• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines SVal, Loc, and NonLoc, classes that represent
11 //  abstract r-values for use with path-sensitive value tracking.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/Basic/IdentifierTable.h"
18 
19 using namespace clang;
20 using namespace ento;
21 using llvm::dyn_cast;
22 using llvm::cast;
23 using llvm::APSInt;
24 
25 //===----------------------------------------------------------------------===//
26 // Symbol iteration within an SVal.
27 //===----------------------------------------------------------------------===//
28 
29 
30 //===----------------------------------------------------------------------===//
31 // Utility methods.
32 //===----------------------------------------------------------------------===//
33 
hasConjuredSymbol() const34 bool SVal::hasConjuredSymbol() const {
35   if (const nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(this)) {
36     SymbolRef sym = SV->getSymbol();
37     if (isa<SymbolConjured>(sym))
38       return true;
39   }
40 
41   if (const loc::MemRegionVal *RV = dyn_cast<loc::MemRegionVal>(this)) {
42     const MemRegion *R = RV->getRegion();
43     if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
44       SymbolRef sym = SR->getSymbol();
45       if (isa<SymbolConjured>(sym))
46         return true;
47     }
48   }
49 
50   return false;
51 }
52 
getAsFunctionDecl() const53 const FunctionDecl *SVal::getAsFunctionDecl() const {
54   if (const loc::MemRegionVal* X = dyn_cast<loc::MemRegionVal>(this)) {
55     const MemRegion* R = X->getRegion();
56     if (const FunctionTextRegion *CTR = R->getAs<FunctionTextRegion>())
57       return CTR->getDecl();
58   }
59 
60   return NULL;
61 }
62 
63 /// getAsLocSymbol - If this SVal is a location (subclasses Loc) and
64 ///  wraps a symbol, return that SymbolRef.  Otherwise return 0.
65 // FIXME: should we consider SymbolRef wrapped in CodeTextRegion?
getAsLocSymbol() const66 SymbolRef SVal::getAsLocSymbol() const {
67   if (const nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(this))
68     return X->getLoc().getAsLocSymbol();
69 
70   if (const loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(this)) {
71     const MemRegion *R = X->stripCasts();
72     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
73       return SymR->getSymbol();
74   }
75   return NULL;
76 }
77 
78 /// Get the symbol in the SVal or its base region.
getLocSymbolInBase() const79 SymbolRef SVal::getLocSymbolInBase() const {
80   const loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(this);
81 
82   if (!X)
83     return 0;
84 
85   const MemRegion *R = X->getRegion();
86 
87   while (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
88     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SR))
89       return SymR->getSymbol();
90     else
91       R = SR->getSuperRegion();
92   }
93 
94   return 0;
95 }
96 
97 /// getAsSymbol - If this Sval wraps a symbol return that SymbolRef.
98 ///  Otherwise return 0.
99 // FIXME: should we consider SymbolRef wrapped in CodeTextRegion?
getAsSymbol() const100 SymbolRef SVal::getAsSymbol() const {
101   if (const nonloc::SymbolVal *X = dyn_cast<nonloc::SymbolVal>(this))
102     return X->getSymbol();
103 
104   if (const nonloc::SymExprVal *X = dyn_cast<nonloc::SymExprVal>(this))
105     if (SymbolRef Y = dyn_cast<SymbolData>(X->getSymbolicExpression()))
106       return Y;
107 
108   return getAsLocSymbol();
109 }
110 
111 /// getAsSymbolicExpression - If this Sval wraps a symbolic expression then
112 ///  return that expression.  Otherwise return NULL.
