1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/AnalysisBasedWarnings.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTMutationListener.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/RecursiveASTVisitor.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/LiteralSupport.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/Designator.h"
36 #include "clang/Sema/Scope.h"
37 #include "clang/Sema/ScopeInfo.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/Template.h"
40 using namespace clang;
41 using namespace sema;
42
43
44 /// \brief Determine whether the use of this declaration is valid, and
45 /// emit any corresponding diagnostics.
46 ///
47 /// This routine diagnoses various problems with referencing
48 /// declarations that can occur when using a declaration. For example,
49 /// it might warn if a deprecated or unavailable declaration is being
50 /// used, or produce an error (and return true) if a C++0x deleted
51 /// function is being used.
52 ///
53 /// If IgnoreDeprecated is set to true, this should not warn about deprecated
54 /// decls.
55 ///
56 /// \returns true if there was an error (this declaration cannot be
57 /// referenced), false otherwise.
58 ///
DiagnoseUseOfDecl(NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)59 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
60 const ObjCInterfaceDecl *UnknownObjCClass) {
61 if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
62 // If there were any diagnostics suppressed by template argument deduction,
63 // emit them now.
64 llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
65 Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
66 if (Pos != SuppressedDiagnostics.end()) {
67 llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
68 for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
69 Diag(Suppressed[I].first, Suppressed[I].second);
70
71 // Clear out the list of suppressed diagnostics, so that we don't emit
72 // them again for this specialization. However, we don't obsolete this
73 // entry from the table, because we want to avoid ever emitting these
74 // diagnostics again.
75 Suppressed.clear();
76 }
77 }
78
79 // See if this is an auto-typed variable whose initializer we are parsing.
80 if (ParsingInitForAutoVars.count(D)) {
81 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
82 << D->getDeclName();
83 return true;
84 }
85
86 // See if this is a deleted function.
87 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
88 if (FD->isDeleted()) {
89 Diag(Loc, diag::err_deleted_function_use);
90 Diag(D->getLocation(), diag::note_unavailable_here) << 1 << true;
91 return true;
92 }
93 }
94
95 // See if this declaration is unavailable or deprecated.
96 std::string Message;
97 switch (D->getAvailability(&Message)) {
98 case AR_Available:
99 case AR_NotYetIntroduced:
100 break;
101
102 case AR_Deprecated:
103 EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
104 break;
105
106 case AR_Unavailable:
107 if (cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) {
108 if (Message.empty()) {
109 if (!UnknownObjCClass)
110 Diag(Loc, diag::err_unavailable) << D->getDeclName();
111 else
112 Diag(Loc, diag::warn_unavailable_fwdclass_message)
113 << D->getDeclName();
114 }
115 else
116 Diag(Loc, diag::err_unavailable_message)
117 << D->getDeclName() << Message;
118 Diag(D->getLocation(), diag::note_unavailable_here)
119 << isa<FunctionDecl>(D) << false;
120 }
121 break;
122 }
123
124 // Warn if this is used but marked unused.
125 if (D->hasAttr<UnusedAttr>())
126 Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
127
128 return false;
129 }
130
131 /// \brief Retrieve the message suffix that should be added to a
132 /// diagnostic complaining about the given function being deleted or
133 /// unavailable.
getDeletedOrUnavailableSuffix(const FunctionDecl * FD)134 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
135 // FIXME: C++0x implicitly-deleted special member functions could be
136 // detected here so that we could improve diagnostics to say, e.g.,
137 // "base class 'A' had a deleted copy constructor".
138 if (FD->isDeleted())
139 return std::string();
140
141 std::string Message;
142 if (FD->getAvailability(&Message))
143 return ": " + Message;
144
145 return std::string();
146 }
147
148 /// DiagnoseSentinelCalls - This routine checks on method dispatch calls
149 /// (and other functions in future), which have been declared with sentinel
150 /// attribute. It warns if call does not have the sentinel argument.
151 ///
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,Expr ** Args,unsigned NumArgs)152 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
153 Expr **Args, unsigned NumArgs) {
154 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
155 if (!attr)
156 return;
157
158 // FIXME: In C++0x, if any of the arguments are parameter pack
159 // expansions, we can't check for the sentinel now.
160 int sentinelPos = attr->getSentinel();
161 int nullPos = attr->getNullPos();
162
163 // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
164 // base class. Then we won't be needing two versions of the same code.
165 unsigned int i = 0;
166 bool warnNotEnoughArgs = false;
167 int isMethod = 0;
168 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
169 // skip over named parameters.
170 ObjCMethodDecl::param_iterator P, E = MD->param_end();
171 for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
172 if (nullPos)
173 --nullPos;
174 else
175 ++i;
176 }
177 warnNotEnoughArgs = (P != E || i >= NumArgs);
178 isMethod = 1;
179 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
180 // skip over named parameters.
181 ObjCMethodDecl::param_iterator P, E = FD->param_end();
182 for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
183 if (nullPos)
184 --nullPos;
185 else
186 ++i;
187 }
188 warnNotEnoughArgs = (P != E || i >= NumArgs);
189 } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
190 // block or function pointer call.
191 QualType Ty = V->getType();
192 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
193 const FunctionType *FT = Ty->isFunctionPointerType()
194 ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
195 : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
196 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
197 unsigned NumArgsInProto = Proto->getNumArgs();
198 unsigned k;
199 for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
200 if (nullPos)
201 --nullPos;
202 else
203 ++i;
204 }
205 warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
206 }
207 if (Ty->isBlockPointerType())
208 isMethod = 2;
209 } else
210 return;
211 } else
212 return;
213
214 if (warnNotEnoughArgs) {
215 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
216 Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
217 return;
218 }
219 int sentinel = i;
220 while (sentinelPos > 0 && i < NumArgs-1) {
221 --sentinelPos;
222 ++i;
223 }
224 if (sentinelPos > 0) {
225 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
226 Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
227 return;
228 }
229 while (i < NumArgs-1) {
230 ++i;
231 ++sentinel;
232 }
233 Expr *sentinelExpr = Args[sentinel];
234 if (!sentinelExpr) return;
235 if (sentinelExpr->isTypeDependent()) return;
236 if (sentinelExpr->isValueDependent()) return;
237
238 // nullptr_t is always treated as null.
239 if (sentinelExpr->getType()->isNullPtrType()) return;
240
241 if (sentinelExpr->getType()->isAnyPointerType() &&
242 sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
243 Expr::NPC_ValueDependentIsNull))
244 return;
245
246 // Unfortunately, __null has type 'int'.
247 if (isa<GNUNullExpr>(sentinelExpr)) return;
248
249 Diag(Loc, diag::warn_missing_sentinel) << isMethod;
250 Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
251 }
252
getExprRange(ExprTy * E) const253 SourceRange Sema::getExprRange(ExprTy *E) const {
254 Expr *Ex = (Expr *)E;
255 return Ex? Ex->getSourceRange() : SourceRange();
256 }
257
258 //===----------------------------------------------------------------------===//
259 // Standard Promotions and Conversions
260 //===----------------------------------------------------------------------===//
261
262 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E)263 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
264 QualType Ty = E->getType();
265 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
266
267 if (Ty->isFunctionType())
268 E = ImpCastExprToType(E, Context.getPointerType(Ty),
269 CK_FunctionToPointerDecay).take();
270 else if (Ty->isArrayType()) {
271 // In C90 mode, arrays only promote to pointers if the array expression is
272 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
273 // type 'array of type' is converted to an expression that has type 'pointer
274 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
275 // that has type 'array of type' ...". The relevant change is "an lvalue"
276 // (C90) to "an expression" (C99).
277 //
278 // C++ 4.2p1:
279 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
280 // T" can be converted to an rvalue of type "pointer to T".
281 //
282 if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
283 E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
284 CK_ArrayToPointerDecay).take();
285 }
286 return Owned(E);
287 }
288
CheckForNullPointerDereference(Sema & S,Expr * E)289 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
290 // Check to see if we are dereferencing a null pointer. If so,
291 // and if not volatile-qualified, this is undefined behavior that the
292 // optimizer will delete, so warn about it. People sometimes try to use this
293 // to get a deterministic trap and are surprised by clang's behavior. This
294 // only handles the pattern "*null", which is a very syntactic check.
295 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
296 if (UO->getOpcode() == UO_Deref &&
297 UO->getSubExpr()->IgnoreParenCasts()->
298 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
299 !UO->getType().isVolatileQualified()) {
300 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
301 S.PDiag(diag::warn_indirection_through_null)
302 << UO->getSubExpr()->getSourceRange());
303 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
304 S.PDiag(diag::note_indirection_through_null));
305 }
306 }
307
DefaultLvalueConversion(Expr * E)308 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
309 // C++ [conv.lval]p1:
310 // A glvalue of a non-function, non-array type T can be
311 // converted to a prvalue.
312 if (!E->isGLValue()) return Owned(E);
313
314 QualType T = E->getType();
315 assert(!T.isNull() && "r-value conversion on typeless expression?");
316
317 // Create a load out of an ObjCProperty l-value, if necessary.
318 if (E->getObjectKind() == OK_ObjCProperty) {
319 ExprResult Res = ConvertPropertyForRValue(E);
320 if (Res.isInvalid())
321 return Owned(E);
322 E = Res.take();
323 if (!E->isGLValue())
324 return Owned(E);
325 }
326
327 // We don't want to throw lvalue-to-rvalue casts on top of
328 // expressions of certain types in C++.
329 if (getLangOptions().CPlusPlus &&
330 (E->getType() == Context.OverloadTy ||
331 T->isDependentType() ||
332 T->isRecordType()))
333 return Owned(E);
334
335 // The C standard is actually really unclear on this point, and
336 // DR106 tells us what the result should be but not why. It's
337 // generally best to say that void types just doesn't undergo
338 // lvalue-to-rvalue at all. Note that expressions of unqualified
339 // 'void' type are never l-values, but qualified void can be.
340 if (T->isVoidType())
341 return Owned(E);
342
343 CheckForNullPointerDereference(*this, E);
344
345 // C++ [conv.lval]p1:
346 // [...] If T is a non-class type, the type of the prvalue is the
347 // cv-unqualified version of T. Otherwise, the type of the
348 // rvalue is T.
349 //
350 // C99 6.3.2.1p2:
351 // If the lvalue has qualified type, the value has the unqualified
352 // version of the type of the lvalue; otherwise, the value has the
353 // type of the lvalue.
354 if (T.hasQualifiers())
355 T = T.getUnqualifiedType();
356
357 CheckArrayAccess(E);
358
359 return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
360 E, 0, VK_RValue));
361 }
362
DefaultFunctionArrayLvalueConversion(Expr * E)363 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
364 ExprResult Res = DefaultFunctionArrayConversion(E);
365 if (Res.isInvalid())
366 return ExprError();
367 Res = DefaultLvalueConversion(Res.take());
368 if (Res.isInvalid())
369 return ExprError();
370 return move(Res);
371 }
372
373
374 /// UsualUnaryConversions - Performs various conversions that are common to most
375 /// operators (C99 6.3). The conversions of array and function types are
376 /// sometimes suppressed. For example, the array->pointer conversion doesn't
377 /// apply if the array is an argument to the sizeof or address (&) operators.
378 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)379 ExprResult Sema::UsualUnaryConversions(Expr *E) {
380 // First, convert to an r-value.
381 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
382 if (Res.isInvalid())
383 return Owned(E);
384 E = Res.take();
385
386 QualType Ty = E->getType();
387 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
388
389 // Try to perform integral promotions if the object has a theoretically
390 // promotable type.
391 if (Ty->isIntegralOrUnscopedEnumerationType()) {
392 // C99 6.3.1.1p2:
393 //
394 // The following may be used in an expression wherever an int or
395 // unsigned int may be used:
396 // - an object or expression with an integer type whose integer
397 // conversion rank is less than or equal to the rank of int
398 // and unsigned int.
399 // - A bit-field of type _Bool, int, signed int, or unsigned int.
400 //
401 // If an int can represent all values of the original type, the
402 // value is converted to an int; otherwise, it is converted to an
403 // unsigned int. These are called the integer promotions. All
404 // other types are unchanged by the integer promotions.
405
406 QualType PTy = Context.isPromotableBitField(E);
407 if (!PTy.isNull()) {
408 E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
409 return Owned(E);
410 }
411 if (Ty->isPromotableIntegerType()) {
412 QualType PT = Context.getPromotedIntegerType(Ty);
413 E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
414 return Owned(E);
415 }
416 }
417 return Owned(E);
418 }
419
420 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
421 /// do not have a prototype. Arguments that have type float are promoted to
422 /// double. All other argument types are converted by UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)423 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
424 QualType Ty = E->getType();
425 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
426
427 ExprResult Res = UsualUnaryConversions(E);
428 if (Res.isInvalid())
429 return Owned(E);
430 E = Res.take();
431
432 // If this is a 'float' (CVR qualified or typedef) promote to double.
433 if (Ty->isSpecificBuiltinType(BuiltinType::Float))
434 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
435
436 return Owned(E);
437 }
438
439 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
440 /// will warn if the resulting type is not a POD type, and rejects ObjC
441 /// interfaces passed by value.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)442 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
443 FunctionDecl *FDecl) {
444 ExprResult ExprRes = CheckPlaceholderExpr(E);
445 if (ExprRes.isInvalid())
446 return ExprError();
447
448 ExprRes = DefaultArgumentPromotion(E);
449 if (ExprRes.isInvalid())
450 return ExprError();
451 E = ExprRes.take();
452
453 // __builtin_va_start takes the second argument as a "varargs" argument, but
454 // it doesn't actually do anything with it. It doesn't need to be non-pod
455 // etc.
456 if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
457 return Owned(E);
458
459 // Don't allow one to pass an Objective-C interface to a vararg.
460 if (E->getType()->isObjCObjectType() &&
461 DiagRuntimeBehavior(E->getLocStart(), 0,
462 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
463 << E->getType() << CT))
464 return ExprError();
465
466 if (!E->getType().isPODType(Context)) {
467 // C++0x [expr.call]p7:
468 // Passing a potentially-evaluated argument of class type (Clause 9)
469 // having a non-trivial copy constructor, a non-trivial move constructor,
470 // or a non-trivial destructor, with no corresponding parameter,
471 // is conditionally-supported with implementation-defined semantics.
472 bool TrivialEnough = false;
473 if (getLangOptions().CPlusPlus0x && !E->getType()->isDependentType()) {
474 if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
475 if (Record->hasTrivialCopyConstructor() &&
476 Record->hasTrivialMoveConstructor() &&
477 Record->hasTrivialDestructor())
478 TrivialEnough = true;
479 }
480 }
481
482 if (!TrivialEnough &&
483 getLangOptions().ObjCAutoRefCount &&
484 E->getType()->isObjCLifetimeType())
485 TrivialEnough = true;
486
487 if (TrivialEnough) {
488 // Nothing to diagnose. This is okay.
489 } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
490 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
491 << getLangOptions().CPlusPlus0x << E->getType()
492 << CT)) {
493 // Turn this into a trap.
494 CXXScopeSpec SS;
495 UnqualifiedId Name;
496 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
497 E->getLocStart());
498 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, Name, true, false);
499 if (TrapFn.isInvalid())
500 return ExprError();
501
502 ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
503 MultiExprArg(), E->getLocEnd());
504 if (Call.isInvalid())
505 return ExprError();
506
507 ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
508 Call.get(), E);
509 if (Comma.isInvalid())
510 return ExprError();
511
512 E = Comma.get();
513 }
514 }
515
516 return Owned(E);
517 }
518
519 /// UsualArithmeticConversions - Performs various conversions that are common to
520 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
521 /// routine returns the first non-arithmetic type found. The client is
522 /// responsible for emitting appropriate error diagnostics.
523 /// FIXME: verify the conversion rules for "complex int" are consistent with
524 /// GCC.
UsualArithmeticConversions(ExprResult & lhsExpr,ExprResult & rhsExpr,bool isCompAssign)525 QualType Sema::UsualArithmeticConversions(ExprResult &lhsExpr, ExprResult &rhsExpr,
526 bool isCompAssign) {
527 if (!isCompAssign) {
528 lhsExpr = UsualUnaryConversions(lhsExpr.take());
529 if (lhsExpr.isInvalid())
530 return QualType();
531 }
532
533 rhsExpr = UsualUnaryConversions(rhsExpr.take());
534 if (rhsExpr.isInvalid())
535 return QualType();
536
537 // For conversion purposes, we ignore any qualifiers.
538 // For example, "const float" and "float" are equivalent.
539 QualType lhs =
540 Context.getCanonicalType(lhsExpr.get()->getType()).getUnqualifiedType();
541 QualType rhs =
542 Context.getCanonicalType(rhsExpr.get()->getType()).getUnqualifiedType();
543
544 // If both types are identical, no conversion is needed.
545 if (lhs == rhs)
546 return lhs;
547
548 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
549 // The caller can deal with this (e.g. pointer + int).
550 if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
551 return lhs;
552
553 // Apply unary and bitfield promotions to the LHS's type.
554 QualType lhs_unpromoted = lhs;
555 if (lhs->isPromotableIntegerType())
556 lhs = Context.getPromotedIntegerType(lhs);
557 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr.get());
558 if (!LHSBitfieldPromoteTy.isNull())
559 lhs = LHSBitfieldPromoteTy;
560 if (lhs != lhs_unpromoted && !isCompAssign)
561 lhsExpr = ImpCastExprToType(lhsExpr.take(), lhs, CK_IntegralCast);
562
563 // If both types are identical, no conversion is needed.
564 if (lhs == rhs)
565 return lhs;
566
567 // At this point, we have two different arithmetic types.
568
569 // Handle complex types first (C99 6.3.1.8p1).
570 bool LHSComplexFloat = lhs->isComplexType();
571 bool RHSComplexFloat = rhs->isComplexType();
572 if (LHSComplexFloat || RHSComplexFloat) {
573 // if we have an integer operand, the result is the complex type.
574
575 if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
576 if (rhs->isIntegerType()) {
577 QualType fp = cast<ComplexType>(lhs)->getElementType();
578 rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_IntegralToFloating);
579 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
580 } else {
581 assert(rhs->isComplexIntegerType());
582 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexToFloatingComplex);
583 }
584 return lhs;
585 }
586
587 if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
588 if (!isCompAssign) {
589 // int -> float -> _Complex float
590 if (lhs->isIntegerType()) {
591 QualType fp = cast<ComplexType>(rhs)->getElementType();
592 lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_IntegralToFloating);
593 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
594 } else {
595 assert(lhs->isComplexIntegerType());
596 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexToFloatingComplex);
597 }
598 }
599 return rhs;
600 }
601
602 // This handles complex/complex, complex/float, or float/complex.
603 // When both operands are complex, the shorter operand is converted to the
604 // type of the longer, and that is the type of the result. This corresponds
605 // to what is done when combining two real floating-point operands.
606 // The fun begins when size promotion occur across type domains.
607 // From H&S 6.3.4: When one operand is complex and the other is a real
608 // floating-point type, the less precise type is converted, within it's
609 // real or complex domain, to the precision of the other type. For example,
610 // when combining a "long double" with a "double _Complex", the
611 // "double _Complex" is promoted to "long double _Complex".
612 int order = Context.getFloatingTypeOrder(lhs, rhs);
613
614 // If both are complex, just cast to the more precise type.
615 if (LHSComplexFloat && RHSComplexFloat) {
616 if (order > 0) {
617 // _Complex float -> _Complex double
618 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingComplexCast);
619 return lhs;
620
621 } else if (order < 0) {
622 // _Complex float -> _Complex double
623 if (!isCompAssign)
624 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingComplexCast);
625 return rhs;
626 }
627 return lhs;
628 }
629
630 // If just the LHS is complex, the RHS needs to be converted,
631 // and the LHS might need to be promoted.
632 if (LHSComplexFloat) {
633 if (order > 0) { // LHS is wider
634 // float -> _Complex double
635 QualType fp = cast<ComplexType>(lhs)->getElementType();
636 rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_FloatingCast);
637 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
638 return lhs;
639 }
640
641 // RHS is at least as wide. Find its corresponding complex type.
642 QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
643
644 // double -> _Complex double
645 rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
646
647 // _Complex float -> _Complex double
648 if (!isCompAssign && order < 0)
649 lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingComplexCast);
650
651 return result;
652 }
653
654 // Just the RHS is complex, so the LHS needs to be converted
655 // and the RHS might need to be promoted.
656 assert(RHSComplexFloat);
657
658 if (order < 0) { // RHS is wider
659 // float -> _Complex double
660 if (!isCompAssign) {
661 QualType fp = cast<ComplexType>(rhs)->getElementType();
662 lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_FloatingCast);
663 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
664 }
665 return rhs;
666 }
667
668 // LHS is at least as wide. Find its corresponding complex type.
669 QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
670
671 // double -> _Complex double
672 if (!isCompAssign)
673 lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
674
675 // _Complex float -> _Complex double
676 if (order > 0)
677 rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingComplexCast);
678
679 return result;
680 }
681
682 // Now handle "real" floating types (i.e. float, double, long double).
683 bool LHSFloat = lhs->isRealFloatingType();
684 bool RHSFloat = rhs->isRealFloatingType();
685 if (LHSFloat || RHSFloat) {
686 // If we have two real floating types, convert the smaller operand
687 // to the bigger result.
688 if (LHSFloat && RHSFloat) {
689 int order = Context.getFloatingTypeOrder(lhs, rhs);
690 if (order > 0) {
691 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingCast);
692 return lhs;
693 }
694
695 assert(order < 0 && "illegal float comparison");
696 if (!isCompAssign)
697 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingCast);
698 return rhs;
699 }
700
701 // If we have an integer operand, the result is the real floating type.
702 if (LHSFloat) {
703 if (rhs->isIntegerType()) {
704 // Convert rhs to the lhs floating point type.
705 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralToFloating);
706 return lhs;
707 }
708
709 // Convert both sides to the appropriate complex float.
710 assert(rhs->isComplexIntegerType());
711 QualType result = Context.getComplexType(lhs);
712
713 // _Complex int -> _Complex float
714 rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
715
716 // float -> _Complex float
717 if (!isCompAssign)
718 lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
719
720 return result;
721 }
722
723 assert(RHSFloat);
724 if (lhs->isIntegerType()) {
725 // Convert lhs to the rhs floating point type.
726 if (!isCompAssign)
727 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralToFloating);
728 return rhs;
729 }
730
731 // Convert both sides to the appropriate complex float.
732 assert(lhs->isComplexIntegerType());
733 QualType result = Context.getComplexType(rhs);
734
735 // _Complex int -> _Complex float
736 if (!isCompAssign)
737 lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
738
739 // float -> _Complex float
740 rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
741
742 return result;
743 }
744
745 // Handle GCC complex int extension.
746 // FIXME: if the operands are (int, _Complex long), we currently
747 // don't promote the complex. Also, signedness?
748 const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
749 const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
750 if (lhsComplexInt && rhsComplexInt) {
751 int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
752 rhsComplexInt->getElementType());
753 assert(order && "inequal types with equal element ordering");
754 if (order > 0) {
755 // _Complex int -> _Complex long
756 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexCast);
757 return lhs;
758 }
759
760 if (!isCompAssign)
761 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexCast);
762 return rhs;
763 } else if (lhsComplexInt) {
764 // int -> _Complex int
765 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralRealToComplex);
766 return lhs;
767 } else if (rhsComplexInt) {
768 // int -> _Complex int
769 if (!isCompAssign)
770 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralRealToComplex);
771 return rhs;
772 }
773
774 // Finally, we have two differing integer types.
775 // The rules for this case are in C99 6.3.1.8
776 int compare = Context.getIntegerTypeOrder(lhs, rhs);
777 bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
778 rhsSigned = rhs->hasSignedIntegerRepresentation();
779 if (lhsSigned == rhsSigned) {
780 // Same signedness; use the higher-ranked type
781 if (compare >= 0) {
782 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
783 return lhs;
784 } else if (!isCompAssign)
785 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
786 return rhs;
787 } else if (compare != (lhsSigned ? 1 : -1)) {
788 // The unsigned type has greater than or equal rank to the
789 // signed type, so use the unsigned type
790 if (rhsSigned) {
791 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
792 return lhs;
793 } else if (!isCompAssign)
794 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
795 return rhs;
796 } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
797 // The two types are different widths; if we are here, that
798 // means the signed type is larger than the unsigned type, so
799 // use the signed type.
800 if (lhsSigned) {
801 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
802 return lhs;
803 } else if (!isCompAssign)
804 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
805 return rhs;
806 } else {
807 // The signed type is higher-ranked than the unsigned type,
808 // but isn't actually any bigger (like unsigned int and long
809 // on most 32-bit systems). Use the unsigned type corresponding
810 // to the signed type.
811 QualType result =
812 Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
813 rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralCast);
814 if (!isCompAssign)
815 lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralCast);
816 return result;
817 }
818 }
819
820 //===----------------------------------------------------------------------===//
821 // Semantic Analysis for various Expression Types
822 //===----------------------------------------------------------------------===//
823
824
825 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,MultiTypeArg types,MultiExprArg exprs)826 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
827 SourceLocation DefaultLoc,
828 SourceLocation RParenLoc,
829 Expr *ControllingExpr,
830 MultiTypeArg types,
831 MultiExprArg exprs) {
832 unsigned NumAssocs = types.size();
833 assert(NumAssocs == exprs.size());
834
835 ParsedType *ParsedTypes = types.release();
836 Expr **Exprs = exprs.release();
837
838 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
839 for (unsigned i = 0; i < NumAssocs; ++i) {
840 if (ParsedTypes[i])
841 (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
842 else
843 Types[i] = 0;
844 }
845
846 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
847 ControllingExpr, Types, Exprs,
848 NumAssocs);
849 delete [] Types;
850 return ER;
851 }
852
853 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,TypeSourceInfo ** Types,Expr ** Exprs,unsigned NumAssocs)854 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
855 SourceLocation DefaultLoc,
856 SourceLocation RParenLoc,
857 Expr *ControllingExpr,
858 TypeSourceInfo **Types,
859 Expr **Exprs,
860 unsigned NumAssocs) {
861 bool TypeErrorFound = false,
862 IsResultDependent = ControllingExpr->isTypeDependent(),
863 ContainsUnexpandedParameterPack
864 = ControllingExpr->containsUnexpandedParameterPack();
865
866 for (unsigned i = 0; i < NumAssocs; ++i) {
867 if (Exprs[i]->containsUnexpandedParameterPack())
868 ContainsUnexpandedParameterPack = true;
869
870 if (Types[i]) {
871 if (Types[i]->getType()->containsUnexpandedParameterPack())
872 ContainsUnexpandedParameterPack = true;
873
874 if (Types[i]->getType()->isDependentType()) {
875 IsResultDependent = true;
876 } else {
877 // C1X 6.5.1.1p2 "The type name in a generic association shall specify a
878 // complete object type other than a variably modified type."
879 unsigned D = 0;
880 if (Types[i]->getType()->isIncompleteType())
881 D = diag::err_assoc_type_incomplete;
882 else if (!Types[i]->getType()->isObjectType())
883 D = diag::err_assoc_type_nonobject;
884 else if (Types[i]->getType()->isVariablyModifiedType())
885 D = diag::err_assoc_type_variably_modified;
886
887 if (D != 0) {
888 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
889 << Types[i]->getTypeLoc().getSourceRange()
890 << Types[i]->getType();
891 TypeErrorFound = true;
892 }
893
894 // C1X 6.5.1.1p2 "No two generic associations in the same generic
895 // selection shall specify compatible types."
896 for (unsigned j = i+1; j < NumAssocs; ++j)
897 if (Types[j] && !Types[j]->getType()->isDependentType() &&
898 Context.typesAreCompatible(Types[i]->getType(),
899 Types[j]->getType())) {
900 Diag(Types[j]->getTypeLoc().getBeginLoc(),
901 diag::err_assoc_compatible_types)
902 << Types[j]->getTypeLoc().getSourceRange()
903 << Types[j]->getType()
904 << Types[i]->getType();
905 Diag(Types[i]->getTypeLoc().getBeginLoc(),
906 diag::note_compat_assoc)
907 << Types[i]->getTypeLoc().getSourceRange()
908 << Types[i]->getType();
909 TypeErrorFound = true;
910 }
911 }
912 }
913 }
914 if (TypeErrorFound)
915 return ExprError();
916
917 // If we determined that the generic selection is result-dependent, don't
918 // try to compute the result expression.
919 if (IsResultDependent)
920 return Owned(new (Context) GenericSelectionExpr(
921 Context, KeyLoc, ControllingExpr,
922 Types, Exprs, NumAssocs, DefaultLoc,
923 RParenLoc, ContainsUnexpandedParameterPack));
924
925 llvm::SmallVector<unsigned, 1> CompatIndices;
926 unsigned DefaultIndex = -1U;
927 for (unsigned i = 0; i < NumAssocs; ++i) {
928 if (!Types[i])
929 DefaultIndex = i;
930 else if (Context.typesAreCompatible(ControllingExpr->getType(),
931 Types[i]->getType()))
932 CompatIndices.push_back(i);
933 }
934
935 // C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have
936 // type compatible with at most one of the types named in its generic
937 // association list."
938 if (CompatIndices.size() > 1) {
939 // We strip parens here because the controlling expression is typically
940 // parenthesized in macro definitions.
941 ControllingExpr = ControllingExpr->IgnoreParens();
942 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
943 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
944 << (unsigned) CompatIndices.size();
945 for (llvm::SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
946 E = CompatIndices.end(); I != E; ++I) {
947 Diag(Types[*I]->getTypeLoc().getBeginLoc(),
948 diag::note_compat_assoc)
949 << Types[*I]->getTypeLoc().getSourceRange()
950 << Types[*I]->getType();
951 }
952 return ExprError();
953 }
954
955 // C1X 6.5.1.1p2 "If a generic selection has no default generic association,
956 // its controlling expression shall have type compatible with exactly one of
957 // the types named in its generic association list."
958 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
959 // We strip parens here because the controlling expression is typically
960 // parenthesized in macro definitions.
961 ControllingExpr = ControllingExpr->IgnoreParens();
962 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
963 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
964 return ExprError();
965 }
966
967 // C1X 6.5.1.1p3 "If a generic selection has a generic association with a
968 // type name that is compatible with the type of the controlling expression,
969 // then the result expression of the generic selection is the expression
970 // in that generic association. Otherwise, the result expression of the
971 // generic selection is the expression in the default generic association."
972 unsigned ResultIndex =
973 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
974
975 return Owned(new (Context) GenericSelectionExpr(
976 Context, KeyLoc, ControllingExpr,
977 Types, Exprs, NumAssocs, DefaultLoc,
978 RParenLoc, ContainsUnexpandedParameterPack,
979 ResultIndex));
980 }
981
982 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
983 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
984 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
985 /// multiple tokens. However, the common case is that StringToks points to one
986 /// string.
987 ///
988 ExprResult
ActOnStringLiteral(const Token * StringToks,unsigned NumStringToks)989 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
990 assert(NumStringToks && "Must have at least one string!");
991
992 StringLiteralParser Literal(StringToks, NumStringToks, PP);
993 if (Literal.hadError)
994 return ExprError();
995
996 llvm::SmallVector<SourceLocation, 4> StringTokLocs;
997 for (unsigned i = 0; i != NumStringToks; ++i)
998 StringTokLocs.push_back(StringToks[i].getLocation());
999
1000 QualType StrTy = Context.CharTy;
1001 if (Literal.AnyWide)
1002 StrTy = Context.getWCharType();
1003 else if (Literal.Pascal)
1004 StrTy = Context.UnsignedCharTy;
1005
1006 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1007 if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
1008 StrTy.addConst();
1009
1010 // Get an array type for the string, according to C99 6.4.5. This includes
1011 // the nul terminator character as well as the string length for pascal
1012 // strings.
1013 StrTy = Context.getConstantArrayType(StrTy,
1014 llvm::APInt(32, Literal.GetNumStringChars()+1),
1015 ArrayType::Normal, 0);
1016
1017 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1018 return Owned(StringLiteral::Create(Context, Literal.GetString(),
1019 Literal.AnyWide, Literal.Pascal, StrTy,
1020 &StringTokLocs[0],
1021 StringTokLocs.size()));
1022 }
1023
1024 enum CaptureResult {
1025 /// No capture is required.
1026 CR_NoCapture,
1027
1028 /// A capture is required.
1029 CR_Capture,
1030
1031 /// A by-ref capture is required.
