Significand savedSignificand = significand;
903 const fltSemantics *savedSemantics = semantics;
904 fltSemantics extendedSemantics;
905 opStatus status;
906 unsigned int extendedPrecision;
907
908 /* Normalize our MSB. */
909 extendedPrecision = precision + precision - 1;
910 if (omsb != extendedPrecision) {
911 APInt::tcShiftLeft(fullSignificand, newPartsCount,
912 extendedPrecision - omsb);
913 exponent -= extendedPrecision - omsb;
914 }
915
916 /* Create new semantics. */
917 extendedSemantics = *semantics;
918 extendedSemantics.precision = extendedPrecision;
919
920 if (newPartsCount == 1)
921 significand.part = fullSignificand[0];
922 else
923 significand.parts = fullSignificand;
924 semantics = &extendedSemantics;
925
926 APFloat extendedAddend(*addend);
927 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
928 assert(status == opOK);
929 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
930
931 /* Restore our state. */
932 if (newPartsCount == 1)
933 fullSignificand[0] = significand.part;
934 significand = savedSignificand;
935 semantics = savedSemantics;
936
937 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
938 }
939
940 exponent -= (precision - 1);
941
942 if (omsb > precision) {
943 unsigned int bits, significantParts;
944 lostFraction lf;
945
946 bits = omsb - precision;
947 significantParts = partCountForBits(omsb);
948 lf = shiftRight(fullSignificand, significantParts, bits);
949 lost_fraction = combineLostFractions(lf, lost_fraction);
950 exponent += bits;
951 }
952
953 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
954
955 if (newPartsCount > 4)
956 delete [] fullSignificand;
957
958 return lost_fraction;
959 }
960
961 /* Multiply the significands of LHS and RHS to DST. */
962 lostFraction
divideSignificand(const APFloat & rhs)963 APFloat::divideSignificand(const APFloat &rhs)
964 {
965 unsigned int bit, i, partsCount;
966 const integerPart *rhsSignificand;
967 integerPart *lhsSignificand, *dividend, *divisor;
968 integerPart scratch[4];
969 lostFraction lost_fraction;
970
971 assert(semantics == rhs.semantics);
972
973 lhsSignificand = significandParts();
974 rhsSignificand = rhs.significandParts();
975 partsCount = partCount();
976
977 if (partsCount > 2)
978 dividend = new integerPart[partsCount * 2];
979 else
980 dividend = scratch;
981
982 divisor = dividend + partsCount;
983
984 /* Copy the dividend and divisor as they will be modified in-place. */
985 for (i = 0; i < partsCount; i++) {
986 dividend[i] = lhsSignificand[i];
987 divisor[i] = rhsSignificand[i];
988 lhsSignificand[i] = 0;
989 }
990
991 exponent -= rhs.exponent;
992
993 unsigned int precision = semantics->precision;
994
995 /* Normalize the divisor. */
996 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
997 if (bit) {
998 exponent += bit;
999 APInt::tcShiftLeft(divisor, partsCount, bit);
1000 }
1001
1002 /* Normalize the dividend. */
1003 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
1004 if (bit) {
1005 exponent -= bit;
1006 APInt::tcShiftLeft(dividend, partsCount, bit);
1007 }
1008
1009 /* Ensure the dividend >= divisor initially for the loop below.
1010 Incidentally, this means that the division loop below is
1011 guaranteed to set the integer bit to one. */
1012 if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
1013 exponent--;
1014 APInt::tcShiftLeft(dividend, partsCount, 1);
1015 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1016 }
1017
1018 /* Long division. */
1019 for (bit = precision; bit; bit -= 1) {
1020 if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
1021 APInt::tcSubtract(dividend, divisor, 0, partsCount);
1022 APInt::tcSetBit(lhsSignificand, bit - 1);
1023 }
1024
1025 APInt::tcShiftLeft(dividend, partsCount, 1);
1026 }
1027
1028 /* Figure out the lost fraction. */
1029 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1030
1031 if (cmp > 0)
1032 lost_fraction = lfMoreThanHalf;
1033 else if (cmp == 0)
1034 lost_fraction = lfExactlyHalf;
1035 else if (APInt::tcIsZero(dividend, partsCount))
1036 lost_fraction = lfExactlyZero;
1037 else
1038 lost_fraction = lfLessThanHalf;
1039
1040 if (partsCount > 2)
1041 delete [] dividend;
1042
1043 return lost_fraction;
1044 }
1045
1046 unsigned int
significandMSB() const1047 APFloat::significandMSB() const
1048 {
1049 return APInt::tcMSB(significandParts(), partCount());
1050 }
1051
1052 unsigned int
significandLSB() const1053 APFloat::significandLSB() const
1054 {
1055 return APInt::tcLSB(significandParts(), partCount());
1056 }
1057
1058 /* Note that a zero result is NOT normalized to fcZero. */
1059 lostFraction
shiftSignificandRight(unsigned int bits)1060 APFloat::shiftSignificandRight(unsigned int bits)
1061 {
1062 /* Our exponent should not overflow. */
1063 assert((exponent_t) (exponent + bits) >= exponent);
1064
1065 exponent += bits;
1066
1067 return shiftRight(significandParts(), partCount(), bits);
1068 }
1069
1070 /* Shift the significand left BITS bits, subtract BITS from its exponent. */
1071 void
shiftSignificandLeft(unsigned int bits)1072 APFloat::shiftSignificandLeft(unsigned int bits)
1073 {
1074 assert(bits < semantics->precision);
1075
1076 if (bits) {
1077 unsigned int partsCount = partCount();
1078
1079 APInt::tcShiftLeft(significandParts(), partsCount, bits);
1080 exponent -= bits;
1081
1082 assert(!APInt::tcIsZero(significandParts(), partsCount));
1083 }
1084 }
1085
1086 APFloat::cmpResult
compareAbsoluteValue(const APFloat & rhs) const1087 APFloat::compareAbsoluteValue(const APFloat &rhs) const
1088 {
1089 int compare;
1090
1091 assert(semantics == rhs.semantics);
1092 assert(category == fcNormal);
1093 assert(rhs.category == fcNormal);
1094
1095 compare = exponent - rhs.exponent;
1096
1097 /* If exponents are equal, do an unsigned bignum comparison of the
1098 significands. */
1099 if (compare == 0)
1100 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
1101 partCount());
1102
1103 if (compare > 0)
1104 return cmpGreaterThan;
1105 else if (compare < 0)
1106 return cmpLessThan;
1107 else
1108 return cmpEqual;
1109 }
1110
1111 /* Handle overflow. Sign is preserved. We either become infinity or
1112 the largest finite number. */
1113 APFloat::opStatus
handleOverflow(roundingMode rounding_mode)1114 APFloat::handleOverflow(roundingMode rounding_mode)
1115 {
1116 /* Infinity? */
1117 if (rounding_mode == rmNearestTiesToEven ||
1118 rounding_mode == rmNearestTiesToAway ||
1119 (rounding_mode == rmTowardPositive && !sign) ||
1120 (rounding_mode == rmTowardNegative && sign)) {
1121 category = fcInfinity;
1122 return (opStatus) (opOverflow | opInexact);
1123 }
1124
1125 /* Otherwise we become the largest finite number. */
1126 category = fcNormal;
1127 exponent = semantics->maxExponent;
1128 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
1129 semantics->precision);
1130
1131 return opInexact;
1132 }
1133
1134 /* Returns TRUE if, when truncating the current number, with BIT the
1135 new LSB, with the given lost fraction and rounding mode, the result
1136 would need to be rounded away from zero (i.e., by increasing the
1137 signficand). This routine must work for fcZero of both signs, and
1138 fcNormal numbers. */
1139 bool
roundAwayFromZero(roundingMode rounding_mode,lostFraction lost_fraction,unsigned int bit) const1140 APFloat::roundAwayFromZero(roundingMode rounding_mode,
1141 lostFraction lost_fraction,
1142 unsigned int bit) const
1143 {
1144 /* NaNs and infinities should not have lost fractions. */
1145 assert(category == fcNormal || category == fcZero);
1146
1147 /* Current callers never pass this so we don't handle it. */
1148 assert(lost_fraction != lfExactlyZero);
1149
1150 switch (rounding_mode) {
1151 default:
1152 llvm_unreachable(0);
1153
1154 case rmNearestTiesToAway:
1155 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1156
1157 case rmNearestTiesToEven:
1158 if (lost_fraction == lfMoreThanHalf)
1159 return true;
1160
1161 /* Our zeroes don't have a significand to test. */
1162 if (lost_fraction == lfExactlyHalf && category != fcZero)
1163 return APInt::tcExtractBit(significandParts(), bit);
1164
1165 return false;
1166
1167 case rmTowardZero:
1168 return false;
1169
1170 case rmTowardPositive:
1171 return sign == false;
1172
1173 case rmTowardNegative:
1174 return sign == true;
1175 }
1176 }
1177
1178 APFloat::opStatus
normalize(roundingMode rounding_mode,lostFraction lost_fraction)1179 APFloat::normalize(roundingMode rounding_mode,
1180 lostFraction lost_fraction)
1181 {
1182 unsigned int omsb; /* One, not zero, based MSB. */
1183 int exponentChange;
1184
1185 if (category != fcNormal)
1186 return opOK;
1187
1188 /* Before rounding normalize the exponent of fcNormal numbers. */
1189 omsb = significandMSB() + 1;
1190
1191 if (omsb) {
1192 /* OMSB is numbered from 1. We want to place it in the integer
1193 bit numbered PRECISON if possible, with a compensating change in
1194 the exponent. */
1195 exponentChange = omsb - semantics->precision;
1196
1197 /* If the resulting exponent is too high, overflow according to
1198 the rounding mode. */
1199 if (exponent + exponentChange > semantics->maxExponent)
1200 return handleOverflow(rounding_mode);
1201
1202 /* Subnormal numbers have exponent minExponent, and their MSB
1203 is forced based on that. */
1204 if (exponent + exponentChange < semantics->minExponent)
1205 exponentChange = semantics->minExponent - exponent;
1206
1207 /* Shifting left is easy as we don't lose precision. */
1208 if (exponentChange < 0) {
1209 assert(lost_fraction == lfExactlyZero);
1210
1211 shiftSignificandLeft(-exponentChange);
1212
1213 return opOK;
1214 }
1215
1216 if (exponentChange > 0) {
1217 lostFraction lf;
1218
1219 /* Shift right and capture any new lost fraction. */
1220 lf = shiftSignificandRight(exponentChange);
1221
1222 lost_fraction = combineLostFractions(lf, lost_fraction);
1223
1224 /* Keep OMSB up-to-date. */
1225 if (omsb > (unsigned) exponentChange)
1226 omsb -= exponentChange;
1227 else
1228 omsb = 0;
1229 }
1230 }
1231
1232 /* Now round the number according to rounding_mode given the lost
1233 fraction. */
1234
1235 /* As specified in IEEE 754, since we do not trap we do not report
1236 underflow for exact results. */
1237 if (lost_fraction == lfExactlyZero) {
1238 /* Canonicalize zeroes. */
1239 if (omsb == 0)
1240 category = fcZero;
1241
1242 return opOK;
1243 }
1244
1245 /* Increment the significand if we're rounding away from zero. */
1246 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1247 if (omsb == 0)
1248 exponent = semantics->minExponent;
1249
1250 incrementSignificand();
1251 omsb = significandMSB() + 1;
1252
1253 /* Did the significand increment overflow? */
1254 if (omsb == (unsigned) semantics->precision + 1) {
1255 /* Renormalize by incrementing the exponent and shifting our
1256 significand right one. However if we already have the
1257 maximum exponent we overflow to infinity. */
1258 if (exponent == semantics->maxExponent) {
1259 category = fcInfinity;
1260
1261 return (opStatus) (opOverflow | opInexact);
1262 }
1263
1264 shiftSignificandRight(1);
1265
1266 return opInexact;
1267 }
1268 }
1269
1270 /* The normal case - we were and are not denormal, and any
1271 significand increment above didn't overflow. */
1272 if (omsb == semantics->precision)