getAsSymbolicExpression() const113 const SymExpr *SVal::getAsSymbolicExpression() const {
114   if (const nonloc::SymExprVal *X = dyn_cast<nonloc::SymExprVal>(this))
115     return X->getSymbolicExpression();
116 
117   return getAsSymbol();
118 }
119 
getAsRegion() const120 const MemRegion *SVal::getAsRegion() const {
121   if (const loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(this))
122     return X->getRegion();
123 
124   if (const nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(this)) {
125     return X->getLoc().getAsRegion();
126   }
127 
128   return 0;
129 }
130 
stripCasts() const131 const MemRegion *loc::MemRegionVal::stripCasts() const {
132   const MemRegion *R = getRegion();
133   return R ?  R->StripCasts() : NULL;
134 }
135 
operator ==(const symbol_iterator & X) const136 bool SVal::symbol_iterator::operator==(const symbol_iterator &X) const {
137   return itr == X.itr;
138 }
139 
operator !=(const symbol_iterator & X) const140 bool SVal::symbol_iterator::operator!=(const symbol_iterator &X) const {
141   return itr != X.itr;
142 }
143 
symbol_iterator(const SymExpr * SE)144 SVal::symbol_iterator::symbol_iterator(const SymExpr *SE) {
145   itr.push_back(SE);
146   while (!isa<SymbolData>(itr.back())) expand();
147 }
148 
operator ++()149 SVal::symbol_iterator& SVal::symbol_iterator::operator++() {
150   assert(!itr.empty() && "attempting to iterate on an 'end' iterator");
151   assert(isa<SymbolData>(itr.back()));
152   itr.pop_back();
153   if (!itr.empty())
154     while (!isa<SymbolData>(itr.back())) expand();
155   return *this;
156 }
157 
operator *()158 SymbolRef SVal::symbol_iterator::operator*() {
159   assert(!itr.empty() && "attempting to dereference an 'end' iterator");
160   return cast<SymbolData>(itr.back());
161 }
162 
expand()163 void SVal::symbol_iterator::expand() {
164   const SymExpr *SE = itr.back();
165   itr.pop_back();
166 
167   if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
168     itr.push_back(SIE->getLHS());
169     return;
170   }
171   else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
172     itr.push_back(SSE->getLHS());
173     itr.push_back(SSE->getRHS());
174     return;
175   }
176 
177   assert(false && "unhandled expansion case");
178 }
179 
getStore() const180 const void *nonloc::LazyCompoundVal::getStore() const {
181   return static_cast<const LazyCompoundValData*>(Data)->getStore();
182 }
183 
getRegion() const184 const TypedRegion *nonloc::LazyCompoundVal::getRegion() const {
185   return static_cast<const LazyCompoundValData*>(Data)->getRegion();
186 }
187 
188 //===----------------------------------------------------------------------===//
189 // Other Iterators.
190 //===----------------------------------------------------------------------===//
191 
begin() const192 nonloc::CompoundVal::iterator nonloc::CompoundVal::begin() const {
193   return getValue()->begin();
194 }
195 
end() const196 nonloc::CompoundVal::iterator nonloc::CompoundVal::end() const {
197   return getValue()->end();
198 }
199 
200 //===----------------------------------------------------------------------===//
201 // Useful predicates.
202 //===----------------------------------------------------------------------===//
203 
isConstant() const204 bool SVal::isConstant() const {
205   return isa<nonloc::ConcreteInt>(this) || isa<loc::ConcreteInt>(this);
206 }
207 
isConstant(int I) const208 bool SVal::isConstant(int I) const {
209   if (isa<loc::ConcreteInt>(*this))
210     return cast<loc::ConcreteInt>(*this).getValue() == I;
211   else if (isa<nonloc::ConcreteInt>(*this))
212     return cast<nonloc::ConcreteInt>(*this).getValue() == I;
213   else
214     return false;
215 }
216 
isZeroConstant() const217 bool SVal::isZeroConstant() const {
218   return isConstant(0);
219 }
220 
221 
222 //===----------------------------------------------------------------------===//
223 // Transfer function dispatch for Non-Locs.
224 //===----------------------------------------------------------------------===//
225 
evalBinOp(SValBuilder & svalBuilder,BinaryOperator::Opcode Op,const nonloc::ConcreteInt & R) const226 SVal nonloc::ConcreteInt::evalBinOp(SValBuilder &svalBuilder,
227                                     BinaryOperator::Opcode Op,
228                                     const nonloc::ConcreteInt& R) const {
229   const llvm::APSInt* X =
230     svalBuilder.getBasicValueFactory().evalAPSInt(Op, getValue(), R.getValue());
231 
232   if (X)
233     return nonloc::ConcreteInt(*X);
234   else
235     return UndefinedVal();
236 }
237 
238 nonloc::ConcreteInt
evalComplement(SValBuilder & svalBuilder) const239 nonloc::ConcreteInt::evalComplement(SValBuilder &svalBuilder) const {
240   return svalBuilder.makeIntVal(~getValue());
241 }
242 
243 nonloc::ConcreteInt
evalMinus(SValBuilder & svalBuilder) const244 nonloc::ConcreteInt::evalMinus(SValBuilder &svalBuilder) const {
245   return svalBuilder.makeIntVal(-getValue());
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // Transfer function dispatch for Locs.
250 //===----------------------------------------------------------------------===//
251 
evalBinOp(BasicValueFactory & BasicVals,BinaryOperator::Opcode Op,const loc::ConcreteInt & R) const252 SVal loc::ConcreteInt::evalBinOp(BasicValueFactory& BasicVals,
253                                  BinaryOperator::Opcode Op,
254                                  const loc::ConcreteInt& R) const {
255 
256   assert (Op == BO_Add || Op == BO_Sub ||
257           (Op >= BO_LT && Op <= BO_NE));
258 
259   const llvm::APSInt* X = BasicVals.evalAPSInt(Op, getValue(), R.getValue());
260 
261   if (X)
262     return loc::ConcreteInt(*X);
263   else
264     return UndefinedVal();
265 }
266 
267 //===----------------------------------------------------------------------===//
268 // Pretty-Printing.