1032 CR_CaptureByRef,
1033
1034 /// An error occurred when trying to capture the given variable.
1035 CR_Error
1036 };
1037
1038 /// Diagnose an uncapturable value reference.
1039 ///
1040 /// \param var - the variable referenced
1041 /// \param DC - the context which we couldn't capture through
1042 static CaptureResult
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,VarDecl * var,DeclContext * DC)1043 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
1044 VarDecl *var, DeclContext *DC) {
1045 switch (S.ExprEvalContexts.back().Context) {
1046 case Sema::Unevaluated:
1047 // The argument will never be evaluated, so don't complain.
1048 return CR_NoCapture;
1049
1050 case Sema::PotentiallyEvaluated:
1051 case Sema::PotentiallyEvaluatedIfUsed:
1052 break;
1053
1054 case Sema::PotentiallyPotentiallyEvaluated:
1055 // FIXME: delay these!
1056 break;
1057 }
1058
1059 // Don't diagnose about capture if we're not actually in code right
1060 // now; in general, there are more appropriate places that will
1061 // diagnose this.
1062 if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
1063
1064 // Certain madnesses can happen with parameter declarations, which
1065 // we want to ignore.
1066 if (isa<ParmVarDecl>(var)) {
1067 // - If the parameter still belongs to the translation unit, then
1068 // we're actually just using one parameter in the declaration of
1069 // the next. This is useful in e.g. VLAs.
1070 if (isa<TranslationUnitDecl>(var->getDeclContext()))
1071 return CR_NoCapture;
1072
1073 // - This particular madness can happen in ill-formed default
1074 // arguments; claim it's okay and let downstream code handle it.
1075 if (S.CurContext == var->getDeclContext()->getParent())
1076 return CR_NoCapture;
1077 }
1078
1079 DeclarationName functionName;
1080 if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
1081 functionName = fn->getDeclName();
1082 // FIXME: variable from enclosing block that we couldn't capture from!
1083
1084 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
1085 << var->getIdentifier() << functionName;
1086 S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
1087 << var->getIdentifier();
1088
1089 return CR_Error;
1090 }
1091
1092 /// There is a well-formed capture at a particular scope level;
1093 /// propagate it through all the nested blocks.
propagateCapture(Sema & S,unsigned validScopeIndex,const BlockDecl::Capture & capture)1094 static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
1095 const BlockDecl::Capture &capture) {
1096 VarDecl *var = capture.getVariable();
1097
1098 // Update all the inner blocks with the capture information.
1099 for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
1100 i != e; ++i) {
1101 BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
1102 innerBlock->Captures.push_back(
1103 BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
1104 /*nested*/ true, capture.getCopyExpr()));
1105 innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
1106 }
1107
1108 return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
1109 }
1110
1111 /// shouldCaptureValueReference - Determine if a reference to the
1112 /// given value in the current context requires a variable capture.
1113 ///
1114 /// This also keeps the captures set in the BlockScopeInfo records
1115 /// up-to-date.
shouldCaptureValueReference(Sema & S,SourceLocation loc,ValueDecl * value)1116 static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
1117 ValueDecl *value) {
1118 // Only variables ever require capture.
1119 VarDecl *var = dyn_cast<VarDecl>(value);
1120 if (!var) return CR_NoCapture;
1121
1122 // Fast path: variables from the current context never require capture.
1123 DeclContext *DC = S.CurContext;
1124 if (var->getDeclContext() == DC) return CR_NoCapture;
1125
1126 // Only variables with local storage require capture.
1127 // FIXME: What about 'const' variables in C++?
1128 if (!var->hasLocalStorage()) return CR_NoCapture;
1129
1130 // Otherwise, we need to capture.
1131
1132 unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
1133 do {
1134 // Only blocks (and eventually C++0x closures) can capture; other
1135 // scopes don't work.
1136 if (!isa<BlockDecl>(DC))
1137 return diagnoseUncapturableValueReference(S, loc, var, DC);
1138
1139 BlockScopeInfo *blockScope =
1140 cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
1141 assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
1142
1143 // Check whether we've already captured it in this block. If so,
1144 // we're done.
1145 if (unsigned indexPlus1 = blockScope->CaptureMap[var])
1146 return propagateCapture(S, functionScopesIndex,
1147 blockScope->Captures[indexPlus1 - 1]);
1148
1149 functionScopesIndex--;
1150 DC = cast<BlockDecl>(DC)->getDeclContext();
1151 } while (var->getDeclContext() != DC);
1152
1153 // Okay, we descended all the way to the block that defines the variable.
1154 // Actually try to capture it.
1155 QualType type = var->getType();
1156
1157 // Prohibit variably-modified types.
1158 if (type->isVariablyModifiedType()) {
1159 S.Diag(loc, diag::err_ref_vm_type);
1160 S.Diag(var->getLocation(), diag::note_declared_at);
1161 return CR_Error;
1162 }
1163
1164 // Prohibit arrays, even in __block variables, but not references to
1165 // them.
1166 if (type->isArrayType()) {
1167 S.Diag(loc, diag::err_ref_array_type);
1168 S.Diag(var->getLocation(), diag::note_declared_at);
1169 return CR_Error;
1170 }
1171
1172 S.MarkDeclarationReferenced(loc, var);
1173
1174 // The BlocksAttr indicates the variable is bound by-reference.
1175 bool byRef = var->hasAttr<BlocksAttr>();
1176
1177 // Build a copy expression.
1178 Expr *copyExpr = 0;
1179 const RecordType *rtype;
1180 if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() &&
1181 (rtype = type->getAs<RecordType>())) {
1182
1183 // The capture logic needs the destructor, so make sure we mark it.
1184 // Usually this is unnecessary because most local variables have
1185 // their destructors marked at declaration time, but parameters are
1186 // an exception because it's technically only the call site that
1187 // actually requires the destructor.
1188 if (isa<ParmVarDecl>(var))
1189 S.FinalizeVarWithDestructor(var, rtype);
1190
1191 // According to the blocks spec, the capture of a variable from
1192 // the stack requires a const copy constructor. This is not true
1193 // of the copy/move done to move a __block variable to the heap.
1194 type.addConst();
1195
1196 Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
1197 ExprResult result =
1198 S.PerformCopyInitialization(
1199 InitializedEntity::InitializeBlock(var->getLocation(),
1200 type, false),
1201 loc, S.Owned(declRef));
1202
1203 // Build a full-expression copy expression if initialization
1204 // succeeded and used a non-trivial constructor. Recover from
1205 // errors by pretending that the copy isn't necessary.
1206 if (!result.isInvalid() &&
1207 !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
1208 result = S.MaybeCreateExprWithCleanups(result);
1209 copyExpr = result.take();
1210 }
1211 }
1212
1213 // We're currently at the declarer; go back to the closure.
1214 functionScopesIndex++;
1215 BlockScopeInfo *blockScope =
1216 cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
1217
1218 // Build a valid capture in this scope.
1219 blockScope->Captures.push_back(
1220 BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
1221 blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
1222
1223 // Propagate that to inner captures if necessary.
1224 return propagateCapture(S, functionScopesIndex,
1225 blockScope->Captures.back());
1226 }
1227
BuildBlockDeclRefExpr(Sema & S,ValueDecl * vd,const DeclarationNameInfo & NameInfo,bool byRef)1228 static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
1229 const DeclarationNameInfo &NameInfo,
1230 bool byRef) {
1231 assert(isa<VarDecl>(vd) && "capturing non-variable");
1232
1233 VarDecl *var = cast<VarDecl>(vd);
1234 assert(var->hasLocalStorage() && "capturing non-local");
1235 assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
1236
1237 QualType exprType = var->getType().getNonReferenceType();
1238
1239 BlockDeclRefExpr *BDRE;
1240 if (!byRef) {
1241 // The variable will be bound by copy; make it const within the
1242 // closure, but record that this was done in the expression.
1243 bool constAdded = !exprType.isConstQualified();
1244 exprType.addConst();
1245
1246 BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
1247 NameInfo.getLoc(), false,
1248 constAdded);
1249 } else {
1250 BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
1251 NameInfo.getLoc(), true);
1252 }
1253
1254 return S.Owned(BDRE);
1255 }
1256
1257 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1258 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1259 SourceLocation Loc,
1260 const CXXScopeSpec *SS) {
1261 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1262 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1263 }
1264
1265 /// BuildDeclRefExpr - Build an expression that references a
1266 /// declaration that does not require a closure capture.
1267 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS)1268 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1269 const DeclarationNameInfo &NameInfo,
1270 const CXXScopeSpec *SS) {
1271 MarkDeclarationReferenced(NameInfo.getLoc(), D);
1272
1273 Expr *E = DeclRefExpr::Create(Context,
1274 SS? SS->getWithLocInContext(Context)
1275 : NestedNameSpecifierLoc(),
1276 D, NameInfo, Ty, VK);
1277
1278 // Just in case we're building an illegal pointer-to-member.
1279 if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
1280 E->setObjectKind(OK_BitField);
1281
1282 return Owned(E);
1283 }
1284
1285 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1286 /// possibly a list of template arguments.
1287 ///
1288 /// If this produces template arguments, it is permitted to call
1289 /// DecomposeTemplateName.
1290 ///
1291 /// This actually loses a lot of source location information for
1292 /// non-standard name kinds; we should consider preserving that in
1293 /// some way.
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)1294 void Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1295 TemplateArgumentListInfo &Buffer,
1296 DeclarationNameInfo &NameInfo,
1297 const TemplateArgumentListInfo *&TemplateArgs) {
1298 if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1299 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1300 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1301
1302 ASTTemplateArgsPtr TemplateArgsPtr(*this,
1303 Id.TemplateId->getTemplateArgs(),
1304 Id.TemplateId->NumArgs);
1305 translateTemplateArguments(TemplateArgsPtr, Buffer);
1306 TemplateArgsPtr.release();
1307
1308 TemplateName TName = Id.TemplateId->Template.get();
1309 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1310 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1311 TemplateArgs = &Buffer;
1312 } else {
1313 NameInfo = GetNameFromUnqualifiedId(Id);
1314 TemplateArgs = 0;
1315 }
1316 }
1317
1318 /// Diagnose an empty lookup.
1319 ///
1320 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectTypoContext CTC)1321 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1322 CorrectTypoContext CTC) {
1323 DeclarationName Name = R.getLookupName();
1324
1325 unsigned diagnostic = diag::err_undeclared_var_use;
1326 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1327 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1328 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1329 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1330 diagnostic = diag::err_undeclared_use;
1331 diagnostic_suggest = diag::err_undeclared_use_suggest;
1332 }
1333
1334 // If the original lookup was an unqualified lookup, fake an
1335 // unqualified lookup. This is useful when (for example) the
1336 // original lookup would not have found something because it was a
1337 // dependent name.
1338 for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
1339 DC; DC = DC->getParent()) {
1340 if (isa<CXXRecordDecl>(DC)) {
1341 LookupQualifiedName(R, DC);
1342
1343 if (!R.empty()) {
1344 // Don't give errors about ambiguities in this lookup.
1345 R.suppressDiagnostics();
1346
1347 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1348 bool isInstance = CurMethod &&
1349 CurMethod->isInstance() &&
1350 DC == CurMethod->getParent();
1351
1352 // Give a code modification hint to insert 'this->'.
1353 // TODO: fixit for inserting 'Base<T>::' in the other cases.
1354 // Actually quite difficult!
1355 if (isInstance) {
1356 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1357 CallsUndergoingInstantiation.back()->getCallee());
1358 CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
1359 CurMethod->getInstantiatedFromMemberFunction());
1360 if (DepMethod) {
1361 Diag(R.getNameLoc(), diagnostic) << Name
1362 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1363 QualType DepThisType = DepMethod->getThisType(Context);
1364 CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1365 R.getNameLoc(), DepThisType, false);
1366 TemplateArgumentListInfo TList;
1367 if (ULE->hasExplicitTemplateArgs())
1368 ULE->copyTemplateArgumentsInto(TList);
1369
1370 CXXScopeSpec SS;
1371 SS.Adopt(ULE->getQualifierLoc());
1372 CXXDependentScopeMemberExpr *DepExpr =
1373 CXXDependentScopeMemberExpr::Create(
1374 Context, DepThis, DepThisType, true, SourceLocation(),
1375 SS.getWithLocInContext(Context), NULL,
1376 R.getLookupNameInfo(), &TList);
1377 CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1378 } else {
1379 // FIXME: we should be able to handle this case too. It is correct
1380 // to add this-> here. This is a workaround for PR7947.
1381 Diag(R.getNameLoc(), diagnostic) << Name;
1382 }
1383 } else {
1384 Diag(R.getNameLoc(), diagnostic) << Name;
1385 }
1386
1387 // Do we really want to note all of these?
1388 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1389 Diag((*I)->getLocation(), diag::note_dependent_var_use);
1390
1391 // Tell the callee to try to recover.
1392 return false;
1393 }
1394
1395 R.clear();
1396 }
1397 }
1398
1399 // We didn't find anything, so try to correct for a typo.
1400 TypoCorrection Corrected;
1401 if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1402 S, &SS, NULL, false, CTC))) {
1403 std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
1404 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
1405 R.setLookupName(Corrected.getCorrection());
1406
1407 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1408 R.addDecl(ND);
1409 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1410 if (SS.isEmpty())
1411 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1412 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1413 else
1414 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1415 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1416 << SS.getRange()
1417 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1418 if (ND)
1419 Diag(ND->getLocation(), diag::note_previous_decl)
1420 << CorrectedQuotedStr;
1421
1422 // Tell the callee to try to recover.
1423 return false;
1424 }
1425
1426 if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1427 // FIXME: If we ended up with a typo for a type name or
1428 // Objective-C class name, we're in trouble because the parser
1429 // is in the wrong place to recover. Suggest the typo
1430 // correction, but don't make it a fix-it since we're not going
1431 // to recover well anyway.
1432 if (SS.isEmpty())
1433 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1434 else
1435 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1436 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1437 << SS.getRange();
1438
1439 // Don't try to recover; it won't work.
1440 return true;
1441 }
1442 } else {
1443 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1444 // because we aren't able to recover.
1445 if (SS.isEmpty())
1446 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1447 else
1448 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1449 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1450 << SS.getRange();
1451 return true;
1452 }
1453 }
1454 R.clear();
1455
1456 // Emit a special diagnostic for failed member lookups.
1457 // FIXME: computing the declaration context might fail here (?)
1458 if (!SS.isEmpty()) {
1459 Diag(R.getNameLoc(), diag::err_no_member)
1460 << Name << computeDeclContext(SS, false)
1461 << SS.getRange();
1462 return true;
1463 }
1464
1465 // Give up, we can't recover.
1466 Diag(R.getNameLoc(), diagnostic) << Name;
1467 return true;
1468 }
1469
canSynthesizeProvisionalIvar(IdentifierInfo * II)1470 ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
1471 ObjCMethodDecl *CurMeth = getCurMethodDecl();
1472 ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1473 if (!IDecl)
1474 return 0;
1475 ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1476 if (!ClassImpDecl)
1477 return 0;
1478 ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
1479 if (!property)
1480 return 0;
1481 if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1482 if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
1483 PIDecl->getPropertyIvarDecl())
1484 return 0;
1485 return property;
1486 }
1487
canSynthesizeProvisionalIvar(ObjCPropertyDecl * Property)1488 bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
1489 ObjCMethodDecl *CurMeth = getCurMethodDecl();
1490 ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1491 if (!IDecl)
1492 return false;
1493 ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1494 if (!ClassImpDecl)
1495 return false;
1496 if (ObjCPropertyImplDecl *PIDecl
1497 = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
1498 if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
1499 PIDecl->getPropertyIvarDecl())
1500 return false;
1501
1502 return true;
1503 }
1504
SynthesizeProvisionalIvar(LookupResult & Lookup,IdentifierInfo * II,SourceLocation NameLoc)1505 ObjCIvarDecl *Sema::SynthesizeProvisionalIvar(LookupResult &Lookup,
1506 IdentifierInfo *II,
1507 SourceLocation NameLoc) {
1508 ObjCMethodDecl *CurMeth = getCurMethodDecl();
1509 bool LookForIvars;
1510 if (Lookup.empty())
1511 LookForIvars = true;
1512 else if (CurMeth->isClassMethod())
1513 LookForIvars = false;
1514 else
1515 LookForIvars = (Lookup.isSingleResult() &&
1516 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
1517 (Lookup.getAsSingle<VarDecl>() != 0));
1518 if (!LookForIvars)
1519 return 0;
1520
1521 ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1522 if (!IDecl)
1523 return 0;
1524 ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1525 if (!ClassImpDecl)
1526 return 0;
1527 bool DynamicImplSeen = false;
1528 ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
1529 if (!property)
1530 return 0;
1531 if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
1532 DynamicImplSeen =
1533 (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
1534 // property implementation has a designated ivar. No need to assume a new
1535 // one.
1536 if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
1537 return 0;
1538 }
1539 if (!DynamicImplSeen) {
1540 QualType PropType = Context.getCanonicalType(property->getType());
1541 ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl,
1542 NameLoc, NameLoc,
1543 II, PropType, /*Dinfo=*/0,
1544 ObjCIvarDecl::Private,
1545 (Expr *)0, true);
1546 ClassImpDecl->addDecl(Ivar);
1547 IDecl->makeDeclVisibleInContext(Ivar, false);
1548 property->setPropertyIvarDecl(Ivar);
1549 return Ivar;
1550 }
1551 return 0;
1552 }
1553
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,UnqualifiedId & Id,bool HasTrailingLParen,bool isAddressOfOperand)1554 ExprResult Sema::ActOnIdExpression(Scope *S,
1555 CXXScopeSpec &SS,
1556 UnqualifiedId &Id,
1557 bool HasTrailingLParen,
1558 bool isAddressOfOperand) {
1559 assert(!(isAddressOfOperand && HasTrailingLParen) &&
1560 "cannot be direct & operand and have a trailing lparen");
1561
1562 if (SS.isInvalid())
1563 return ExprError();
1564
1565 TemplateArgumentListInfo TemplateArgsBuffer;
1566
1567 // Decompose the UnqualifiedId into the following data.
1568 DeclarationNameInfo NameInfo;
1569 const TemplateArgumentListInfo *TemplateArgs;
1570 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1571
1572 DeclarationName Name = NameInfo.getName();
1573 IdentifierInfo *II = Name.getAsIdentifierInfo();
1574 SourceLocation NameLoc = NameInfo.getLoc();
1575
1576 // C++ [temp.dep.expr]p3:
1577 // An id-expression is type-dependent if it contains:
1578 // -- an identifier that was declared with a dependent type,
1579 // (note: handled after lookup)
1580 // -- a template-id that is dependent,
1581 // (note: handled in BuildTemplateIdExpr)
1582 // -- a conversion-function-id that specifies a dependent type,
1583 // -- a nested-name-specifier that contains a class-name that
1584 // names a dependent type.
1585 // Determine whether this is a member of an unknown specialization;
1586 // we need to handle these differently.
1587 bool DependentID = false;
1588 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1589 Name.getCXXNameType()->isDependentType()) {
1590 DependentID = true;
1591 } else if (SS.isSet()) {
1592 if (DeclContext *DC = computeDeclContext(SS, false)) {
1593 if (RequireCompleteDeclContext(SS, DC))
1594 return ExprError();
1595 } else {
1596 DependentID = true;
1597 }
1598 }
1599
1600 if (DependentID)
1601 return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1602 TemplateArgs);
1603
1604 bool IvarLookupFollowUp = false;
1605 // Perform the required lookup.
1606 LookupResult R(*this, NameInfo,
1607 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1608 ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1609 if (TemplateArgs) {
1610 // Lookup the template name again to correctly establish the context in
1611 // which it was found. This is really unfortunate as we already did the
1612 // lookup to determine that it was a template name in the first place. If
1613 // this becomes a performance hit, we can work harder to preserve those
1614 // results until we get here but it's likely not worth it.
1615 bool MemberOfUnknownSpecialization;
1616 LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1617 MemberOfUnknownSpecialization);
1618
1619 if (MemberOfUnknownSpecialization ||
1620 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1621 return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1622 TemplateArgs);
1623 } else {
1624 IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1625 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1626
1627 // If the result might be in a dependent base class, this is a dependent
1628 // id-expression.
1629 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1630 return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1631 TemplateArgs);
1632
1633 // If this reference is in an Objective-C method, then we need to do
1634 // some special Objective-C lookup, too.
1635 if (IvarLookupFollowUp) {
1636 ExprResult E(LookupInObjCMethod(R, S, II, true));
1637 if (E.isInvalid())
1638 return ExprError();
1639
1640 if (Expr *Ex = E.takeAs<Expr>())
1641 return Owned(Ex);
1642
1643 // Synthesize ivars lazily.
1644 if (getLangOptions().ObjCDefaultSynthProperties &&
1645 getLangOptions().ObjCNonFragileABI2) {
1646 if (SynthesizeProvisionalIvar(R, II, NameLoc)) {
1647 if (const ObjCPropertyDecl *Property =
1648 canSynthesizeProvisionalIvar(II)) {
1649 Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
1650 Diag(Property->getLocation(), diag::note_property_declare);
1651 }
1652 return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
1653 isAddressOfOperand);
1654 }
1655 }
1656 // for further use, this must be set to false if in class method.
1657 IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
1658 }
1659 }
1660
1661 if (R.isAmbiguous())
1662 return ExprError();
1663
1664 // Determine whether this name might be a candidate for
1665 // argument-dependent lookup.
1666 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1667
1668 if (R.empty() && !ADL) {
1669 // Otherwise, this could be an implicitly declared function reference (legal
1670 // in C90, extension in C99, forbidden in C++).
1671 if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1672 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1673 if (D) R.addDecl(D);
1674 }
1675
1676 // If this name wasn't predeclared and if this is not a function
1677 // call, diagnose the problem.
1678 if (R.empty()) {
1679 if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1680 return ExprError();
1681
1682 assert(!R.empty() &&
1683 "DiagnoseEmptyLookup returned false but added no results");
1684
1685 // If we found an Objective-C instance variable, let
1686 // LookupInObjCMethod build the appropriate expression to
1687 // reference the ivar.
1688 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1689 R.clear();
1690 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1691 assert(E.isInvalid() || E.get());
1692 return move(E);
1693 }
1694 }
1695 }
1696
1697 // This is guaranteed from this point on.
1698 assert(!R.empty() || ADL);
1699
1700 // Check whether this might be a C++ implicit instance member access.
1701 // C++ [class.mfct.non-static]p3:
1702 // When an id-expression that is not part of a class member access
1703 // syntax and not used to form a pointer to member is used in the
1704 // body of a non-static member function of class X, if name lookup
1705 // resolves the name in the id-expression to a non-static non-type
1706 // member of some class C, the id-expression is transformed into a
1707 // class member access expression using (*this) as the
1708 // postfix-expression to the left of the . operator.
1709 //
1710 // But we don't actually need to do this for '&' operands if R
1711 // resolved to a function or overloaded function set, because the
1712 // expression is ill-formed if it actually works out to be a
1713 // non-static member function:
1714 //
1715 // C++ [expr.ref]p4:
1716 // Otherwise, if E1.E2 refers to a non-static member function. . .
1717 // [t]he expression can be used only as the left-hand operand of a
1718 // member function call.
1719 //
1720 // There are other safeguards against such uses, but it's important
1721 // to get this right here so that we don't end up making a
1722 // spuriously dependent expression if we're inside a dependent
1723 // instance method.
1724 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1725 bool MightBeImplicitMember;
1726 if (!isAddressOfOperand)
1727 MightBeImplicitMember = true;
1728 else if (!SS.isEmpty())
1729 MightBeImplicitMember = false;
1730 else if (R.isOverloadedResult())
1731 MightBeImplicitMember = false;
1732 else if (R.isUnresolvableResult())
1733 MightBeImplicitMember = true;
1734 else
1735 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1736 isa<IndirectFieldDecl>(R.getFoundDecl());
1737
1738 if (MightBeImplicitMember)
1739 return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1740 }
1741
1742 if (TemplateArgs)
1743 return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1744
1745 return BuildDeclarationNameExpr(SS, R, ADL);
1746 }
1747
1748 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1749 /// declaration name, generally during template instantiation.
1750 /// There's a large number of things which don't need to be done along
1751 /// this path.
1752 ExprResult
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo)1753 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1754 const DeclarationNameInfo &NameInfo) {
1755 DeclContext *DC;
1756 if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1757 return BuildDependentDeclRefExpr(SS, NameInfo, 0);
1758
1759 if (RequireCompleteDeclContext(SS, DC))
1760 return ExprError();
1761
1762 LookupResult R(*this, NameInfo, LookupOrdinaryName);
1763 LookupQualifiedName(R, DC);
1764
1765 if (R.isAmbiguous())
1766 return ExprError();
1767
1768 if (R.empty()) {
1769 Diag(NameInfo.getLoc(), diag::err_no_member)
1770 << NameInfo.getName() << DC << SS.getRange();
1771 return ExprError();
1772 }
1773
1774 return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1775 }
1776
1777 /// LookupInObjCMethod - The parser has read a name in, and Sema has
1778 /// detected that we're currently inside an ObjC method. Perform some
1779 /// additional lookup.
1780 ///
1781 /// Ideally, most of this would be done by lookup, but there's
1782 /// actually quite a lot of extra work involved.
1783 ///
1784 /// Returns a null sentinel to indicate trivial success.
1785 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)1786 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1787 IdentifierInfo *II, bool AllowBuiltinCreation) {
1788 SourceLocation Loc = Lookup.getNameLoc();
1789 ObjCMethodDecl *CurMethod = getCurMethodDecl();
1790
1791 // There are two cases to handle here. 1) scoped lookup could have failed,
1792 // in which case we should look for an ivar. 2) scoped lookup could have
1793 // found a decl, but that decl is outside the current instance method (i.e.
1794 // a global variable). In these two cases, we do a lookup for an ivar with
1795 // this name, if the lookup sucedes, we replace it our current decl.
1796
1797 // If we're in a class method, we don't normally want to look for
1798 // ivars. But if we don't find anything else, and there's an
1799 // ivar, that's an error.
1800 bool IsClassMethod = CurMethod->isClassMethod();
1801
1802 bool LookForIvars;
1803 if (Lookup.empty())
1804 LookForIvars = true;
1805 else if (IsClassMethod)
1806 LookForIvars = false;
1807 else
1808 LookForIvars = (Lookup.isSingleResult() &&
1809 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1810 ObjCInterfaceDecl *IFace = 0;
1811 if (LookForIvars) {
1812 IFace = CurMethod->getClassInterface();
1813 ObjCInterfaceDecl *ClassDeclared;
1814 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1815 // Diagnose using an ivar in a class method.
1816 if (IsClassMethod)
1817 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1818 << IV->getDeclName());
1819
1820 // If we're referencing an invalid decl, just return this as a silent
1821 // error node. The error diagnostic was already emitted on the decl.
1822 if (IV->isInvalidDecl())
1823 return ExprError();
1824
1825 // Check if referencing a field with __attribute__((deprecated)).
1826 if (DiagnoseUseOfDecl(IV, Loc))
1827 return ExprError();
1828
1829 // Diagnose the use of an ivar outside of the declaring class.
1830 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1831 ClassDeclared != IFace)
1832 Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1833
1834 // FIXME: This should use a new expr for a direct reference, don't
1835 // turn this into Self->ivar, just return a BareIVarExpr or something.
1836 IdentifierInfo &II = Context.Idents.get("self");
1837 UnqualifiedId SelfName;
1838 SelfName.setIdentifier(&II, SourceLocation());
1839 SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1840 CXXScopeSpec SelfScopeSpec;
1841 ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1842 SelfName, false, false);
1843 if (SelfExpr.isInvalid())
1844 return ExprError();
1845
1846 SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1847 if (SelfExpr.isInvalid())
1848 return ExprError();
1849
1850 MarkDeclarationReferenced(Loc, IV);
1851 return Owned(new (Context)
1852 ObjCIvarRefExpr(IV, IV->getType(), Loc,
1853 SelfExpr.take(), true, true));
1854 }
1855 } else if (CurMethod->isInstanceMethod()) {
1856 // We should warn if a local variable hides an ivar.
1857 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1858 ObjCInterfaceDecl *ClassDeclared;
1859 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1860 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1861 IFace == ClassDeclared)
1862 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1863 }
1864 }
1865
1866 if (Lookup.empty() && II && AllowBuiltinCreation) {
1867 // FIXME. Consolidate this with similar code in LookupName.
1868 if (unsigned BuiltinID = II->getBuiltinID()) {
1869 if (!(getLangOptions().CPlusPlus &&
1870 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1871 NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1872 S, Lookup.isForRedeclaration(),
1873 Lookup.getNameLoc());
1874 if (D) Lookup.addDecl(D);
1875 }
1876 }
1877 }
1878 // Sentinel value saying that we didn't do anything special.
1879 return Owned((Expr*) 0);
1880 }
1881
1882 /// \brief Cast a base object to a member's actual type.
1883 ///
1884 /// Logically this happens in three phases:
1885 ///
1886 /// * First we cast from the base type to the naming class.
1887 /// The naming class is the class into which we were looking
1888 /// when we found the member; it's the qualifier type if a
1889 /// qualifier was provided, and otherwise it's the base type.
1890 ///
1891 /// * Next we cast from the naming class to the declaring class.
1892 /// If the member we found was brought into a class's scope by
1893 /// a using declaration, this is that class; otherwise it's
1894 /// the class declaring the member.
1895 ///
1896 /// * Finally we cast from the declaring class to the "true"
1897 /// declaring class of the member. This conversion does not
1898 /// obey access control.
1899 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)1900 Sema::PerformObjectMemberConversion(Expr *From,
1901 NestedNameSpecifier *Qualifier,
1902 NamedDecl *FoundDecl,
1903 NamedDecl *Member) {
1904 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1905 if (!RD)
1906 return Owned(From);
1907
1908 QualType DestRecordType;
1909 QualType DestType;
1910 QualType FromRecordType;
1911 QualType FromType = From->getType();
1912 bool PointerConversions = false;
1913 if (isa<FieldDecl>(Member)) {
1914 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1915
1916 if (FromType->getAs<PointerType>()) {
1917 DestType = Context.getPointerType(DestRecordType);
1918 FromRecordType = FromType->getPointeeType();
1919 PointerConversions = true;
1920 } else {
1921 DestType = DestRecordType;
1922 FromRecordType = FromType;
1923 }
1924 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1925 if (Method->isStatic())
1926 return Owned(From);
1927
1928 DestType = Method->getThisType(Context);
1929 DestRecordType = DestType->getPointeeType();
1930
1931 if (FromType->getAs<PointerType>()) {
1932 FromRecordType = FromType->getPointeeType();
1933 PointerConversions = true;
1934 } else {
1935 FromRecordType = FromType;
1936 DestType = DestRecordType;
1937 }
1938 } else {
1939 // No conversion necessary.
1940 return Owned(From);
1941 }
1942
1943 if (DestType->isDependentType() || FromType->isDependentType())
1944 return Owned(From);
1945
1946 // If the unqualified types are the same, no conversion is necessary.
1947 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1948 return Owned(From);
1949
1950 SourceRange FromRange = From->getSourceRange();
1951 SourceLocation FromLoc = FromRange.getBegin();
1952
1953 ExprValueKind VK = CastCategory(From);
1954
1955 // C++ [class.member.lookup]p8:
1956 // [...] Ambiguities can often be resolved by qualifying a name with its
1957 // class name.
1958 //
1959 // If the member was a qualified name and the qualified referred to a
1960 // specific base subobject type, we'll cast to that intermediate type
1961 // first and then to the object in which the member is declared. That allows
1962 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1963 //
1964 // class Base { public: int x; };
1965 // class Derived1 : public Base { };
1966 // class Derived2 : public Base { };
1967 // class VeryDerived : public Derived1, public Derived2 { void f(); };
1968 //
1969 // void VeryDerived::f() {
1970 // x = 17; // error: ambiguous base subobjects
1971 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
1972 // }
1973 if (Qualifier) {
1974 QualType QType = QualType(Qualifier->getAsType(), 0);
1975 assert(!QType.isNull() && "lookup done with dependent qualifier?");
1976 assert(QType->isRecordType() && "lookup done with non-record type");
1977
1978 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1979
1980 // In C++98, the qualifier type doesn't actually have to be a base
1981 // type of the object type, in which case we just ignore it.
1982 // Otherwise build the appropriate casts.