1273 return opInexact;
1274
1275 /* We have a non-zero denormal. */
1276 assert(omsb < semantics->precision);
1277
1278 /* Canonicalize zeroes. */
1279 if (omsb == 0)
1280 category = fcZero;
1281
1282 /* The fcZero case is a denormal that underflowed to zero. */
1283 return (opStatus) (opUnderflow | opInexact);
1284 }
1285
1286 APFloat::opStatus
addOrSubtractSpecials(const APFloat & rhs,bool subtract)1287 APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1288 {
1289 switch (convolve(category, rhs.category)) {
1290 default:
1291 llvm_unreachable(0);
1292
1293 case convolve(fcNaN, fcZero):
1294 case convolve(fcNaN, fcNormal):
1295 case convolve(fcNaN, fcInfinity):
1296 case convolve(fcNaN, fcNaN):
1297 case convolve(fcNormal, fcZero):
1298 case convolve(fcInfinity, fcNormal):
1299 case convolve(fcInfinity, fcZero):
1300 return opOK;
1301
1302 case convolve(fcZero, fcNaN):
1303 case convolve(fcNormal, fcNaN):
1304 case convolve(fcInfinity, fcNaN):
1305 category = fcNaN;
1306 copySignificand(rhs);
1307 return opOK;
1308
1309 case convolve(fcNormal, fcInfinity):
1310 case convolve(fcZero, fcInfinity):
1311 category = fcInfinity;
1312 sign = rhs.sign ^ subtract;
1313 return opOK;
1314
1315 case convolve(fcZero, fcNormal):
1316 assign(rhs);
1317 sign = rhs.sign ^ subtract;
1318 return opOK;
1319
1320 case convolve(fcZero, fcZero):
1321 /* Sign depends on rounding mode; handled by caller. */
1322 return opOK;
1323
1324 case convolve(fcInfinity, fcInfinity):
1325 /* Differently signed infinities can only be validly
1326 subtracted. */
1327 if (((sign ^ rhs.sign)!=0) != subtract) {
1328 makeNaN();
1329 return opInvalidOp;
1330 }
1331
1332 return opOK;
1333
1334 case convolve(fcNormal, fcNormal):
1335 return opDivByZero;
1336 }
1337 }
1338
1339 /* Add or subtract two normal numbers. */
1340 lostFraction
addOrSubtractSignificand(const APFloat & rhs,bool subtract)1341 APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1342 {
1343 integerPart carry;
1344 lostFraction lost_fraction;
1345 int bits;
1346
1347 /* Determine if the operation on the absolute values is effectively
1348 an addition or subtraction. */
1349 subtract ^= (sign ^ rhs.sign) ? true : false;
1350
1351 /* Are we bigger exponent-wise than the RHS? */
1352 bits = exponent - rhs.exponent;
1353
1354 /* Subtraction is more subtle than one might naively expect. */
1355 if (subtract) {
1356 APFloat temp_rhs(rhs);
1357 bool reverse;
1358
1359 if (bits == 0) {
1360 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1361 lost_fraction = lfExactlyZero;
1362 } else if (bits > 0) {
1363 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1364 shiftSignificandLeft(1);
1365 reverse = false;
1366 } else {
1367 lost_fraction = shiftSignificandRight(-bits - 1);
1368 temp_rhs.shiftSignificandLeft(1);
1369 reverse = true;
1370 }
1371
1372 if (reverse) {
1373 carry = temp_rhs.subtractSignificand
1374 (*this, lost_fraction != lfExactlyZero);
1375 copySignificand(temp_rhs);
1376 sign = !sign;
1377 } else {
1378 carry = subtractSignificand
1379 (temp_rhs, lost_fraction != lfExactlyZero);
1380 }
1381
1382 /* Invert the lost fraction - it was on the RHS and
1383 subtracted. */
1384 if (lost_fraction == lfLessThanHalf)
1385 lost_fraction = lfMoreThanHalf;
1386 else if (lost_fraction == lfMoreThanHalf)
1387 lost_fraction = lfLessThanHalf;
1388
1389 /* The code above is intended to ensure that no borrow is
1390 necessary. */
1391 assert(!carry);
1392 } else {
1393 if (bits > 0) {
1394 APFloat temp_rhs(rhs);
1395
1396 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1397 carry = addSignificand(temp_rhs);
1398 } else {
1399 lost_fraction = shiftSignificandRight(-bits);
1400 carry = addSignificand(rhs);
1401 }
1402
1403 /* We have a guard bit; generating a carry cannot happen. */
1404 assert(!carry);
1405 }
1406
1407 return lost_fraction;
1408 }
1409
1410 APFloat::opStatus
multiplySpecials(const APFloat & rhs)1411 APFloat::multiplySpecials(const APFloat &rhs)
1412 {
1413 switch (convolve(category, rhs.category)) {
1414 default:
1415 llvm_unreachable(0);
1416
1417 case convolve(fcNaN, fcZero):
1418 case convolve(fcNaN, fcNormal):
1419 case convolve(fcNaN, fcInfinity):
1420 case convolve(fcNaN, fcNaN):
1421 return opOK;
1422
1423 case convolve(fcZero, fcNaN):
1424 case convolve(fcNormal, fcNaN):
1425 case convolve(fcInfinity, fcNaN):
1426 category = fcNaN;
1427 copySignificand(rhs);
1428 return opOK;
1429
1430 case convolve(fcNormal, fcInfinity):
1431 case convolve(fcInfinity, fcNormal):
1432 case convolve(fcInfinity, fcInfinity):
1433 category = fcInfinity;
1434 return opOK;
1435
1436 case convolve(fcZero, fcNormal):
1437 case convolve(fcNormal, fcZero):
1438 case convolve(fcZero, fcZero):
1439 category = fcZero;
1440 return opOK;
1441
1442 case convolve(fcZero, fcInfinity):
1443 case convolve(fcInfinity, fcZero):
1444 makeNaN();
1445 return opInvalidOp;
1446
1447 case convolve(fcNormal, fcNormal):
1448 return opOK;
1449 }
1450 }
1451
1452 APFloat::opStatus
divideSpecials(const APFloat & rhs)1453 APFloat::divideSpecials(const APFloat &rhs)
1454 {
1455 switch (convolve(category, rhs.category)) {
1456 default:
1457 llvm_unreachable(0);
1458
1459 case convolve(fcNaN, fcZero):
1460 case convolve(fcNaN, fcNormal):
1461 case convolve(fcNaN, fcInfinity):
1462 case convolve(fcNaN, fcNaN):
1463 case convolve(fcInfinity, fcZero):
1464 case convolve(fcInfinity, fcNormal):
1465 case convolve(fcZero, fcInfinity):
1466 case convolve(fcZero, fcNormal):
1467 return opOK;
1468
1469 case convolve(fcZero, fcNaN):
1470 case convolve(fcNormal, fcNaN):
1471 case convolve(fcInfinity, fcNaN):
1472 category = fcNaN;
1473 copySignificand(rhs);
1474 return opOK;
1475
1476 case convolve(fcNormal, fcInfinity):
1477 category = fcZero;
1478 return opOK;
1479
1480 case convolve(fcNormal, fcZero):
1481 category = fcInfinity;
1482 return opDivByZero;
1483
1484 case convolve(fcInfinity, fcInfinity):
1485 case convolve(fcZero, fcZero):
1486 makeNaN();
1487 return opInvalidOp;
1488
1489 case convolve(fcNormal, fcNormal):
1490 return opOK;
1491 }
1492 }
1493
1494 APFloat::opStatus
modSpecials(const APFloat & rhs)1495 APFloat::modSpecials(const APFloat &rhs)
1496 {
1497 switch (convolve(category, rhs.category)) {
1498 default:
1499 llvm_unreachable(0);
1500
1501 case convolve(fcNaN, fcZero):
1502 case convolve(fcNaN, fcNormal):
1503 case convolve(fcNaN, fcInfinity):
1504 case convolve(fcNaN, fcNaN):
1505 case convolve(fcZero, fcInfinity):
1506 case convolve(fcZero, fcNormal):
1507 case convolve(fcNormal, fcInfinity):
1508 return opOK;
1509
1510 case convolve(fcZero, fcNaN):
1511 case convolve(fcNormal, fcNaN):
1512 case convolve(fcInfinity, fcNaN):
1513 category = fcNaN;
1514 copySignificand(rhs);
1515 return opOK;
1516
1517 case convolve(fcNormal, fcZero):
1518 case convolve(fcInfinity, fcZero):
1519 case convolve(fcInfinity, fcNormal):
1520 case convolve(fcInfinity, fcInfinity):
1521 case convolve(fcZero, fcZero):
1522 makeNaN();
1523 return opInvalidOp;
1524
1525 case convolve(fcNormal, fcNormal):
1526 return opOK;
1527 }
1528 }
1529
1530 /* Change sign. */
1531 void
changeSign()1532 APFloat::changeSign()
1533 {
1534 /* Look mummy, this one's easy. */
1535 sign = !sign;
1536 }
1537
1538 void
clearSign()1539 APFloat::clearSign()
1540 {
1541 /* So is this one. */
1542 sign = 0;
1543 }
1544
1545 void
copySign(const APFloat & rhs)1546 APFloat::copySign(const APFloat &rhs)
1547 {
1548 /* And this one. */
1549 sign = rhs.sign;
1550 }
1551
1552 /* Normalized addition or subtraction. */
1553 APFloat::opStatus
addOrSubtract(const APFloat & rhs,roundingMode rounding_mode,bool subtract)1554 APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
1555 bool subtract)
1556 {
1557 opStatus fs;
1558
1559 assertArithmeticOK(*semantics);
1560
1561 fs = addOrSubtractSpecials(rhs, subtract);
1562
1563 /* This return code means it was not a simple case. */
1564 if (fs == opDivByZero) {
1565 lostFraction lost_fraction;
1566
1567 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1568 fs = normalize(rounding_mode, lost_fraction);
1569
1570 /* Can only be zero if we lost no fraction. */
1571 assert(category != fcZero || lost_fraction == lfExactlyZero);
1572 }
1573
1574 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1575 positive zero unless rounding to minus infinity, except that
1576 adding two like-signed zeroes gives that zero. */
1577 if (category == fcZero) {
1578 if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
1579 sign = (rounding_mode == rmTowardNegative);
1580 }
1581
1582 return fs;
1583 }
1584
1585 /* Normalized addition. */
1586 APFloat::opStatus
add(const APFloat & rhs,roundingMode rounding_mode)1587 APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1588 {
1589 return addOrSubtract(rhs, rounding_mode, false);
1590 }
1591
1592 /* Normalized subtraction. */
1593 APFloat::opStatus
subtract(const APFloat & rhs,roundingMode rounding_mode)1594 APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1595 {
1596 return addOrSubtract(rhs, rounding_mode, true);
1597 }
1598
1599 /* Normalized multiply. */
1600 APFloat::opStatus
multiply(const APFloat & rhs,roundingMode rounding_mode)1601 APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1602 {
1603 opStatus fs;
1604
1605 assertArithmeticOK(*semantics);
1606 sign ^= rhs.sign;
1607 fs = multiplySpecials(rhs);
1608
1609 if (category == fcNormal) {
1610 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1611 fs = normalize(rounding_mode, lost_fraction);
1612 if (lost_fraction != lfExactlyZero)
1613 fs = (opStatus) (fs | opInexact);
1614 }
1615
1616 return fs;
1617 }
1618
1619 /* Normalized divide. */
1620 APFloat::opStatus
divide(const APFloat & rhs,roundingMode rounding_mode)1621 APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1622 {
1623 opStatus fs;
1624
1625 assertArithmeticOK(*semantics);
1626 sign ^= rhs.sign;
1627 fs = divideSpecials(rhs);
1628
1629 if (category == fcNormal) {
1630 lostFraction lost_fraction = divideSignificand(rhs);
1631 fs = normalize(rounding_mode, lost_fraction);
1632 if (lost_fraction != lfExactlyZero)
1633 fs = (opStatus) (fs | opInexact);
1634 }
1635
1636 return fs;
1637 }
1638
1639 /* Normalized remainder. This is not currently correct in all cases. */
1640 APFloat::opStatus
remainder(const APFloat & rhs)1641 APFloat::remainder(const APFloat &rhs)
1642 {
1643 opStatus fs;
1644 APFloat V = *this;
1645 unsigned int origSign = sign;
1646
1647 assertArithmeticOK(*semantics);
1648 fs = V.divide(rhs, rmNearestTiesToEven);
1649 if (fs == opDivByZero)
1650 return fs;
1651
1652 int parts = partCount();
1653 integerPart *x = new integerPart[parts];
1654 bool ignored;
1655 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1656 rmNearestTiesToEven, &ignored);
1657 if (fs==opInvalidOp)
1658 return fs;
1659
1660 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1661 rmNearestTiesToEven);
1662 assert(fs==opOK); // should always work
1663
1664 fs = V.multiply(rhs, rmNearestTiesToEven);
1665 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1666
1667 fs = subtract(V, rmNearestTiesToEven);
1668 assert(fs==opOK || fs==opInexact); // likewise
1669
1670 if (isZero())
1671 sign = origSign; // IEEE754 requires this
1672 delete[] x;
1673 return fs;
1674 }
1675
1676 /* Normalized llvm frem (C fmod).