269 //===----------------------------------------------------------------------===//
270 
dump() const271 void SVal::dump() const { dumpToStream(llvm::errs()); }
272 
dumpToStream(llvm::raw_ostream & os) const273 void SVal::dumpToStream(llvm::raw_ostream& os) const {
274   switch (getBaseKind()) {
275     case UnknownKind:
276       os << "Unknown";
277       break;
278     case NonLocKind:
279       cast<NonLoc>(this)->dumpToStream(os);
280       break;
281     case LocKind:
282       cast<Loc>(this)->dumpToStream(os);
283       break;
284     case UndefinedKind:
285       os << "Undefined";
286       break;
287     default:
288       assert (false && "Invalid SVal.");
289   }
290 }
291 
dumpToStream(llvm::raw_ostream & os) const292 void NonLoc::dumpToStream(llvm::raw_ostream& os) const {
293   switch (getSubKind()) {
294     case nonloc::ConcreteIntKind: {
295       const nonloc::ConcreteInt& C = *cast<nonloc::ConcreteInt>(this);
296       if (C.getValue().isUnsigned())
297         os << C.getValue().getZExtValue();
298       else
299         os << C.getValue().getSExtValue();
300       os << ' ' << (C.getValue().isUnsigned() ? 'U' : 'S')
301          << C.getValue().getBitWidth() << 'b';
302       break;
303     }
304     case nonloc::SymbolValKind:
305       os << '$' << cast<nonloc::SymbolVal>(this)->getSymbol();
306       break;
307     case nonloc::SymExprValKind: {
308       const nonloc::SymExprVal& C = *cast<nonloc::SymExprVal>(this);
309       const SymExpr *SE = C.getSymbolicExpression();
310       os << SE;
311       break;
312     }
313     case nonloc::LocAsIntegerKind: {
314       const nonloc::LocAsInteger& C = *cast<nonloc::LocAsInteger>(this);
315       os << C.getLoc() << " [as " << C.getNumBits() << " bit integer]";
316       break;
317     }
318     case nonloc::CompoundValKind: {
319       const nonloc::CompoundVal& C = *cast<nonloc::CompoundVal>(this);
320       os << "compoundVal{";
321       bool first = true;
322       for (nonloc::CompoundVal::iterator I=C.begin(), E=C.end(); I!=E; ++I) {
323         if (first) {
324           os << ' '; first = false;
325         }
326         else
327           os << ", ";
328 
329         (*I).dumpToStream(os);
330       }
331       os << "}";
332       break;
333     }
334     case nonloc::LazyCompoundValKind: {
335       const nonloc::LazyCompoundVal &C = *cast<nonloc::LazyCompoundVal>(this);
336       os << "lazyCompoundVal{" << const_cast<void *>(C.getStore())
337          << ',' << C.getRegion()
338          << '}';
339       break;
340     }
341     default:
342       assert (false && "Pretty-printed not implemented for this NonLoc.");
343       break;
344   }
345 }
346 
dumpToStream(llvm::raw_ostream & os) const347 void Loc::dumpToStream(llvm::raw_ostream& os) const {
348   switch (getSubKind()) {
349     case loc::ConcreteIntKind:
350       os << cast<loc::ConcreteInt>(this)->getValue().getZExtValue() << " (Loc)";
351       break;
352     case loc::GotoLabelKind:
353       os << "&&" << cast<loc::GotoLabel>(this)->getLabel()->getName();
354       break;
355     case loc::MemRegionKind:
356       os << '&' << cast<loc::MemRegionVal>(this)->getRegion()->getString();
357       break;
358     case loc::ObjCPropRefKind: {
359       const ObjCPropertyRefExpr *E = cast<loc::ObjCPropRef>(this)->getPropRefExpr();
360       os << "objc-prop{";
361       if (E->isSuperReceiver())
362         os << "super.";
363       else if (E->getBase())
364         os << "<base>.";
365 
366       if (E->isImplicitProperty())
367         os << E->getImplicitPropertyGetter()->getSelector().getAsString();
368       else
369         os << E->getExplicitProperty()->getName();
370 
371       os << "}";
372       break;
373     }
374     default:
375       assert(false && "Pretty-printing not implemented for this Loc.");
376       break;
377   }
378 }
379