1983 if (IsDerivedFrom(FromRecordType, QRecordType)) {
1984 CXXCastPath BasePath;
1985 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1986 FromLoc, FromRange, &BasePath))
1987 return ExprError();
1988
1989 if (PointerConversions)
1990 QType = Context.getPointerType(QType);
1991 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
1992 VK, &BasePath).take();
1993
1994 FromType = QType;
1995 FromRecordType = QRecordType;
1996
1997 // If the qualifier type was the same as the destination type,
1998 // we're done.
1999 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2000 return Owned(From);
2001 }
2002 }
2003
2004 bool IgnoreAccess = false;
2005
2006 // If we actually found the member through a using declaration, cast
2007 // down to the using declaration's type.
2008 //
2009 // Pointer equality is fine here because only one declaration of a
2010 // class ever has member declarations.
2011 if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2012 assert(isa<UsingShadowDecl>(FoundDecl));
2013 QualType URecordType = Context.getTypeDeclType(
2014 cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2015
2016 // We only need to do this if the naming-class to declaring-class
2017 // conversion is non-trivial.
2018 if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2019 assert(IsDerivedFrom(FromRecordType, URecordType));
2020 CXXCastPath BasePath;
2021 if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2022 FromLoc, FromRange, &BasePath))
2023 return ExprError();
2024
2025 QualType UType = URecordType;
2026 if (PointerConversions)
2027 UType = Context.getPointerType(UType);
2028 From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2029 VK, &BasePath).take();
2030 FromType = UType;
2031 FromRecordType = URecordType;
2032 }
2033
2034 // We don't do access control for the conversion from the
2035 // declaring class to the true declaring class.
2036 IgnoreAccess = true;
2037 }
2038
2039 CXXCastPath BasePath;
2040 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2041 FromLoc, FromRange, &BasePath,
2042 IgnoreAccess))
2043 return ExprError();
2044
2045 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2046 VK, &BasePath);
2047 }
2048
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)2049 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2050 const LookupResult &R,
2051 bool HasTrailingLParen) {
2052 // Only when used directly as the postfix-expression of a call.
2053 if (!HasTrailingLParen)
2054 return false;
2055
2056 // Never if a scope specifier was provided.
2057 if (SS.isSet())
2058 return false;
2059
2060 // Only in C++ or ObjC++.
2061 if (!getLangOptions().CPlusPlus)
2062 return false;
2063
2064 // Turn off ADL when we find certain kinds of declarations during
2065 // normal lookup:
2066 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2067 NamedDecl *D = *I;
2068
2069 // C++0x [basic.lookup.argdep]p3:
2070 // -- a declaration of a class member
2071 // Since using decls preserve this property, we check this on the
2072 // original decl.
2073 if (D->isCXXClassMember())
2074 return false;
2075
2076 // C++0x [basic.lookup.argdep]p3:
2077 // -- a block-scope function declaration that is not a
2078 // using-declaration
2079 // NOTE: we also trigger this for function templates (in fact, we
2080 // don't check the decl type at all, since all other decl types
2081 // turn off ADL anyway).
2082 if (isa<UsingShadowDecl>(D))
2083 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2084 else if (D->getDeclContext()->isFunctionOrMethod())
2085 return false;
2086
2087 // C++0x [basic.lookup.argdep]p3:
2088 // -- a declaration that is neither a function or a function
2089 // template
2090 // And also for builtin functions.
2091 if (isa<FunctionDecl>(D)) {
2092 FunctionDecl *FDecl = cast<FunctionDecl>(D);
2093
2094 // But also builtin functions.
2095 if (FDecl->getBuiltinID() && FDecl->isImplicit())
2096 return false;
2097 } else if (!isa<FunctionTemplateDecl>(D))
2098 return false;
2099 }
2100
2101 return true;
2102 }
2103
2104
2105 /// Diagnoses obvious problems with the use of the given declaration
2106 /// as an expression. This is only actually called for lookups that
2107 /// were not overloaded, and it doesn't promise that the declaration
2108 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)2109 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2110 if (isa<TypedefNameDecl>(D)) {
2111 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2112 return true;
2113 }
2114
2115 if (isa<ObjCInterfaceDecl>(D)) {
2116 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2117 return true;
2118 }
2119
2120 if (isa<NamespaceDecl>(D)) {
2121 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2122 return true;
2123 }
2124
2125 return false;
2126 }
2127
2128 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL)2129 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2130 LookupResult &R,
2131 bool NeedsADL) {
2132 // If this is a single, fully-resolved result and we don't need ADL,
2133 // just build an ordinary singleton decl ref.
2134 if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2135 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2136 R.getFoundDecl());
2137
2138 // We only need to check the declaration if there's exactly one
2139 // result, because in the overloaded case the results can only be
2140 // functions and function templates.
2141 if (R.isSingleResult() &&
2142 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2143 return ExprError();
2144
2145 // Otherwise, just build an unresolved lookup expression. Suppress
2146 // any lookup-related diagnostics; we'll hash these out later, when
2147 // we've picked a target.
2148 R.suppressDiagnostics();
2149
2150 UnresolvedLookupExpr *ULE
2151 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2152 SS.getWithLocInContext(Context),
2153 R.getLookupNameInfo(),
2154 NeedsADL, R.isOverloadedResult(),
2155 R.begin(), R.end());
2156
2157 return Owned(ULE);
2158 }
2159
2160 /// \brief Complete semantic analysis for a reference to the given declaration.
2161 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D)2162 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2163 const DeclarationNameInfo &NameInfo,
2164 NamedDecl *D) {
2165 assert(D && "Cannot refer to a NULL declaration");
2166 assert(!isa<FunctionTemplateDecl>(D) &&
2167 "Cannot refer unambiguously to a function template");
2168
2169 SourceLocation Loc = NameInfo.getLoc();
2170 if (CheckDeclInExpr(*this, Loc, D))
2171 return ExprError();
2172
2173 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2174 // Specifically diagnose references to class templates that are missing
2175 // a template argument list.
2176 Diag(Loc, diag::err_template_decl_ref)
2177 << Template << SS.getRange();
2178 Diag(Template->getLocation(), diag::note_template_decl_here);
2179 return ExprError();
2180 }
2181
2182 // Make sure that we're referring to a value.
2183 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2184 if (!VD) {
2185 Diag(Loc, diag::err_ref_non_value)
2186 << D << SS.getRange();
2187 Diag(D->getLocation(), diag::note_declared_at);
2188 return ExprError();
2189 }
2190
2191 // Check whether this declaration can be used. Note that we suppress
2192 // this check when we're going to perform argument-dependent lookup
2193 // on this function name, because this might not be the function
2194 // that overload resolution actually selects.
2195 if (DiagnoseUseOfDecl(VD, Loc))
2196 return ExprError();
2197
2198 // Only create DeclRefExpr's for valid Decl's.
2199 if (VD->isInvalidDecl())
2200 return ExprError();
2201
2202 // Handle members of anonymous structs and unions. If we got here,
2203 // and the reference is to a class member indirect field, then this
2204 // must be the subject of a pointer-to-member expression.
2205 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2206 if (!indirectField->isCXXClassMember())
2207 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2208 indirectField);
2209
2210 // If the identifier reference is inside a block, and it refers to a value
2211 // that is outside the block, create a BlockDeclRefExpr instead of a
2212 // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
2213 // the block is formed.
2214 //
2215 // We do not do this for things like enum constants, global variables, etc,
2216 // as they do not get snapshotted.
2217 //
2218 switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
2219 case CR_Error:
2220 return ExprError();
2221
2222 case CR_Capture:
2223 assert(!SS.isSet() && "referenced local variable with scope specifier?");
2224 return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
2225
2226 case CR_CaptureByRef:
2227 assert(!SS.isSet() && "referenced local variable with scope specifier?");
2228 return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
2229
2230 case CR_NoCapture: {
2231 // If this reference is not in a block or if the referenced
2232 // variable is within the block, create a normal DeclRefExpr.
2233
2234 QualType type = VD->getType();
2235 ExprValueKind valueKind = VK_RValue;
2236
2237 switch (D->getKind()) {
2238 // Ignore all the non-ValueDecl kinds.
2239 #define ABSTRACT_DECL(kind)
2240 #define VALUE(type, base)
2241 #define DECL(type, base) \
2242 case Decl::type:
2243 #include "clang/AST/DeclNodes.inc"
2244 llvm_unreachable("invalid value decl kind");
2245 return ExprError();
2246
2247 // These shouldn't make it here.
2248 case Decl::ObjCAtDefsField:
2249 case Decl::ObjCIvar:
2250 llvm_unreachable("forming non-member reference to ivar?");
2251 return ExprError();
2252
2253 // Enum constants are always r-values and never references.
2254 // Unresolved using declarations are dependent.
2255 case Decl::EnumConstant:
2256 case Decl::UnresolvedUsingValue:
2257 valueKind = VK_RValue;
2258 break;
2259
2260 // Fields and indirect fields that got here must be for
2261 // pointer-to-member expressions; we just call them l-values for
2262 // internal consistency, because this subexpression doesn't really
2263 // exist in the high-level semantics.
2264 case Decl::Field:
2265 case Decl::IndirectField:
2266 assert(getLangOptions().CPlusPlus &&
2267 "building reference to field in C?");
2268
2269 // These can't have reference type in well-formed programs, but
2270 // for internal consistency we do this anyway.
2271 type = type.getNonReferenceType();
2272 valueKind = VK_LValue;
2273 break;
2274
2275 // Non-type template parameters are either l-values or r-values
2276 // depending on the type.
2277 case Decl::NonTypeTemplateParm: {
2278 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2279 type = reftype->getPointeeType();
2280 valueKind = VK_LValue; // even if the parameter is an r-value reference
2281 break;
2282 }
2283
2284 // For non-references, we need to strip qualifiers just in case
2285 // the template parameter was declared as 'const int' or whatever.
2286 valueKind = VK_RValue;
2287 type = type.getUnqualifiedType();
2288 break;
2289 }
2290
2291 case Decl::Var:
2292 // In C, "extern void blah;" is valid and is an r-value.
2293 if (!getLangOptions().CPlusPlus &&
2294 !type.hasQualifiers() &&
2295 type->isVoidType()) {
2296 valueKind = VK_RValue;
2297 break;
2298 }
2299 // fallthrough
2300
2301 case Decl::ImplicitParam:
2302 case Decl::ParmVar:
2303 // These are always l-values.
2304 valueKind = VK_LValue;
2305 type = type.getNonReferenceType();
2306 break;
2307
2308 case Decl::Function: {
2309 const FunctionType *fty = type->castAs<FunctionType>();
2310
2311 // If we're referring to a function with an __unknown_anytype
2312 // result type, make the entire expression __unknown_anytype.
2313 if (fty->getResultType() == Context.UnknownAnyTy) {
2314 type = Context.UnknownAnyTy;
2315 valueKind = VK_RValue;
2316 break;
2317 }
2318
2319 // Functions are l-values in C++.
2320 if (getLangOptions().CPlusPlus) {
2321 valueKind = VK_LValue;
2322 break;
2323 }
2324
2325 // C99 DR 316 says that, if a function type comes from a
2326 // function definition (without a prototype), that type is only
2327 // used for checking compatibility. Therefore, when referencing
2328 // the function, we pretend that we don't have the full function
2329 // type.
2330 if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2331 isa<FunctionProtoType>(fty))
2332 type = Context.getFunctionNoProtoType(fty->getResultType(),
2333 fty->getExtInfo());
2334
2335 // Functions are r-values in C.
2336 valueKind = VK_RValue;
2337 break;
2338 }
2339
2340 case Decl::CXXMethod:
2341 // If we're referring to a method with an __unknown_anytype
2342 // result type, make the entire expression __unknown_anytype.
2343 // This should only be possible with a type written directly.
2344 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(VD->getType()))
2345 if (proto->getResultType() == Context.UnknownAnyTy) {
2346 type = Context.UnknownAnyTy;
2347 valueKind = VK_RValue;
2348 break;
2349 }
2350
2351 // C++ methods are l-values if static, r-values if non-static.
2352 if (cast<CXXMethodDecl>(VD)->isStatic()) {
2353 valueKind = VK_LValue;
2354 break;
2355 }
2356 // fallthrough
2357
2358 case Decl::CXXConversion:
2359 case Decl::CXXDestructor:
2360 case Decl::CXXConstructor:
2361 valueKind = VK_RValue;
2362 break;
2363 }
2364
2365 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2366 }
2367
2368 }
2369
2370 llvm_unreachable("unknown capture result");
2371 return ExprError();
2372 }
2373
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)2374 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2375 PredefinedExpr::IdentType IT;
2376
2377 switch (Kind) {
2378 default: assert(0 && "Unknown simple primary expr!");
2379 case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2380 case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2381 case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2382 }
2383
2384 // Pre-defined identifiers are of type char[x], where x is the length of the
2385 // string.
2386
2387 Decl *currentDecl = getCurFunctionOrMethodDecl();
2388 if (!currentDecl && getCurBlock())
2389 currentDecl = getCurBlock()->TheDecl;
2390 if (!currentDecl) {
2391 Diag(Loc, diag::ext_predef_outside_function);
2392 currentDecl = Context.getTranslationUnitDecl();
2393 }
2394
2395 QualType ResTy;
2396 if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2397 ResTy = Context.DependentTy;
2398 } else {
2399 unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2400
2401 llvm::APInt LengthI(32, Length + 1);
2402 ResTy = Context.CharTy.withConst();
2403 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2404 }
2405 return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2406 }
2407
ActOnCharacterConstant(const Token & Tok)2408 ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
2409 llvm::SmallString<16> CharBuffer;
2410 bool Invalid = false;
2411 llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2412 if (Invalid)
2413 return ExprError();
2414
2415 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2416 PP);
2417 if (Literal.hadError())
2418 return ExprError();
2419
2420 QualType Ty;
2421 if (!getLangOptions().CPlusPlus)
2422 Ty = Context.IntTy; // 'x' and L'x' -> int in C.
2423 else if (Literal.isWide())
2424 Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
2425 else if (Literal.isMultiChar())
2426 Ty = Context.IntTy; // 'wxyz' -> int in C++.
2427 else
2428 Ty = Context.CharTy; // 'x' -> char in C++
2429
2430 return Owned(new (Context) CharacterLiteral(Literal.getValue(),
2431 Literal.isWide(),
2432 Ty, Tok.getLocation()));
2433 }
2434
ActOnNumericConstant(const Token & Tok)2435 ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
2436 // Fast path for a single digit (which is quite common). A single digit
2437 // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
2438 if (Tok.getLength() == 1) {
2439 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2440 unsigned IntSize = Context.Target.getIntWidth();
2441 return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
2442 Context.IntTy, Tok.getLocation()));
2443 }
2444
2445 llvm::SmallString<512> IntegerBuffer;
2446 // Add padding so that NumericLiteralParser can overread by one character.
2447 IntegerBuffer.resize(Tok.getLength()+1);
2448 const char *ThisTokBegin = &IntegerBuffer[0];
2449
2450 // Get the spelling of the token, which eliminates trigraphs, etc.
2451 bool Invalid = false;
2452 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2453 if (Invalid)
2454 return ExprError();
2455
2456 NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2457 Tok.getLocation(), PP);
2458 if (Literal.hadError)
2459 return ExprError();
2460
2461 Expr *Res;
2462
2463 if (Literal.isFloatingLiteral()) {
2464 QualType Ty;
2465 if (Literal.isFloat)
2466 Ty = Context.FloatTy;
2467 else if (!Literal.isLong)
2468 Ty = Context.DoubleTy;
2469 else
2470 Ty = Context.LongDoubleTy;
2471
2472 const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
2473
2474 using llvm::APFloat;
2475 APFloat Val(Format);
2476
2477 APFloat::opStatus result = Literal.GetFloatValue(Val);
2478
2479 // Overflow is always an error, but underflow is only an error if
2480 // we underflowed to zero (APFloat reports denormals as underflow).
2481 if ((result & APFloat::opOverflow) ||
2482 ((result & APFloat::opUnderflow) && Val.isZero())) {
2483 unsigned diagnostic;
2484 llvm::SmallString<20> buffer;
2485 if (result & APFloat::opOverflow) {
2486 diagnostic = diag::warn_float_overflow;
2487 APFloat::getLargest(Format).toString(buffer);
2488 } else {
2489 diagnostic = diag::warn_float_underflow;
2490 APFloat::getSmallest(Format).toString(buffer);
2491 }
2492
2493 Diag(Tok.getLocation(), diagnostic)
2494 << Ty
2495 << llvm::StringRef(buffer.data(), buffer.size());
2496 }
2497
2498 bool isExact = (result == APFloat::opOK);
2499 Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
2500
2501 if (Ty == Context.DoubleTy) {
2502 if (getLangOptions().SinglePrecisionConstants) {
2503 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2504 } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2505 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2506 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2507 }
2508 }
2509 } else if (!Literal.isIntegerLiteral()) {
2510 return ExprError();
2511 } else {
2512 QualType Ty;
2513
2514 // long long is a C99 feature.
2515 if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
2516 Literal.isLongLong)
2517 Diag(Tok.getLocation(), diag::ext_longlong);
2518
2519 // Get the value in the widest-possible width.
2520 llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
2521
2522 if (Literal.GetIntegerValue(ResultVal)) {
2523 // If this value didn't fit into uintmax_t, warn and force to ull.
2524 Diag(Tok.getLocation(), diag::warn_integer_too_large);
2525 Ty = Context.UnsignedLongLongTy;
2526 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2527 "long long is not intmax_t?");
2528 } else {
2529 // If this value fits into a ULL, try to figure out what else it fits into
2530 // according to the rules of C99 6.4.4.1p5.
2531
2532 // Octal, Hexadecimal, and integers with a U suffix are allowed to
2533 // be an unsigned int.
2534 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2535
2536 // Check from smallest to largest, picking the smallest type we can.
2537 unsigned Width = 0;
2538 if (!Literal.isLong && !Literal.isLongLong) {
2539 // Are int/unsigned possibilities?
2540 unsigned IntSize = Context.Target.getIntWidth();
2541
2542 // Does it fit in a unsigned int?
2543 if (ResultVal.isIntN(IntSize)) {
2544 // Does it fit in a signed int?
2545 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2546 Ty = Context.IntTy;
2547 else if (AllowUnsigned)
2548 Ty = Context.UnsignedIntTy;
2549 Width = IntSize;
2550 }
2551 }
2552
2553 // Are long/unsigned long possibilities?
2554 if (Ty.isNull() && !Literal.isLongLong) {
2555 unsigned LongSize = Context.Target.getLongWidth();
2556
2557 // Does it fit in a unsigned long?
2558 if (ResultVal.isIntN(LongSize)) {
2559 // Does it fit in a signed long?
2560 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2561 Ty = Context.LongTy;
2562 else if (AllowUnsigned)
2563 Ty = Context.UnsignedLongTy;
2564 Width = LongSize;
2565 }
2566 }
2567
2568 // Finally, check long long if needed.
2569 if (Ty.isNull()) {
2570 unsigned LongLongSize = Context.Target.getLongLongWidth();
2571
2572 // Does it fit in a unsigned long long?
2573 if (ResultVal.isIntN(LongLongSize)) {
2574 // Does it fit in a signed long long?
2575 // To be compatible with MSVC, hex integer literals ending with the
2576 // LL or i64 suffix are always signed in Microsoft mode.
2577 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2578 (getLangOptions().Microsoft && Literal.isLongLong)))
2579 Ty = Context.LongLongTy;
2580 else if (AllowUnsigned)
2581 Ty = Context.UnsignedLongLongTy;
2582 Width = LongLongSize;
2583 }
2584 }
2585
2586 // If we still couldn't decide a type, we probably have something that
2587 // does not fit in a signed long long, but has no U suffix.
2588 if (Ty.isNull()) {
2589 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2590 Ty = Context.UnsignedLongLongTy;
2591 Width = Context.Target.getLongLongWidth();
2592 }
2593
2594 if (ResultVal.getBitWidth() != Width)
2595 ResultVal = ResultVal.trunc(Width);
2596 }
2597 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2598 }
2599
2600 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2601 if (Literal.isImaginary)
2602 Res = new (Context) ImaginaryLiteral(Res,
2603 Context.getComplexType(Res->getType()));
2604
2605 return Owned(Res);
2606 }
2607
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)2608 ExprResult Sema::ActOnParenExpr(SourceLocation L,
2609 SourceLocation R, Expr *E) {
2610 assert((E != 0) && "ActOnParenExpr() missing expr");
2611 return Owned(new (Context) ParenExpr(L, R, E));
2612 }
2613
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)2614 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2615 SourceLocation Loc,
2616 SourceRange ArgRange) {
2617 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2618 // scalar or vector data type argument..."
2619 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2620 // type (C99 6.2.5p18) or void.
2621 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2622 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2623 << T << ArgRange;
2624 return true;
2625 }
2626
2627 assert((T->isVoidType() || !T->isIncompleteType()) &&
2628 "Scalar types should always be complete");
2629 return false;
2630 }
2631
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)2632 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2633 SourceLocation Loc,
2634 SourceRange ArgRange,
2635 UnaryExprOrTypeTrait TraitKind) {
2636 // C99 6.5.3.4p1:
2637 if (T->isFunctionType()) {
2638 // alignof(function) is allowed as an extension.
2639 if (TraitKind == UETT_SizeOf)
2640 S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2641 return false;
2642 }
2643
2644 // Allow sizeof(void)/alignof(void) as an extension.
2645 if (T->isVoidType()) {
2646 S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2647 return false;
2648 }
2649
2650 return true;
2651 }
2652
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)2653 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2654 SourceLocation Loc,
2655 SourceRange ArgRange,
2656 UnaryExprOrTypeTrait TraitKind) {
2657 // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2658 if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
2659 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2660 << T << (TraitKind == UETT_SizeOf)
2661 << ArgRange;
2662 return true;
2663 }
2664
2665 return false;
2666 }
2667
2668 /// \brief Check the constrains on expression operands to unary type expression
2669 /// and type traits.
2670 ///
2671 /// Completes any types necessary and validates the constraints on the operand
2672 /// expression. The logic mostly mirrors the type-based overload, but may modify
2673 /// the expression as it completes the type for that expression through template
2674 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * Op,UnaryExprOrTypeTrait ExprKind)2675 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *Op,
2676 UnaryExprOrTypeTrait ExprKind) {
2677 QualType ExprTy = Op->getType();
2678
2679 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2680 // the result is the size of the referenced type."
2681 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2682 // result shall be the alignment of the referenced type."
2683 if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2684 ExprTy = Ref->getPointeeType();
2685
2686 if (ExprKind == UETT_VecStep)
2687 return CheckVecStepTraitOperandType(*this, ExprTy, Op->getExprLoc(),
2688 Op->getSourceRange());
2689
2690 // Whitelist some types as extensions
2691 if (!CheckExtensionTraitOperandType(*this, ExprTy, Op->getExprLoc(),
2692 Op->getSourceRange(), ExprKind))
2693 return false;
2694
2695 if (RequireCompleteExprType(Op,
2696 PDiag(diag::err_sizeof_alignof_incomplete_type)
2697 << ExprKind << Op->getSourceRange(),
2698 std::make_pair(SourceLocation(), PDiag(0))))
2699 return true;
2700
2701 // Completeing the expression's type may have changed it.
2702 ExprTy = Op->getType();
2703 if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2704 ExprTy = Ref->getPointeeType();
2705
2706 if (CheckObjCTraitOperandConstraints(*this, ExprTy, Op->getExprLoc(),
2707 Op->getSourceRange(), ExprKind))
2708 return true;
2709
2710 if (ExprKind == UETT_SizeOf) {
2711 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Op->IgnoreParens())) {
2712 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2713 QualType OType = PVD->getOriginalType();
2714 QualType Type = PVD->getType();
2715 if (Type->isPointerType() && OType->isArrayType()) {
2716 Diag(Op->getExprLoc(), diag::warn_sizeof_array_param)
2717 << Type << OType;
2718 Diag(PVD->getLocation(), diag::note_declared_at);
2719 }
2720 }
2721 }
2722 }
2723
2724 return false;
2725 }
2726
2727 /// \brief Check the constraints on operands to unary expression and type
2728 /// traits.
2729 ///
2730 /// This will complete any types necessary, and validate the various constraints
2731 /// on those operands.
2732 ///
2733 /// The UsualUnaryConversions() function is *not* called by this routine.
2734 /// C99 6.3.2.1p[2-4] all state:
2735 /// Except when it is the operand of the sizeof operator ...
2736 ///
2737 /// C++ [expr.sizeof]p4
2738 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
2739 /// standard conversions are not applied to the operand of sizeof.
2740 ///
2741 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType exprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)2742 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType,
2743 SourceLocation OpLoc,
2744 SourceRange ExprRange,
2745 UnaryExprOrTypeTrait ExprKind) {
2746 if (exprType->isDependentType())
2747 return false;
2748
2749 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2750 // the result is the size of the referenced type."
2751 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2752 // result shall be the alignment of the referenced type."
2753 if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2754 exprType = Ref->getPointeeType();
2755
2756 if (ExprKind == UETT_VecStep)
2757 return CheckVecStepTraitOperandType(*this, exprType, OpLoc, ExprRange);
2758
2759 // Whitelist some types as extensions
2760 if (!CheckExtensionTraitOperandType(*this, exprType, OpLoc, ExprRange,
2761 ExprKind))
2762 return false;
2763
2764 if (RequireCompleteType(OpLoc, exprType,
2765 PDiag(diag::err_sizeof_alignof_incomplete_type)
2766 << ExprKind << ExprRange))
2767 return true;
2768
2769 if (CheckObjCTraitOperandConstraints(*this, exprType, OpLoc, ExprRange,
2770 ExprKind))
2771 return true;
2772
2773 return false;
2774 }
2775
CheckAlignOfExpr(Sema & S,Expr * E)2776 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
2777 E = E->IgnoreParens();
2778
2779 // alignof decl is always ok.
2780 if (isa<DeclRefExpr>(E))
2781 return false;
2782
2783 // Cannot know anything else if the expression is dependent.
2784 if (E->isTypeDependent())
2785 return false;
2786
2787 if (E->getBitField()) {
2788 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
2789 << 1 << E->getSourceRange();
2790 return true;
2791 }
2792
2793 // Alignment of a field access is always okay, so long as it isn't a
2794 // bit-field.
2795 if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2796 if (isa<FieldDecl>(ME->getMemberDecl()))
2797 return false;
2798
2799 return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
2800 }
2801
CheckVecStepExpr(Expr * E)2802 bool Sema::CheckVecStepExpr(Expr *E) {
2803 E = E->IgnoreParens();
2804
2805 // Cannot know anything else if the expression is dependent.
2806 if (E->isTypeDependent())
2807 return false;
2808
2809 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
2810 }
2811
2812 /// \brief Build a sizeof or alignof expression given a type operand.
2813 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)2814 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
2815 SourceLocation OpLoc,
2816 UnaryExprOrTypeTrait ExprKind,
2817 SourceRange R) {
2818 if (!TInfo)
2819 return ExprError();
2820
2821 QualType T = TInfo->getType();
2822
2823 if (!T->isDependentType() &&
2824 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
2825 return ExprError();
2826
2827 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2828 return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
2829 Context.getSizeType(),
2830 OpLoc, R.getEnd()));
2831 }
2832
2833 /// \brief Build a sizeof or alignof expression given an expression
2834 /// operand.
2835 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)2836 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
2837 UnaryExprOrTypeTrait ExprKind) {
2838 ExprResult PE = CheckPlaceholderExpr(E);
2839 if (PE.isInvalid())
2840 return ExprError();
2841
2842 E = PE.get();
2843
2844 // Verify that the operand is valid.
2845 bool isInvalid = false;
2846 if (E->isTypeDependent()) {
2847 // Delay type-checking for type-dependent expressions.
2848 } else if (ExprKind == UETT_AlignOf) {
2849 isInvalid = CheckAlignOfExpr(*this, E);
2850 } else if (ExprKind == UETT_VecStep) {
2851 isInvalid = CheckVecStepExpr(E);
2852 } else if (E->getBitField()) { // C99 6.5.3.4p1.
2853 Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
2854 isInvalid = true;
2855 } else {
2856 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
2857 }
2858
2859 if (isInvalid)
2860 return ExprError();
2861
2862 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2863 return Owned(new (Context) UnaryExprOrTypeTraitExpr(
2864 ExprKind, E, Context.getSizeType(), OpLoc,
2865 E->getSourceRange().getEnd()));
2866 }
2867
2868 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
2869 /// expr and the same for @c alignof and @c __alignof
2870 /// Note that the ArgRange is invalid if isType is false.
2871 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool isType,void * TyOrEx,const SourceRange & ArgRange)2872 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
2873 UnaryExprOrTypeTrait ExprKind, bool isType,
2874 void *TyOrEx, const SourceRange &ArgRange) {
2875 // If error parsing type, ignore.
2876 if (TyOrEx == 0) return ExprError();
2877
2878 if (isType) {
2879 TypeSourceInfo *TInfo;
2880 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
2881 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
2882 }
2883
2884 Expr *ArgEx = (Expr *)TyOrEx;
2885 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
2886 return move(Result);
2887 }
2888
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool isReal)2889 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
2890 bool isReal) {
2891 if (V.get()->isTypeDependent())
2892 return S.Context.DependentTy;
2893
2894 // _Real and _Imag are only l-values for normal l-values.
2895 if (V.get()->getObjectKind() != OK_Ordinary) {
2896 V = S.DefaultLvalueConversion(V.take());
2897 if (V.isInvalid())
2898 return QualType();
2899 }
2900
2901 // These operators return the element type of a complex type.
2902 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
2903 return CT->getElementType();
2904
2905 // Otherwise they pass through real integer and floating point types here.
2906 if (V.get()->getType()->isArithmeticType())
2907 return V.get()->getType();
2908
2909 // Test for placeholders.
2910 ExprResult PR = S.CheckPlaceholderExpr(V.get());
2911 if (PR.isInvalid()) return QualType();
2912 if (PR.get() != V.get()) {
2913 V = move(PR);
2914 return CheckRealImagOperand(S, V, Loc, isReal);
2915 }
2916
2917 // Reject anything else.
2918 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
2919 << (isReal ? "__real" : "__imag");
2920 return QualType();
2921 }
2922
2923
2924
2925 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)2926 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2927 tok::TokenKind Kind, Expr *Input) {
2928 UnaryOperatorKind Opc;
2929 switch (Kind) {
2930 default: assert(0 && "Unknown unary op!");
2931 case tok::plusplus: Opc = UO_PostInc; break;
2932 case tok::minusminus: Opc = UO_PostDec; break;
2933 }
2934
2935 return BuildUnaryOp(S, OpLoc, Opc, Input);
2936 }
2937
2938 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)2939 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
2940 Expr *Idx, SourceLocation RLoc) {
2941 // Since this might be a postfix expression, get rid of ParenListExprs.
2942 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
2943 if (Result.isInvalid()) return ExprError();
2944 Base = Result.take();
2945
2946 Expr *LHSExp = Base, *RHSExp = Idx;
2947
2948 if (getLangOptions().CPlusPlus &&
2949 (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2950 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2951 Context.DependentTy,
2952 VK_LValue, OK_Ordinary,
2953 RLoc));
2954 }
2955
2956 if (getLangOptions().CPlusPlus &&
2957 (LHSExp->getType()->isRecordType() ||
2958 LHSExp->getType()->isEnumeralType() ||
2959 RHSExp->getType()->isRecordType() ||
2960 RHSExp->getType()->isEnumeralType())) {
2961 return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
2962 }
2963
2964 return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
2965 }
2966
2967
2968 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)2969 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
2970 Expr *Idx, SourceLocation RLoc) {
2971 Expr *LHSExp = Base;
2972 Expr *RHSExp = Idx;
2973
2974 // Perform default conversions.
2975 if (!LHSExp->getType()->getAs<VectorType>()) {
2976 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
2977 if (Result.isInvalid())
2978 return ExprError();
2979 LHSExp = Result.take();
2980 }
2981 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
2982 if (Result.isInvalid())
2983 return ExprError();
2984 RHSExp = Result.take();
2985
2986 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2987 ExprValueKind VK = VK_LValue;
2988 ExprObjectKind OK = OK_Ordinary;
2989
2990 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2991 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2992 // in the subscript position. As a result, we need to derive the array base
2993 // and index from the expression types.
2994 Expr *BaseExpr, *IndexExpr;
2995 QualType ResultType;
2996 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2997 BaseExpr = LHSExp;
2998 IndexExpr = RHSExp;
2999 ResultType = Context.DependentTy;
3000 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3001 BaseExpr = LHSExp;
3002 IndexExpr = RHSExp;
3003 ResultType = PTy->getPointeeType();
3004 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3005 // Handle the uncommon case of "123[Ptr]".