1677 This is not currently correct in all cases. */
1678 APFloat::opStatus
mod(const APFloat & rhs,roundingMode rounding_mode)1679 APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1680 {
1681 opStatus fs;
1682 assertArithmeticOK(*semantics);
1683 fs = modSpecials(rhs);
1684
1685 if (category == fcNormal && rhs.category == fcNormal) {
1686 APFloat V = *this;
1687 unsigned int origSign = sign;
1688
1689 fs = V.divide(rhs, rmNearestTiesToEven);
1690 if (fs == opDivByZero)
1691 return fs;
1692
1693 int parts = partCount();
1694 integerPart *x = new integerPart[parts];
1695 bool ignored;
1696 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1697 rmTowardZero, &ignored);
1698 if (fs==opInvalidOp)
1699 return fs;
1700
1701 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1702 rmNearestTiesToEven);
1703 assert(fs==opOK); // should always work
1704
1705 fs = V.multiply(rhs, rounding_mode);
1706 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1707
1708 fs = subtract(V, rounding_mode);
1709 assert(fs==opOK || fs==opInexact); // likewise
1710
1711 if (isZero())
1712 sign = origSign; // IEEE754 requires this
1713 delete[] x;
1714 }
1715 return fs;
1716 }
1717
1718 /* Normalized fused-multiply-add. */
1719 APFloat::opStatus
fusedMultiplyAdd(const APFloat & multiplicand,const APFloat & addend,roundingMode rounding_mode)1720 APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
1721 const APFloat &addend,
1722 roundingMode rounding_mode)
1723 {
1724 opStatus fs;
1725
1726 assertArithmeticOK(*semantics);
1727
1728 /* Post-multiplication sign, before addition. */
1729 sign ^= multiplicand.sign;
1730
1731 /* If and only if all arguments are normal do we need to do an
1732 extended-precision calculation. */
1733 if (category == fcNormal &&
1734 multiplicand.category == fcNormal &&
1735 addend.category == fcNormal) {
1736 lostFraction lost_fraction;
1737
1738 lost_fraction = multiplySignificand(multiplicand, &addend);
1739 fs = normalize(rounding_mode, lost_fraction);
1740 if (lost_fraction != lfExactlyZero)
1741 fs = (opStatus) (fs | opInexact);
1742
1743 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1744 positive zero unless rounding to minus infinity, except that
1745 adding two like-signed zeroes gives that zero. */
1746 if (category == fcZero && sign != addend.sign)
1747 sign = (rounding_mode == rmTowardNegative);
1748 } else {
1749 fs = multiplySpecials(multiplicand);
1750
1751 /* FS can only be opOK or opInvalidOp. There is no more work
1752 to do in the latter case. The IEEE-754R standard says it is
1753 implementation-defined in this case whether, if ADDEND is a
1754 quiet NaN, we raise invalid op; this implementation does so.
1755
1756 If we need to do the addition we can do so with normal
1757 precision. */
1758 if (fs == opOK)
1759 fs = addOrSubtract(addend, rounding_mode, false);
1760 }
1761
1762 return fs;
1763 }
1764
1765 /* Comparison requires normalized numbers. */
1766 APFloat::cmpResult
compare(const APFloat & rhs) const1767 APFloat::compare(const APFloat &rhs) const
1768 {
1769 cmpResult result;
1770
1771 assertArithmeticOK(*semantics);
1772 assert(semantics == rhs.semantics);
1773
1774 switch (convolve(category, rhs.category)) {
1775 default:
1776 llvm_unreachable(0);
1777
1778 case convolve(fcNaN, fcZero):
1779 case convolve(fcNaN, fcNormal):
1780 case convolve(fcNaN, fcInfinity):
1781 case convolve(fcNaN, fcNaN):
1782 case convolve(fcZero, fcNaN):
1783 case convolve(fcNormal, fcNaN):
1784 case convolve(fcInfinity, fcNaN):
1785 return cmpUnordered;
1786
1787 case convolve(fcInfinity, fcNormal):
1788 case convolve(fcInfinity, fcZero):
1789 case convolve(fcNormal, fcZero):
1790 if (sign)
1791 return cmpLessThan;
1792 else
1793 return cmpGreaterThan;
1794
1795 case convolve(fcNormal, fcInfinity):
1796 case convolve(fcZero, fcInfinity):
1797 case convolve(fcZero, fcNormal):
1798 if (rhs.sign)
1799 return cmpGreaterThan;
1800 else
1801 return cmpLessThan;
1802
1803 case convolve(fcInfinity, fcInfinity):
1804 if (sign == rhs.sign)
1805 return cmpEqual;
1806 else if (sign)
1807 return cmpLessThan;
1808 else
1809 return cmpGreaterThan;
1810
1811 case convolve(fcZero, fcZero):
1812 return cmpEqual;
1813
1814 case convolve(fcNormal, fcNormal):
1815 break;
1816 }
1817
1818 /* Two normal numbers. Do they have the same sign? */
1819 if (sign != rhs.sign) {
1820 if (sign)
1821 result = cmpLessThan;
1822 else
1823 result = cmpGreaterThan;
1824 } else {
1825 /* Compare absolute values; invert result if negative. */
1826 result = compareAbsoluteValue(rhs);
1827
1828 if (sign) {
1829 if (result == cmpLessThan)
1830 result = cmpGreaterThan;
1831 else if (result == cmpGreaterThan)
1832 result = cmpLessThan;
1833 }
1834 }
1835
1836 return result;
1837 }
1838
1839 /// APFloat::convert - convert a value of one floating point type to another.
1840 /// The return value corresponds to the IEEE754 exceptions. *losesInfo
1841 /// records whether the transformation lost information, i.e. whether
1842 /// converting the result back to the original type will produce the
1843 /// original value (this is almost the same as return value==fsOK, but there
1844 /// are edge cases where this is not so).
1845
1846 APFloat::opStatus
convert(const fltSemantics & toSemantics,roundingMode rounding_mode,bool * losesInfo)1847 APFloat::convert(const fltSemantics &toSemantics,
1848 roundingMode rounding_mode, bool *losesInfo)
1849 {
1850 lostFraction lostFraction;
1851 unsigned int newPartCount, oldPartCount;
1852 opStatus fs;
1853
1854 assertArithmeticOK(*semantics);
1855 assertArithmeticOK(toSemantics);
1856 lostFraction = lfExactlyZero;
1857 newPartCount = partCountForBits(toSemantics.precision + 1);
1858 oldPartCount = partCount();
1859
1860 /* Handle storage complications. If our new form is wider,
1861 re-allocate our bit pattern into wider storage. If it is
1862 narrower, we ignore the excess parts, but if narrowing to a
1863 single part we need to free the old storage.
1864 Be careful not to reference significandParts for zeroes
1865 and infinities, since it aborts. */
1866 if (newPartCount > oldPartCount) {
1867 integerPart *newParts;
1868 newParts = new integerPart[newPartCount];
1869 APInt::tcSet(newParts, 0, newPartCount);
1870 if (category==fcNormal || category==fcNaN)
1871 APInt::tcAssign(newParts, significandParts(), oldPartCount);
1872 freeSignificand();
1873 significand.parts = newParts;
1874 } else if (newPartCount < oldPartCount) {
1875 /* Capture any lost fraction through truncation of parts so we get
1876 correct rounding whilst normalizing. */
1877 if (category==fcNormal)
1878 lostFraction = lostFractionThroughTruncation
1879 (significandParts(), oldPartCount, toSemantics.precision);
1880 if (newPartCount == 1) {
1881 integerPart newPart = 0;
1882 if (category==fcNormal || category==fcNaN)
1883 newPart = significandParts()[0];
1884 freeSignificand();
1885 significand.part = newPart;
1886 }
1887 }
1888
1889 if (category == fcNormal) {
1890 /* Re-interpret our bit-pattern. */
1891 exponent += toSemantics.precision - semantics->precision;
1892 semantics = &toSemantics;
1893 fs = normalize(rounding_mode, lostFraction);
1894 *losesInfo = (fs != opOK);
1895 } else if (category == fcNaN) {
1896 int shift = toSemantics.precision - semantics->precision;
1897 // Do this now so significandParts gets the right answer
1898 const fltSemantics *oldSemantics = semantics;
1899 semantics = &toSemantics;
1900 *losesInfo = false;
1901 // No normalization here, just truncate
1902 if (shift>0)
1903 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
1904 else if (shift < 0) {
1905 unsigned ushift = -shift;
1906 // Figure out if we are losing information. This happens
1907 // if are shifting out something other than 0s, or if the x87 long
1908 // double input did not have its integer bit set (pseudo-NaN), or if the
1909 // x87 long double input did not have its QNan bit set (because the x87
1910 // hardware sets this bit when converting a lower-precision NaN to
1911 // x87 long double).
1912 if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
1913 *losesInfo = true;
1914 if (oldSemantics == &APFloat::x87DoubleExtended &&
1915 (!(*significandParts() & 0x8000000000000000ULL) ||
1916 !(*significandParts() & 0x4000000000000000ULL)))
1917 *losesInfo = true;
1918 APInt::tcShiftRight(significandParts(), newPartCount, ushift);
1919 }
1920 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1921 // does not give you back the same bits. This is dubious, and we
1922 // don't currently do it. You're really supposed to get
1923 // an invalid operation signal at runtime, but nobody does that.
1924 fs = opOK;
1925 } else {
1926 semantics = &toSemantics;
1927 fs = opOK;
1928 *losesInfo = false;
1929 }
1930
1931 return fs;
1932 }
1933
1934 /* Convert a floating point number to an integer according to the
1935 rounding mode. If the rounded integer value is out of range this
1936 returns an invalid operation exception and the contents of the
1937 destination parts are unspecified. If the rounded value is in
1938 range but the floating point number is not the exact integer, the C
1939 standard doesn't require an inexact exception to be raised. IEEE
1940 854 does require it so we do that.
1941
1942 Note that for conversions to integer type the C standard requires
1943 round-to-zero to always be used. */
1944 APFloat::opStatus
convertToSignExtendedInteger(integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode,bool * isExact) const1945 APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
1946 bool isSigned,
1947 roundingMode rounding_mode,
1948 bool *isExact) const
1949 {
1950 lostFraction lost_fraction;
1951 const integerPart *src;
1952 unsigned int dstPartsCount, truncatedBits;
1953
1954 assertArithmeticOK(*semantics);
1955
1956 *isExact = false;
1957
1958 /* Handle the three special cases first. */
1959 if (category == fcInfinity || category == fcNaN)
1960 return opInvalidOp;
1961
1962 dstPartsCount = partCountForBits(width);
1963
1964 if (category == fcZero) {
1965 APInt::tcSet(parts, 0, dstPartsCount);
1966 // Negative zero can't be represented as an int.
1967 *isExact = !sign;
1968 return opOK;
1969 }
1970
1971 src = significandParts();
1972
1973 /* Step 1: place our absolute value, with any fraction truncated, in
1974 the destination. */
1975 if (exponent < 0) {
1976 /* Our absolute value is less than one; truncate everything. */
1977 APInt::tcSet(parts, 0, dstPartsCount);
1978 /* For exponent -1 the integer bit represents .5, look at that.
1979 For smaller exponents leftmost truncated bit is 0. */
1980 truncatedBits = semantics->precision -1U - exponent;
1981 } else {
1982 /* We want the most significant (exponent + 1) bits; the rest are
1983 truncated. */
1984 unsigned int bits = exponent + 1U;
1985
1986 /* Hopelessly large in magnitude? */
1987 if (bits > width)
1988 return opInvalidOp;
1989
1990 if (bits < semantics->precision) {
1991 /* We truncate (semantics->precision - bits) bits. */
1992 truncatedBits = semantics->precision - bits;
1993 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
1994 } else {
1995 /* We want at least as many bits as are available. */
1996 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
1997 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
1998 truncatedBits = 0;
1999 }
2000 }
2001
2002 /* Step 2: work out any lost fraction, and increment the absolute
2003 value if we would round away from zero. */
2004 if (truncatedBits) {
2005 lost_fraction = lostFractionThroughTruncation(src, partCount(),
2006 truncatedBits);
2007 if (lost_fraction != lfExactlyZero &&
2008 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
2009 if (APInt::tcIncrement(parts, dstPartsCount))
2010 return opInvalidOp; /* Overflow. */
2011 }
2012 } else {
2013 lost_fraction = lfExactlyZero;
2014 }
2015
2016 /* Step 3: check if we fit in the destination. */
2017 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
2018
2019 if (sign) {
2020 if (!isSigned) {
2021 /* Negative numbers cannot be represented as unsigned. */
2022 if (omsb != 0)
2023 return opInvalidOp;
2024 } else {
2025 /* It takes omsb bits to represent the unsigned integer value.
2026 We lose a bit for the sign, but care is needed as the
2027 maximally negative integer is a special case. */
2028 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
2029 return opInvalidOp;
2030
2031 /* This case can happen because of rounding. */
2032 if (omsb > width)
2033 return opInvalidOp;
2034 }
2035
2036 APInt::tcNegate (parts, dstPartsCount);
2037 } else {
2038 if (omsb >= width + !isSigned)
2039 return opInvalidOp;
2040 }
2041
2042 if (lost_fraction == lfExactlyZero) {
2043 *isExact = true;
2044 return opOK;
2045 } else
2046 return opInexact;
2047 }
2048
2049 /* Same as convertToSignExtendedInteger, except we provide
2050 deterministic values in case of an invalid operation exception,
2051 namely zero for NaNs and the minimal or maximal value respectively
2052 for underflow or overflow.
2053 The *isExact output tells whether the result is exact, in the sense
2054 that converting it back to the original floating point type produces
2055 the original value. This is almost equivalent to result==opOK,
2056 except for negative zeroes.
2057 */
2058 APFloat::opStatus
convertToInteger(integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode,bool * isExact) const2059 APFloat::convertToInteger(integerPart *parts, unsigned int width,
2060 bool isSigned,
2061 roundingMode rounding_mode, bool *isExact) const
2062 {
2063 opStatus fs;
2064
2065 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
2066 isExact);
2067
2068 if (fs == opInvalidOp) {
2069 unsigned int bits, dstPartsCount;
2070
2071 dstPartsCount = partCountForBits(width);
2072
2073 if (category == fcNaN)
2074 bits = 0;
2075 else if (sign)
2076 bits = isSigned;
2077 else
2078 bits = width - isSigned;
2079
2080 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
2081 if (sign && isSigned)
2082 APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
2083 }
2084
2085 return fs;
2086 }
2087
2088 /* Same as convertToInteger(integerPart*, ...), except the result is returned in
2089 an APSInt, whose initial bit-width and signed-ness are used to determine the
2090 precision of the conversion.
2091 */
2092 APFloat::opStatus
convertToInteger(APSInt & result,roundingMode rounding_mode,bool * isExact) const2093 APFloat::convertToInteger(APSInt &result,
2094 roundingMode rounding_mode, bool *isExact) const
2095 {
2096 unsigned bitWidth = result.getBitWidth();
2097 SmallVector<uint64_t, 4> parts(result.getNumWords());
2098 opStatus status = convertToInteger(
2099 parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
2100 // Keeps the original signed-ness.
2101 result = APInt(bitWidth, parts);
2102 return status;
2103 }
2104
2105 /* Convert an unsigned integer SRC to a floating point number,
2106 rounding according to ROUNDING_MODE. The sign of the floating
2107 point number is not modified. */
2108 APFloat::opStatus
convertFromUnsignedParts(const integerPart * src,unsigned int srcCount,roundingMode rounding_mode)2109 APFloat::convertFromUnsignedParts(const integerPart *src,
2110 unsigned int srcCount,
2111 roundingMode rounding_mode)
2112 {
2113 unsigned int omsb, precision, dstCount;
2114 integerPart *dst;
2115 lostFraction lost_fraction;
2116
2117 assertArithmeticOK(*semantics);
2118 category = fcNormal;
2119 omsb = APInt::tcMSB(src, srcCount) + 1;
2120 dst = significandParts();
2121 dstCount = partCount();
2122 precision = semantics->precision;
2123
2124 /* We want the most significant PRECISON bits of SRC. There may not
2125 be that many; extract what we can. */
2126 if (precision <= omsb) {
2127 exponent = omsb - 1;
2128 lost_fraction = lostFractionThroughTruncation(src, srcCount,
2129 omsb - precision);
2130 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2131 } else {
2132 exponent = precision - 1;
2133 lost_fraction = lfExactlyZero;
2134 APInt::tcExtract(dst, dstCount, src, omsb, 0);
2135 }
2136
2137 return normalize(rounding_mode, lost_fraction);
2138 }
2139
2140 APFloat::opStatus
convertFromAPInt(const APInt & Val,bool isSigned,roundingMode rounding_mode)2141 APFloat::convertFromAPInt(const APInt &Val,
2142 bool isSigned,
2143 roundingMode rounding_mode)
2144 {
2145 unsigned int partCount = Val.getNumWords();
2146 APInt api = Val;
2147
2148 sign = false;
2149 if (isSigned && api.isNegative()) {
2150 sign = true;
2151 api = -api;
2152 }
2153
2154 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2155 }
2156
2157 /* Convert a two's complement integer SRC to a floating point number,
2158 rounding according to ROUNDING_MODE. ISSIGNED is true if the
2159 integer is signed, in which case it must be sign-extended. */
2160 APFloat::opStatus
convertFromSignExtendedInteger(const integerPart * src,unsigned int srcCount,bool isSigned,roundingMode rounding_mode)2161 APFloat::convertFromSignExtendedInteger(const integerPart *src,
2162 unsigned int srcCount,
2163 bool isSigned,
2164 roundingMode rounding_mode)
2165 {
2166 opStatus status;
2167
2168 assertArithmeticOK(*semantics);
2169 if (isSigned &&
2170 APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
2171 integerPart *copy;
2172
2173 /* If we're signed and negative negate a copy. */
2174 sign = true;
2175 copy = new integerPart[srcCount];
2176 APInt::tcAssign(copy, src, srcCount);
2177 APInt::tcNegate(copy, srcCount);
2178 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2179 delete [] copy;
2180 } else {
2181 sign = false;
2182 status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2183 }
2184
2185 return status;
2186 }
2187
2188 /* FIXME: should this just take a const APInt reference? */
2189 APFloat::opStatus
convertFromZeroExtendedInteger(const integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode)2190 APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2191 unsigned int width, bool isSigned,
2192 roundingMode rounding_mode)
2193 {
2194 unsigned int partCount = partCountForBits(width);
2195 APInt api = APInt(width, makeArrayRef(parts, partCount));
2196
2197 sign = false;
2198 if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
2199 sign = true;
2200 api = -api;
2201 }
2202
2203 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2204 }
2205
2206 APFloat::opStatus
convertFromHexadecimalString(StringRef s,roundingMode rounding_mode)2207 APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
2208 {
2209 lostFraction lost_fraction = lfExactlyZero;
2210 integerPart *significand;
2211 unsigned int bitPos, partsCount;
2212 StringRef::iterator dot, firstSignificantDigit;
2213
2214 zeroSignificand();
2215 exponent = 0;
2216 category = fcNormal;
2217
2218 significand = significandParts();
2219 partsCount = partCount();
2220 bitPos = partsCount * integerPartWidth;
2221
2222 /* Skip leading zeroes and any (hexa)decimal point. */
2223 StringRef::iterator begin = s.begin();
2224 StringRef::iterator end = s.end();
2225 StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
2226 firstSignificantDigit = p;
2227
2228 for (; p != end;) {
2229 integerPart hex_value;
2230
2231 if (*p == '.') {
2232 assert(dot == end && "String contains multiple dots");
2233 dot = p++;
2234 if (p == end) {
2235 break;
2236 }
2237 }
2238
2239 hex_value = hexDigitValue(*p);
2240 if (hex_value == -1U) {
2241 break;
2242 }
2243
2244 p++;
2245
2246 if (p == end) {
2247 break;
2248 } else {
2249 /* Store the number whilst 4-bit nibbles remain. */
2250 if (bitPos) {
2251 bitPos -= 4;
2252 hex_value <<= bitPos % integerPartWidth;
2253 significand[bitPos / integerPartWidth] |= hex_value;
2254 } else {
2255 lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
2256 while (p != end && hexDigitValue(*p) != -1U)
2257 p++;
2258 break;
2259 }
2260 }
2261 }
2262
2263 /* Hex floats require an exponent but not a hexadecimal point. */
2264 assert(p != end && "Hex strings require an exponent");
2265 assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
2266 assert(p != begin && "Significand has no digits");
2267 assert((dot == end || p - begin != 1) && "Significand has no digits");
2268
2269 /* Ignore the exponent if we are zero. */
2270 if (p != firstSignificantDigit) {
2271 int expAdjustment;
2272
2273 /* Implicit hexadecimal point? */
2274 if (dot == end)
2275 dot = p;
2276
2277 /* Calculate the exponent adjustment implicit in the number of
2278 significant digits. */
2279 expAdjustment = static_cast<int>(dot - firstSignificantDigit);
2280 if (expAdjustment < 0)
2281 expAdjustment++;
2282 expAdjustment = expAdjustment * 4 - 1;
2283
2284 /* Adjust for writing the significand starting at the most
2285 significant nibble. */
2286 expAdjustment += semantics->precision;
2287 expAdjustment -= partsCount * integerPartWidth;
2288
2289 /* Adjust for the given exponent. */
2290 exponent = totalExponent(p + 1, end, expAdjustment);
2291 }
2292
2293 return normalize(rounding_mode, lost_fraction);
2294 }
2295