3006 BaseExpr = RHSExp;
3007 IndexExpr = LHSExp;
3008 ResultType = PTy->getPointeeType();
3009 } else if (const ObjCObjectPointerType *PTy =
3010 LHSTy->getAs<ObjCObjectPointerType>()) {
3011 BaseExpr = LHSExp;
3012 IndexExpr = RHSExp;
3013 ResultType = PTy->getPointeeType();
3014 } else if (const ObjCObjectPointerType *PTy =
3015 RHSTy->getAs<ObjCObjectPointerType>()) {
3016 // Handle the uncommon case of "123[Ptr]".
3017 BaseExpr = RHSExp;
3018 IndexExpr = LHSExp;
3019 ResultType = PTy->getPointeeType();
3020 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3021 BaseExpr = LHSExp; // vectors: V[123]
3022 IndexExpr = RHSExp;
3023 VK = LHSExp->getValueKind();
3024 if (VK != VK_RValue)
3025 OK = OK_VectorComponent;
3026
3027 // FIXME: need to deal with const...
3028 ResultType = VTy->getElementType();
3029 } else if (LHSTy->isArrayType()) {
3030 // If we see an array that wasn't promoted by
3031 // DefaultFunctionArrayLvalueConversion, it must be an array that
3032 // wasn't promoted because of the C90 rule that doesn't
3033 // allow promoting non-lvalue arrays. Warn, then
3034 // force the promotion here.
3035 Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3036 LHSExp->getSourceRange();
3037 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3038 CK_ArrayToPointerDecay).take();
3039 LHSTy = LHSExp->getType();
3040
3041 BaseExpr = LHSExp;
3042 IndexExpr = RHSExp;
3043 ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3044 } else if (RHSTy->isArrayType()) {
3045 // Same as previous, except for 123[f().a] case
3046 Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3047 RHSExp->getSourceRange();
3048 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3049 CK_ArrayToPointerDecay).take();
3050 RHSTy = RHSExp->getType();
3051
3052 BaseExpr = RHSExp;
3053 IndexExpr = LHSExp;
3054 ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3055 } else {
3056 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3057 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3058 }
3059 // C99 6.5.2.1p1
3060 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3061 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3062 << IndexExpr->getSourceRange());
3063
3064 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3065 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3066 && !IndexExpr->isTypeDependent())
3067 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3068
3069 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3070 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3071 // type. Note that Functions are not objects, and that (in C99 parlance)
3072 // incomplete types are not object types.
3073 if (ResultType->isFunctionType()) {
3074 Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3075 << ResultType << BaseExpr->getSourceRange();
3076 return ExprError();
3077 }
3078
3079 if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
3080 // GNU extension: subscripting on pointer to void
3081 Diag(LLoc, diag::ext_gnu_subscript_void_type)
3082 << BaseExpr->getSourceRange();
3083
3084 // C forbids expressions of unqualified void type from being l-values.
3085 // See IsCForbiddenLValueType.
3086 if (!ResultType.hasQualifiers()) VK = VK_RValue;
3087 } else if (!ResultType->isDependentType() &&
3088 RequireCompleteType(LLoc, ResultType,
3089 PDiag(diag::err_subscript_incomplete_type)
3090 << BaseExpr->getSourceRange()))
3091 return ExprError();
3092
3093 // Diagnose bad cases where we step over interface counts.
3094 if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
3095 Diag(LLoc, diag::err_subscript_nonfragile_interface)
3096 << ResultType << BaseExpr->getSourceRange();
3097 return ExprError();
3098 }
3099
3100 assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3101 !ResultType.isCForbiddenLValueType());
3102
3103 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3104 ResultType, VK, OK, RLoc));
3105 }
3106
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)3107 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3108 FunctionDecl *FD,
3109 ParmVarDecl *Param) {
3110 if (Param->hasUnparsedDefaultArg()) {
3111 Diag(CallLoc,
3112 diag::err_use_of_default_argument_to_function_declared_later) <<
3113 FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3114 Diag(UnparsedDefaultArgLocs[Param],
3115 diag::note_default_argument_declared_here);
3116 return ExprError();
3117 }
3118
3119 if (Param->hasUninstantiatedDefaultArg()) {
3120 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3121
3122 // Instantiate the expression.
3123 MultiLevelTemplateArgumentList ArgList
3124 = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3125
3126 std::pair<const TemplateArgument *, unsigned> Innermost
3127 = ArgList.getInnermost();
3128 InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3129 Innermost.second);
3130
3131 ExprResult Result;
3132 {
3133 // C++ [dcl.fct.default]p5:
3134 // The names in the [default argument] expression are bound, and
3135 // the semantic constraints are checked, at the point where the
3136 // default argument expression appears.
3137 ContextRAII SavedContext(*this, FD);
3138 Result = SubstExpr(UninstExpr, ArgList);
3139 }
3140 if (Result.isInvalid())
3141 return ExprError();
3142
3143 // Check the expression as an initializer for the parameter.
3144 InitializedEntity Entity
3145 = InitializedEntity::InitializeParameter(Context, Param);
3146 InitializationKind Kind
3147 = InitializationKind::CreateCopy(Param->getLocation(),
3148 /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3149 Expr *ResultE = Result.takeAs<Expr>();
3150
3151 InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3152 Result = InitSeq.Perform(*this, Entity, Kind,
3153 MultiExprArg(*this, &ResultE, 1));
3154 if (Result.isInvalid())
3155 return ExprError();
3156
3157 // Build the default argument expression.
3158 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3159 Result.takeAs<Expr>()));
3160 }
3161
3162 // If the default expression creates temporaries, we need to
3163 // push them to the current stack of expression temporaries so they'll
3164 // be properly destroyed.
3165 // FIXME: We should really be rebuilding the default argument with new
3166 // bound temporaries; see the comment in PR5810.
3167 for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
3168 CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
3169 MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
3170 const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
3171 ExprTemporaries.push_back(Temporary);
3172 ExprNeedsCleanups = true;
3173 }
3174
3175 // We already type-checked the argument, so we know it works.
3176 // Just mark all of the declarations in this potentially-evaluated expression
3177 // as being "referenced".
3178 MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
3179 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3180 }
3181
3182 /// ConvertArgumentsForCall - Converts the arguments specified in
3183 /// Args/NumArgs to the parameter types of the function FDecl with
3184 /// function prototype Proto. Call is the call expression itself, and
3185 /// Fn is the function expression. For a C++ member function, this
3186 /// routine does not attempt to convert the object argument. Returns
3187 /// true if the call is ill-formed.
3188 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc)3189 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3190 FunctionDecl *FDecl,
3191 const FunctionProtoType *Proto,
3192 Expr **Args, unsigned NumArgs,
3193 SourceLocation RParenLoc) {
3194 // Bail out early if calling a builtin with custom typechecking.
3195 // We don't need to do this in the
3196 if (FDecl)
3197 if (unsigned ID = FDecl->getBuiltinID())
3198 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3199 return false;
3200
3201 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3202 // assignment, to the types of the corresponding parameter, ...
3203 unsigned NumArgsInProto = Proto->getNumArgs();
3204 bool Invalid = false;
3205
3206 // If too few arguments are available (and we don't have default
3207 // arguments for the remaining parameters), don't make the call.
3208 if (NumArgs < NumArgsInProto) {
3209 if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3210 return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3211 << Fn->getType()->isBlockPointerType()
3212 << NumArgsInProto << NumArgs << Fn->getSourceRange();
3213 Call->setNumArgs(Context, NumArgsInProto);
3214 }
3215
3216 // If too many are passed and not variadic, error on the extras and drop
3217 // them.
3218 if (NumArgs > NumArgsInProto) {
3219 if (!Proto->isVariadic()) {
3220 Diag(Args[NumArgsInProto]->getLocStart(),
3221 diag::err_typecheck_call_too_many_args)
3222 << Fn->getType()->isBlockPointerType()
3223 << NumArgsInProto << NumArgs << Fn->getSourceRange()
3224 << SourceRange(Args[NumArgsInProto]->getLocStart(),
3225 Args[NumArgs-1]->getLocEnd());
3226
3227 // Emit the location of the prototype.
3228 if (FDecl && !FDecl->getBuiltinID())
3229 Diag(FDecl->getLocStart(),
3230 diag::note_typecheck_call_too_many_args)
3231 << FDecl;
3232
3233 // This deletes the extra arguments.
3234 Call->setNumArgs(Context, NumArgsInProto);
3235 return true;
3236 }
3237 }
3238 llvm::SmallVector<Expr *, 8> AllArgs;
3239 VariadicCallType CallType =
3240 Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3241 if (Fn->getType()->isBlockPointerType())
3242 CallType = VariadicBlock; // Block
3243 else if (isa<MemberExpr>(Fn))
3244 CallType = VariadicMethod;
3245 Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3246 Proto, 0, Args, NumArgs, AllArgs, CallType);
3247 if (Invalid)
3248 return true;
3249 unsigned TotalNumArgs = AllArgs.size();
3250 for (unsigned i = 0; i < TotalNumArgs; ++i)
3251 Call->setArg(i, AllArgs[i]);
3252
3253 return false;
3254 }
3255
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstProtoArg,Expr ** Args,unsigned NumArgs,llvm::SmallVector<Expr *,8> & AllArgs,VariadicCallType CallType)3256 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3257 FunctionDecl *FDecl,
3258 const FunctionProtoType *Proto,
3259 unsigned FirstProtoArg,
3260 Expr **Args, unsigned NumArgs,
3261 llvm::SmallVector<Expr *, 8> &AllArgs,
3262 VariadicCallType CallType) {
3263 unsigned NumArgsInProto = Proto->getNumArgs();
3264 unsigned NumArgsToCheck = NumArgs;
3265 bool Invalid = false;
3266 if (NumArgs != NumArgsInProto)
3267 // Use default arguments for missing arguments
3268 NumArgsToCheck = NumArgsInProto;
3269 unsigned ArgIx = 0;
3270 // Continue to check argument types (even if we have too few/many args).
3271 for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3272 QualType ProtoArgType = Proto->getArgType(i);
3273
3274 Expr *Arg;
3275 if (ArgIx < NumArgs) {
3276 Arg = Args[ArgIx++];
3277
3278 if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3279 ProtoArgType,
3280 PDiag(diag::err_call_incomplete_argument)
3281 << Arg->getSourceRange()))
3282 return true;
3283
3284 // Pass the argument
3285 ParmVarDecl *Param = 0;
3286 if (FDecl && i < FDecl->getNumParams())
3287 Param = FDecl->getParamDecl(i);
3288
3289 InitializedEntity Entity =
3290 Param? InitializedEntity::InitializeParameter(Context, Param)
3291 : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3292 Proto->isArgConsumed(i));
3293 ExprResult ArgE = PerformCopyInitialization(Entity,
3294 SourceLocation(),
3295 Owned(Arg));
3296 if (ArgE.isInvalid())
3297 return true;
3298
3299 Arg = ArgE.takeAs<Expr>();
3300 } else {
3301 ParmVarDecl *Param = FDecl->getParamDecl(i);
3302
3303 ExprResult ArgExpr =
3304 BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3305 if (ArgExpr.isInvalid())
3306 return true;
3307
3308 Arg = ArgExpr.takeAs<Expr>();
3309 }
3310 AllArgs.push_back(Arg);
3311 }
3312
3313 // If this is a variadic call, handle args passed through "...".
3314 if (CallType != VariadicDoesNotApply) {
3315
3316 // Assume that extern "C" functions with variadic arguments that
3317 // return __unknown_anytype aren't *really* variadic.
3318 if (Proto->getResultType() == Context.UnknownAnyTy &&
3319 FDecl && FDecl->isExternC()) {
3320 for (unsigned i = ArgIx; i != NumArgs; ++i) {
3321 ExprResult arg;
3322 if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3323 arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3324 else
3325 arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3326 Invalid |= arg.isInvalid();
3327 AllArgs.push_back(arg.take());
3328 }
3329
3330 // Otherwise do argument promotion, (C99 6.5.2.2p7).
3331 } else {
3332 for (unsigned i = ArgIx; i != NumArgs; ++i) {
3333 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3334 Invalid |= Arg.isInvalid();
3335 AllArgs.push_back(Arg.take());
3336 }
3337 }
3338 }
3339 return Invalid;
3340 }
3341
3342 /// Given a function expression of unknown-any type, try to rebuild it
3343 /// to have a function type.
3344 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3345
3346 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3347 /// This provides the location of the left/right parens and a list of comma
3348 /// locations.
3349 ExprResult
ActOnCallExpr(Scope * S,Expr * Fn,SourceLocation LParenLoc,MultiExprArg args,SourceLocation RParenLoc,Expr * ExecConfig)3350 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3351 MultiExprArg args, SourceLocation RParenLoc,
3352 Expr *ExecConfig) {
3353 unsigned NumArgs = args.size();
3354
3355 // Since this might be a postfix expression, get rid of ParenListExprs.
3356 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3357 if (Result.isInvalid()) return ExprError();
3358 Fn = Result.take();
3359
3360 Expr **Args = args.release();
3361
3362 if (getLangOptions().CPlusPlus) {
3363 // If this is a pseudo-destructor expression, build the call immediately.
3364 if (isa<CXXPseudoDestructorExpr>(Fn)) {
3365 if (NumArgs > 0) {
3366 // Pseudo-destructor calls should not have any arguments.
3367 Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3368 << FixItHint::CreateRemoval(
3369 SourceRange(Args[0]->getLocStart(),
3370 Args[NumArgs-1]->getLocEnd()));
3371
3372 NumArgs = 0;
3373 }
3374
3375 return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3376 VK_RValue, RParenLoc));
3377 }
3378
3379 // Determine whether this is a dependent call inside a C++ template,
3380 // in which case we won't do any semantic analysis now.
3381 // FIXME: Will need to cache the results of name lookup (including ADL) in
3382 // Fn.
3383 bool Dependent = false;
3384 if (Fn->isTypeDependent())
3385 Dependent = true;
3386 else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3387 Dependent = true;
3388
3389 if (Dependent) {
3390 if (ExecConfig) {
3391 return Owned(new (Context) CUDAKernelCallExpr(
3392 Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
3393 Context.DependentTy, VK_RValue, RParenLoc));
3394 } else {
3395 return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3396 Context.DependentTy, VK_RValue,
3397 RParenLoc));
3398 }
3399 }
3400
3401 // Determine whether this is a call to an object (C++ [over.call.object]).
3402 if (Fn->getType()->isRecordType())
3403 return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3404 RParenLoc));
3405
3406 if (Fn->getType() == Context.UnknownAnyTy) {
3407 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3408 if (result.isInvalid()) return ExprError();
3409 Fn = result.take();
3410 }
3411
3412 if (Fn->getType() == Context.BoundMemberTy) {
3413 return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3414 RParenLoc);
3415 }
3416 }
3417
3418 // Check for overloaded calls. This can happen even in C due to extensions.
3419 if (Fn->getType() == Context.OverloadTy) {
3420 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3421
3422 // We aren't supposed to apply this logic if there's an '&' involved.
3423 if (!find.IsAddressOfOperand) {
3424 OverloadExpr *ovl = find.Expression;
3425 if (isa<UnresolvedLookupExpr>(ovl)) {
3426 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3427 return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3428 RParenLoc, ExecConfig);
3429 } else {
3430 return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3431 RParenLoc);
3432 }
3433 }
3434 }
3435
3436 // If we're directly calling a function, get the appropriate declaration.
3437
3438 Expr *NakedFn = Fn->IgnoreParens();
3439
3440 NamedDecl *NDecl = 0;
3441 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3442 if (UnOp->getOpcode() == UO_AddrOf)
3443 NakedFn = UnOp->getSubExpr()->IgnoreParens();
3444
3445 if (isa<DeclRefExpr>(NakedFn))
3446 NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3447 else if (isa<MemberExpr>(NakedFn))
3448 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3449
3450 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
3451 ExecConfig);
3452 }
3453
3454 ExprResult
ActOnCUDAExecConfigExpr(Scope * S,SourceLocation LLLLoc,MultiExprArg execConfig,SourceLocation GGGLoc)3455 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3456 MultiExprArg execConfig, SourceLocation GGGLoc) {
3457 FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3458 if (!ConfigDecl)
3459 return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3460 << "cudaConfigureCall");
3461 QualType ConfigQTy = ConfigDecl->getType();
3462
3463 DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3464 ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
3465
3466 return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
3467 }
3468
3469 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3470 ///
3471 /// __builtin_astype( value, dst type )
3472 ///
ActOnAsTypeExpr(Expr * expr,ParsedType destty,SourceLocation BuiltinLoc,SourceLocation RParenLoc)3473 ExprResult Sema::ActOnAsTypeExpr(Expr *expr, ParsedType destty,
3474 SourceLocation BuiltinLoc,
3475 SourceLocation RParenLoc) {
3476 ExprValueKind VK = VK_RValue;
3477 ExprObjectKind OK = OK_Ordinary;
3478 QualType DstTy = GetTypeFromParser(destty);
3479 QualType SrcTy = expr->getType();
3480 if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3481 return ExprError(Diag(BuiltinLoc,
3482 diag::err_invalid_astype_of_different_size)
3483 << DstTy
3484 << SrcTy
3485 << expr->getSourceRange());
3486 return Owned(new (Context) AsTypeExpr(expr, DstTy, VK, OK, BuiltinLoc, RParenLoc));
3487 }
3488
3489 /// BuildResolvedCallExpr - Build a call to a resolved expression,
3490 /// i.e. an expression not of \p OverloadTy. The expression should
3491 /// unary-convert to an expression of function-pointer or
3492 /// block-pointer type.
3493 ///
3494 /// \param NDecl the declaration being called, if available
3495 ExprResult
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * Config)3496 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3497 SourceLocation LParenLoc,
3498 Expr **Args, unsigned NumArgs,
3499 SourceLocation RParenLoc,
3500 Expr *Config) {
3501 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3502
3503 // Promote the function operand.
3504 ExprResult Result = UsualUnaryConversions(Fn);
3505 if (Result.isInvalid())
3506 return ExprError();
3507 Fn = Result.take();
3508
3509 // Make the call expr early, before semantic checks. This guarantees cleanup
3510 // of arguments and function on error.
3511 CallExpr *TheCall;
3512 if (Config) {
3513 TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3514 cast<CallExpr>(Config),
3515 Args, NumArgs,
3516 Context.BoolTy,
3517 VK_RValue,
3518 RParenLoc);
3519 } else {
3520 TheCall = new (Context) CallExpr(Context, Fn,
3521 Args, NumArgs,
3522 Context.BoolTy,
3523 VK_RValue,
3524 RParenLoc);
3525 }
3526
3527 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3528
3529 // Bail out early if calling a builtin with custom typechecking.
3530 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3531 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3532
3533 retry:
3534 const FunctionType *FuncT;
3535 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3536 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3537 // have type pointer to function".
3538 FuncT = PT->getPointeeType()->getAs<FunctionType>();
3539 if (FuncT == 0)
3540 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3541 << Fn->getType() << Fn->getSourceRange());
3542 } else if (const BlockPointerType *BPT =
3543 Fn->getType()->getAs<BlockPointerType>()) {
3544 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3545 } else {
3546 // Handle calls to expressions of unknown-any type.
3547 if (Fn->getType() == Context.UnknownAnyTy) {
3548 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
3549 if (rewrite.isInvalid()) return ExprError();
3550 Fn = rewrite.take();
3551 TheCall->setCallee(Fn);
3552 goto retry;
3553 }
3554
3555 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3556 << Fn->getType() << Fn->getSourceRange());
3557 }
3558
3559 if (getLangOptions().CUDA) {
3560 if (Config) {
3561 // CUDA: Kernel calls must be to global functions
3562 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
3563 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
3564 << FDecl->getName() << Fn->getSourceRange());
3565
3566 // CUDA: Kernel function must have 'void' return type
3567 if (!FuncT->getResultType()->isVoidType())
3568 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
3569 << Fn->getType() << Fn->getSourceRange());
3570 }
3571 }
3572
3573 // Check for a valid return type
3574 if (CheckCallReturnType(FuncT->getResultType(),
3575 Fn->getSourceRange().getBegin(), TheCall,
3576 FDecl))
3577 return ExprError();
3578
3579 // We know the result type of the call, set it.
3580 TheCall->setType(FuncT->getCallResultType(Context));
3581 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
3582
3583 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3584 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3585 RParenLoc))
3586 return ExprError();
3587 } else {
3588 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3589
3590 if (FDecl) {
3591 // Check if we have too few/too many template arguments, based
3592 // on our knowledge of the function definition.
3593 const FunctionDecl *Def = 0;
3594 if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3595 const FunctionProtoType *Proto
3596 = Def->getType()->getAs<FunctionProtoType>();
3597 if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
3598 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3599 << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3600 }
3601
3602 // If the function we're calling isn't a function prototype, but we have
3603 // a function prototype from a prior declaratiom, use that prototype.
3604 if (!FDecl->hasPrototype())
3605 Proto = FDecl->getType()->getAs<FunctionProtoType>();
3606 }
3607
3608 // Promote the arguments (C99 6.5.2.2p6).
3609 for (unsigned i = 0; i != NumArgs; i++) {
3610 Expr *Arg = Args[i];
3611
3612 if (Proto && i < Proto->getNumArgs()) {
3613 InitializedEntity Entity
3614 = InitializedEntity::InitializeParameter(Context,
3615 Proto->getArgType(i),
3616 Proto->isArgConsumed(i));
3617 ExprResult ArgE = PerformCopyInitialization(Entity,
3618 SourceLocation(),
3619 Owned(Arg));
3620 if (ArgE.isInvalid())
3621 return true;
3622
3623 Arg = ArgE.takeAs<Expr>();
3624
3625 } else {
3626 ExprResult ArgE = DefaultArgumentPromotion(Arg);
3627
3628 if (ArgE.isInvalid())
3629 return true;
3630
3631 Arg = ArgE.takeAs<Expr>();
3632 }
3633
3634 if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3635 Arg->getType(),
3636 PDiag(diag::err_call_incomplete_argument)
3637 << Arg->getSourceRange()))
3638 return ExprError();
3639
3640 TheCall->setArg(i, Arg);
3641 }
3642 }
3643
3644 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3645 if (!Method->isStatic())
3646 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3647 << Fn->getSourceRange());
3648
3649 // Check for sentinels
3650 if (NDecl)
3651 DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3652
3653 // Do special checking on direct calls to functions.
3654 if (FDecl) {
3655 if (CheckFunctionCall(FDecl, TheCall))
3656 return ExprError();
3657
3658 if (BuiltinID)
3659 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3660 } else if (NDecl) {
3661 if (CheckBlockCall(NDecl, TheCall))
3662 return ExprError();
3663 }
3664
3665 return MaybeBindToTemporary(TheCall);
3666 }
3667
3668 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)3669 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3670 SourceLocation RParenLoc, Expr *InitExpr) {
3671 assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3672 // FIXME: put back this assert when initializers are worked out.
3673 //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3674
3675 TypeSourceInfo *TInfo;
3676 QualType literalType = GetTypeFromParser(Ty, &TInfo);
3677 if (!TInfo)
3678 TInfo = Context.getTrivialTypeSourceInfo(literalType);
3679
3680 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3681 }
3682
3683 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * literalExpr)3684 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3685 SourceLocation RParenLoc, Expr *literalExpr) {
3686 QualType literalType = TInfo->getType();
3687
3688 if (literalType->isArrayType()) {
3689 if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
3690 PDiag(diag::err_illegal_decl_array_incomplete_type)
3691 << SourceRange(LParenLoc,
3692 literalExpr->getSourceRange().getEnd())))
3693 return ExprError();
3694 if (literalType->isVariableArrayType())
3695 return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3696 << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3697 } else if (!literalType->isDependentType() &&
3698 RequireCompleteType(LParenLoc, literalType,
3699 PDiag(diag::err_typecheck_decl_incomplete_type)
3700 << SourceRange(LParenLoc,
3701 literalExpr->getSourceRange().getEnd())))
3702 return ExprError();
3703
3704 InitializedEntity Entity
3705 = InitializedEntity::InitializeTemporary(literalType);
3706 InitializationKind Kind
3707 = InitializationKind::CreateCStyleCast(LParenLoc,
3708 SourceRange(LParenLoc, RParenLoc));
3709 InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3710 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3711 MultiExprArg(*this, &literalExpr, 1),
3712 &literalType);
3713 if (Result.isInvalid())
3714 return ExprError();
3715 literalExpr = Result.get();
3716
3717 bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3718 if (isFileScope) { // 6.5.2.5p3
3719 if (CheckForConstantInitializer(literalExpr, literalType))
3720 return ExprError();
3721 }
3722
3723 // In C, compound literals are l-values for some reason.
3724 ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
3725
3726 return MaybeBindToTemporary(
3727 new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3728 VK, literalExpr, isFileScope));
3729 }
3730
3731 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg initlist,SourceLocation RBraceLoc)3732 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3733 SourceLocation RBraceLoc) {
3734 unsigned NumInit = initlist.size();
3735 Expr **InitList = initlist.release();
3736
3737 // Semantic analysis for initializers is done by ActOnDeclarator() and
3738 // CheckInitializer() - it requires knowledge of the object being intialized.
3739
3740 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
3741 NumInit, RBraceLoc);
3742 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3743 return Owned(E);
3744 }
3745
3746 /// Prepares for a scalar cast, performing all the necessary stages
3747 /// except the final cast and returning the kind required.
PrepareScalarCast(Sema & S,ExprResult & Src,QualType DestTy)3748 static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
3749 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
3750 // Also, callers should have filtered out the invalid cases with
3751 // pointers. Everything else should be possible.
3752
3753 QualType SrcTy = Src.get()->getType();
3754 if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
3755 return CK_NoOp;
3756
3757 switch (SrcTy->getScalarTypeKind()) {
3758 case Type::STK_MemberPointer:
3759 llvm_unreachable("member pointer type in C");
3760
3761 case Type::STK_Pointer:
3762 switch (DestTy->getScalarTypeKind()) {
3763 case Type::STK_Pointer:
3764 return DestTy->isObjCObjectPointerType() ?
3765 CK_AnyPointerToObjCPointerCast :
3766 CK_BitCast;
3767 case Type::STK_Bool:
3768 return CK_PointerToBoolean;
3769 case Type::STK_Integral:
3770 return CK_PointerToIntegral;
3771 case Type::STK_Floating:
3772 case Type::STK_FloatingComplex:
3773 case Type::STK_IntegralComplex:
3774 case Type::STK_MemberPointer:
3775 llvm_unreachable("illegal cast from pointer");
3776 }
3777 break;
3778
3779 case Type::STK_Bool: // casting from bool is like casting from an integer
3780 case Type::STK_Integral:
3781 switch (DestTy->getScalarTypeKind()) {
3782 case Type::STK_Pointer:
3783 if (Src.get()->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
3784 return CK_NullToPointer;
3785 return CK_IntegralToPointer;
3786 case Type::STK_Bool:
3787 return CK_IntegralToBoolean;
3788 case Type::STK_Integral:
3789 return CK_IntegralCast;
3790 case Type::STK_Floating:
3791 return CK_IntegralToFloating;
3792 case Type::STK_IntegralComplex:
3793 Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
3794 CK_IntegralCast);
3795 return CK_IntegralRealToComplex;
3796 case Type::STK_FloatingComplex:
3797 Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
3798 CK_IntegralToFloating);
3799 return CK_FloatingRealToComplex;
3800 case Type::STK_MemberPointer:
3801 llvm_unreachable("member pointer type in C");
3802 }
3803 break;
3804
3805 case Type::STK_Floating:
3806 switch (DestTy->getScalarTypeKind()) {
3807 case Type::STK_Floating:
3808 return CK_FloatingCast;
3809 case Type::STK_Bool:
3810 return CK_FloatingToBoolean;
3811 case Type::STK_Integral:
3812 return CK_FloatingToIntegral;
3813 case Type::STK_FloatingComplex:
3814 Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
3815 CK_FloatingCast);
3816 return CK_FloatingRealToComplex;
3817 case Type::STK_IntegralComplex:
3818 Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
3819 CK_FloatingToIntegral);
3820 return CK_IntegralRealToComplex;
3821 case Type::STK_Pointer:
3822 llvm_unreachable("valid float->pointer cast?");
3823 case Type::STK_MemberPointer:
3824 llvm_unreachable("member pointer type in C");
3825 }
3826 break;
3827
3828 case Type::STK_FloatingComplex:
3829 switch (DestTy->getScalarTypeKind()) {
3830 case Type::STK_FloatingComplex:
3831 return CK_FloatingComplexCast;
3832 case Type::STK_IntegralComplex:
3833 return CK_FloatingComplexToIntegralComplex;
3834 case Type::STK_Floating: {
3835 QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
3836 if (S.Context.hasSameType(ET, DestTy))
3837 return CK_FloatingComplexToReal;
3838 Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
3839 return CK_FloatingCast;
3840 }
3841 case Type::STK_Bool:
3842 return CK_FloatingComplexToBoolean;
3843 case Type::STK_Integral:
3844 Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
3845 CK_FloatingComplexToReal);
3846 return CK_FloatingToIntegral;
3847 case Type::STK_Pointer:
3848 llvm_unreachable("valid complex float->pointer cast?");
3849 case Type::STK_MemberPointer:
3850 llvm_unreachable("member pointer type in C");
3851 }
3852 break;
3853
3854 case Type::STK_IntegralComplex:
3855 switch (DestTy->getScalarTypeKind()) {
3856 case Type::STK_FloatingComplex:
3857 return CK_IntegralComplexToFloatingComplex;
3858 case Type::STK_IntegralComplex:
3859 return CK_IntegralComplexCast;
3860 case Type::STK_Integral: {
3861 QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
3862 if (S.Context.hasSameType(ET, DestTy))
3863 return CK_IntegralComplexToReal;
3864 Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
3865 return CK_IntegralCast;
3866 }
3867 case Type::STK_Bool:
3868 return CK_IntegralComplexToBoolean;
3869 case Type::STK_Floating:
3870 Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
3871 CK_IntegralComplexToReal);
3872 return CK_IntegralToFloating;
3873 case Type::STK_Pointer:
3874 llvm_unreachable("valid complex int->pointer cast?");
3875 case Type::STK_MemberPointer:
3876 llvm_unreachable("member pointer type in C");
3877 }
3878 break;
3879 }
3880
3881 llvm_unreachable("Unhandled scalar cast");
3882 return CK_BitCast;
3883 }
3884
3885 /// CheckCastTypes - Check type constraints for casting between types.
CheckCastTypes(SourceLocation CastStartLoc,SourceRange TyR,QualType castType,Expr * castExpr,CastKind & Kind,ExprValueKind & VK,CXXCastPath & BasePath,bool FunctionalStyle)3886 ExprResult Sema::CheckCastTypes(SourceLocation CastStartLoc, SourceRange TyR,
3887 QualType castType, Expr *castExpr,
3888 CastKind& Kind, ExprValueKind &VK,
3889 CXXCastPath &BasePath, bool FunctionalStyle) {
3890 if (castExpr->getType() == Context.UnknownAnyTy)
3891 return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath);
3892
3893 if (getLangOptions().CPlusPlus)
3894 return CXXCheckCStyleCast(SourceRange(CastStartLoc,
3895 castExpr->getLocEnd()),
3896 castType, VK, castExpr, Kind, BasePath,
3897 FunctionalStyle);
3898
3899 assert(!castExpr->getType()->isPlaceholderType());
3900
3901 // We only support r-value casts in C.
3902 VK = VK_RValue;
3903
3904 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3905 // type needs to be scalar.
3906 if (castType->isVoidType()) {
3907 // We don't necessarily do lvalue-to-rvalue conversions on this.
3908 ExprResult castExprRes = IgnoredValueConversions(castExpr);
3909 if (castExprRes.isInvalid())
3910 return ExprError();
3911 castExpr = castExprRes.take();
3912
3913 // Cast to void allows any expr type.
3914 Kind = CK_ToVoid;
3915 return Owned(castExpr);
3916 }
3917
3918 ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr);
3919 if (castExprRes.isInvalid())
3920 return ExprError();
3921 castExpr = castExprRes.take();
3922
3923 if (RequireCompleteType(TyR.getBegin(), castType,
3924 diag::err_typecheck_cast_to_incomplete))
3925 return ExprError();
3926
3927 if (!castType->isScalarType() && !castType->isVectorType()) {
3928 if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3929 (castType->isStructureType() || castType->isUnionType())) {
3930 // GCC struct/union extension: allow cast to self.