2296 APFloat::opStatus
roundSignificandWithExponent(const integerPart * decSigParts,unsigned sigPartCount,int exp,roundingMode rounding_mode)2297 APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2298 unsigned sigPartCount, int exp,
2299 roundingMode rounding_mode)
2300 {
2301 unsigned int parts, pow5PartCount;
2302 fltSemantics calcSemantics = { 32767, -32767, 0, true };
2303 integerPart pow5Parts[maxPowerOfFiveParts];
2304 bool isNearest;
2305
2306 isNearest = (rounding_mode == rmNearestTiesToEven ||
2307 rounding_mode == rmNearestTiesToAway);
2308
2309 parts = partCountForBits(semantics->precision + 11);
2310
2311 /* Calculate pow(5, abs(exp)). */
2312 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2313
2314 for (;; parts *= 2) {
2315 opStatus sigStatus, powStatus;
2316 unsigned int excessPrecision, truncatedBits;
2317
2318 calcSemantics.precision = parts * integerPartWidth - 1;
2319 excessPrecision = calcSemantics.precision - semantics->precision;
2320 truncatedBits = excessPrecision;
2321
2322 APFloat decSig(calcSemantics, fcZero, sign);
2323 APFloat pow5(calcSemantics, fcZero, false);
2324
2325 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2326 rmNearestTiesToEven);
2327 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2328 rmNearestTiesToEven);
2329 /* Add exp, as 10^n = 5^n * 2^n. */
2330 decSig.exponent += exp;
2331
2332 lostFraction calcLostFraction;
2333 integerPart HUerr, HUdistance;
2334 unsigned int powHUerr;
2335
2336 if (exp >= 0) {
2337 /* multiplySignificand leaves the precision-th bit set to 1. */
2338 calcLostFraction = decSig.multiplySignificand(pow5, NULL);
2339 powHUerr = powStatus != opOK;
2340 } else {
2341 calcLostFraction = decSig.divideSignificand(pow5);
2342 /* Denormal numbers have less precision. */
2343 if (decSig.exponent < semantics->minExponent) {
2344 excessPrecision += (semantics->minExponent - decSig.exponent);
2345 truncatedBits = excessPrecision;
2346 if (excessPrecision > calcSemantics.precision)
2347 excessPrecision = calcSemantics.precision;
2348 }
2349 /* Extra half-ulp lost in reciprocal of exponent. */
2350 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
2351 }
2352
2353 /* Both multiplySignificand and divideSignificand return the
2354 result with the integer bit set. */
2355 assert(APInt::tcExtractBit
2356 (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2357
2358 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2359 powHUerr);
2360 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2361 excessPrecision, isNearest);
2362
2363 /* Are we guaranteed to round correctly if we truncate? */
2364 if (HUdistance >= HUerr) {
2365 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2366 calcSemantics.precision - excessPrecision,
2367 excessPrecision);
2368 /* Take the exponent of decSig. If we tcExtract-ed less bits
2369 above we must adjust our exponent to compensate for the
2370 implicit right shift. */
2371 exponent = (decSig.exponent + semantics->precision
2372 - (calcSemantics.precision - excessPrecision));
2373 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2374 decSig.partCount(),
2375 truncatedBits);
2376 return normalize(rounding_mode, calcLostFraction);
2377 }
2378 }
2379 }
2380
2381 APFloat::opStatus
convertFromDecimalString(StringRef str,roundingMode rounding_mode)2382 APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
2383 {
2384 decimalInfo D;
2385 opStatus fs;
2386
2387 /* Scan the text. */
2388 StringRef::iterator p = str.begin();
2389 interpretDecimal(p, str.end(), &D);
2390
2391 /* Handle the quick cases. First the case of no significant digits,
2392 i.e. zero, and then exponents that are obviously too large or too
2393 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
2394 definitely overflows if
2395
2396 (exp - 1) * L >= maxExponent
2397
2398 and definitely underflows to zero where
2399
2400 (exp + 1) * L <= minExponent - precision
2401
2402 With integer arithmetic the tightest bounds for L are
2403
2404 93/28 < L < 196/59 [ numerator <= 256 ]
2405 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
2406 */
2407
2408 if (decDigitValue(*D.firstSigDigit) >= 10U) {
2409 category = fcZero;
2410 fs = opOK;
2411
2412 /* Check whether the normalized exponent is high enough to overflow
2413 max during the log-rebasing in the max-exponent check below. */
2414 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2415 fs = handleOverflow(rounding_mode);
2416
2417 /* If it wasn't, then it also wasn't high enough to overflow max
2418 during the log-rebasing in the min-exponent check. Check that it
2419 won't overflow min in either check, then perform the min-exponent
2420 check. */
2421 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2422 (D.normalizedExponent + 1) * 28738 <=
2423 8651 * (semantics->minExponent - (int) semantics->precision)) {
2424 /* Underflow to zero and round. */
2425 zeroSignificand();
2426 fs = normalize(rounding_mode, lfLessThanHalf);
2427
2428 /* We can finally safely perform the max-exponent check. */
2429 } else if ((D.normalizedExponent - 1) * 42039
2430 >= 12655 * semantics->maxExponent) {
2431 /* Overflow and round. */
2432 fs = handleOverflow(rounding_mode);
2433 } else {
2434 integerPart *decSignificand;
2435 unsigned int partCount;
2436
2437 /* A tight upper bound on number of bits required to hold an
2438 N-digit decimal integer is N * 196 / 59. Allocate enough space
2439 to hold the full significand, and an extra part required by
2440 tcMultiplyPart. */
2441 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
2442 partCount = partCountForBits(1 + 196 * partCount / 59);
2443 decSignificand = new integerPart[partCount + 1];
2444 partCount = 0;
2445
2446 /* Convert to binary efficiently - we do almost all multiplication
2447 in an integerPart. When this would overflow do we do a single
2448 bignum multiplication, and then revert again to multiplication
2449 in an integerPart. */
2450 do {
2451 integerPart decValue, val, multiplier;
2452
2453 val = 0;
2454 multiplier = 1;
2455
2456 do {
2457 if (*p == '.') {
2458 p++;
2459 if (p == str.end()) {
2460 break;
2461 }
2462 }
2463 decValue = decDigitValue(*p++);
2464 assert(decValue < 10U && "Invalid character in significand");
2465 multiplier *= 10;
2466 val = val * 10 + decValue;
2467 /* The maximum number that can be multiplied by ten with any
2468 digit added without overflowing an integerPart. */
2469 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2470
2471 /* Multiply out the current part. */
2472 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2473 partCount, partCount + 1, false);
2474
2475 /* If we used another part (likely but not guaranteed), increase
2476 the count. */
2477 if (decSignificand[partCount])
2478 partCount++;
2479 } while (p <= D.lastSigDigit);
2480
2481 category = fcNormal;
2482 fs = roundSignificandWithExponent(decSignificand, partCount,
2483 D.exponent, rounding_mode);
2484
2485 delete [] decSignificand;
2486 }
2487
2488 return fs;
2489 }
2490
2491 APFloat::opStatus
convertFromString(StringRef str,roundingMode rounding_mode)2492 APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
2493 {
2494 assertArithmeticOK(*semantics);
2495 assert(!str.empty() && "Invalid string length");
2496
2497 /* Handle a leading minus sign. */
2498 StringRef::iterator p = str.begin();
2499 size_t slen = str.size();
2500 sign = *p == '-' ? 1 : 0;
2501 if (*p == '-' || *p == '+') {
2502 p++;
2503 slen--;
2504 assert(slen && "String has no digits");
2505 }
2506
2507 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
2508 assert(slen - 2 && "Invalid string");
2509 return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
2510 rounding_mode);
2511 }
2512
2513 return convertFromDecimalString(StringRef(p, slen), rounding_mode);
2514 }
2515
2516 /* Write out a hexadecimal representation of the floating point value
2517 to DST, which must be of sufficient size, in the C99 form
2518 [-]0xh.hhhhp[+-]d. Return the number of characters written,
2519 excluding the terminating NUL.
2520
2521 If UPPERCASE, the output is in upper case, otherwise in lower case.
2522
2523 HEXDIGITS digits appear altogether, rounding the value if
2524 necessary. If HEXDIGITS is 0, the minimal precision to display the
2525 number precisely is used instead. If nothing would appear after
2526 the decimal point it is suppressed.
2527
2528 The decimal exponent is always printed and has at least one digit.
2529 Zero values display an exponent of zero. Infinities and NaNs
2530 appear as "infinity" or "nan" respectively.
2531
2532 The above rules are as specified by C99. There is ambiguity about
2533 what the leading hexadecimal digit should be. This implementation
2534 uses whatever is necessary so that the exponent is displayed as
2535 stored. This implies the exponent will fall within the IEEE format
2536 range, and the leading hexadecimal digit will be 0 (for denormals),
2537 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2538 any other digits zero).
2539 */
2540 unsigned int
convertToHexString(char * dst,unsigned int hexDigits,bool upperCase,roundingMode rounding_mode) const2541 APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2542 bool upperCase, roundingMode rounding_mode) const
2543 {
2544 char *p;
2545
2546 assertArithmeticOK(*semantics);
2547
2548 p = dst;
2549 if (sign)
2550 *dst++ = '-';
2551
2552 switch (category) {
2553 case fcInfinity:
2554 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2555 dst += sizeof infinityL - 1;
2556 break;
2557
2558 case fcNaN:
2559 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2560 dst += sizeof NaNU - 1;
2561 break;
2562
2563 case fcZero:
2564 *dst++ = '0';
2565 *dst++ = upperCase ? 'X': 'x';
2566 *dst++ = '0';
2567 if (hexDigits > 1) {
2568 *dst++ = '.';
2569 memset (dst, '0', hexDigits - 1);
2570 dst += hexDigits - 1;
2571 }
2572 *dst++ = upperCase ? 'P': 'p';
2573 *dst++ = '0';
2574 break;
2575
2576 case fcNormal:
2577 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2578 break;
2579 }
2580
2581 *dst = 0;
2582
2583 return static_cast<unsigned int>(dst - p);
2584 }
2585
2586 /* Does the hard work of outputting the correctly rounded hexadecimal
2587 form of a normal floating point number with the specified number of
2588 hexadecimal digits. If HEXDIGITS is zero the minimum number of
2589 digits necessary to print the value precisely is output. */
2590 char *
convertNormalToHexString(char * dst,unsigned int hexDigits,bool upperCase,roundingMode rounding_mode) const2591 APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2592 bool upperCase,
2593 roundingMode rounding_mode) const
2594 {
2595 unsigned int count, valueBits, shift, partsCount, outputDigits;
2596 const char *hexDigitChars;
2597 const integerPart *significand;
2598 char *p;
2599 bool roundUp;
2600
2601 *dst++ = '0';
2602 *dst++ = upperCase ? 'X': 'x';
2603
2604 roundUp = false;
2605 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2606
2607 significand = significandParts();
2608 partsCount = partCount();
2609
2610 /* +3 because the first digit only uses the single integer bit, so
2611 we have 3 virtual zero most-significant-bits. */
2612 valueBits = semantics->precision + 3;
2613 shift = integerPartWidth - valueBits % integerPartWidth;
2614
2615 /* The natural number of digits required ignoring trailing
2616 insignificant zeroes. */
2617 outputDigits = (valueBits - significandLSB () + 3) / 4;
2618
2619 /* hexDigits of zero means use the required number for the
2620 precision. Otherwise, see if we are truncating. If we are,
2621 find out if we need to round away from zero. */
2622 if (hexDigits) {
2623 if (hexDigits < outputDigits) {
2624 /* We are dropping non-zero bits, so need to check how to round.