3931 // FIXME: Check that the cast destination type is complete.
3932 Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3933 << castType << castExpr->getSourceRange();
3934 Kind = CK_NoOp;
3935 return Owned(castExpr);
3936 }
3937
3938 if (castType->isUnionType()) {
3939 // GCC cast to union extension
3940 RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3941 RecordDecl::field_iterator Field, FieldEnd;
3942 for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3943 Field != FieldEnd; ++Field) {
3944 if (Context.hasSameUnqualifiedType(Field->getType(),
3945 castExpr->getType()) &&
3946 !Field->isUnnamedBitfield()) {
3947 Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3948 << castExpr->getSourceRange();
3949 break;
3950 }
3951 }
3952 if (Field == FieldEnd) {
3953 Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3954 << castExpr->getType() << castExpr->getSourceRange();
3955 return ExprError();
3956 }
3957 Kind = CK_ToUnion;
3958 return Owned(castExpr);
3959 }
3960
3961 // Reject any other conversions to non-scalar types.
3962 Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3963 << castType << castExpr->getSourceRange();
3964 return ExprError();
3965 }
3966
3967 // The type we're casting to is known to be a scalar or vector.
3968
3969 // Require the operand to be a scalar or vector.
3970 if (!castExpr->getType()->isScalarType() &&
3971 !castExpr->getType()->isVectorType()) {
3972 Diag(castExpr->getLocStart(),
3973 diag::err_typecheck_expect_scalar_operand)
3974 << castExpr->getType() << castExpr->getSourceRange();
3975 return ExprError();
3976 }
3977
3978 if (castType->isExtVectorType())
3979 return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3980
3981 if (castType->isVectorType()) {
3982 if (castType->getAs<VectorType>()->getVectorKind() ==
3983 VectorType::AltiVecVector &&
3984 (castExpr->getType()->isIntegerType() ||
3985 castExpr->getType()->isFloatingType())) {
3986 Kind = CK_VectorSplat;
3987 return Owned(castExpr);
3988 } else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) {
3989 return ExprError();
3990 } else
3991 return Owned(castExpr);
3992 }
3993 if (castExpr->getType()->isVectorType()) {
3994 if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind))
3995 return ExprError();
3996 else
3997 return Owned(castExpr);
3998 }
3999
4000 // The source and target types are both scalars, i.e.
4001 // - arithmetic types (fundamental, enum, and complex)
4002 // - all kinds of pointers
4003 // Note that member pointers were filtered out with C++, above.
4004
4005 if (isa<ObjCSelectorExpr>(castExpr)) {
4006 Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
4007 return ExprError();
4008 }
4009
4010 // If either type is a pointer, the other type has to be either an
4011 // integer or a pointer.
4012 QualType castExprType = castExpr->getType();
4013 if (!castType->isArithmeticType()) {
4014 if (!castExprType->isIntegralType(Context) &&
4015 castExprType->isArithmeticType()) {
4016 Diag(castExpr->getLocStart(),
4017 diag::err_cast_pointer_from_non_pointer_int)
4018 << castExprType << castExpr->getSourceRange();
4019 return ExprError();
4020 }
4021 } else if (!castExpr->getType()->isArithmeticType()) {
4022 if (!castType->isIntegralType(Context) && castType->isArithmeticType()) {
4023 Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int)
4024 << castType << castExpr->getSourceRange();
4025 return ExprError();
4026 }
4027 }
4028
4029 if (getLangOptions().ObjCAutoRefCount) {
4030 // Diagnose problems with Objective-C casts involving lifetime qualifiers.
4031 CheckObjCARCConversion(SourceRange(CastStartLoc, castExpr->getLocEnd()),
4032 castType, castExpr, CCK_CStyleCast);
4033
4034 if (const PointerType *CastPtr = castType->getAs<PointerType>()) {
4035 if (const PointerType *ExprPtr = castExprType->getAs<PointerType>()) {
4036 Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
4037 Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
4038 if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
4039 ExprPtr->getPointeeType()->isObjCLifetimeType() &&
4040 !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
4041 Diag(castExpr->getLocStart(),
4042 diag::err_typecheck_incompatible_ownership)
4043 << castExprType << castType << AA_Casting
4044 << castExpr->getSourceRange();
4045
4046 return ExprError();
4047 }
4048 }
4049 }
4050 else if (!CheckObjCARCUnavailableWeakConversion(castType, castExprType)) {
4051 Diag(castExpr->getLocStart(),
4052 diag::err_arc_convesion_of_weak_unavailable) << 1
4053 << castExprType << castType
4054 << castExpr->getSourceRange();
4055 return ExprError();
4056 }
4057 }
4058
4059 castExprRes = Owned(castExpr);
4060 Kind = PrepareScalarCast(*this, castExprRes, castType);
4061 if (castExprRes.isInvalid())
4062 return ExprError();
4063 castExpr = castExprRes.take();
4064
4065 if (Kind == CK_BitCast)
4066 CheckCastAlign(castExpr, castType, TyR);
4067
4068 return Owned(castExpr);
4069 }
4070
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)4071 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4072 CastKind &Kind) {
4073 assert(VectorTy->isVectorType() && "Not a vector type!");
4074
4075 if (Ty->isVectorType() || Ty->isIntegerType()) {
4076 if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4077 return Diag(R.getBegin(),
4078 Ty->isVectorType() ?
4079 diag::err_invalid_conversion_between_vectors :
4080 diag::err_invalid_conversion_between_vector_and_integer)
4081 << VectorTy << Ty << R;
4082 } else
4083 return Diag(R.getBegin(),
4084 diag::err_invalid_conversion_between_vector_and_scalar)
4085 << VectorTy << Ty << R;
4086
4087 Kind = CK_BitCast;
4088 return false;
4089 }
4090
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)4091 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4092 Expr *CastExpr, CastKind &Kind) {
4093 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4094
4095 QualType SrcTy = CastExpr->getType();
4096
4097 // If SrcTy is a VectorType, the total size must match to explicitly cast to
4098 // an ExtVectorType.
4099 if (SrcTy->isVectorType()) {
4100 if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) {
4101 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4102 << DestTy << SrcTy << R;
4103 return ExprError();
4104 }
4105 Kind = CK_BitCast;
4106 return Owned(CastExpr);
4107 }
4108
4109 // All non-pointer scalars can be cast to ExtVector type. The appropriate
4110 // conversion will take place first from scalar to elt type, and then
4111 // splat from elt type to vector.
4112 if (SrcTy->isPointerType())
4113 return Diag(R.getBegin(),
4114 diag::err_invalid_conversion_between_vector_and_scalar)
4115 << DestTy << SrcTy << R;
4116
4117 QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4118 ExprResult CastExprRes = Owned(CastExpr);
4119 CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy);
4120 if (CastExprRes.isInvalid())
4121 return ExprError();
4122 CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4123
4124 Kind = CK_VectorSplat;
4125 return Owned(CastExpr);
4126 }
4127
4128 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * castExpr)4129 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4130 Declarator &D, ParsedType &Ty,
4131 SourceLocation RParenLoc, Expr *castExpr) {
4132 assert(!D.isInvalidType() && (castExpr != 0) &&
4133 "ActOnCastExpr(): missing type or expr");
4134
4135 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, castExpr->getType());
4136 if (D.isInvalidType())
4137 return ExprError();
4138
4139 if (getLangOptions().CPlusPlus) {
4140 // Check that there are no default arguments (C++ only).
4141 CheckExtraCXXDefaultArguments(D);
4142 }
4143
4144 QualType castType = castTInfo->getType();
4145 Ty = CreateParsedType(castType, castTInfo);
4146
4147 bool isVectorLiteral = false;
4148
4149 // Check for an altivec or OpenCL literal,
4150 // i.e. all the elements are integer constants.
4151 ParenExpr *PE = dyn_cast<ParenExpr>(castExpr);
4152 ParenListExpr *PLE = dyn_cast<ParenListExpr>(castExpr);
4153 if (getLangOptions().AltiVec && castType->isVectorType() && (PE || PLE)) {
4154 if (PLE && PLE->getNumExprs() == 0) {
4155 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4156 return ExprError();
4157 }
4158 if (PE || PLE->getNumExprs() == 1) {
4159 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4160 if (!E->getType()->isVectorType())
4161 isVectorLiteral = true;
4162 }
4163 else
4164 isVectorLiteral = true;
4165 }
4166
4167 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4168 // then handle it as such.
4169 if (isVectorLiteral)
4170 return BuildVectorLiteral(LParenLoc, RParenLoc, castExpr, castTInfo);
4171
4172 // If the Expr being casted is a ParenListExpr, handle it specially.
4173 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4174 // sequence of BinOp comma operators.
4175 if (isa<ParenListExpr>(castExpr)) {
4176 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, castExpr);
4177 if (Result.isInvalid()) return ExprError();
4178 castExpr = Result.take();
4179 }
4180
4181 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
4182 }
4183
4184 ExprResult
BuildCStyleCastExpr(SourceLocation LParenLoc,TypeSourceInfo * Ty,SourceLocation RParenLoc,Expr * castExpr)4185 Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4186 SourceLocation RParenLoc, Expr *castExpr) {
4187 CastKind Kind = CK_Invalid;
4188 ExprValueKind VK = VK_RValue;
4189 CXXCastPath BasePath;
4190 ExprResult CastResult =
4191 CheckCastTypes(LParenLoc, SourceRange(LParenLoc, RParenLoc), Ty->getType(),
4192 castExpr, Kind, VK, BasePath);
4193 if (CastResult.isInvalid())
4194 return ExprError();
4195 castExpr = CastResult.take();
4196
4197 return Owned(CStyleCastExpr::Create(Context,
4198 Ty->getType().getNonLValueExprType(Context),
4199 VK, Kind, castExpr, &BasePath, Ty,
4200 LParenLoc, RParenLoc));
4201 }
4202
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)4203 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4204 SourceLocation RParenLoc, Expr *E,
4205 TypeSourceInfo *TInfo) {
4206 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4207 "Expected paren or paren list expression");
4208
4209 Expr **exprs;
4210 unsigned numExprs;
4211 Expr *subExpr;
4212 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4213 exprs = PE->getExprs();
4214 numExprs = PE->getNumExprs();
4215 } else {
4216 subExpr = cast<ParenExpr>(E)->getSubExpr();
4217 exprs = &subExpr;
4218 numExprs = 1;
4219 }
4220
4221 QualType Ty = TInfo->getType();
4222 assert(Ty->isVectorType() && "Expected vector type");
4223
4224 llvm::SmallVector<Expr *, 8> initExprs;
4225 const VectorType *VTy = Ty->getAs<VectorType>();
4226 unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4227
4228 // '(...)' form of vector initialization in AltiVec: the number of
4229 // initializers must be one or must match the size of the vector.
4230 // If a single value is specified in the initializer then it will be
4231 // replicated to all the components of the vector
4232 if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4233 // The number of initializers must be one or must match the size of the
4234 // vector. If a single value is specified in the initializer then it will
4235 // be replicated to all the components of the vector
4236 if (numExprs == 1) {
4237 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4238 ExprResult Literal = Owned(exprs[0]);
4239 Literal = ImpCastExprToType(Literal.take(), ElemTy,
4240 PrepareScalarCast(*this, Literal, ElemTy));
4241 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4242 }
4243 else if (numExprs < numElems) {
4244 Diag(E->getExprLoc(),
4245 diag::err_incorrect_number_of_vector_initializers);
4246 return ExprError();
4247 }
4248 else
4249 for (unsigned i = 0, e = numExprs; i != e; ++i)
4250 initExprs.push_back(exprs[i]);
4251 }
4252 else {
4253 // For OpenCL, when the number of initializers is a single value,
4254 // it will be replicated to all components of the vector.
4255 if (getLangOptions().OpenCL &&
4256 VTy->getVectorKind() == VectorType::GenericVector &&
4257 numExprs == 1) {
4258 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4259 ExprResult Literal = Owned(exprs[0]);
4260 Literal = ImpCastExprToType(Literal.take(), ElemTy,
4261 PrepareScalarCast(*this, Literal, ElemTy));
4262 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4263 }
4264
4265 for (unsigned i = 0, e = numExprs; i != e; ++i)
4266 initExprs.push_back(exprs[i]);
4267 }
4268 // FIXME: This means that pretty-printing the final AST will produce curly
4269 // braces instead of the original commas.
4270 InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4271 &initExprs[0],
4272 initExprs.size(), RParenLoc);
4273 initE->setType(Ty);
4274 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4275 }
4276
4277 /// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4278 /// of comma binary operators.
4279 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * expr)4280 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
4281 ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4282 if (!E)
4283 return Owned(expr);
4284
4285 ExprResult Result(E->getExpr(0));
4286
4287 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4288 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4289 E->getExpr(i));
4290
4291 if (Result.isInvalid()) return ExprError();
4292
4293 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4294 }
4295
ActOnParenOrParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)4296 ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4297 SourceLocation R,
4298 MultiExprArg Val) {
4299 unsigned nexprs = Val.size();
4300 Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4301 assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4302 Expr *expr;
4303 if (nexprs == 1)
4304 expr = new (Context) ParenExpr(L, R, exprs[0]);
4305 else
4306 expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R,
4307 exprs[nexprs-1]->getType());
4308 return Owned(expr);
4309 }
4310
4311 /// \brief Emit a specialized diagnostic when one expression is a null pointer
4312 /// constant and the other is not a pointer.
DiagnoseConditionalForNull(Expr * LHS,Expr * RHS,SourceLocation QuestionLoc)4313 bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS,
4314 SourceLocation QuestionLoc) {
4315 Expr *NullExpr = LHS;
4316 Expr *NonPointerExpr = RHS;
4317 Expr::NullPointerConstantKind NullKind =
4318 NullExpr->isNullPointerConstant(Context,
4319 Expr::NPC_ValueDependentIsNotNull);
4320
4321 if (NullKind == Expr::NPCK_NotNull) {
4322 NullExpr = RHS;
4323 NonPointerExpr = LHS;
4324 NullKind =
4325 NullExpr->isNullPointerConstant(Context,
4326 Expr::NPC_ValueDependentIsNotNull);
4327 }
4328
4329 if (NullKind == Expr::NPCK_NotNull)
4330 return false;
4331
4332 if (NullKind == Expr::NPCK_ZeroInteger) {
4333 // In this case, check to make sure that we got here from a "NULL"
4334 // string in the source code.
4335 NullExpr = NullExpr->IgnoreParenImpCasts();
4336 SourceLocation loc = NullExpr->getExprLoc();
4337 if (!findMacroSpelling(loc, "NULL"))
4338 return false;
4339 }
4340
4341 int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4342 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4343 << NonPointerExpr->getType() << DiagType
4344 << NonPointerExpr->getSourceRange();
4345 return true;
4346 }
4347
4348 /// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4349 /// In that case, lhs = cond.
4350 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4351 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
4352 ExprValueKind &VK, ExprObjectKind &OK,
4353 SourceLocation QuestionLoc) {
4354
4355 ExprResult lhsResult = CheckPlaceholderExpr(LHS.get());
4356 if (!lhsResult.isUsable()) return QualType();
4357 LHS = move(lhsResult);
4358
4359 ExprResult rhsResult = CheckPlaceholderExpr(RHS.get());
4360 if (!rhsResult.isUsable()) return QualType();
4361 RHS = move(rhsResult);
4362
4363 // C++ is sufficiently different to merit its own checker.
4364 if (getLangOptions().CPlusPlus)
4365 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4366
4367 VK = VK_RValue;
4368 OK = OK_Ordinary;
4369
4370 Cond = UsualUnaryConversions(Cond.take());
4371 if (Cond.isInvalid())
4372 return QualType();
4373 LHS = UsualUnaryConversions(LHS.take());
4374 if (LHS.isInvalid())
4375 return QualType();
4376 RHS = UsualUnaryConversions(RHS.take());
4377 if (RHS.isInvalid())
4378 return QualType();
4379
4380 QualType CondTy = Cond.get()->getType();
4381 QualType LHSTy = LHS.get()->getType();
4382 QualType RHSTy = RHS.get()->getType();
4383
4384 // first, check the condition.
4385 if (!CondTy->isScalarType()) { // C99 6.5.15p2
4386 // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4387 // Throw an error if its not either.
4388 if (getLangOptions().OpenCL) {
4389 if (!CondTy->isVectorType()) {
4390 Diag(Cond.get()->getLocStart(),
4391 diag::err_typecheck_cond_expect_scalar_or_vector)
4392 << CondTy;
4393 return QualType();
4394 }
4395 }
4396 else {
4397 Diag(Cond.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4398 << CondTy;
4399 return QualType();
4400 }
4401 }
4402
4403 // Now check the two expressions.
4404 if (LHSTy->isVectorType() || RHSTy->isVectorType())
4405 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4406
4407 // OpenCL: If the condition is a vector, and both operands are scalar,
4408 // attempt to implicity convert them to the vector type to act like the
4409 // built in select.
4410 if (getLangOptions().OpenCL && CondTy->isVectorType()) {
4411 // Both operands should be of scalar type.
4412 if (!LHSTy->isScalarType()) {
4413 Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4414 << CondTy;
4415 return QualType();
4416 }
4417 if (!RHSTy->isScalarType()) {
4418 Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4419 << CondTy;
4420 return QualType();
4421 }
4422 // Implicity convert these scalars to the type of the condition.
4423 LHS = ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4424 RHS = ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4425 }
4426
4427 // If both operands have arithmetic type, do the usual arithmetic conversions
4428 // to find a common type: C99 6.5.15p3,5.
4429 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4430 UsualArithmeticConversions(LHS, RHS);
4431 if (LHS.isInvalid() || RHS.isInvalid())
4432 return QualType();
4433 return LHS.get()->getType();
4434 }
4435
4436 // If both operands are the same structure or union type, the result is that
4437 // type.
4438 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
4439 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4440 if (LHSRT->getDecl() == RHSRT->getDecl())
4441 // "If both the operands have structure or union type, the result has
4442 // that type." This implies that CV qualifiers are dropped.
4443 return LHSTy.getUnqualifiedType();
4444 // FIXME: Type of conditional expression must be complete in C mode.
4445 }
4446
4447 // C99 6.5.15p5: "If both operands have void type, the result has void type."
4448 // The following || allows only one side to be void (a GCC-ism).
4449 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4450 if (!LHSTy->isVoidType())
4451 Diag(RHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
4452 << RHS.get()->getSourceRange();
4453 if (!RHSTy->isVoidType())
4454 Diag(LHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
4455 << LHS.get()->getSourceRange();
4456 LHS = ImpCastExprToType(LHS.take(), Context.VoidTy, CK_ToVoid);
4457 RHS = ImpCastExprToType(RHS.take(), Context.VoidTy, CK_ToVoid);
4458 return Context.VoidTy;
4459 }
4460 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4461 // the type of the other operand."
4462 if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4463 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4464 // promote the null to a pointer.
4465 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_NullToPointer);
4466 return LHSTy;
4467 }
4468 if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4469 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4470 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_NullToPointer);
4471 return RHSTy;
4472 }
4473
4474 // All objective-c pointer type analysis is done here.
4475 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4476 QuestionLoc);
4477 if (LHS.isInvalid() || RHS.isInvalid())
4478 return QualType();
4479 if (!compositeType.isNull())
4480 return compositeType;
4481
4482
4483 // Handle block pointer types.
4484 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4485 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4486 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4487 QualType destType = Context.getPointerType(Context.VoidTy);
4488 LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4489 RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4490 return destType;
4491 }
4492 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4493 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4494 return QualType();
4495 }
4496 // We have 2 block pointer types.
4497 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4498 // Two identical block pointer types are always compatible.
4499 return LHSTy;
4500 }
4501 // The block pointer types aren't identical, continue checking.
4502 QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4503 QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4504
4505 if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4506 rhptee.getUnqualifiedType())) {
4507 Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4508 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4509 // In this situation, we assume void* type. No especially good
4510 // reason, but this is what gcc does, and we do have to pick
4511 // to get a consistent AST.
4512 QualType incompatTy = Context.getPointerType(Context.VoidTy);
4513 LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4514 RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4515 return incompatTy;
4516 }
4517 // The block pointer types are compatible.
4518 LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
4519 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4520 return LHSTy;
4521 }
4522
4523 // Check constraints for C object pointers types (C99 6.5.15p3,6).
4524 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4525 // get the "pointed to" types
4526 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4527 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4528
4529 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4530 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4531 // Figure out necessary qualifiers (C99 6.5.15p6)
4532 QualType destPointee
4533 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4534 QualType destType = Context.getPointerType(destPointee);
4535 // Add qualifiers if necessary.
4536 LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4537 // Promote to void*.
4538 RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4539 return destType;
4540 }
4541 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4542 QualType destPointee
4543 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4544 QualType destType = Context.getPointerType(destPointee);
4545 // Add qualifiers if necessary.
4546 RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4547 // Promote to void*.
4548 LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4549 return destType;
4550 }
4551
4552 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4553 // Two identical pointer types are always compatible.
4554 return LHSTy;
4555 }
4556 if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4557 rhptee.getUnqualifiedType())) {
4558 Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4559 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4560 // In this situation, we assume void* type. No especially good
4561 // reason, but this is what gcc does, and we do have to pick
4562 // to get a consistent AST.
4563 QualType incompatTy = Context.getPointerType(Context.VoidTy);
4564 LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4565 RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4566 return incompatTy;
4567 }
4568 // The pointer types are compatible.
4569 // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4570 // differently qualified versions of compatible types, the result type is
4571 // a pointer to an appropriately qualified version of the *composite*
4572 // type.
4573 // FIXME: Need to calculate the composite type.
4574 // FIXME: Need to add qualifiers
4575 LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
4576 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4577 return LHSTy;
4578 }
4579
4580 // GCC compatibility: soften pointer/integer mismatch. Note that
4581 // null pointers have been filtered out by this point.
4582 if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4583 Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4584 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4585 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_IntegralToPointer);
4586 return RHSTy;
4587 }
4588 if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4589 Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4590 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4591 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_IntegralToPointer);
4592 return LHSTy;
4593 }
4594
4595 // Emit a better diagnostic if one of the expressions is a null pointer
4596 // constant and the other is not a pointer type. In this case, the user most
4597 // likely forgot to take the address of the other expression.
4598 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4599 return QualType();
4600
4601 // Otherwise, the operands are not compatible.
4602 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4603 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4604 return QualType();
4605 }
4606
4607 /// FindCompositeObjCPointerType - Helper method to find composite type of
4608 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4609 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
4610 SourceLocation QuestionLoc) {
4611 QualType LHSTy = LHS.get()->getType();
4612 QualType RHSTy = RHS.get()->getType();
4613
4614 // Handle things like Class and struct objc_class*. Here we case the result
4615 // to the pseudo-builtin, because that will be implicitly cast back to the
4616 // redefinition type if an attempt is made to access its fields.
4617 if (LHSTy->isObjCClassType() &&
4618 (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) {
4619 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4620 return LHSTy;
4621 }
4622 if (RHSTy->isObjCClassType() &&
4623 (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) {
4624 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4625 return RHSTy;
4626 }
4627 // And the same for struct objc_object* / id
4628 if (LHSTy->isObjCIdType() &&
4629 (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) {
4630 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4631 return LHSTy;
4632 }
4633 if (RHSTy->isObjCIdType() &&
4634 (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) {
4635 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4636 return RHSTy;
4637 }
4638 // And the same for struct objc_selector* / SEL
4639 if (Context.isObjCSelType(LHSTy) &&
4640 (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) {
4641 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4642 return LHSTy;
4643 }
4644 if (Context.isObjCSelType(RHSTy) &&
4645 (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) {
4646 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4647 return RHSTy;
4648 }
4649 // Check constraints for Objective-C object pointers types.
4650 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4651
4652 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4653 // Two identical object pointer types are always compatible.
4654 return LHSTy;
4655 }
4656 const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4657 const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4658 QualType compositeType = LHSTy;
4659
4660 // If both operands are interfaces and either operand can be
4661 // assigned to the other, use that type as the composite
4662 // type. This allows
4663 // xxx ? (A*) a : (B*) b
4664 // where B is a subclass of A.
4665 //
4666 // Additionally, as for assignment, if either type is 'id'
4667 // allow silent coercion. Finally, if the types are
4668 // incompatible then make sure to use 'id' as the composite
4669 // type so the result is acceptable for sending messages to.
4670
4671 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4672 // It could return the composite type.
4673 if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4674 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4675 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4676 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4677 } else if ((LHSTy->isObjCQualifiedIdType() ||
4678 RHSTy->isObjCQualifiedIdType()) &&
4679 Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4680 // Need to handle "id<xx>" explicitly.
4681 // GCC allows qualified id and any Objective-C type to devolve to
4682 // id. Currently localizing to here until clear this should be
4683 // part of ObjCQualifiedIdTypesAreCompatible.
4684 compositeType = Context.getObjCIdType();
4685 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4686 compositeType = Context.getObjCIdType();
4687 } else if (!(compositeType =
4688 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4689 ;
4690 else {
4691 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4692 << LHSTy << RHSTy
4693 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4694 QualType incompatTy = Context.getObjCIdType();
4695 LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4696 RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4697 return incompatTy;
4698 }
4699 // The object pointer types are compatible.
4700 LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
4701 RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
4702 return compositeType;
4703 }
4704 // Check Objective-C object pointer types and 'void *'
4705 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4706 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4707 QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4708 QualType destPointee
4709 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4710 QualType destType = Context.getPointerType(destPointee);
4711 // Add qualifiers if necessary.
4712 LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4713 // Promote to void*.
4714 RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4715 return destType;
4716 }
4717 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4718 QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4719 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4720 QualType destPointee
4721 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4722 QualType destType = Context.getPointerType(destPointee);
4723 // Add qualifiers if necessary.
4724 RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4725 // Promote to void*.
4726 LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4727 return destType;
4728 }
4729 return QualType();
4730 }
4731
4732 /// SuggestParentheses - Emit a note with a fixit hint that wraps
4733 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)4734 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
4735 const PartialDiagnostic &Note,
4736 SourceRange ParenRange) {
4737 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
4738 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
4739 EndLoc.isValid()) {
4740 Self.Diag(Loc, Note)
4741 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
4742 << FixItHint::CreateInsertion(EndLoc, ")");
4743 } else {
4744 // We can't display the parentheses, so just show the bare note.
4745 Self.Diag(Loc, Note) << ParenRange;
4746 }
4747 }
4748
IsArithmeticOp(BinaryOperatorKind Opc)4749 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
4750 return Opc >= BO_Mul && Opc <= BO_Shr;
4751 }
4752
4753 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
4754 /// expression, either using a built-in or overloaded operator,
4755 /// and sets *OpCode to the opcode and *RHS to the right-hand side expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHS)4756 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
4757 Expr **RHS) {
4758 E = E->IgnoreParenImpCasts();
4759 E = E->IgnoreConversionOperator();
4760 E = E->IgnoreParenImpCasts();
4761
4762 // Built-in binary operator.
4763 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
4764 if (IsArithmeticOp(OP->getOpcode())) {
4765 *Opcode = OP->getOpcode();
4766 *RHS = OP->getRHS();
4767 return true;
4768 }
4769 }
4770
4771 // Overloaded operator.
4772 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
4773 if (Call->getNumArgs() != 2)
4774 return false;
4775
4776 // Make sure this is really a binary operator that is safe to pass into
4777 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
4778 OverloadedOperatorKind OO = Call->getOperator();
4779 if (OO < OO_Plus || OO > OO_Arrow)
4780 return false;
4781
4782 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
4783 if (IsArithmeticOp(OpKind)) {
4784 *Opcode = OpKind;
4785 *RHS = Call->getArg(1);
4786 return true;
4787 }
4788 }
4789
4790 return false;
4791 }
4792
IsLogicOp(BinaryOperatorKind Opc)4793 static bool IsLogicOp(BinaryOperatorKind Opc) {
4794 return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
4795 }
4796
4797 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
4798 /// or is a logical expression such as (x==y) which has int type, but is
4799 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)4800 static bool ExprLooksBoolean(Expr *E) {
4801 E = E->IgnoreParenImpCasts();
4802
4803 if (E->getType()->isBooleanType())
4804 return true;
4805 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
4806 return IsLogicOp(OP->getOpcode());
4807 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
4808 return OP->getOpcode() == UO_LNot;
4809
4810 return false;
4811 }
4812
4813 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
4814 /// and binary operator are mixed in a way that suggests the programmer assumed
4815 /// the conditional operator has higher precedence, for example:
4816 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHS,Expr * RHS)4817 static void DiagnoseConditionalPrecedence(Sema &Self,
4818 SourceLocation OpLoc,
4819 Expr *Condition,
4820 Expr *LHS,
4821 Expr *RHS) {
4822 BinaryOperatorKind CondOpcode;
4823 Expr *CondRHS;
4824
4825 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
4826 return;
4827 if (!ExprLooksBoolean(CondRHS))
4828 return;
4829
4830 // The condition is an arithmetic binary expression, with a right-
4831 // hand side that looks boolean, so warn.
4832
4833 Self.Diag(OpLoc, diag::warn_precedence_conditional)
4834 << Condition->getSourceRange()
4835 << BinaryOperator::getOpcodeStr(CondOpcode);
4836
4837 SuggestParentheses(Self, OpLoc,
4838 Self.PDiag(diag::note_precedence_conditional_silence)
4839 << BinaryOperator::getOpcodeStr(CondOpcode),
4840 SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
4841
4842 SuggestParentheses(Self, OpLoc,
4843 Self.PDiag(diag::note_precedence_conditional_first),
4844 SourceRange(CondRHS->getLocStart(), RHS->getLocEnd()));
4845 }
4846
4847 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
4848 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)4849 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4850 SourceLocation ColonLoc,
4851 Expr *CondExpr, Expr *LHSExpr,
4852 Expr *RHSExpr) {
4853 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4854 // was the condition.
4855 OpaqueValueExpr *opaqueValue = 0;
4856 Expr *commonExpr = 0;
4857 if (LHSExpr == 0) {
4858 commonExpr = CondExpr;
4859
4860 // We usually want to apply unary conversions *before* saving, except
4861 // in the special case of a C++ l-value conditional.
4862 if (!(getLangOptions().CPlusPlus
4863 && !commonExpr->isTypeDependent()
4864 && commonExpr->getValueKind() == RHSExpr->getValueKind()
4865 && commonExpr->isGLValue()
4866 && commonExpr->isOrdinaryOrBitFieldObject()
4867 && RHSExpr->isOrdinaryOrBitFieldObject()
4868 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
4869 ExprResult commonRes = UsualUnaryConversions(commonExpr);
4870 if (commonRes.isInvalid())
4871 return ExprError();
4872 commonExpr = commonRes.take();
4873 }
4874
4875 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
4876 commonExpr->getType(),
4877 commonExpr->getValueKind(),
4878 commonExpr->getObjectKind());
4879 LHSExpr = CondExpr = opaqueValue;
4880 }
4881
4882 ExprValueKind VK = VK_RValue;
4883 ExprObjectKind OK = OK_Ordinary;
4884 ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
4885 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
4886 VK, OK, QuestionLoc);
4887 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
4888 RHS.isInvalid())
4889 return ExprError();
4890
4891 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
4892 RHS.get());
4893
4894 if (!commonExpr)
4895 return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
4896 LHS.take(), ColonLoc,
4897 RHS.take(), result, VK, OK));
4898
4899 return Owned(new (Context)
4900 BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
4901 RHS.take(), QuestionLoc, ColonLoc, result, VK, OK));
4902 }
4903
4904 // checkPointerTypesForAssignment - This is a very tricky routine (despite
4905 // being closely modeled after the C99 spec:-). The odd characteristic of this
4906 // routine is it effectively iqnores the qualifiers on the top level pointee.
4907 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4908 // FIXME: add a couple examples in this comment.
4909 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType lhsType,QualType rhsType)4910 checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
4911 assert(lhsType.isCanonical() && "LHS not canonicalized!");
4912 assert(rhsType.isCanonical() && "RHS not canonicalized!");
4913
4914 // get the "pointed to" type (ignoring qualifiers at the top level)
4915 const Type *lhptee, *rhptee;
4916 Qualifiers lhq, rhq;
4917 llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split();
4918 llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split();
4919
4920 Sema::AssignConvertType ConvTy = Sema::Compatible;
4921
4922 // C99 6.5.16.1p1: This following citation is common to constraints
4923 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4924 // qualifiers of the type *pointed to* by the right;
4925 Qualifiers lq;
4926
4927 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
4928 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
4929 lhq.compatiblyIncludesObjCLifetime(rhq)) {
4930 // Ignore lifetime for further calculation.