2625 "bits" is the number of dropped bits. */
2626 unsigned int bits;
2627 lostFraction fraction;
2628
2629 bits = valueBits - hexDigits * 4;
2630 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2631 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2632 }
2633 outputDigits = hexDigits;
2634 }
2635
2636 /* Write the digits consecutively, and start writing in the location
2637 of the hexadecimal point. We move the most significant digit
2638 left and add the hexadecimal point later. */
2639 p = ++dst;
2640
2641 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2642
2643 while (outputDigits && count) {
2644 integerPart part;
2645
2646 /* Put the most significant integerPartWidth bits in "part". */
2647 if (--count == partsCount)
2648 part = 0; /* An imaginary higher zero part. */
2649 else
2650 part = significand[count] << shift;
2651
2652 if (count && shift)
2653 part |= significand[count - 1] >> (integerPartWidth - shift);
2654
2655 /* Convert as much of "part" to hexdigits as we can. */
2656 unsigned int curDigits = integerPartWidth / 4;
2657
2658 if (curDigits > outputDigits)
2659 curDigits = outputDigits;
2660 dst += partAsHex (dst, part, curDigits, hexDigitChars);
2661 outputDigits -= curDigits;
2662 }
2663
2664 if (roundUp) {
2665 char *q = dst;
2666
2667 /* Note that hexDigitChars has a trailing '0'. */
2668 do {
2669 q--;
2670 *q = hexDigitChars[hexDigitValue (*q) + 1];
2671 } while (*q == '0');
2672 assert(q >= p);
2673 } else {
2674 /* Add trailing zeroes. */
2675 memset (dst, '0', outputDigits);
2676 dst += outputDigits;
2677 }
2678
2679 /* Move the most significant digit to before the point, and if there
2680 is something after the decimal point add it. This must come
2681 after rounding above. */
2682 p[-1] = p[0];
2683 if (dst -1 == p)
2684 dst--;
2685 else
2686 p[0] = '.';
2687
2688 /* Finally output the exponent. */
2689 *dst++ = upperCase ? 'P': 'p';
2690
2691 return writeSignedDecimal (dst, exponent);
2692 }
2693
2694 // For good performance it is desirable for different APFloats
2695 // to produce different integers.
2696 uint32_t
getHashValue() const2697 APFloat::getHashValue() const
2698 {
2699 if (category==fcZero) return sign<<8 | semantics->precision ;
2700 else if (category==fcInfinity) return sign<<9 | semantics->precision;
2701 else if (category==fcNaN) return 1<<10 | semantics->precision;
2702 else {
2703 uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
2704 const integerPart* p = significandParts();
2705 for (int i=partCount(); i>0; i--, p++)
2706 hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
2707 return hash;
2708 }
2709 }
2710
2711 // Conversion from APFloat to/from host float/double. It may eventually be
2712 // possible to eliminate these and have everybody deal with APFloats, but that
2713 // will take a while. This approach will not easily extend to long double.
2714 // Current implementation requires integerPartWidth==64, which is correct at
2715 // the moment but could be made more general.
2716
2717 // Denormals have exponent minExponent in APFloat, but minExponent-1 in
2718 // the actual IEEE respresentations. We compensate for that here.
2719
2720 APInt
convertF80LongDoubleAPFloatToAPInt() const2721 APFloat::convertF80LongDoubleAPFloatToAPInt() const
2722 {
2723 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
2724 assert(partCount()==2);
2725
2726 uint64_t myexponent, mysignificand;
2727
2728 if (category==fcNormal) {
2729 myexponent = exponent+16383; //bias
2730 mysignificand = significandParts()[0];
2731 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2732 myexponent = 0; // denormal
2733 } else if (category==fcZero) {
2734 myexponent = 0;
2735 mysignificand = 0;
2736 } else if (category==fcInfinity) {
2737 myexponent = 0x7fff;
2738 mysignificand = 0x8000000000000000ULL;
2739 } else {
2740 assert(category == fcNaN && "Unknown category");
2741 myexponent = 0x7fff;
2742 mysignificand = significandParts()[0];
2743 }
2744
2745 uint64_t words[2];
2746 words[0] = mysignificand;
2747 words[1] = ((uint64_t)(sign & 1) << 15) |
2748 (myexponent & 0x7fffLL);
2749 return APInt(80, words);
2750 }
2751
2752 APInt
convertPPCDoubleDoubleAPFloatToAPInt() const2753 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2754 {
2755 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
2756 assert(partCount()==2);
2757
2758 uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
2759
2760 if (category==fcNormal) {
2761 myexponent = exponent + 1023; //bias
2762 myexponent2 = exponent2 + 1023;
2763 mysignificand = significandParts()[0];
2764 mysignificand2 = significandParts()[1];
2765 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2766 myexponent = 0; // denormal
2767 if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
2768 myexponent2 = 0; // denormal
2769 } else if (category==fcZero) {
2770 myexponent = 0;
2771 mysignificand = 0;
2772 myexponent2 = 0;
2773 mysignificand2 = 0;
2774 } else if (category==fcInfinity) {
2775 myexponent = 0x7ff;
2776 myexponent2 = 0;
2777 mysignificand = 0;
2778 mysignificand2 = 0;
2779 } else {
2780 assert(category == fcNaN && "Unknown category");
2781 myexponent = 0x7ff;
2782 mysignificand = significandParts()[0];
2783 myexponent2 = exponent2;
2784 mysignificand2 = significandParts()[1];
2785 }
2786
2787 uint64_t words[2];
2788 words[0] = ((uint64_t)(sign & 1) << 63) |
2789 ((myexponent & 0x7ff) << 52) |
2790 (mysignificand & 0xfffffffffffffLL);
2791 words[1] = ((uint64_t)(sign2 & 1) << 63) |
2792 ((myexponent2 & 0x7ff) << 52) |
2793 (mysignificand2 & 0xfffffffffffffLL);
2794 return APInt(128, words);
2795 }
2796
2797 APInt
convertQuadrupleAPFloatToAPInt() const2798 APFloat::convertQuadrupleAPFloatToAPInt() const
2799 {
2800 assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
2801 assert(partCount()==2);
2802
2803 uint64_t myexponent, mysignificand, mysignificand2;
2804
2805 if (category==fcNormal) {
2806 myexponent = exponent+16383; //bias
2807 mysignificand = significandParts()[0];
2808 mysignificand2 = significandParts()[1];
2809 if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
2810 myexponent = 0; // denormal
2811 } else if (category==fcZero) {
2812 myexponent = 0;
2813 mysignificand = mysignificand2 = 0;
2814 } else if (category==fcInfinity) {
2815 myexponent = 0x7fff;
2816 mysignificand = mysignificand2 = 0;
2817 } else {
2818 assert(category == fcNaN && "Unknown category!");
2819 myexponent = 0x7fff;
2820 mysignificand = significandParts()[0];
2821 mysignificand2 = significandParts()[1];
2822 }
2823
2824 uint64_t words[2];
2825 words[0] = mysignificand;
2826 words[1] = ((uint64_t)(sign & 1) << 63) |
2827 ((myexponent & 0x7fff) << 48) |
2828 (mysignificand2 & 0xffffffffffffLL);
2829
2830 return APInt(128, words);
2831 }
2832
2833 APInt
convertDoubleAPFloatToAPInt() const2834 APFloat::convertDoubleAPFloatToAPInt() const
2835 {
2836 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
2837 assert(partCount()==1);
2838
2839 uint64_t myexponent, mysignificand;
2840
2841 if (category==fcNormal) {
2842 myexponent = exponent+1023; //bias
2843 mysignificand = *significandParts();
2844 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2845 myexponent = 0; // denormal
2846 } else if (category==fcZero) {
2847 myexponent = 0;
2848 mysignificand = 0;
2849 } else if (category==fcInfinity) {
2850 myexponent = 0x7ff;
2851 mysignificand = 0;
2852 } else {
2853 assert(category == fcNaN && "Unknown category!");
2854 myexponent = 0x7ff;
2855 mysignificand = *significandParts();
2856 }
2857
2858 return APInt(64, ((((uint64_t)(sign & 1) << 63) |
2859 ((myexponent & 0x7ff) << 52) |
2860 (mysignificand & 0xfffffffffffffLL))));
2861 }
2862
2863 APInt
convertFloatAPFloatToAPInt() const2864 APFloat::convertFloatAPFloatToAPInt() const
2865 {
2866 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
2867 assert(partCount()==1);
2868
2869 uint32_t myexponent, mysignificand;
2870
2871 if (category==fcNormal) {
2872 myexponent = exponent+127; //bias
2873 mysignificand = (uint32_t)*significandParts();
2874 if (myexponent == 1 && !(mysignificand & 0x800000))
2875 myexponent = 0; // denormal
2876 } else if (category==fcZero) {
2877 myexponent = 0;
2878 mysignificand = 0;
2879 } else if (category==fcInfinity) {
2880 myexponent = 0xff;
2881 mysignificand = 0;
2882 } else {
2883 assert(category == fcNaN && "Unknown category!");
2884 myexponent = 0xff;
2885 mysignificand = (uint32_t)*significandParts();
2886 }
2887
2888 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
2889 (mysignificand & 0x7fffff)));
2890 }
2891
2892 APInt
convertHalfAPFloatToAPInt() const2893 APFloat::convertHalfAPFloatToAPInt() const
2894 {
2895 assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
2896 assert(partCount()==1);
2897
2898 uint32_t myexponent, mysignificand;
2899
2900 if (category==fcNormal) {
2901 myexponent = exponent+15; //bias
2902 mysignificand = (uint32_t)*significandParts();
2903 if (myexponent == 1 && !(mysignificand & 0x400))
2904 myexponent = 0; // denormal
2905 } else if (category==fcZero) {
2906 myexponent = 0;
2907 mysignificand = 0;
2908 } else if (category==fcInfinity) {
2909 myexponent = 0x1f;
2910 mysignificand = 0;
2911 } else {
2912 assert(category == fcNaN && "Unknown category!");
2913 myexponent = 0x1f;
2914 mysignificand = (uint32_t)*significandParts();
2915 }
2916
2917 return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
2918 (mysignificand & 0x3ff)));
2919 }
2920
2921 // This function creates an APInt that is just a bit map of the floating
2922 // point constant as it would appear in memory. It is not a conversion,
2923 // and treating the result as a normal integer is unlikely to be useful.
2924
2925 APInt
bitcastToAPInt() const2926 APFloat::bitcastToAPInt() const
2927 {
2928 if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
2929 return convertHalfAPFloatToAPInt();
2930
2931 if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
2932 return convertFloatAPFloatToAPInt();
2933
2934 if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
2935 return convertDoubleAPFloatToAPInt();
2936
2937 if (semantics == (const llvm::fltSemantics*)&IEEEquad)
2938 return convertQuadrupleAPFloatToAPInt();
2939
2940 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
2941 return convertPPCDoubleDoubleAPFloatToAPInt();
2942
2943 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
2944 "unknown format!");
2945 return convertF80LongDoubleAPFloatToAPInt();
2946 }
2947
2948 float
convertToFloat() const2949 APFloat::convertToFloat() const
2950 {
2951 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
2952 "Float semantics are not IEEEsingle");
2953 APInt api = bitcastToAPInt();
2954 return api.bitsToFloat();
2955 }
2956
2957 double
convertToDouble() const2958 APFloat::convertToDouble() const
2959 {
2960 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
2961 "Float semantics are not IEEEdouble");
2962 APInt api = bitcastToAPInt();
2963 return api.bitsToDouble();
2964 }
2965
2966 /// Integer bit is explicit in this format. Intel hardware (387 and later)
2967 /// does not support these bit patterns:
2968 /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
2969 /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
2970 /// exponent = 0, integer bit 1 ("pseudodenormal")
2971 /// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
2972 /// At the moment, the first two are treated as NaNs, the second two as Normal.