4931 lhq.removeObjCLifetime();
4932 rhq.removeObjCLifetime();
4933 }
4934
4935 if (!lhq.compatiblyIncludes(rhq)) {
4936 // Treat address-space mismatches as fatal. TODO: address subspaces
4937 if (lhq.getAddressSpace() != rhq.getAddressSpace())
4938 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
4939
4940 // It's okay to add or remove GC or lifetime qualifiers when converting to
4941 // and from void*.
4942 else if (lhq.withoutObjCGCAttr().withoutObjCGLifetime()
4943 .compatiblyIncludes(
4944 rhq.withoutObjCGCAttr().withoutObjCGLifetime())
4945 && (lhptee->isVoidType() || rhptee->isVoidType()))
4946 ; // keep old
4947
4948 // Treat lifetime mismatches as fatal.
4949 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
4950 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
4951
4952 // For GCC compatibility, other qualifier mismatches are treated
4953 // as still compatible in C.
4954 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
4955 }
4956
4957 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4958 // incomplete type and the other is a pointer to a qualified or unqualified
4959 // version of void...
4960 if (lhptee->isVoidType()) {
4961 if (rhptee->isIncompleteOrObjectType())
4962 return ConvTy;
4963
4964 // As an extension, we allow cast to/from void* to function pointer.
4965 assert(rhptee->isFunctionType());
4966 return Sema::FunctionVoidPointer;
4967 }
4968
4969 if (rhptee->isVoidType()) {
4970 if (lhptee->isIncompleteOrObjectType())
4971 return ConvTy;
4972
4973 // As an extension, we allow cast to/from void* to function pointer.
4974 assert(lhptee->isFunctionType());
4975 return Sema::FunctionVoidPointer;
4976 }
4977
4978 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4979 // unqualified versions of compatible types, ...
4980 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
4981 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
4982 // Check if the pointee types are compatible ignoring the sign.
4983 // We explicitly check for char so that we catch "char" vs
4984 // "unsigned char" on systems where "char" is unsigned.
4985 if (lhptee->isCharType())
4986 ltrans = S.Context.UnsignedCharTy;
4987 else if (lhptee->hasSignedIntegerRepresentation())
4988 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
4989
4990 if (rhptee->isCharType())
4991 rtrans = S.Context.UnsignedCharTy;
4992 else if (rhptee->hasSignedIntegerRepresentation())
4993 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
4994
4995 if (ltrans == rtrans) {
4996 // Types are compatible ignoring the sign. Qualifier incompatibility
4997 // takes priority over sign incompatibility because the sign
4998 // warning can be disabled.
4999 if (ConvTy != Sema::Compatible)
5000 return ConvTy;
5001
5002 return Sema::IncompatiblePointerSign;
5003 }
5004
5005 // If we are a multi-level pointer, it's possible that our issue is simply
5006 // one of qualification - e.g. char ** -> const char ** is not allowed. If
5007 // the eventual target type is the same and the pointers have the same
5008 // level of indirection, this must be the issue.
5009 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5010 do {
5011 lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5012 rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5013 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5014
5015 if (lhptee == rhptee)
5016 return Sema::IncompatibleNestedPointerQualifiers;
5017 }
5018
5019 // General pointer incompatibility takes priority over qualifiers.
5020 return Sema::IncompatiblePointer;
5021 }
5022 return ConvTy;
5023 }
5024
5025 /// checkBlockPointerTypesForAssignment - This routine determines whether two
5026 /// block pointer types are compatible or whether a block and normal pointer
5027 /// are compatible. It is more restrict than comparing two function pointer
5028 // types.
5029 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType lhsType,QualType rhsType)5030 checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
5031 QualType rhsType) {
5032 assert(lhsType.isCanonical() && "LHS not canonicalized!");
5033 assert(rhsType.isCanonical() && "RHS not canonicalized!");
5034
5035 QualType lhptee, rhptee;
5036
5037 // get the "pointed to" type (ignoring qualifiers at the top level)
5038 lhptee = cast<BlockPointerType>(lhsType)->getPointeeType();
5039 rhptee = cast<BlockPointerType>(rhsType)->getPointeeType();
5040
5041 // In C++, the types have to match exactly.
5042 if (S.getLangOptions().CPlusPlus)
5043 return Sema::IncompatibleBlockPointer;
5044
5045 Sema::AssignConvertType ConvTy = Sema::Compatible;
5046
5047 // For blocks we enforce that qualifiers are identical.
5048 if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5049 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5050
5051 if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType))
5052 return Sema::IncompatibleBlockPointer;
5053
5054 return ConvTy;
5055 }
5056
5057 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5058 /// for assignment compatibility.
5059 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType lhsType,QualType rhsType)5060 checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
5061 assert(lhsType.isCanonical() && "LHS was not canonicalized!");
5062 assert(rhsType.isCanonical() && "RHS was not canonicalized!");
5063
5064 if (lhsType->isObjCBuiltinType()) {
5065 // Class is not compatible with ObjC object pointers.
5066 if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
5067 !rhsType->isObjCQualifiedClassType())
5068 return Sema::IncompatiblePointer;
5069 return Sema::Compatible;
5070 }
5071 if (rhsType->isObjCBuiltinType()) {
5072 // Class is not compatible with ObjC object pointers.
5073 if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
5074 !lhsType->isObjCQualifiedClassType())
5075 return Sema::IncompatiblePointer;
5076 return Sema::Compatible;
5077 }
5078 QualType lhptee =
5079 lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
5080 QualType rhptee =
5081 rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
5082
5083 if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
5084 return Sema::CompatiblePointerDiscardsQualifiers;
5085
5086 if (S.Context.typesAreCompatible(lhsType, rhsType))
5087 return Sema::Compatible;
5088 if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
5089 return Sema::IncompatibleObjCQualifiedId;
5090 return Sema::IncompatiblePointer;
5091 }
5092
5093 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType lhsType,QualType rhsType)5094 Sema::CheckAssignmentConstraints(SourceLocation Loc,
5095 QualType lhsType, QualType rhsType) {
5096 // Fake up an opaque expression. We don't actually care about what
5097 // cast operations are required, so if CheckAssignmentConstraints
5098 // adds casts to this they'll be wasted, but fortunately that doesn't
5099 // usually happen on valid code.
5100 OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
5101 ExprResult rhsPtr = &rhs;
5102 CastKind K = CK_Invalid;
5103
5104 return CheckAssignmentConstraints(lhsType, rhsPtr, K);
5105 }
5106
5107 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5108 /// has code to accommodate several GCC extensions when type checking
5109 /// pointers. Here are some objectionable examples that GCC considers warnings:
5110 ///
5111 /// int a, *pint;
5112 /// short *pshort;
5113 /// struct foo *pfoo;
5114 ///
5115 /// pint = pshort; // warning: assignment from incompatible pointer type
5116 /// a = pint; // warning: assignment makes integer from pointer without a cast
5117 /// pint = a; // warning: assignment makes pointer from integer without a cast
5118 /// pint = pfoo; // warning: assignment from incompatible pointer type
5119 ///
5120 /// As a result, the code for dealing with pointers is more complex than the
5121 /// C99 spec dictates.
5122 ///
5123 /// Sets 'Kind' for any result kind except Incompatible.
5124 Sema::AssignConvertType
CheckAssignmentConstraints(QualType lhsType,ExprResult & rhs,CastKind & Kind)5125 Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
5126 CastKind &Kind) {
5127 QualType rhsType = rhs.get()->getType();
5128 QualType origLhsType = lhsType;
5129
5130 // Get canonical types. We're not formatting these types, just comparing
5131 // them.
5132 lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
5133 rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
5134
5135 // Common case: no conversion required.
5136 if (lhsType == rhsType) {
5137 Kind = CK_NoOp;
5138 return Compatible;
5139 }
5140
5141 // If the left-hand side is a reference type, then we are in a
5142 // (rare!) case where we've allowed the use of references in C,
5143 // e.g., as a parameter type in a built-in function. In this case,
5144 // just make sure that the type referenced is compatible with the
5145 // right-hand side type. The caller is responsible for adjusting
5146 // lhsType so that the resulting expression does not have reference
5147 // type.
5148 if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
5149 if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
5150 Kind = CK_LValueBitCast;
5151 return Compatible;
5152 }
5153 return Incompatible;
5154 }
5155
5156 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5157 // to the same ExtVector type.
5158 if (lhsType->isExtVectorType()) {
5159 if (rhsType->isExtVectorType())
5160 return Incompatible;
5161 if (rhsType->isArithmeticType()) {
5162 // CK_VectorSplat does T -> vector T, so first cast to the
5163 // element type.
5164 QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
5165 if (elType != rhsType) {
5166 Kind = PrepareScalarCast(*this, rhs, elType);
5167 rhs = ImpCastExprToType(rhs.take(), elType, Kind);
5168 }
5169 Kind = CK_VectorSplat;
5170 return Compatible;
5171 }
5172 }
5173
5174 // Conversions to or from vector type.
5175 if (lhsType->isVectorType() || rhsType->isVectorType()) {
5176 if (lhsType->isVectorType() && rhsType->isVectorType()) {
5177 // Allow assignments of an AltiVec vector type to an equivalent GCC
5178 // vector type and vice versa
5179 if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
5180 Kind = CK_BitCast;
5181 return Compatible;
5182 }
5183
5184 // If we are allowing lax vector conversions, and LHS and RHS are both
5185 // vectors, the total size only needs to be the same. This is a bitcast;
5186 // no bits are changed but the result type is different.
5187 if (getLangOptions().LaxVectorConversions &&
5188 (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
5189 Kind = CK_BitCast;
5190 return IncompatibleVectors;
5191 }
5192 }
5193 return Incompatible;
5194 }
5195
5196 // Arithmetic conversions.
5197 if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
5198 !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
5199 Kind = PrepareScalarCast(*this, rhs, lhsType);
5200 return Compatible;
5201 }
5202
5203 // Conversions to normal pointers.
5204 if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
5205 // U* -> T*
5206 if (isa<PointerType>(rhsType)) {
5207 Kind = CK_BitCast;
5208 return checkPointerTypesForAssignment(*this, lhsType, rhsType);
5209 }
5210
5211 // int -> T*
5212 if (rhsType->isIntegerType()) {
5213 Kind = CK_IntegralToPointer; // FIXME: null?
5214 return IntToPointer;
5215 }
5216
5217 // C pointers are not compatible with ObjC object pointers,
5218 // with two exceptions:
5219 if (isa<ObjCObjectPointerType>(rhsType)) {
5220 // - conversions to void*
5221 if (lhsPointer->getPointeeType()->isVoidType()) {
5222 Kind = CK_AnyPointerToObjCPointerCast;
5223 return Compatible;
5224 }
5225
5226 // - conversions from 'Class' to the redefinition type
5227 if (rhsType->isObjCClassType() &&
5228 Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) {
5229 Kind = CK_BitCast;
5230 return Compatible;
5231 }
5232
5233 Kind = CK_BitCast;
5234 return IncompatiblePointer;
5235 }
5236
5237 // U^ -> void*
5238 if (rhsType->getAs<BlockPointerType>()) {
5239 if (lhsPointer->getPointeeType()->isVoidType()) {
5240 Kind = CK_BitCast;
5241 return Compatible;
5242 }
5243 }
5244
5245 return Incompatible;
5246 }
5247
5248 // Conversions to block pointers.
5249 if (isa<BlockPointerType>(lhsType)) {
5250 // U^ -> T^
5251 if (rhsType->isBlockPointerType()) {
5252 Kind = CK_AnyPointerToBlockPointerCast;
5253 return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType);
5254 }
5255
5256 // int or null -> T^
5257 if (rhsType->isIntegerType()) {
5258 Kind = CK_IntegralToPointer; // FIXME: null
5259 return IntToBlockPointer;
5260 }
5261
5262 // id -> T^
5263 if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
5264 Kind = CK_AnyPointerToBlockPointerCast;
5265 return Compatible;
5266 }
5267
5268 // void* -> T^
5269 if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
5270 if (RHSPT->getPointeeType()->isVoidType()) {
5271 Kind = CK_AnyPointerToBlockPointerCast;
5272 return Compatible;
5273 }
5274
5275 return Incompatible;
5276 }
5277
5278 // Conversions to Objective-C pointers.
5279 if (isa<ObjCObjectPointerType>(lhsType)) {
5280 // A* -> B*
5281 if (rhsType->isObjCObjectPointerType()) {
5282 Kind = CK_BitCast;
5283 Sema::AssignConvertType result =
5284 checkObjCPointerTypesForAssignment(*this, lhsType, rhsType);
5285 if (getLangOptions().ObjCAutoRefCount &&
5286 result == Compatible &&
5287 !CheckObjCARCUnavailableWeakConversion(origLhsType, rhsType))
5288 result = IncompatibleObjCWeakRef;
5289 return result;
5290 }
5291
5292 // int or null -> A*
5293 if (rhsType->isIntegerType()) {
5294 Kind = CK_IntegralToPointer; // FIXME: null
5295 return IntToPointer;
5296 }
5297
5298 // In general, C pointers are not compatible with ObjC object pointers,
5299 // with two exceptions:
5300 if (isa<PointerType>(rhsType)) {
5301 // - conversions from 'void*'
5302 if (rhsType->isVoidPointerType()) {
5303 Kind = CK_AnyPointerToObjCPointerCast;
5304 return Compatible;
5305 }
5306
5307 // - conversions to 'Class' from its redefinition type
5308 if (lhsType->isObjCClassType() &&
5309 Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) {
5310 Kind = CK_BitCast;
5311 return Compatible;
5312 }
5313
5314 Kind = CK_AnyPointerToObjCPointerCast;
5315 return IncompatiblePointer;
5316 }
5317
5318 // T^ -> A*
5319 if (rhsType->isBlockPointerType()) {
5320 Kind = CK_AnyPointerToObjCPointerCast;
5321 return Compatible;
5322 }
5323
5324 return Incompatible;
5325 }
5326
5327 // Conversions from pointers that are not covered by the above.
5328 if (isa<PointerType>(rhsType)) {
5329 // T* -> _Bool
5330 if (lhsType == Context.BoolTy) {
5331 Kind = CK_PointerToBoolean;
5332 return Compatible;
5333 }
5334
5335 // T* -> int
5336 if (lhsType->isIntegerType()) {
5337 Kind = CK_PointerToIntegral;
5338 return PointerToInt;
5339 }
5340
5341 return Incompatible;
5342 }
5343
5344 // Conversions from Objective-C pointers that are not covered by the above.
5345 if (isa<ObjCObjectPointerType>(rhsType)) {
5346 // T* -> _Bool
5347 if (lhsType == Context.BoolTy) {
5348 Kind = CK_PointerToBoolean;
5349 return Compatible;
5350 }
5351
5352 // T* -> int
5353 if (lhsType->isIntegerType()) {
5354 Kind = CK_PointerToIntegral;
5355 return PointerToInt;
5356 }
5357
5358 return Incompatible;
5359 }
5360
5361 // struct A -> struct B
5362 if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
5363 if (Context.typesAreCompatible(lhsType, rhsType)) {
5364 Kind = CK_NoOp;
5365 return Compatible;
5366 }
5367 }
5368
5369 return Incompatible;
5370 }
5371
5372 /// \brief Constructs a transparent union from an expression that is
5373 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)5374 static void ConstructTransparentUnion(Sema &S, ASTContext &C, ExprResult &EResult,
5375 QualType UnionType, FieldDecl *Field) {
5376 // Build an initializer list that designates the appropriate member
5377 // of the transparent union.
5378 Expr *E = EResult.take();
5379 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5380 &E, 1,
5381 SourceLocation());
5382 Initializer->setType(UnionType);
5383 Initializer->setInitializedFieldInUnion(Field);
5384
5385 // Build a compound literal constructing a value of the transparent
5386 // union type from this initializer list.
5387 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5388 EResult = S.Owned(
5389 new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5390 VK_RValue, Initializer, false));
5391 }
5392
5393 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & rExpr)5394 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &rExpr) {
5395 QualType FromType = rExpr.get()->getType();
5396
5397 // If the ArgType is a Union type, we want to handle a potential
5398 // transparent_union GCC extension.
5399 const RecordType *UT = ArgType->getAsUnionType();
5400 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5401 return Incompatible;
5402
5403 // The field to initialize within the transparent union.
5404 RecordDecl *UD = UT->getDecl();
5405 FieldDecl *InitField = 0;
5406 // It's compatible if the expression matches any of the fields.
5407 for (RecordDecl::field_iterator it = UD->field_begin(),
5408 itend = UD->field_end();
5409 it != itend; ++it) {
5410 if (it->getType()->isPointerType()) {
5411 // If the transparent union contains a pointer type, we allow:
5412 // 1) void pointer
5413 // 2) null pointer constant
5414 if (FromType->isPointerType())
5415 if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
5416 rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_BitCast);
5417 InitField = *it;
5418 break;
5419 }
5420
5421 if (rExpr.get()->isNullPointerConstant(Context,
5422 Expr::NPC_ValueDependentIsNull)) {
5423 rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_NullToPointer);
5424 InitField = *it;
5425 break;
5426 }
5427 }
5428
5429 CastKind Kind = CK_Invalid;
5430 if (CheckAssignmentConstraints(it->getType(), rExpr, Kind)
5431 == Compatible) {
5432 rExpr = ImpCastExprToType(rExpr.take(), it->getType(), Kind);
5433 InitField = *it;
5434 break;
5435 }
5436 }
5437
5438 if (!InitField)
5439 return Incompatible;
5440
5441 ConstructTransparentUnion(*this, Context, rExpr, ArgType, InitField);
5442 return Compatible;
5443 }
5444
5445 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType lhsType,ExprResult & rExpr)5446 Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) {
5447 if (getLangOptions().CPlusPlus) {
5448 if (!lhsType->isRecordType()) {
5449 // C++ 5.17p3: If the left operand is not of class type, the
5450 // expression is implicitly converted (C++ 4) to the
5451 // cv-unqualified type of the left operand.
5452 ExprResult Res = PerformImplicitConversion(rExpr.get(),
5453 lhsType.getUnqualifiedType(),
5454 AA_Assigning);
5455 if (Res.isInvalid())
5456 return Incompatible;
5457 Sema::AssignConvertType result = Compatible;
5458 if (getLangOptions().ObjCAutoRefCount &&
5459 !CheckObjCARCUnavailableWeakConversion(lhsType, rExpr.get()->getType()))
5460 result = IncompatibleObjCWeakRef;
5461 rExpr = move(Res);
5462 return result;
5463 }
5464
5465 // FIXME: Currently, we fall through and treat C++ classes like C
5466 // structures.
5467 }
5468
5469 // C99 6.5.16.1p1: the left operand is a pointer and the right is
5470 // a null pointer constant.
5471 if ((lhsType->isPointerType() ||
5472 lhsType->isObjCObjectPointerType() ||
5473 lhsType->isBlockPointerType())
5474 && rExpr.get()->isNullPointerConstant(Context,
5475 Expr::NPC_ValueDependentIsNull)) {
5476 rExpr = ImpCastExprToType(rExpr.take(), lhsType, CK_NullToPointer);
5477 return Compatible;
5478 }
5479
5480 // This check seems unnatural, however it is necessary to ensure the proper
5481 // conversion of functions/arrays. If the conversion were done for all
5482 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5483 // expressions that suppress this implicit conversion (&, sizeof).
5484 //
5485 // Suppress this for references: C++ 8.5.3p5.
5486 if (!lhsType->isReferenceType()) {
5487 rExpr = DefaultFunctionArrayLvalueConversion(rExpr.take());
5488 if (rExpr.isInvalid())
5489 return Incompatible;
5490 }
5491
5492 CastKind Kind = CK_Invalid;
5493 Sema::AssignConvertType result =
5494 CheckAssignmentConstraints(lhsType, rExpr, Kind);
5495
5496 // C99 6.5.16.1p2: The value of the right operand is converted to the
5497 // type of the assignment expression.
5498 // CheckAssignmentConstraints allows the left-hand side to be a reference,
5499 // so that we can use references in built-in functions even in C.
5500 // The getNonReferenceType() call makes sure that the resulting expression
5501 // does not have reference type.
5502 if (result != Incompatible && rExpr.get()->getType() != lhsType)
5503 rExpr = ImpCastExprToType(rExpr.take(), lhsType.getNonLValueExprType(Context), Kind);
5504 return result;
5505 }
5506
InvalidOperands(SourceLocation Loc,ExprResult & lex,ExprResult & rex)5507 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) {
5508 Diag(Loc, diag::err_typecheck_invalid_operands)
5509 << lex.get()->getType() << rex.get()->getType()
5510 << lex.get()->getSourceRange() << rex.get()->getSourceRange();
5511 return QualType();
5512 }
5513
CheckVectorOperands(ExprResult & lex,ExprResult & rex,SourceLocation Loc,bool isCompAssign)5514 QualType Sema::CheckVectorOperands(ExprResult &lex, ExprResult &rex,
5515 SourceLocation Loc, bool isCompAssign) {
5516 // For conversion purposes, we ignore any qualifiers.
5517 // For example, "const float" and "float" are equivalent.
5518 QualType lhsType =
5519 Context.getCanonicalType(lex.get()->getType()).getUnqualifiedType();
5520 QualType rhsType =
5521 Context.getCanonicalType(rex.get()->getType()).getUnqualifiedType();
5522
5523 // If the vector types are identical, return.
5524 if (lhsType == rhsType)
5525 return lhsType;
5526
5527 // Handle the case of equivalent AltiVec and GCC vector types
5528 if (lhsType->isVectorType() && rhsType->isVectorType() &&
5529 Context.areCompatibleVectorTypes(lhsType, rhsType)) {
5530 if (lhsType->isExtVectorType()) {
5531 rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
5532 return lhsType;
5533 }
5534
5535 if (!isCompAssign)
5536 lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
5537 return rhsType;
5538 }
5539
5540 if (getLangOptions().LaxVectorConversions &&
5541 Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) {
5542 // If we are allowing lax vector conversions, and LHS and RHS are both
5543 // vectors, the total size only needs to be the same. This is a
5544 // bitcast; no bits are changed but the result type is different.
5545 // FIXME: Should we really be allowing this?
5546 rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
5547 return lhsType;
5548 }
5549
5550 // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5551 // swap back (so that we don't reverse the inputs to a subtract, for instance.
5552 bool swapped = false;
5553 if (rhsType->isExtVectorType() && !isCompAssign) {
5554 swapped = true;
5555 std::swap(rex, lex);
5556 std::swap(rhsType, lhsType);
5557 }
5558
5559 // Handle the case of an ext vector and scalar.
5560 if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
5561 QualType EltTy = LV->getElementType();
5562 if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
5563 int order = Context.getIntegerTypeOrder(EltTy, rhsType);
5564 if (order > 0)
5565 rex = ImpCastExprToType(rex.take(), EltTy, CK_IntegralCast);
5566 if (order >= 0) {
5567 rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
5568 if (swapped) std::swap(rex, lex);
5569 return lhsType;
5570 }
5571 }
5572 if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
5573 rhsType->isRealFloatingType()) {
5574 int order = Context.getFloatingTypeOrder(EltTy, rhsType);
5575 if (order > 0)
5576 rex = ImpCastExprToType(rex.take(), EltTy, CK_FloatingCast);
5577 if (order >= 0) {
5578 rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
5579 if (swapped) std::swap(rex, lex);
5580 return lhsType;
5581 }
5582 }
5583 }
5584
5585 // Vectors of different size or scalar and non-ext-vector are errors.
5586 if (swapped) std::swap(rex, lex);
5587 Diag(Loc, diag::err_typecheck_vector_not_convertable)
5588 << lex.get()->getType() << rex.get()->getType()
5589 << lex.get()->getSourceRange() << rex.get()->getSourceRange();
5590 return QualType();
5591 }
5592
CheckMultiplyDivideOperands(ExprResult & lex,ExprResult & rex,SourceLocation Loc,bool isCompAssign,bool isDiv)5593 QualType Sema::CheckMultiplyDivideOperands(
5594 ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
5595 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
5596 return CheckVectorOperands(lex, rex, Loc, isCompAssign);
5597
5598 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5599 if (lex.isInvalid() || rex.isInvalid())
5600 return QualType();
5601
5602 if (!lex.get()->getType()->isArithmeticType() ||
5603 !rex.get()->getType()->isArithmeticType())
5604 return InvalidOperands(Loc, lex, rex);
5605
5606 // Check for division by zero.
5607 if (isDiv &&
5608 rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5609 DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_division_by_zero)
5610 << rex.get()->getSourceRange());
5611
5612 return compType;
5613 }
5614
CheckRemainderOperands(ExprResult & lex,ExprResult & rex,SourceLocation Loc,bool isCompAssign)5615 QualType Sema::CheckRemainderOperands(
5616 ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
5617 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
5618 if (lex.get()->getType()->hasIntegerRepresentation() &&
5619 rex.get()->getType()->hasIntegerRepresentation())
5620 return CheckVectorOperands(lex, rex, Loc, isCompAssign);
5621 return InvalidOperands(Loc, lex, rex);
5622 }
5623
5624 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5625 if (lex.isInvalid() || rex.isInvalid())
5626 return QualType();
5627
5628 if (!lex.get()->getType()->isIntegerType() || !rex.get()->getType()->isIntegerType())
5629 return InvalidOperands(Loc, lex, rex);
5630
5631 // Check for remainder by zero.
5632 if (rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5633 DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_remainder_by_zero)
5634 << rex.get()->getSourceRange());
5635
5636 return compType;
5637 }
5638
5639 /// \brief Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)5640 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
5641 Expr *LHS, Expr *RHS) {
5642 S.Diag(Loc, S.getLangOptions().CPlusPlus
5643 ? diag::err_typecheck_pointer_arith_void_type
5644 : diag::ext_gnu_void_ptr)
5645 << 1 /* two pointers */ << LHS->getSourceRange() << RHS->getSourceRange();
5646 }
5647
5648 /// \brief Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)5649 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
5650 Expr *Pointer) {
5651 S.Diag(Loc, S.getLangOptions().CPlusPlus
5652 ? diag::err_typecheck_pointer_arith_void_type
5653 : diag::ext_gnu_void_ptr)
5654 << 0 /* one pointer */ << Pointer->getSourceRange();
5655 }
5656
5657 /// \brief Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)5658 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
5659 Expr *LHS, Expr *RHS) {
5660 assert(LHS->getType()->isAnyPointerType());
5661 assert(RHS->getType()->isAnyPointerType());
5662 S.Diag(Loc, S.getLangOptions().CPlusPlus
5663 ? diag::err_typecheck_pointer_arith_function_type
5664 : diag::ext_gnu_ptr_func_arith)
5665 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
5666 // We only show the second type if it differs from the first.
5667 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
5668 RHS->getType())
5669 << RHS->getType()->getPointeeType()
5670 << LHS->getSourceRange() << RHS->getSourceRange();
5671 }
5672
5673 /// \brief Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)5674 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
5675 Expr *Pointer) {
5676 assert(Pointer->getType()->isAnyPointerType());
5677 S.Diag(Loc, S.getLangOptions().CPlusPlus
5678 ? diag::err_typecheck_pointer_arith_function_type
5679 : diag::ext_gnu_ptr_func_arith)
5680 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
5681 << 0 /* one pointer, so only one type */
5682 << Pointer->getSourceRange();
5683 }
5684
5685 /// \brief Check the validity of an arithmetic pointer operand.
5686 ///
5687 /// If the operand has pointer type, this code will check for pointer types
5688 /// which are invalid in arithmetic operations. These will be diagnosed
5689 /// appropriately, including whether or not the use is supported as an
5690 /// extension.
5691 ///
5692 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)5693 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
5694 Expr *Operand) {
5695 if (!Operand->getType()->isAnyPointerType()) return true;
5696
5697 QualType PointeeTy = Operand->getType()->getPointeeType();
5698 if (PointeeTy->isVoidType()) {
5699 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
5700 return !S.getLangOptions().CPlusPlus;
5701 }
5702 if (PointeeTy->isFunctionType()) {
5703 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
5704 return !S.getLangOptions().CPlusPlus;
5705 }
5706
5707 if ((Operand->getType()->isPointerType() &&
5708 !Operand->getType()->isDependentType()) ||
5709 Operand->getType()->isObjCObjectPointerType()) {
5710 QualType PointeeTy = Operand->getType()->getPointeeType();
5711 if (S.RequireCompleteType(
5712 Loc, PointeeTy,
5713 S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5714 << PointeeTy << Operand->getSourceRange()))
5715 return false;
5716 }
5717
5718 return true;
5719 }
5720
5721 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
5722 /// operands.
5723 ///
5724 /// This routine will diagnose any invalid arithmetic on pointer operands much
5725 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
5726 /// for emitting a single diagnostic even for operations where both LHS and RHS
5727 /// are (potentially problematic) pointers.
5728 ///
5729 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)5730 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
5731 Expr *LHS, Expr *RHS) {
5732 bool isLHSPointer = LHS->getType()->isAnyPointerType();
5733 bool isRHSPointer = RHS->getType()->isAnyPointerType();
5734 if (!isLHSPointer && !isRHSPointer) return true;
5735
5736 QualType LHSPointeeTy, RHSPointeeTy;
5737 if (isLHSPointer) LHSPointeeTy = LHS->getType()->getPointeeType();
5738 if (isRHSPointer) RHSPointeeTy = RHS->getType()->getPointeeType();
5739
5740 // Check for arithmetic on pointers to incomplete types.
5741 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
5742 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
5743 if (isLHSVoidPtr || isRHSVoidPtr) {
5744 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHS);
5745 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHS);
5746 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHS, RHS);
5747
5748 return !S.getLangOptions().CPlusPlus;
5749 }
5750
5751 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
5752 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
5753 if (isLHSFuncPtr || isRHSFuncPtr) {
5754 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHS);
5755 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, RHS);
5756 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHS, RHS);
5757
5758 return !S.getLangOptions().CPlusPlus;
5759 }
5760
5761 Expr *Operands[] = { LHS, RHS };
5762 for (unsigned i = 0; i < 2; ++i) {
5763 Expr *Operand = Operands[i];
5764 if ((Operand->getType()->isPointerType() &&
5765 !Operand->getType()->isDependentType()) ||
5766 Operand->getType()->isObjCObjectPointerType()) {
5767 QualType PointeeTy = Operand->getType()->getPointeeType();
5768 if (S.RequireCompleteType(
5769 Loc, PointeeTy,
5770 S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5771 << PointeeTy << Operand->getSourceRange()))
5772 return false;
5773 }
5774 }
5775 return true;
5776 }
5777
CheckAdditionOperands(ExprResult & lex,ExprResult & rex,SourceLocation Loc,QualType * CompLHSTy)5778 QualType Sema::CheckAdditionOperands( // C99 6.5.6
5779 ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) {
5780 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
5781 QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
5782 if (CompLHSTy) *CompLHSTy = compType;
5783 return compType;
5784 }
5785
5786 QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5787 if (lex.isInvalid() || rex.isInvalid())
5788 return QualType();
5789
5790 // handle the common case first (both operands are arithmetic).
5791 if (lex.get()->getType()->isArithmeticType() &&
5792 rex.get()->getType()->isArithmeticType()) {
5793 if (CompLHSTy) *CompLHSTy = compType;
5794 return compType;
5795 }
5796
5797 // Put any potential pointer into PExp
5798 Expr* PExp = lex.get(), *IExp = rex.get();
5799 if (IExp->getType()->isAnyPointerType())
5800 std::swap(PExp, IExp);
5801
5802 if (PExp->getType()->isAnyPointerType()) {
5803 if (IExp->getType()->isIntegerType()) {
5804 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
5805 return QualType();
5806
5807 QualType PointeeTy = PExp->getType()->getPointeeType();
5808
5809 // Diagnose bad cases where we step over interface counts.