2973 void
initFromF80LongDoubleAPInt(const APInt & api)2974 APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2975 {
2976 assert(api.getBitWidth()==80);
2977 uint64_t i1 = api.getRawData()[0];
2978 uint64_t i2 = api.getRawData()[1];
2979 uint64_t myexponent = (i2 & 0x7fff);
2980 uint64_t mysignificand = i1;
2981
2982 initialize(&APFloat::x87DoubleExtended);
2983 assert(partCount()==2);
2984
2985 sign = static_cast<unsigned int>(i2>>15);
2986 if (myexponent==0 && mysignificand==0) {
2987 // exponent, significand meaningless
2988 category = fcZero;
2989 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
2990 // exponent, significand meaningless
2991 category = fcInfinity;
2992 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
2993 // exponent meaningless
2994 category = fcNaN;
2995 significandParts()[0] = mysignificand;
2996 significandParts()[1] = 0;
2997 } else {
2998 category = fcNormal;
2999 exponent = myexponent - 16383;
3000 significandParts()[0] = mysignificand;
3001 significandParts()[1] = 0;
3002 if (myexponent==0) // denormal
3003 exponent = -16382;
3004 }
3005 }
3006
3007 void
initFromPPCDoubleDoubleAPInt(const APInt & api)3008 APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
3009 {
3010 assert(api.getBitWidth()==128);
3011 uint64_t i1 = api.getRawData()[0];
3012 uint64_t i2 = api.getRawData()[1];
3013 uint64_t myexponent = (i1 >> 52) & 0x7ff;
3014 uint64_t mysignificand = i1 & 0xfffffffffffffLL;
3015 uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
3016 uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
3017
3018 initialize(&APFloat::PPCDoubleDouble);
3019 assert(partCount()==2);
3020
3021 sign = static_cast<unsigned int>(i1>>63);
3022 sign2 = static_cast<unsigned int>(i2>>63);
3023 if (myexponent==0 && mysignificand==0) {
3024 // exponent, significand meaningless
3025 // exponent2 and significand2 are required to be 0; we don't check
3026 category = fcZero;
3027 } else if (myexponent==0x7ff && mysignificand==0) {
3028 // exponent, significand meaningless
3029 // exponent2 and significand2 are required to be 0; we don't check
3030 category = fcInfinity;
3031 } else if (myexponent==0x7ff && mysignificand!=0) {
3032 // exponent meaningless. So is the whole second word, but keep it
3033 // for determinism.
3034 category = fcNaN;
3035 exponent2 = myexponent2;
3036 significandParts()[0] = mysignificand;
3037 significandParts()[1] = mysignificand2;
3038 } else {
3039 category = fcNormal;
3040 // Note there is no category2; the second word is treated as if it is
3041 // fcNormal, although it might be something else considered by itself.
3042 exponent = myexponent - 1023;
3043 exponent2 = myexponent2 - 1023;
3044 significandParts()[0] = mysignificand;
3045 significandParts()[1] = mysignificand2;
3046 if (myexponent==0) // denormal
3047 exponent = -1022;
3048 else
3049 significandParts()[0] |= 0x10000000000000LL; // integer bit
3050 if (myexponent2==0)
3051 exponent2 = -1022;
3052 else
3053 significandParts()[1] |= 0x10000000000000LL; // integer bit
3054 }
3055 }
3056
3057 void
initFromQuadrupleAPInt(const APInt & api)3058 APFloat::initFromQuadrupleAPInt(const APInt &api)
3059 {
3060 assert(api.getBitWidth()==128);
3061 uint64_t i1 = api.getRawData()[0];
3062 uint64_t i2 = api.getRawData()[1];
3063 uint64_t myexponent = (i2 >> 48) & 0x7fff;
3064 uint64_t mysignificand = i1;
3065 uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3066
3067 initialize(&APFloat::IEEEquad);
3068 assert(partCount()==2);
3069
3070 sign = static_cast<unsigned int>(i2>>63);
3071 if (myexponent==0 &&
3072 (mysignificand==0 && mysignificand2==0)) {
3073 // exponent, significand meaningless
3074 category = fcZero;
3075 } else if (myexponent==0x7fff &&
3076 (mysignificand==0 && mysignificand2==0)) {
3077 // exponent, significand meaningless
3078 category = fcInfinity;
3079 } else if (myexponent==0x7fff &&
3080 (mysignificand!=0 || mysignificand2 !=0)) {
3081 // exponent meaningless
3082 category = fcNaN;
3083 significandParts()[0] = mysignificand;
3084 significandParts()[1] = mysignificand2;
3085 } else {
3086 category = fcNormal;
3087 exponent = myexponent - 16383;
3088 significandParts()[0] = mysignificand;
3089 significandParts()[1] = mysignificand2;
3090 if (myexponent==0) // denormal
3091 exponent = -16382;
3092 else
3093 significandParts()[1] |= 0x1000000000000LL; // integer bit
3094 }
3095 }
3096
3097 void
initFromDoubleAPInt(const APInt & api)3098 APFloat::initFromDoubleAPInt(const APInt &api)
3099 {
3100 assert(api.getBitWidth()==64);
3101 uint64_t i = *api.getRawData();
3102 uint64_t myexponent = (i >> 52) & 0x7ff;
3103 uint64_t mysignificand = i & 0xfffffffffffffLL;
3104
3105 initialize(&APFloat::IEEEdouble);
3106 assert(partCount()==1);
3107
3108 sign = static_cast<unsigned int>(i>>63);
3109 if (myexponent==0 && mysignificand==0) {
3110 // exponent, significand meaningless
3111 category = fcZero;
3112 } else if (myexponent==0x7ff && mysignificand==0) {
3113 // exponent, significand meaningless
3114 category = fcInfinity;
3115 } else if (myexponent==0x7ff && mysignificand!=0) {
3116 // exponent meaningless
3117 category = fcNaN;
3118 *significandParts() = mysignificand;
3119 } else {
3120 category = fcNormal;
3121 exponent = myexponent - 1023;
3122 *significandParts() = mysignificand;
3123 if (myexponent==0) // denormal
3124 exponent = -1022;
3125 else
3126 *significandParts() |= 0x10000000000000LL; // integer bit
3127 }
3128 }
3129
3130 void
initFromFloatAPInt(const APInt & api)3131 APFloat::initFromFloatAPInt(const APInt & api)
3132 {
3133 assert(api.getBitWidth()==32);
3134 uint32_t i = (uint32_t)*api.getRawData();
3135 uint32_t myexponent = (i >> 23) & 0xff;
3136 uint32_t mysignificand = i & 0x7fffff;
3137
3138 initialize(&APFloat::IEEEsingle);
3139 assert(partCount()==1);
3140
3141 sign = i >> 31;
3142 if (myexponent==0 && mysignificand==0) {
3143 // exponent, significand meaningless
3144 category = fcZero;
3145 } else if (myexponent==0xff && mysignificand==0) {
3146 // exponent, significand meaningless
3147 category = fcInfinity;
3148 } else if (myexponent==0xff && mysignificand!=0) {
3149 // sign, exponent, significand meaningless
3150 category = fcNaN;
3151 *significandParts() = mysignificand;
3152 } else {
3153 category = fcNormal;
3154 exponent = myexponent - 127; //bias
3155 *significandParts() = mysignificand;
3156 if (myexponent==0) // denormal
3157 exponent = -126;
3158 else
3159 *significandParts() |= 0x800000; // integer bit
3160 }
3161 }
3162
3163 void
initFromHalfAPInt(const APInt & api)3164 APFloat::initFromHalfAPInt(const APInt & api)
3165 {
3166 assert(api.getBitWidth()==16);
3167 uint32_t i = (uint32_t)*api.getRawData();
3168 uint32_t myexponent = (i >> 10) & 0x1f;
3169 uint32_t mysignificand = i & 0x3ff;
3170
3171 initialize(&APFloat::IEEEhalf);
3172 assert(partCount()==1);
3173
3174 sign = i >> 15;
3175 if (myexponent==0 && mysignificand==0) {
3176 // exponent, significand meaningless
3177 category = fcZero;
3178 } else if (myexponent==0x1f && mysignificand==0) {
3179 // exponent, significand meaningless
3180 category = fcInfinity;
3181 } else if (myexponent==0x1f && mysignificand!=0) {
3182 // sign, exponent, significand meaningless
3183 category = fcNaN;
3184 *significandParts() = mysignificand;
3185 } else {
3186 category = fcNormal;
3187 exponent = myexponent - 15; //bias
3188 *significandParts() = mysignificand;
3189 if (myexponent==0) // denormal
3190 exponent = -14;
3191 else
3192 *significandParts() |= 0x400; // integer bit
3193 }
3194 }
3195
3196 /// Treat api as containing the bits of a floating point number. Currently
3197 /// we infer the floating point type from the size of the APInt. The
3198 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3199 /// when the size is anything else).
3200 void
initFromAPInt(const APInt & api,bool isIEEE)3201 APFloat::initFromAPInt(const APInt& api, bool isIEEE)
3202 {
3203 if (api.getBitWidth() == 16)
3204 return initFromHalfAPInt(api);
3205 else if (api.getBitWidth() == 32)
3206 return initFromFloatAPInt(api);
3207 else if (api.getBitWidth()==64)
3208 return initFromDoubleAPInt(api);
3209 else if (api.getBitWidth()==80)
3210 return initFromF80LongDoubleAPInt(api);
3211 else if (api.getBitWidth()==128)
3212 return (isIEEE ?
3213 initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
3214 else
3215 llvm_unreachable(0);
3216 }
3217
3218 APFloat
getAllOnesValue(unsigned BitWidth,bool isIEEE)3219 APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
3220 {
3221 return APFloat(APInt::getAllOnesValue(BitWidth), isIEEE);
3222 }
3223
getLargest(const fltSemantics & Sem,bool Negative)3224 APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
3225 APFloat Val(Sem, fcNormal, Negative);
3226
3227 // We want (in interchange format):
3228 // sign = {Negative}
3229 // exponent = 1..10
3230 // significand = 1..1
3231
3232 Val.exponent = Sem.maxExponent; // unbiased
3233
3234 // 1-initialize all bits....
3235 Val.zeroSignificand();
3236 integerPart *significand = Val.significandParts();
3237 unsigned N = partCountForBits(Sem.precision);
3238 for (unsigned i = 0; i != N; ++i)
3239 significand[i] = ~((integerPart) 0);
3240
3241 // ...and then clear the top bits for internal consistency.
3242 significand[N-1] &=
3243 (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)) - 1;
3244
3245 return Val;
3246 }
3247
getSmallest(const fltSemantics & Sem,bool Negative)3248 APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
3249 APFloat Val(Sem, fcNormal, Negative);
3250
3251 // We want (in interchange format):
3252 // sign = {Negative}
3253 // exponent = 0..0
3254 // significand = 0..01
3255
3256 Val.exponent = Sem.minExponent; // unbiased
3257 Val.zeroSignificand();
3258 Val.significandParts()[0] = 1;
3259 return Val;
3260 }
3261
getSmallestNormalized(const fltSemantics & Sem,bool Negative)3262 APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
3263 APFloat Val(Sem, fcNormal, Negative);
3264
3265 // We want (in interchange format):
3266 // sign = {Negative}
3267 // exponent = 0..0
3268 // significand = 10..0
3269
3270 Val.exponent = Sem.minExponent;
3271 Val.zeroSignificand();
3272 Val.significandParts()[partCountForBits(Sem.precision)-1] |=
3273 (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1));
3274
3275 return Val;
3276 }
3277
APFloat(const APInt & api,bool isIEEE)3278 APFloat::APFloat(const APInt& api, bool isIEEE) : exponent2(0), sign2(0) {
3279 initFromAPInt(api, isIEEE);
3280 }
3281
APFloat(float f)3282 APFloat::APFloat(float f) : exponent2(0), sign2(0) {
3283 initFromAPInt(APInt::floatToBits(f));
3284 }
3285
APFloat(double d)3286 APFloat::APFloat(double d) : exponent2(0), sign2(0) {
3287 initFromAPInt(APInt::doubleToBits(d));
3288 }
3289
3290 namespace {
append(SmallVectorImpl<char> & Buffer,unsigned N,const char * Str)3291 static void append(SmallVectorImpl<char> &Buffer,
3292 unsigned N, const char *Str) {
3293 unsigned Start = Buffer.size();
3294 Buffer.set_size(Start + N);
3295 memcpy(&Buffer[Start], Str, N);
3296 }
3297
3298 template <unsigned N>
append(SmallVectorImpl<char> & Buffer,const char (& Str)[N])3299 void append(SmallVectorImpl<char> &Buffer, const char (&Str)[N]) {
3300 append(Buffer, N, Str);
3301 }
3302
3303 /// Removes data from the given significand until it is no more
3304 /// precise than is required for the desired precision.
AdjustToPrecision(APInt & significand,int & exp,unsigned FormatPrecision)3305 void AdjustToPrecision(APInt &significand,
3306 int &exp, unsigned FormatPrecision) {
3307 unsigned bits = significand.getActiveBits();
3308
3309 // 196/59 is a very slight overestimate of lg_2(10).
3310 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3311
3312 if (bits <= bitsRequired) return;
3313
3314 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3315 if (!tensRemovable) return;
3316
3317 exp += tensRemovable;
3318
3319 APInt divisor(significand.getBitWidth(), 1);
3320 APInt powten(significand.getBitWidth(), 10);
3321 while (true) {
3322 if (tensRemovable & 1)
3323 divisor *= powten;
3324 tensRemovable >>= 1;
3325 if (!tensRemovable) break;
3326 powten *= powten;
3327 }
3328
3329 significand = significand.udiv(divisor);
3330
3331 // Truncate the significand down to its active bit count, but
3332 // don't try to drop below 32.
3333 unsigned newPrecision = std::max(32U, significand.getActiveBits());
3334 significand = significand.trunc(newPrecision);
3335 }
3336
3337
AdjustToPrecision(SmallVectorImpl<char> & buffer,int & exp,unsigned FormatPrecision)3338 void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3339 int &exp, unsigned FormatPrecision) {
3340 unsigned N = buffer.size();
3341 if (N <= FormatPrecision) return;
3342
3343 // The most significant figures are the last ones in the buffer.
3344 unsigned FirstSignificant = N - FormatPrecision;
3345
3346 // Round.
3347 // FIXME: this probably shouldn't use 'round half up'.
3348
3349 // Rounding down is just a truncation, except we also want to drop
3350 // trailing zeros from the new result.
3351 if (buffer[FirstSignificant - 1] < '5') {
3352 while (buffer[FirstSignificant] == '0')
3353 FirstSignificant++;
3354
3355 exp += FirstSignificant;
3356 buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3357 return;
3358 }
3359
3360 // Rounding up requires a decimal add-with-carry. If we continue
3361 // the carry, the newly-introduced zeros will just be truncated.
3362 for (unsigned I = FirstSignificant; I != N; ++I) {
3363 if (buffer[I] == '9') {
3364 FirstSignificant++;
3365 } else {
3366 buffer[I]++;
3367 break;
3368 }
3369 }
3370
3371 // If we carried through, we have exactly one digit of precision.
3372 if (FirstSignificant == N) {
3373 exp += FirstSignificant;
3374 buffer.clear();
3375 buffer.push_back('1');
3376 return;
3377 }
3378
3379 exp += FirstSignificant;
3380 buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3381 }
3382 }
3383
toString(SmallVectorImpl<char> & Str,unsigned FormatPrecision,unsigned FormatMaxPadding) const3384 void APFloat::toString(SmallVectorImpl<char> &Str,
3385 unsigned FormatPrecision,
3386 unsigned FormatMaxPadding) const {
3387 switch (category) {
3388 case fcInfinity:
3389 if (isNegative())
3390 return append(Str, "-Inf");
3391 else
3392 return append(Str, "+Inf");
3393
3394 case fcNaN: return append(Str, "NaN");
3395
3396 case fcZero:
3397 if (isNegative())
3398 Str.push_back('-');
3399
3400 if (!FormatMaxPadding)
3401 append(Str, "0.0E+0");
3402 else
3403 Str.push_back('0');
3404 return;
3405
3406 case fcNormal:
3407 break;
3408 }
3409
3410 if (isNegative())
3411 Str.push_back('-');
3412
3413 // Decompose the number into an APInt and an exponent.
3414 int exp = exponent - ((int) semantics->precision - 1);
3415 APInt significand(semantics->precision,
3416 makeArrayRef(significandParts(),
3417 partCountForBits(semantics->precision)));
3418
3419 // Set FormatPrecision if zero. We want to do this before we
3420 // truncate trailing zeros, as those are part of the precision.
3421 if (!FormatPrecision) {
3422 // It's an interesting question whether to use the nominal
3423 // precision or the active precision here for denormals.
3424
3425 // FormatPrecision = ceil(significandBits / lg_2(10))
3426 FormatPrecision = (semantics->precision * 59 + 195) / 196;
3427 }
3428
3429 // Ignore trailing binary zeros.
3430 int trailingZeros = significand.countTrailingZeros();
3431 exp += trailingZeros;
3432 significand = significand.lshr(trailingZeros);
3433
3434 // Change the exponent from 2^e to 10^e.
3435 if (exp == 0) {
3436 // Nothing to do.
3437 } else if (exp > 0) {
3438 // Just shift left.
3439 significand = significand.zext(semantics->precision + exp);
3440 significand <<= exp;
3441 exp = 0;
3442 } else { /* exp < 0 */
3443 int texp = -exp;
3444
3445 // We transform this using the identity:
3446 // (N)(2^-e) == (N)(5^e)(10^-e)
3447 // This means we have to multiply N (the significand) by 5^e.
3448 // To avoid overflow, we have to operate on numbers large
3449 // enough to store N * 5^e:
3450 // log2(N * 5^e) == log2(N) + e * log2(5)
3451 // <= semantics->precision + e * 137 / 59
3452 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
3453
3454 unsigned precision = semantics->precision + 137 * texp / 59;
3455
3456 // Multiply significand by 5^e.
3457 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
3458 significand = significand.zext(precision);
3459 APInt five_to_the_i(precision, 5);
3460 while (true) {
3461 if (texp & 1) significand *= five_to_the_i;
3462
3463 texp >>= 1;
3464 if (!texp) break;
3465 five_to_the_i *= five_to_the_i;
3466 }
3467 }
3468
3469 AdjustToPrecision(significand, exp, FormatPrecision);
3470
3471 llvm::SmallVector<char, 256> buffer;
3472
3473 // Fill the buffer.
3474 unsigned precision = significand.getBitWidth();
3475 APInt ten(precision, 10);
3476 APInt digit(precision, 0);
3477
3478 bool inTrail = true;
3479 while (significand != 0) {
3480 // digit <- significand % 10
3481 // significand <- significand / 10
3482 APInt::udivrem(significand, ten, significand, digit);
3483
3484 unsigned d = digit.getZExtValue();
3485
3486 // Drop trailing zeros.
3487 if (inTrail && !d) exp++;
3488 else {
3489 buffer.push_back((char) ('0' + d));
3490 inTrail = false;
3491 }
3492 }
3493
3494 assert(!buffer.empty() && "no characters in buffer!");
3495
3496 // Drop down to FormatPrecision.
3497 // TODO: don't do more precise calculations above than are required.
3498 AdjustToPrecision(buffer, exp, FormatPrecision);
3499
3500 unsigned NDigits = buffer.size();
3501
3502 // Check whether we should use scientific notation.
3503 bool FormatScientific;
3504 if (!FormatMaxPadding)
3505 FormatScientific = true;
3506 else {
3507 if (exp >= 0) {
3508 // 765e3 --> 765000
3509 // ^^^
3510 // But we shouldn't make the number look more precise than it is.
3511 FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3512 NDigits + (unsigned) exp > FormatPrecision);
3513 } else {
3514 // Power of the most significant digit.
3515 int MSD = exp + (int) (NDigits - 1);
3516 if (MSD >= 0) {
3517 // 765e-2 == 7.65
3518 FormatScientific = false;
3519 } else {
3520 // 765e-5 == 0.00765
3521 // ^ ^^
3522 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
3523 }
3524 }
3525 }
3526
3527 // Scientific formatting is pretty straightforward.
3528 if (FormatScientific) {
3529 exp += (NDigits - 1);
3530
3531 Str.push_back(buffer[NDigits-1]);
3532 Str.push_back('.');
3533 if (NDigits == 1)
3534 Str.push_back('0');
3535 else
3536 for (unsigned I = 1; I != NDigits; ++I)
3537 Str.push_back(buffer[NDigits-1-I]);
3538 Str.push_back('E');
3539
3540 Str.push_back(exp >= 0 ? '+' : '-');
3541 if (exp < 0) exp = -exp;
3542 SmallVector<char, 6> expbuf;
3543 do {
3544 expbuf.push_back((char) ('0' + (exp % 10)));
3545 exp /= 10;
3546 } while (exp);
3547 for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3548 Str.push_back(expbuf[E-1-I]);
3549 return;
3550 }
3551
3552 // Non-scientific, positive exponents.
3553 if (exp >= 0) {
3554 for (unsigned I = 0; I != NDigits; ++I)
3555 Str.push_back(buffer[NDigits-1-I]);
3556 for (unsigned I = 0; I != (unsigned) exp; ++I)
3557 Str.push_back('0');
3558 return;
3559 }
3560
3561 // Non-scientific, negative exponents.
3562
3563 // The number of digits to the left of the decimal point.
3564 int NWholeDigits = exp + (int) NDigits;
3565
3566 unsigned I = 0;
3567 if (NWholeDigits > 0) {
3568 for (; I != (unsigned) NWholeDigits; ++I)
3569 Str.push_back(buffer[NDigits-I-1]);
3570 Str.push_back('.');
3571 } else {
3572 unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3573
3574 Str.push_back('0');
3575 Str.push_back('.');
3576 for (unsigned Z = 1; Z != NZeros; ++Z)
3577 Str.push_back('0');
3578 }
3579
3580 for (; I != NDigits; ++I)
3581 Str.push_back(buffer[NDigits-I-1]);
3582 }
3583
getExactInverse(APFloat * inv) const3584 bool APFloat::getExactInverse(APFloat *inv) const {
3585 // We can only guarantee the existence of an exact inverse for IEEE floats.
3586 if (semantics != &IEEEhalf && semantics != &IEEEsingle &&
3587 semantics != &IEEEdouble && semantics != &IEEEquad)
3588 return false;
3589
3590 // Special floats and denormals have no exact inverse.
3591 if (category != fcNormal)
3592 return false;
3593
3594 // Check that the number is a power of two by making sure that only the
3595 // integer bit is set in the significand.
3596 if (significandLSB() != semantics->precision - 1)
3597 return false;
3598
3599 // Get the inverse.
3600 APFloat reciprocal(*semantics, 1ULL);
3601 if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
3602 return false;
3603
3604 // Avoid multiplication with a denormal, it is not safe on all platforms and
3605 // may be slower than a normal division.
3606 if (reciprocal.significandMSB() + 1 < reciprocal.semantics->precision)
3607 return false;
3608
3609 assert(reciprocal.category == fcNormal &&
3610 reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
3611
3612 if (inv)
3613 *inv = reciprocal;
3614
3615 return true;
3616 }
3617