5810 if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5811 Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5812 << PointeeTy << PExp->getSourceRange();
5813 return QualType();
5814 }
5815
5816 if (CompLHSTy) {
5817 QualType LHSTy = Context.isPromotableBitField(lex.get());
5818 if (LHSTy.isNull()) {
5819 LHSTy = lex.get()->getType();
5820 if (LHSTy->isPromotableIntegerType())
5821 LHSTy = Context.getPromotedIntegerType(LHSTy);
5822 }
5823 *CompLHSTy = LHSTy;
5824 }
5825 return PExp->getType();
5826 }
5827 }
5828
5829 return InvalidOperands(Loc, lex, rex);
5830 }
5831
5832 // C99 6.5.6
CheckSubtractionOperands(ExprResult & lex,ExprResult & rex,SourceLocation Loc,QualType * CompLHSTy)5833 QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex,
5834 SourceLocation Loc, QualType* CompLHSTy) {
5835 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
5836 QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
5837 if (CompLHSTy) *CompLHSTy = compType;
5838 return compType;
5839 }
5840
5841 QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5842 if (lex.isInvalid() || rex.isInvalid())
5843 return QualType();
5844
5845 // Enforce type constraints: C99 6.5.6p3.
5846
5847 // Handle the common case first (both operands are arithmetic).
5848 if (lex.get()->getType()->isArithmeticType() &&
5849 rex.get()->getType()->isArithmeticType()) {
5850 if (CompLHSTy) *CompLHSTy = compType;
5851 return compType;
5852 }
5853
5854 // Either ptr - int or ptr - ptr.
5855 if (lex.get()->getType()->isAnyPointerType()) {
5856 QualType lpointee = lex.get()->getType()->getPointeeType();
5857
5858 // Diagnose bad cases where we step over interface counts.
5859 if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5860 Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5861 << lpointee << lex.get()->getSourceRange();
5862 return QualType();
5863 }
5864
5865 // The result type of a pointer-int computation is the pointer type.
5866 if (rex.get()->getType()->isIntegerType()) {
5867 if (!checkArithmeticOpPointerOperand(*this, Loc, lex.get()))
5868 return QualType();
5869
5870 if (CompLHSTy) *CompLHSTy = lex.get()->getType();
5871 return lex.get()->getType();
5872 }
5873
5874 // Handle pointer-pointer subtractions.
5875 if (const PointerType *RHSPTy = rex.get()->getType()->getAs<PointerType>()) {
5876 QualType rpointee = RHSPTy->getPointeeType();
5877
5878 if (getLangOptions().CPlusPlus) {
5879 // Pointee types must be the same: C++ [expr.add]
5880 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5881 Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5882 << lex.get()->getType() << rex.get()->getType()
5883 << lex.get()->getSourceRange() << rex.get()->getSourceRange();
5884 return QualType();
5885 }
5886 } else {
5887 // Pointee types must be compatible C99 6.5.6p3
5888 if (!Context.typesAreCompatible(
5889 Context.getCanonicalType(lpointee).getUnqualifiedType(),
5890 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5891 Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5892 << lex.get()->getType() << rex.get()->getType()
5893 << lex.get()->getSourceRange() << rex.get()->getSourceRange();
5894 return QualType();
5895 }
5896 }
5897
5898 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
5899 lex.get(), rex.get()))
5900 return QualType();
5901
5902 if (CompLHSTy) *CompLHSTy = lex.get()->getType();
5903 return Context.getPointerDiffType();
5904 }
5905 }
5906
5907 return InvalidOperands(Loc, lex, rex);
5908 }
5909
isScopedEnumerationType(QualType T)5910 static bool isScopedEnumerationType(QualType T) {
5911 if (const EnumType *ET = dyn_cast<EnumType>(T))
5912 return ET->getDecl()->isScoped();
5913 return false;
5914 }
5915
DiagnoseBadShiftValues(Sema & S,ExprResult & lex,ExprResult & rex,SourceLocation Loc,unsigned Opc,QualType LHSTy)5916 static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
5917 SourceLocation Loc, unsigned Opc,
5918 QualType LHSTy) {
5919 llvm::APSInt Right;
5920 // Check right/shifter operand
5921 if (rex.get()->isValueDependent() || !rex.get()->isIntegerConstantExpr(Right, S.Context))
5922 return;
5923
5924 if (Right.isNegative()) {
5925 S.DiagRuntimeBehavior(Loc, rex.get(),
5926 S.PDiag(diag::warn_shift_negative)
5927 << rex.get()->getSourceRange());
5928 return;
5929 }
5930 llvm::APInt LeftBits(Right.getBitWidth(),
5931 S.Context.getTypeSize(lex.get()->getType()));
5932 if (Right.uge(LeftBits)) {
5933 S.DiagRuntimeBehavior(Loc, rex.get(),
5934 S.PDiag(diag::warn_shift_gt_typewidth)
5935 << rex.get()->getSourceRange());
5936 return;
5937 }
5938 if (Opc != BO_Shl)
5939 return;
5940
5941 // When left shifting an ICE which is signed, we can check for overflow which
5942 // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
5943 // integers have defined behavior modulo one more than the maximum value
5944 // representable in the result type, so never warn for those.
5945 llvm::APSInt Left;
5946 if (lex.get()->isValueDependent() || !lex.get()->isIntegerConstantExpr(Left, S.Context) ||
5947 LHSTy->hasUnsignedIntegerRepresentation())
5948 return;
5949 llvm::APInt ResultBits =
5950 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
5951 if (LeftBits.uge(ResultBits))
5952 return;
5953 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
5954 Result = Result.shl(Right);
5955
5956 // Print the bit representation of the signed integer as an unsigned
5957 // hexadecimal number.
5958 llvm::SmallString<40> HexResult;
5959 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
5960
5961 // If we are only missing a sign bit, this is less likely to result in actual
5962 // bugs -- if the result is cast back to an unsigned type, it will have the
5963 // expected value. Thus we place this behind a different warning that can be
5964 // turned off separately if needed.
5965 if (LeftBits == ResultBits - 1) {
5966 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
5967 << HexResult.str() << LHSTy
5968 << lex.get()->getSourceRange() << rex.get()->getSourceRange();
5969 return;
5970 }
5971
5972 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
5973 << HexResult.str() << Result.getMinSignedBits() << LHSTy
5974 << Left.getBitWidth() << lex.get()->getSourceRange() << rex.get()->getSourceRange();
5975 }
5976
5977 // C99 6.5.7
CheckShiftOperands(ExprResult & lex,ExprResult & rex,SourceLocation Loc,unsigned Opc,bool isCompAssign)5978 QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
5979 unsigned Opc, bool isCompAssign) {
5980 // C99 6.5.7p2: Each of the operands shall have integer type.
5981 if (!lex.get()->getType()->hasIntegerRepresentation() ||
5982 !rex.get()->getType()->hasIntegerRepresentation())
5983 return InvalidOperands(Loc, lex, rex);
5984
5985 // C++0x: Don't allow scoped enums. FIXME: Use something better than
5986 // hasIntegerRepresentation() above instead of this.
5987 if (isScopedEnumerationType(lex.get()->getType()) ||
5988 isScopedEnumerationType(rex.get()->getType())) {
5989 return InvalidOperands(Loc, lex, rex);
5990 }
5991
5992 // Vector shifts promote their scalar inputs to vector type.
5993 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
5994 return CheckVectorOperands(lex, rex, Loc, isCompAssign);
5995
5996 // Shifts don't perform usual arithmetic conversions, they just do integer
5997 // promotions on each operand. C99 6.5.7p3
5998
5999 // For the LHS, do usual unary conversions, but then reset them away
6000 // if this is a compound assignment.
6001 ExprResult old_lex = lex;
6002 lex = UsualUnaryConversions(lex.take());
6003 if (lex.isInvalid())
6004 return QualType();
6005 QualType LHSTy = lex.get()->getType();
6006 if (isCompAssign) lex = old_lex;
6007
6008 // The RHS is simpler.
6009 rex = UsualUnaryConversions(rex.take());
6010 if (rex.isInvalid())
6011 return QualType();
6012
6013 // Sanity-check shift operands
6014 DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy);
6015
6016 // "The type of the result is that of the promoted left operand."
6017 return LHSTy;
6018 }
6019
IsWithinTemplateSpecialization(Decl * D)6020 static bool IsWithinTemplateSpecialization(Decl *D) {
6021 if (DeclContext *DC = D->getDeclContext()) {
6022 if (isa<ClassTemplateSpecializationDecl>(DC))
6023 return true;
6024 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6025 return FD->isFunctionTemplateSpecialization();
6026 }
6027 return false;
6028 }
6029
6030 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & lex,ExprResult & rex,SourceLocation Loc,unsigned OpaqueOpc,bool isRelational)6031 QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
6032 unsigned OpaqueOpc, bool isRelational) {
6033 BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6034
6035 // Handle vector comparisons separately.
6036 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
6037 return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
6038
6039 QualType lType = lex.get()->getType();
6040 QualType rType = rex.get()->getType();
6041
6042 Expr *LHSStripped = lex.get()->IgnoreParenImpCasts();
6043 Expr *RHSStripped = rex.get()->IgnoreParenImpCasts();
6044 QualType LHSStrippedType = LHSStripped->getType();
6045 QualType RHSStrippedType = RHSStripped->getType();
6046
6047
6048
6049 // Two different enums will raise a warning when compared.
6050 if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) {
6051 if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) {
6052 if (LHSEnumType->getDecl()->getIdentifier() &&
6053 RHSEnumType->getDecl()->getIdentifier() &&
6054 !Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
6055 Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6056 << LHSStrippedType << RHSStrippedType
6057 << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6058 }
6059 }
6060 }
6061
6062 if (!lType->hasFloatingRepresentation() &&
6063 !(lType->isBlockPointerType() && isRelational) &&
6064 !lex.get()->getLocStart().isMacroID() &&
6065 !rex.get()->getLocStart().isMacroID()) {
6066 // For non-floating point types, check for self-comparisons of the form
6067 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
6068 // often indicate logic errors in the program.
6069 //
6070 // NOTE: Don't warn about comparison expressions resulting from macro
6071 // expansion. Also don't warn about comparisons which are only self
6072 // comparisons within a template specialization. The warnings should catch
6073 // obvious cases in the definition of the template anyways. The idea is to
6074 // warn when the typed comparison operator will always evaluate to the same
6075 // result.
6076 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6077 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6078 if (DRL->getDecl() == DRR->getDecl() &&
6079 !IsWithinTemplateSpecialization(DRL->getDecl())) {
6080 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6081 << 0 // self-
6082 << (Opc == BO_EQ
6083 || Opc == BO_LE
6084 || Opc == BO_GE));
6085 } else if (lType->isArrayType() && rType->isArrayType() &&
6086 !DRL->getDecl()->getType()->isReferenceType() &&
6087 !DRR->getDecl()->getType()->isReferenceType()) {
6088 // what is it always going to eval to?
6089 char always_evals_to;
6090 switch(Opc) {
6091 case BO_EQ: // e.g. array1 == array2
6092 always_evals_to = 0; // false
6093 break;
6094 case BO_NE: // e.g. array1 != array2
6095 always_evals_to = 1; // true
6096 break;
6097 default:
6098 // best we can say is 'a constant'
6099 always_evals_to = 2; // e.g. array1 <= array2
6100 break;
6101 }
6102 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6103 << 1 // array
6104 << always_evals_to);
6105 }
6106 }
6107 }
6108
6109 if (isa<CastExpr>(LHSStripped))
6110 LHSStripped = LHSStripped->IgnoreParenCasts();
6111 if (isa<CastExpr>(RHSStripped))
6112 RHSStripped = RHSStripped->IgnoreParenCasts();
6113
6114 // Warn about comparisons against a string constant (unless the other
6115 // operand is null), the user probably wants strcmp.
6116 Expr *literalString = 0;
6117 Expr *literalStringStripped = 0;
6118 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6119 !RHSStripped->isNullPointerConstant(Context,
6120 Expr::NPC_ValueDependentIsNull)) {
6121 literalString = lex.get();
6122 literalStringStripped = LHSStripped;
6123 } else if ((isa<StringLiteral>(RHSStripped) ||
6124 isa<ObjCEncodeExpr>(RHSStripped)) &&
6125 !LHSStripped->isNullPointerConstant(Context,
6126 Expr::NPC_ValueDependentIsNull)) {
6127 literalString = rex.get();
6128 literalStringStripped = RHSStripped;
6129 }
6130
6131 if (literalString) {
6132 std::string resultComparison;
6133 switch (Opc) {
6134 case BO_LT: resultComparison = ") < 0"; break;
6135 case BO_GT: resultComparison = ") > 0"; break;
6136 case BO_LE: resultComparison = ") <= 0"; break;
6137 case BO_GE: resultComparison = ") >= 0"; break;
6138 case BO_EQ: resultComparison = ") == 0"; break;
6139 case BO_NE: resultComparison = ") != 0"; break;
6140 default: assert(false && "Invalid comparison operator");
6141 }
6142
6143 DiagRuntimeBehavior(Loc, 0,
6144 PDiag(diag::warn_stringcompare)
6145 << isa<ObjCEncodeExpr>(literalStringStripped)
6146 << literalString->getSourceRange());
6147 }
6148 }
6149
6150 // C99 6.5.8p3 / C99 6.5.9p4
6151 if (lex.get()->getType()->isArithmeticType() && rex.get()->getType()->isArithmeticType()) {
6152 UsualArithmeticConversions(lex, rex);
6153 if (lex.isInvalid() || rex.isInvalid())
6154 return QualType();
6155 }
6156 else {
6157 lex = UsualUnaryConversions(lex.take());
6158 if (lex.isInvalid())
6159 return QualType();
6160
6161 rex = UsualUnaryConversions(rex.take());
6162 if (rex.isInvalid())
6163 return QualType();
6164 }
6165
6166 lType = lex.get()->getType();
6167 rType = rex.get()->getType();
6168
6169 // The result of comparisons is 'bool' in C++, 'int' in C.
6170 QualType ResultTy = Context.getLogicalOperationType();
6171
6172 if (isRelational) {
6173 if (lType->isRealType() && rType->isRealType())
6174 return ResultTy;
6175 } else {
6176 // Check for comparisons of floating point operands using != and ==.
6177 if (lType->hasFloatingRepresentation())
6178 CheckFloatComparison(Loc, lex.get(), rex.get());
6179
6180 if (lType->isArithmeticType() && rType->isArithmeticType())
6181 return ResultTy;
6182 }
6183
6184 bool LHSIsNull = lex.get()->isNullPointerConstant(Context,
6185 Expr::NPC_ValueDependentIsNull);
6186 bool RHSIsNull = rex.get()->isNullPointerConstant(Context,
6187 Expr::NPC_ValueDependentIsNull);
6188
6189 // All of the following pointer-related warnings are GCC extensions, except
6190 // when handling null pointer constants.
6191 if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
6192 QualType LCanPointeeTy =
6193 Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
6194 QualType RCanPointeeTy =
6195 Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
6196
6197 if (getLangOptions().CPlusPlus) {
6198 if (LCanPointeeTy == RCanPointeeTy)
6199 return ResultTy;
6200 if (!isRelational &&
6201 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6202 // Valid unless comparison between non-null pointer and function pointer
6203 // This is a gcc extension compatibility comparison.
6204 // In a SFINAE context, we treat this as a hard error to maintain
6205 // conformance with the C++ standard.
6206 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6207 && !LHSIsNull && !RHSIsNull) {
6208 Diag(Loc,
6209 isSFINAEContext()?
6210 diag::err_typecheck_comparison_of_fptr_to_void
6211 : diag::ext_typecheck_comparison_of_fptr_to_void)
6212 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6213
6214 if (isSFINAEContext())
6215 return QualType();
6216
6217 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6218 return ResultTy;
6219 }
6220 }
6221
6222 // C++ [expr.rel]p2:
6223 // [...] Pointer conversions (4.10) and qualification
6224 // conversions (4.4) are performed on pointer operands (or on
6225 // a pointer operand and a null pointer constant) to bring
6226 // them to their composite pointer type. [...]
6227 //
6228 // C++ [expr.eq]p1 uses the same notion for (in)equality
6229 // comparisons of pointers.
6230 bool NonStandardCompositeType = false;
6231 QualType T = FindCompositePointerType(Loc, lex, rex,
6232 isSFINAEContext()? 0 : &NonStandardCompositeType);
6233 if (T.isNull()) {
6234 Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
6235 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6236 return QualType();
6237 } else if (NonStandardCompositeType) {
6238 Diag(Loc,
6239 diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6240 << lType << rType << T
6241 << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6242 }
6243
6244 lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
6245 rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
6246 return ResultTy;
6247 }
6248 // C99 6.5.9p2 and C99 6.5.8p2
6249 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
6250 RCanPointeeTy.getUnqualifiedType())) {
6251 // Valid unless a relational comparison of function pointers
6252 if (isRelational && LCanPointeeTy->isFunctionType()) {
6253 Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
6254 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6255 }
6256 } else if (!isRelational &&
6257 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6258 // Valid unless comparison between non-null pointer and function pointer
6259 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6260 && !LHSIsNull && !RHSIsNull) {
6261 Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
6262 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6263 }
6264 } else {
6265 // Invalid
6266 Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
6267 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6268 }
6269 if (LCanPointeeTy != RCanPointeeTy) {
6270 if (LHSIsNull && !RHSIsNull)
6271 lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
6272 else
6273 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6274 }
6275 return ResultTy;
6276 }
6277
6278 if (getLangOptions().CPlusPlus) {
6279 // Comparison of nullptr_t with itself.
6280 if (lType->isNullPtrType() && rType->isNullPtrType())
6281 return ResultTy;
6282
6283 // Comparison of pointers with null pointer constants and equality
6284 // comparisons of member pointers to null pointer constants.
6285 if (RHSIsNull &&
6286 ((lType->isAnyPointerType() || lType->isNullPtrType()) ||
6287 (!isRelational &&
6288 (lType->isMemberPointerType() || lType->isBlockPointerType())))) {
6289 rex = ImpCastExprToType(rex.take(), lType,
6290 lType->isMemberPointerType()
6291 ? CK_NullToMemberPointer
6292 : CK_NullToPointer);
6293 return ResultTy;
6294 }
6295 if (LHSIsNull &&
6296 ((rType->isAnyPointerType() || rType->isNullPtrType()) ||
6297 (!isRelational &&
6298 (rType->isMemberPointerType() || rType->isBlockPointerType())))) {
6299 lex = ImpCastExprToType(lex.take(), rType,
6300 rType->isMemberPointerType()
6301 ? CK_NullToMemberPointer
6302 : CK_NullToPointer);
6303 return ResultTy;
6304 }
6305
6306 // Comparison of member pointers.
6307 if (!isRelational &&
6308 lType->isMemberPointerType() && rType->isMemberPointerType()) {
6309 // C++ [expr.eq]p2:
6310 // In addition, pointers to members can be compared, or a pointer to
6311 // member and a null pointer constant. Pointer to member conversions
6312 // (4.11) and qualification conversions (4.4) are performed to bring
6313 // them to a common type. If one operand is a null pointer constant,
6314 // the common type is the type of the other operand. Otherwise, the
6315 // common type is a pointer to member type similar (4.4) to the type
6316 // of one of the operands, with a cv-qualification signature (4.4)
6317 // that is the union of the cv-qualification signatures of the operand
6318 // types.
6319 bool NonStandardCompositeType = false;
6320 QualType T = FindCompositePointerType(Loc, lex, rex,
6321 isSFINAEContext()? 0 : &NonStandardCompositeType);
6322 if (T.isNull()) {
6323 Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
6324 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6325 return QualType();
6326 } else if (NonStandardCompositeType) {
6327 Diag(Loc,
6328 diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6329 << lType << rType << T
6330 << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6331 }
6332
6333 lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
6334 rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
6335 return ResultTy;
6336 }
6337
6338 // Handle scoped enumeration types specifically, since they don't promote
6339 // to integers.
6340 if (lex.get()->getType()->isEnumeralType() &&
6341 Context.hasSameUnqualifiedType(lex.get()->getType(), rex.get()->getType()))
6342 return ResultTy;
6343 }
6344
6345 // Handle block pointer types.
6346 if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
6347 QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
6348 QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
6349
6350 if (!LHSIsNull && !RHSIsNull &&
6351 !Context.typesAreCompatible(lpointee, rpointee)) {
6352 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6353 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6354 }
6355 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6356 return ResultTy;
6357 }
6358
6359 // Allow block pointers to be compared with null pointer constants.
6360 if (!isRelational
6361 && ((lType->isBlockPointerType() && rType->isPointerType())
6362 || (lType->isPointerType() && rType->isBlockPointerType()))) {
6363 if (!LHSIsNull && !RHSIsNull) {
6364 if (!((rType->isPointerType() && rType->castAs<PointerType>()
6365 ->getPointeeType()->isVoidType())
6366 || (lType->isPointerType() && lType->castAs<PointerType>()
6367 ->getPointeeType()->isVoidType())))
6368 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6369 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6370 }
6371 if (LHSIsNull && !RHSIsNull)
6372 lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
6373 else
6374 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6375 return ResultTy;
6376 }
6377
6378 if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) {
6379 const PointerType *LPT = lType->getAs<PointerType>();
6380 const PointerType *RPT = rType->getAs<PointerType>();
6381 if (LPT || RPT) {
6382 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
6383 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
6384
6385 if (!LPtrToVoid && !RPtrToVoid &&
6386 !Context.typesAreCompatible(lType, rType)) {
6387 Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
6388 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6389 }
6390 if (LHSIsNull && !RHSIsNull)
6391 lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
6392 else
6393 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6394 return ResultTy;
6395 }
6396 if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
6397 if (!Context.areComparableObjCPointerTypes(lType, rType))
6398 Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
6399 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6400 if (LHSIsNull && !RHSIsNull)
6401 lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
6402 else
6403 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6404 return ResultTy;
6405 }
6406 }
6407 if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
6408 (lType->isIntegerType() && rType->isAnyPointerType())) {
6409 unsigned DiagID = 0;
6410 bool isError = false;
6411 if ((LHSIsNull && lType->isIntegerType()) ||
6412 (RHSIsNull && rType->isIntegerType())) {
6413 if (isRelational && !getLangOptions().CPlusPlus)
6414 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
6415 } else if (isRelational && !getLangOptions().CPlusPlus)
6416 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
6417 else if (getLangOptions().CPlusPlus) {
6418 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
6419 isError = true;
6420 } else
6421 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
6422
6423 if (DiagID) {
6424 Diag(Loc, DiagID)
6425 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6426 if (isError)
6427 return QualType();
6428 }
6429
6430 if (lType->isIntegerType())
6431 lex = ImpCastExprToType(lex.take(), rType,
6432 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6433 else
6434 rex = ImpCastExprToType(rex.take(), lType,
6435 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6436 return ResultTy;
6437 }
6438
6439 // Handle block pointers.
6440 if (!isRelational && RHSIsNull
6441 && lType->isBlockPointerType() && rType->isIntegerType()) {
6442 rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer);
6443 return ResultTy;
6444 }
6445 if (!isRelational && LHSIsNull
6446 && lType->isIntegerType() && rType->isBlockPointerType()) {
6447 lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer);
6448 return ResultTy;
6449 }
6450
6451 return InvalidOperands(Loc, lex, rex);
6452 }
6453
6454 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
6455 /// operates on extended vector types. Instead of producing an IntTy result,
6456 /// like a scalar comparison, a vector comparison produces a vector of integer
6457 /// types.
CheckVectorCompareOperands(ExprResult & lex,ExprResult & rex,SourceLocation Loc,bool isRelational)6458 QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
6459 SourceLocation Loc,
6460 bool isRelational) {
6461 // Check to make sure we're operating on vectors of the same type and width,
6462 // Allowing one side to be a scalar of element type.
6463 QualType vType = CheckVectorOperands(lex, rex, Loc, /*isCompAssign*/false);
6464 if (vType.isNull())
6465 return vType;
6466
6467 QualType lType = lex.get()->getType();
6468 QualType rType = rex.get()->getType();
6469
6470 // If AltiVec, the comparison results in a numeric type, i.e.
6471 // bool for C++, int for C
6472 if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
6473 return Context.getLogicalOperationType();
6474
6475 // For non-floating point types, check for self-comparisons of the form
6476 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
6477 // often indicate logic errors in the program.
6478 if (!lType->hasFloatingRepresentation()) {
6479 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens()))
6480 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens()))
6481 if (DRL->getDecl() == DRR->getDecl())
6482 DiagRuntimeBehavior(Loc, 0,
6483 PDiag(diag::warn_comparison_always)
6484 << 0 // self-
6485 << 2 // "a constant"
6486 );
6487 }
6488
6489 // Check for comparisons of floating point operands using != and ==.
6490 if (!isRelational && lType->hasFloatingRepresentation()) {
6491 assert (rType->hasFloatingRepresentation());
6492 CheckFloatComparison(Loc, lex.get(), rex.get());
6493 }
6494
6495 // Return the type for the comparison, which is the same as vector type for
6496 // integer vectors, or an integer type of identical size and number of
6497 // elements for floating point vectors.
6498 if (lType->hasIntegerRepresentation())
6499 return lType;
6500
6501 const VectorType *VTy = lType->getAs<VectorType>();
6502 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
6503 if (TypeSize == Context.getTypeSize(Context.IntTy))
6504 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
6505 if (TypeSize == Context.getTypeSize(Context.LongTy))
6506 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
6507
6508 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
6509 "Unhandled vector element size in vector compare");
6510 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
6511 }
6512
CheckBitwiseOperands(ExprResult & lex,ExprResult & rex,SourceLocation Loc,bool isCompAssign)6513 inline QualType Sema::CheckBitwiseOperands(
6514 ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
6515 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
6516 if (lex.get()->getType()->hasIntegerRepresentation() &&
6517 rex.get()->getType()->hasIntegerRepresentation())
6518 return CheckVectorOperands(lex, rex, Loc, isCompAssign);
6519
6520 return InvalidOperands(Loc, lex, rex);
6521 }
6522
6523 ExprResult lexResult = Owned(lex), rexResult = Owned(rex);
6524 QualType compType = UsualArithmeticConversions(lexResult, rexResult, isCompAssign);
6525 if (lexResult.isInvalid() || rexResult.isInvalid())
6526 return QualType();
6527 lex = lexResult.take();
6528 rex = rexResult.take();
6529
6530 if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
6531 rex.get()->getType()->isIntegralOrUnscopedEnumerationType())
6532 return compType;
6533 return InvalidOperands(Loc, lex, rex);
6534 }
6535
CheckLogicalOperands(ExprResult & lex,ExprResult & rex,SourceLocation Loc,unsigned Opc)6536 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
6537 ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) {
6538
6539 // Diagnose cases where the user write a logical and/or but probably meant a
6540 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
6541 // is a constant.
6542 if (lex.get()->getType()->isIntegerType() && !lex.get()->getType()->isBooleanType() &&
6543 rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() &&
6544 // Don't warn in macros or template instantiations.
6545 !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
6546 // If the RHS can be constant folded, and if it constant folds to something
6547 // that isn't 0 or 1 (which indicate a potential logical operation that
6548 // happened to fold to true/false) then warn.
6549 // Parens on the RHS are ignored.
6550 Expr::EvalResult Result;
6551 if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects)
6552 if ((getLangOptions().Bool && !rex.get()->getType()->isBooleanType()) ||
6553 (Result.Val.getInt() != 0 && Result.Val.getInt() != 1)) {
6554 Diag(Loc, diag::warn_logical_instead_of_bitwise)
6555 << rex.get()->getSourceRange()
6556 << (Opc == BO_LAnd ? "&&" : "||")
6557 << (Opc == BO_LAnd ? "&" : "|");
6558 }
6559 }
6560
6561 if (!Context.getLangOptions().CPlusPlus) {
6562 lex = UsualUnaryConversions(lex.take());
6563 if (lex.isInvalid())
6564 return QualType();
6565
6566 rex = UsualUnaryConversions(rex.take());
6567 if (rex.isInvalid())
6568 return QualType();
6569
6570 if (!lex.get()->getType()->isScalarType() || !rex.get()->getType()->isScalarType())
6571 return InvalidOperands(Loc, lex, rex);
6572
6573 return Context.IntTy;
6574 }
6575
6576 // The following is safe because we only use this method for
6577 // non-overloadable operands.
6578
6579 // C++ [expr.log.and]p1
6580 // C++ [expr.log.or]p1
6581 // The operands are both contextually converted to type bool.
6582 ExprResult lexRes = PerformContextuallyConvertToBool(lex.get());
6583 if (lexRes.isInvalid())
6584 return InvalidOperands(Loc, lex, rex);
6585 lex = move(lexRes);
6586
6587 ExprResult rexRes = PerformContextuallyConvertToBool(rex.get());
6588 if (rexRes.isInvalid())
6589 return InvalidOperands(Loc, lex, rex);
6590 rex = move(rexRes);
6591
6592 // C++ [expr.log.and]p2
6593 // C++ [expr.log.or]p2
6594 // The result is a bool.
6595 return Context.BoolTy;
6596 }
6597
6598 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
6599 /// is a read-only property; return true if so. A readonly property expression
6600 /// depends on various declarations and thus must be treated specially.
6601 ///
IsReadonlyProperty(Expr * E,Sema & S)6602 static bool IsReadonlyProperty(Expr *E, Sema &S) {
6603 if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
6604 const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
6605 if (PropExpr->isImplicitProperty()) return false;
6606
6607 ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
6608 QualType BaseType = PropExpr->isSuperReceiver() ?
6609 PropExpr->getSuperReceiverType() :
6610 PropExpr->getBase()->getType();
6611
6612 if (const ObjCObjectPointerType *OPT =
6613 BaseType->getAsObjCInterfacePointerType())
6614 if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
6615 if (S.isPropertyReadonly(PDecl, IFace))
6616 return true;
6617 }
6618 return false;
6619 }
6620
IsConstProperty(Expr * E,Sema & S)6621 static bool IsConstProperty(Expr *E, Sema &S) {
6622 if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
6623 const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
6624 if (PropExpr->isImplicitProperty()) return false;
6625
6626 ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
6627 QualType T = PDecl->getType();
6628 if (T->isReferenceType())
6629 T = T->getAs<ReferenceType>()->getPointeeType();
6630 CanQualType CT = S.Context.getCanonicalType(T);
6631 return CT.isConstQualified();
6632 }
6633 return false;
6634 }
6635
IsReadonlyMessage(Expr * E,Sema & S)6636 static bool IsReadonlyMessage(Expr *E, Sema &S) {
6637 if (E->getStmtClass() != Expr::MemberExprClass)
6638 return false;
6639 const MemberExpr *ME = cast<MemberExpr>(E);
6640 NamedDecl *Member = ME->getMemberDecl();
6641 if (isa<FieldDecl>(Member)) {
6642 Expr *Base = ME->getBase()->IgnoreParenImpCasts();
6643 if (Base->getStmtClass() != Expr::ObjCMessageExprClass)
6644 return false;
6645 return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0;
6646 }
6647 return false;
6648 }
6649
6650 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
6651 /// emit an error and return true. If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)6652 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
6653 SourceLocation OrigLoc = Loc;
6654 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
6655 &Loc);
6656 if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
6657 IsLV = Expr::MLV_ReadonlyProperty;
6658 else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
6659 IsLV = Expr::MLV_Valid;
6660 else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
6661 IsLV = Expr::MLV_InvalidMessageExpression;
6662 if (IsLV == Expr::MLV_Valid)
6663 return false;
6664
6665 unsigned Diag = 0;
6666 bool NeedType = false;
6667 switch (IsLV) { // C99 6.5.16p2
6668 case Expr::MLV_ConstQualified:
6669 Diag = diag::err_typecheck_assign_const;
6670
6671 // In ARC, use some specialized diagnostics for occasions where we
6672 // infer 'const'. These are always pseudo-strong variables.
6673 if (S.getLangOptions().ObjCAutoRefCount) {
6674 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
6675 if (declRef && isa<VarDecl>(declRef->getDecl())) {
6676 VarDecl *var = cast<VarDecl>(declRef->getDecl());
6677
6678 // Use the normal diagnostic if it's pseudo-__strong but the
6679 // user actually wrote 'const'.
6680 if (var->isARCPseudoStrong() &&
6681 (!var->getTypeSourceInfo() ||
6682 !var->getTypeSourceInfo()->getType().isConstQualified())) {
6683 // There are two pseudo-strong cases:
6684 // - self
6685 ObjCMethodDecl *method = S.getCurMethodDecl();
6686 if (method && var == method->getSelfDecl())
6687 Diag = diag::err_typecheck_arr_assign_self;
6688
6689 // - fast enumeration variables
6690 else
6691 Diag = diag::err_typecheck_arr_assign_enumeration;
6692
6693 SourceRange Assign;
6694 if (Loc != OrigLoc)
6695 Assign = SourceRange(OrigLoc, OrigLoc);
6696 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
6697 // We need to preserve the AST regardless, so migration tool
6698 // can do its job.
6699 return false;
6700 }
6701 }
6702 }
6703
6704 break;
6705 case Expr::MLV_ArrayType:
6706 Diag = diag::err_typecheck_array_not_modifiable_lvalue;
6707 NeedType = true;
6708 break;
6709 case Expr::MLV_NotObjectType:
6710 Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
6711 NeedType = true;
6712 break;
6713 case Expr::MLV_LValueCast:
6714 Diag = diag::err_typecheck_lvalue_casts_not_supported;
6715 break;
6716 case Expr::MLV_Valid:
6717 llvm_unreachable("did not take early return for MLV_Valid");
6718 case Expr::MLV_InvalidExpression:
6719 case Expr::MLV_MemberFunction:
6720 case Expr::MLV_ClassTemporary:
6721 Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
6722 break;
6723 case Expr::MLV_IncompleteType:
6724 case Expr::MLV_IncompleteVoidType:
6725 return S.RequireCompleteType(Loc, E->getType(),
6726 S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
6727 << E->getSourceRange());
6728 case Expr::MLV_DuplicateVectorComponents:
6729 Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
6730 break;
6731 case Expr::MLV_NotBlockQualified:
6732 Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
6733 break;
6734 case Expr::MLV_ReadonlyProperty:
6735 Diag = diag::error_readonly_property_assignment;
6736 break;
6737 case Expr::MLV_NoSetterProperty:
6738 Diag = diag::error_nosetter_property_assignment;
6739 break;
6740 case Expr::MLV_InvalidMessageExpression:
6741 Diag = diag::error_readonly_message_assignment;
6742 break;
6743 case Expr::MLV_SubObjCPropertySetting:
6744 Diag = diag::error_no_subobject_property_setting;
6745 break;
6746 }
6747
6748 SourceRange Assign;
6749 if (Loc != OrigLoc)
6750 Assign = SourceRange(OrigLoc, OrigLoc);
6751 if (NeedType)
6752 S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
6753 else
6754 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
6755 return true;
6756 }
6757
6758
6759
6760 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHS,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)6761 QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
6762 SourceLocation Loc,
6763 QualType CompoundType) {
6764 // Verify that LHS is a modifiable lvalue, and emit error if not.
6765 if (CheckForModifiableLvalue(LHS, Loc, *this))
6766 return QualType();
6767
6768 QualType LHSType = LHS->getType();
6769 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : CompoundType;
6770 AssignConvertType ConvTy;
6771 if (CompoundType.isNull()) {
6772 QualType LHSTy(LHSType);
6773 // Simple assignment "x = y".
6774 if (LHS->getObjectKind() == OK_ObjCProperty) {
6775 ExprResult LHSResult = Owned(LHS);
6776 ConvertPropertyForLValue(LHSResult, RHS, LHSTy);
6777 if (LHSResult.isInvalid())
6778 return QualType();
6779 LHS = LHSResult.take();
6780 }
6781 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
6782 if (RHS.isInvalid())
6783 return QualType();
6784 // Special case of NSObject attributes on c-style pointer types.
6785 if (ConvTy == IncompatiblePointer &&
6786 ((Context.isObjCNSObjectType(LHSType) &&
6787 RHSType->isObjCObjectPointerType()) ||
6788 (Context.isObjCNSObjectType(RHSType) &&
6789 LHSType->isObjCObjectPointerType())))
6790 ConvTy = Compatible;
6791
6792 if (ConvTy == Compatible &&
6793 getLangOptions().ObjCNonFragileABI &&
6794 LHSType->isObjCObjectType())
6795 Diag(Loc, diag::err_assignment_requires_nonfragile_object)
6796 << LHSType;
6797
6798 // If the RHS is a unary plus or minus, check to see if they = and + are
6799 // right next to each other. If so, the user may have typo'd "x =+ 4"
6800 // instead of "x += 4".
6801 Expr *RHSCheck = RHS.get();
6802 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
6803 RHSCheck = ICE->getSubExpr();
6804 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
6805 if ((UO->getOpcode() == UO_Plus ||
6806 UO->getOpcode() == UO_Minus) &&
6807 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
6808 // Only if the two operators are exactly adjacent.
6809 Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
6810 // And there is a space or other character before the subexpr of the
6811 // unary +/-. We don't want to warn on "x=-1".
6812 Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
6813 UO->getSubExpr()->getLocStart().isFileID()) {
6814 Diag(Loc, diag::warn_not_compound_assign)
6815 << (UO->getOpcode() == UO_Plus ? "+" : "-")
6816 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
6817 }
6818 }
6819
6820 if (ConvTy == Compatible) {
6821 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
6822 checkRetainCycles(LHS, RHS.get());
6823 else if (getLangOptions().ObjCAutoRefCount)
6824 checkUnsafeExprAssigns(Loc, LHS, RHS.get());
6825 }
6826 } else {
6827 // Compound assignment "x += y"
6828 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
6829 }
6830
6831 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
6832 RHS.get(), AA_Assigning))
6833 return QualType();
6834
6835 CheckForNullPointerDereference(*this, LHS);
6836 // Check for trivial buffer overflows.
6837 CheckArrayAccess(LHS->IgnoreParenCasts());
6838
6839 // C99 6.5.16p3: The type of an assignment expression is the type of the
6840 // left operand unless the left operand has qualified type, in which case
6841 // it is the unqualified version of the type of the left operand.
6842 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
6843 // is converted to the type of the assignment expression (above).
6844 // C++ 5.17p1: the type of the assignment expression is that of its left
6845 // operand.
6846 return (getLangOptions().CPlusPlus
6847 ? LHSType : LHSType.getUnqualifiedType());
6848 }
6849
6850 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)6851 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
6852 SourceLocation Loc) {
6853 S.DiagnoseUnusedExprResult(LHS.get());
6854
6855 LHS = S.CheckPlaceholderExpr(LHS.take());
6856 RHS = S.CheckPlaceholderExpr(RHS.take());
6857 if (LHS.isInvalid() || RHS.isInvalid())
6858 return QualType();
6859
6860 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
6861 // operands, but not unary promotions.
6862 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
6863
6864 // So we treat the LHS as a ignored value, and in C++ we allow the
6865 // containing site to determine what should be done with the RHS.
6866 LHS = S.IgnoredValueConversions(LHS.take());
6867 if (LHS.isInvalid())
6868 return QualType();
6869
6870 if (!S.getLangOptions().CPlusPlus) {
6871 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
6872 if (RHS.isInvalid())
6873 return QualType();
6874 if (!RHS.get()->getType()->isVoidType())
6875 S.RequireCompleteType(Loc, RHS.get()->getType(), diag::err_incomplete_type);
6876 }
6877
6878 return RHS.get()->getType();
6879 }
6880
6881 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
6882 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc,bool isInc,bool isPrefix)6883 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
6884 ExprValueKind &VK,
6885 SourceLocation OpLoc,
6886 bool isInc, bool isPrefix) {
6887 if (Op->isTypeDependent())
6888 return S.Context.DependentTy;
6889
6890 QualType ResType = Op->getType();
6891 assert(!ResType.isNull() && "no type for increment/decrement expression");
6892
6893 if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
6894 // Decrement of bool is not allowed.
6895 if (!isInc) {
6896 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
6897 return QualType();
6898 }
6899 // Increment of bool sets it to true, but is deprecated.
6900 S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
6901 } else if (ResType->isRealType()) {
6902 // OK!
6903 } else if (ResType->isAnyPointerType()) {
6904 QualType PointeeTy = ResType->getPointeeType();
6905
6906 // C99 6.5.2.4p2, 6.5.6p2
6907 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
6908 return QualType();
6909
6910 // Diagnose bad cases where we step over interface counts.
6911 else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
6912 S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6913 << PointeeTy << Op->getSourceRange();
6914 return QualType();
6915 }
6916 } else if (ResType->isAnyComplexType()) {
6917 // C99 does not support ++/-- on complex types, we allow as an extension.
6918 S.Diag(OpLoc, diag::ext_integer_increment_complex)
6919 << ResType << Op->getSourceRange();
6920 } else if (ResType->isPlaceholderType()) {
6921 ExprResult PR = S.CheckPlaceholderExpr(Op);
6922 if (PR.isInvalid()) return QualType();
6923 return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
6924 isInc, isPrefix);
6925 } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
6926 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
6927 } else {
6928 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
6929 << ResType << int(isInc) << Op->getSourceRange();
6930 return QualType();
6931 }
6932 // At this point, we know we have a real, complex or pointer type.
6933 // Now make sure the operand is a modifiable lvalue.
6934 if (CheckForModifiableLvalue(Op, OpLoc, S))
6935 return QualType();
6936 // In C++, a prefix increment is the same type as the operand. Otherwise
6937 // (in C or with postfix), the increment is the unqualified type of the
6938 // operand.
6939 if (isPrefix && S.getLangOptions().CPlusPlus) {
6940 VK = VK_LValue;
6941 return ResType;
6942 } else {
6943 VK = VK_RValue;
6944 return ResType.getUnqualifiedType();
6945 }
6946 }
6947
ConvertPropertyForRValue(Expr * E)6948 ExprResult Sema::ConvertPropertyForRValue(Expr *E) {
6949 assert(E->getValueKind() == VK_LValue &&
6950 E->getObjectKind() == OK_ObjCProperty);
6951 const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
6952
6953 QualType T = E->getType();
6954 QualType ReceiverType;
6955 if (PRE->isObjectReceiver())
6956 ReceiverType = PRE->getBase()->getType();
6957 else if (PRE->isSuperReceiver())
6958 ReceiverType = PRE->getSuperReceiverType();
6959 else
6960 ReceiverType = Context.getObjCInterfaceType(PRE->getClassReceiver());
6961
6962 ExprValueKind VK = VK_RValue;
6963 if (PRE->isImplicitProperty()) {
6964 if (ObjCMethodDecl *GetterMethod =
6965 PRE->getImplicitPropertyGetter()) {
6966 T = getMessageSendResultType(ReceiverType, GetterMethod,
6967 PRE->isClassReceiver(),
6968 PRE->isSuperReceiver());
6969 VK = Expr::getValueKindForType(GetterMethod->getResultType());
6970 }
6971 else {
6972 Diag(PRE->getLocation(), diag::err_getter_not_found)
6973 << PRE->getBase()->getType();
6974 }
6975 }
6976
6977 E = ImplicitCastExpr::Create(Context, T, CK_GetObjCProperty,
6978 E, 0, VK);
6979
6980 ExprResult Result = MaybeBindToTemporary(E);
6981 if (!Result.isInvalid())
6982 E = Result.take();
6983
6984 return Owned(E);
6985 }
6986
ConvertPropertyForLValue(ExprResult & LHS,ExprResult & RHS,QualType & LHSTy)6987 void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS, QualType &LHSTy) {
6988 assert(LHS.get()->getValueKind() == VK_LValue &&
6989 LHS.get()->getObjectKind() == OK_ObjCProperty);
6990 const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty();
6991
6992 bool Consumed = false;
6993
6994 if (PropRef->isImplicitProperty()) {
6995 // If using property-dot syntax notation for assignment, and there is a
6996 // setter, RHS expression is being passed to the setter argument. So,
6997 // type conversion (and comparison) is RHS to setter's argument type.
6998 if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) {
6999 ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
7000 LHSTy = (*P)->getType();
7001 Consumed = (getLangOptions().ObjCAutoRefCount &&
7002 (*P)->hasAttr<NSConsumedAttr>());
7003
7004 // Otherwise, if the getter returns an l-value, just call that.
7005 } else {
7006 QualType Result = PropRef->getImplicitPropertyGetter()->getResultType();
7007 ExprValueKind VK = Expr::getValueKindForType(Result);
7008 if (VK == VK_LValue) {
7009 LHS = ImplicitCastExpr::Create(Context, LHS.get()->getType(),
7010 CK_GetObjCProperty, LHS.take(), 0, VK);
7011 return;
7012 }
7013 }
7014 } else if (getLangOptions().ObjCAutoRefCount) {
7015 const ObjCMethodDecl *setter
7016 = PropRef->getExplicitProperty()->getSetterMethodDecl();
7017 if (setter) {
7018 ObjCMethodDecl::param_iterator P = setter->param_begin();
7019 LHSTy = (*P)->getType();
7020 Consumed = (*P)->hasAttr<NSConsumedAttr>();
7021 }
7022 }
7023
7024 if ((getLangOptions().CPlusPlus && LHSTy->isRecordType()) ||
7025 getLangOptions().ObjCAutoRefCount) {
7026 InitializedEntity Entity =
7027 InitializedEntity::InitializeParameter(Context, LHSTy, Consumed);
7028 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), RHS);
7029 if (!ArgE.isInvalid()) {
7030 RHS = ArgE;
7031 if (getLangOptions().ObjCAutoRefCount && !PropRef->isSuperReceiver())
7032 checkRetainCycles(const_cast<Expr*>(PropRef->getBase()), RHS.get());
7033 }
7034 }
7035 }
7036
7037
7038 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7039 /// This routine allows us to typecheck complex/recursive expressions
7040 /// where the declaration is needed for type checking. We only need to
7041 /// handle cases when the expression references a function designator
7042 /// or is an lvalue. Here are some examples:
7043 /// - &(x) => x
7044 /// - &*****f => f for f a function designator.
7045 /// - &s.xx => s
7046 /// - &s.zz[1].yy -> s, if zz is an array
7047 /// - *(x + 1) -> x, if x is an array
7048 /// - &"123"[2] -> 0
7049 /// - & __real__ x -> x
getPrimaryDecl(Expr * E)7050 static ValueDecl *getPrimaryDecl(Expr *E) {
7051 switch (E->getStmtClass()) {
7052 case Stmt::DeclRefExprClass:
7053 return cast<DeclRefExpr>(E)->getDecl();
7054 case Stmt::MemberExprClass:
7055 // If this is an arrow operator, the address is an offset from
7056 // the base's value, so the object the base refers to is
7057 // irrelevant.
7058 if (cast<MemberExpr>(E)->isArrow())
7059 return 0;
7060 // Otherwise, the expression refers to a part of the base
7061 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7062 case Stmt::ArraySubscriptExprClass: {
7063 // FIXME: This code shouldn't be necessary! We should catch the implicit
7064 // promotion of register arrays earlier.
7065 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7066 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7067 if (ICE->getSubExpr()->getType()->isArrayType())
7068 return getPrimaryDecl(ICE->getSubExpr());
7069 }
7070 return 0;
7071 }
7072 case Stmt::UnaryOperatorClass: {
7073 UnaryOperator *UO = cast<UnaryOperator>(E);
7074
7075 switch(UO->getOpcode()) {
7076 case UO_Real:
7077 case UO_Imag:
7078 case UO_Extension:
7079 return getPrimaryDecl(UO->getSubExpr());
7080 default:
7081 return 0;
7082 }
7083 }
7084 case Stmt::ParenExprClass:
7085 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7086 case Stmt::ImplicitCastExprClass:
7087 // If the result of an implicit cast is an l-value, we care about
7088 // the sub-expression; otherwise, the result here doesn't matter.
7089 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7090 default:
7091 return 0;
7092 }
7093 }
7094
7095 /// CheckAddressOfOperand - The operand of & must be either a function
7096 /// designator or an lvalue designating an object. If it is an lvalue, the
7097 /// object cannot be declared with storage class register or be a bit field.
7098 /// Note: The usual conversions are *not* applied to the operand of the &
7099 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7100 /// In C++, the operand might be an overloaded function name, in which case
7101 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(Sema & S,Expr * OrigOp,SourceLocation OpLoc)7102 static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
7103 SourceLocation OpLoc) {
7104 if (OrigOp->isTypeDependent())
7105 return S.Context.DependentTy;
7106 if (OrigOp->getType() == S.Context.OverloadTy)
7107 return S.Context.OverloadTy;
7108 if (OrigOp->getType() == S.Context.UnknownAnyTy)
7109 return S.Context.UnknownAnyTy;
7110 if (OrigOp->getType() == S.Context.BoundMemberTy) {
7111 S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7112 << OrigOp->getSourceRange();
7113 return QualType();
7114 }
7115
7116 assert(!OrigOp->getType()->isPlaceholderType());
7117
7118 // Make sure to ignore parentheses in subsequent checks
7119 Expr *op = OrigOp->IgnoreParens();
7120
7121 if (S.getLangOptions().C99) {
7122 // Implement C99-only parts of addressof rules.
7123 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7124 if (uOp->getOpcode() == UO_Deref)
7125 // Per C99 6.5.3.2, the address of a deref always returns a valid result
7126 // (assuming the deref expression is valid).
7127 return uOp->getSubExpr()->getType();
7128 }
7129 // Technically, there should be a check for array subscript
7130 // expressions here, but the result of one is always an lvalue anyway.
7131 }
7132 ValueDecl *dcl = getPrimaryDecl(op);
7133 Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7134
7135 if (lval == Expr::LV_ClassTemporary) {
7136 bool sfinae = S.isSFINAEContext();
7137 S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7138 : diag::ext_typecheck_addrof_class_temporary)
7139 << op->getType() << op->getSourceRange();
7140 if (sfinae)
7141 return QualType();
7142 } else if (isa<ObjCSelectorExpr>(op)) {
7143 return S.Context.getPointerType(op->getType());
7144 } else if (lval == Expr::LV_MemberFunction) {
7145 // If it's an instance method, make a member pointer.
7146 // The expression must have exactly the form &A::foo.
7147
7148 // If the underlying expression isn't a decl ref, give up.
7149 if (!isa<DeclRefExpr>(op)) {
7150 S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7151 << OrigOp->getSourceRange();
7152 return QualType();
7153 }
7154 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7155 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7156
7157 // The id-expression was parenthesized.
7158 if (OrigOp != DRE) {
7159 S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7160 << OrigOp->getSourceRange();
7161
7162 // The method was named without a qualifier.
7163 } else if (!DRE->getQualifier()) {
7164 S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7165 << op->getSourceRange();
7166 }
7167
7168 return S.Context.getMemberPointerType(op->getType(),
7169 S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7170 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7171 // C99 6.5.3.2p1
7172 // The operand must be either an l-value or a function designator
7173 if (!op->getType()->isFunctionType()) {
7174 // FIXME: emit more specific diag...
7175 S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7176 << op->getSourceRange();
7177 return QualType();
7178 }
7179 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
7180 // The operand cannot be a bit-field
7181 S.Diag(OpLoc, diag::err_typecheck_address_of)
7182 << "bit-field" << op->getSourceRange();
7183 return QualType();
7184 } else if (op->getObjectKind() == OK_VectorComponent) {
7185 // The operand cannot be an element of a vector
7186 S.Diag(OpLoc, diag::err_typecheck_address_of)
7187 << "vector element" << op->getSourceRange();
7188 return QualType();
7189 } else if (op->getObjectKind() == OK_ObjCProperty) {
7190 // cannot take address of a property expression.
7191 S.Diag(OpLoc, diag::err_typecheck_address_of)
7192 << "property expression" << op->getSourceRange();
7193 return QualType();
7194 } else if (dcl) { // C99 6.5.3.2p1
7195 // We have an lvalue with a decl. Make sure the decl is not declared
7196 // with the register storage-class specifier.
7197 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
7198 // in C++ it is not error to take address of a register
7199 // variable (c++03 7.1.1P3)
7200 if (vd->getStorageClass() == SC_Register &&
7201 !S.getLangOptions().CPlusPlus) {
7202 S.Diag(OpLoc, diag::err_typecheck_address_of)
7203 << "register variable" << op->getSourceRange();
7204 return QualType();
7205 }
7206 } else if (isa<FunctionTemplateDecl>(dcl)) {
7207 return S.Context.OverloadTy;
7208 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
7209 // Okay: we can take the address of a field.
7210 // Could be a pointer to member, though, if there is an explicit
7211 // scope qualifier for the class.
7212 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
7213 DeclContext *Ctx = dcl->getDeclContext();
7214 if (Ctx && Ctx->isRecord()) {
7215 if (dcl->getType()->isReferenceType()) {
7216 S.Diag(OpLoc,
7217 diag::err_cannot_form_pointer_to_member_of_reference_type)
7218 << dcl->getDeclName() << dcl->getType();
7219 return QualType();
7220 }
7221
7222 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
7223 Ctx = Ctx->getParent();
7224 return S.Context.getMemberPointerType(op->getType(),
7225 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
7226 }
7227 }
7228 } else if (!isa<FunctionDecl>(dcl))
7229 assert(0 && "Unknown/unexpected decl type");
7230 }
7231
7232 if (lval == Expr::LV_IncompleteVoidType) {
7233 // Taking the address of a void variable is technically illegal, but we
7234 // allow it in cases which are otherwise valid.
7235 // Example: "extern void x; void* y = &x;".
7236 S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
7237 }
7238
7239 // If the operand has type "type", the result has type "pointer to type".
7240 if (op->getType()->isObjCObjectType())
7241 return S.Context.getObjCObjectPointerType(op->getType());
7242 return S.Context.getPointerType(op->getType());
7243 }
7244
7245 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)7246 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
7247 SourceLocation OpLoc) {
7248 if (Op->isTypeDependent())
7249 return S.Context.DependentTy;
7250
7251 ExprResult ConvResult = S.UsualUnaryConversions(Op);
7252 if (ConvResult.isInvalid())
7253 return QualType();
7254 Op = ConvResult.take();
7255 QualType OpTy = Op->getType();
7256 QualType Result;
7257
7258 if (isa<CXXReinterpretCastExpr>(Op)) {
7259 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
7260 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
7261 Op->getSourceRange());
7262 }
7263
7264 // Note that per both C89 and C99, indirection is always legal, even if OpTy
7265 // is an incomplete type or void. It would be possible to warn about
7266 // dereferencing a void pointer, but it's completely well-defined, and such a
7267 // warning is unlikely to catch any mistakes.
7268 if (const PointerType *PT = OpTy->getAs<PointerType>())
7269 Result = PT->getPointeeType();
7270 else if (const ObjCObjectPointerType *OPT =
7271 OpTy->getAs<ObjCObjectPointerType>())
7272 Result = OPT->getPointeeType();
7273 else {
7274 ExprResult PR = S.CheckPlaceholderExpr(Op);
7275 if (PR.isInvalid()) return QualType();
7276 if (PR.take() != Op)
7277 return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
7278 }
7279
7280 if (Result.isNull()) {
7281 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
7282 << OpTy << Op->getSourceRange();
7283 return QualType();
7284 }
7285
7286 // Dereferences are usually l-values...
7287 VK = VK_LValue;
7288
7289 // ...except that certain expressions are never l-values in C.
7290 if (!S.getLangOptions().CPlusPlus && Result.isCForbiddenLValueType())
7291 VK = VK_RValue;
7292
7293 return Result;
7294 }
7295
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)7296 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
7297 tok::TokenKind Kind) {
7298 BinaryOperatorKind Opc;
7299 switch (Kind) {
7300 default: assert(0 && "Unknown binop!");
7301 case tok::periodstar: Opc = BO_PtrMemD; break;
7302 case tok::arrowstar: Opc = BO_PtrMemI; break;
7303 case tok::star: Opc = BO_Mul; break;
7304 case tok::slash: Opc = BO_Div; break;
7305 case tok::percent: Opc = BO_Rem; break;
7306 case tok::plus: Opc = BO_Add; break;
7307 case tok::minus: Opc = BO_Sub; break;
7308 case tok::lessless: Opc = BO_Shl; break;
7309 case tok::greatergreater: Opc = BO_Shr; break;
7310 case tok::lessequal: Opc = BO_LE; break;
7311 case tok::less: Opc = BO_LT; break;
7312 case tok::greaterequal: Opc = BO_GE; break;
7313 case tok::greater: Opc = BO_GT; break;
7314 case tok::exclaimequal: Opc = BO_NE; break;
7315 case tok::equalequal: Opc = BO_EQ; break;
7316 case tok::amp: Opc = BO_And; break;
7317 case tok::caret: Opc = BO_Xor; break;
7318 case tok::pipe: Opc = BO_Or; break;
7319 case tok::ampamp: Opc = BO_LAnd; break;
7320 case tok::pipepipe: Opc = BO_LOr; break;
7321 case tok::equal: Opc = BO_Assign; break;
7322 case tok::starequal: Opc = BO_MulAssign; break;
7323 case tok::slashequal: Opc = BO_DivAssign; break;
7324 case tok::percentequal: Opc = BO_RemAssign; break;
7325 case tok::plusequal: Opc = BO_AddAssign; break;
7326 case tok::minusequal: Opc = BO_SubAssign; break;
7327 case tok::lesslessequal: Opc = BO_ShlAssign; break;
7328 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
7329 case tok::ampequal: Opc = BO_AndAssign; break;
7330 case tok::caretequal: Opc = BO_XorAssign; break;
7331 case tok::pipeequal: Opc = BO_OrAssign; break;
7332 case tok::comma: Opc = BO_Comma; break;
7333 }
7334 return Opc;
7335 }
7336
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)7337 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
7338 tok::TokenKind Kind) {
7339 UnaryOperatorKind Opc;
7340 switch (Kind) {
7341 default: assert(0 && "Unknown unary op!");
7342 case tok::plusplus: Opc = UO_PreInc; break;
7343 case tok::minusminus: Opc = UO_PreDec; break;
7344 case tok::amp: Opc = UO_AddrOf; break;
7345 case tok::star: Opc = UO_Deref; break;
7346 case tok::plus: Opc = UO_Plus; break;
7347 case tok::minus: Opc = UO_Minus; break;
7348 case tok::tilde: Opc = UO_Not; break;
7349 case tok::exclaim: Opc = UO_LNot; break;
7350 case tok::kw___real: Opc = UO_Real; break;
7351 case tok::kw___imag: Opc = UO_Imag; break;
7352 case tok::kw___extension__: Opc = UO_Extension; break;
7353 }
7354 return Opc;
7355 }
7356
7357 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
7358 /// This warning is only emitted for builtin assignment operations. It is also
7359 /// suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * lhs,Expr * rhs,SourceLocation OpLoc)7360 static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
7361 SourceLocation OpLoc) {
7362 if (!S.ActiveTemplateInstantiations.empty())
7363 return;
7364 if (OpLoc.isInvalid() || OpLoc.isMacroID())
7365 return;
7366 lhs = lhs->IgnoreParenImpCasts();
7367 rhs = rhs->IgnoreParenImpCasts();
7368 const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
7369 const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
7370 if (!LeftDeclRef || !RightDeclRef ||
7371 LeftDeclRef->getLocation().isMacroID() ||
7372 RightDeclRef->getLocation().isMacroID())
7373 return;
7374 const ValueDecl *LeftDecl =
7375 cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
7376 const ValueDecl *RightDecl =
7377 cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
7378 if (LeftDecl != RightDecl)
7379 return;
7380 if (LeftDecl->getType().isVolatileQualified())
7381 return;
7382 if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
7383 if (RefTy->getPointeeType().isVolatileQualified())
7384 return;
7385
7386 S.Diag(OpLoc, diag::warn_self_assignment)
7387 << LeftDeclRef->getType()
7388 << lhs->getSourceRange() << rhs->getSourceRange();
7389 }
7390
7391 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
7392 /// operator @p Opc at location @c TokLoc. This routine only supports
7393 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * lhsExpr,Expr * rhsExpr)7394 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
7395 BinaryOperatorKind Opc,
7396 Expr *lhsExpr, Expr *rhsExpr) {
7397 ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr);
7398 QualType ResultTy; // Result type of the binary operator.
7399 // The following two variables are used for compound assignment operators
7400 QualType CompLHSTy; // Type of LHS after promotions for computation
7401 QualType CompResultTy; // Type of computation result
7402 ExprValueKind VK = VK_RValue;
7403 ExprObjectKind OK = OK_Ordinary;
7404
7405 // Check if a 'foo<int>' involved in a binary op, identifies a single
7406 // function unambiguously (i.e. an lvalue ala 13.4)
7407 // But since an assignment can trigger target based overload, exclude it in
7408 // our blind search. i.e:
7409 // template<class T> void f(); template<class T, class U> void f(U);
7410 // f<int> == 0; // resolve f<int> blindly
7411 // void (*p)(int); p = f<int>; // resolve f<int> using target
7412 if (Opc != BO_Assign) {
7413 ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get());
7414 if (!resolvedLHS.isUsable()) return ExprError();
7415 lhs = move(resolvedLHS);
7416
7417 ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get());
7418 if (!resolvedRHS.isUsable()) return ExprError();
7419 rhs = move(resolvedRHS);
7420 }
7421
7422 // The canonical way to check for a GNU null is with isNullPointerConstant,
7423 // but we use a bit of a hack here for speed; this is a relatively
7424 // hot path, and isNullPointerConstant is slow.
7425 bool LeftNull = isa<GNUNullExpr>(lhs.get()->IgnoreParenImpCasts());
7426 bool RightNull = isa<GNUNullExpr>(rhs.get()->IgnoreParenImpCasts());
7427
7428 // Detect when a NULL constant is used improperly in an expression. These
7429 // are mainly cases where the null pointer is used as an integer instead
7430 // of a pointer.
7431 if (LeftNull || RightNull) {
7432 // Avoid analyzing cases where the result will either be invalid (and
7433 // diagnosed as such) or entirely valid and not something to warn about.
7434 QualType LeftType = lhs.get()->getType();
7435 QualType RightType = rhs.get()->getType();
7436 if (!LeftType->isBlockPointerType() && !LeftType->isMemberPointerType() &&
7437 !LeftType->isFunctionType() &&
7438 !RightType->isBlockPointerType() &&
7439 !RightType->isMemberPointerType() &&
7440 !RightType->isFunctionType()) {
7441 if (Opc == BO_Mul || Opc == BO_Div || Opc == BO_Rem || Opc == BO_Add ||
7442 Opc == BO_Sub || Opc == BO_Shl || Opc == BO_Shr || Opc == BO_And ||
7443 Opc == BO_Xor || Opc == BO_Or || Opc == BO_MulAssign ||
7444 Opc == BO_DivAssign || Opc == BO_AddAssign || Opc == BO_SubAssign ||
7445 Opc == BO_RemAssign || Opc == BO_ShlAssign || Opc == BO_ShrAssign ||
7446 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign) {
7447 // These are the operations that would not make sense with a null pointer
7448 // no matter what the other expression is.
7449 Diag(OpLoc, diag::warn_null_in_arithmetic_operation)
7450 << (LeftNull ? lhs.get()->getSourceRange() : SourceRange())
7451 << (RightNull ? rhs.get()->getSourceRange() : SourceRange());
7452 } else if (Opc == BO_LE || Opc == BO_LT || Opc == BO_GE || Opc == BO_GT ||
7453 Opc == BO_EQ || Opc == BO_NE) {
7454 // These are the operations that would not make sense with a null pointer
7455 // if the other expression the other expression is not a pointer.
7456 if (LeftNull != RightNull &&
7457 !LeftType->isAnyPointerType() &&
7458 !LeftType->canDecayToPointerType() &&
7459 !RightType->isAnyPointerType() &&
7460 !RightType->canDecayToPointerType()) {
7461 Diag(OpLoc, diag::warn_null_in_arithmetic_operation)
7462 << (LeftNull ? lhs.get()->getSourceRange()
7463 : rhs.get()->getSourceRange());
7464 }
7465 }
7466 }
7467 }
7468
7469 switch (Opc) {
7470 case BO_Assign:
7471 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType());
7472 if (getLangOptions().CPlusPlus &&
7473 lhs.get()->getObjectKind() != OK_ObjCProperty) {
7474 VK = lhs.get()->getValueKind();
7475 OK = lhs.get()->getObjectKind();
7476 }
7477 if (!ResultTy.isNull())
7478 DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc);
7479 break;
7480 case BO_PtrMemD:
7481 case BO_PtrMemI:
7482 ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
7483 Opc == BO_PtrMemI);
7484 break;
7485 case BO_Mul:
7486 case BO_Div:
7487 ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
7488 Opc == BO_Div);
7489 break;
7490 case BO_Rem:
7491 ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
7492 break;
7493 case BO_Add:
7494 ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
7495 break;
7496 case BO_Sub:
7497 ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
7498 break;
7499 case BO_Shl:
7500 case BO_Shr:
7501 ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc);
7502 break;
7503 case BO_LE:
7504 case BO_LT:
7505 case BO_GE:
7506 case BO_GT:
7507 ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
7508 break;
7509 case BO_EQ:
7510 case BO_NE:
7511 ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
7512 break;
7513 case BO_And:
7514 case BO_Xor:
7515 case BO_Or:
7516 ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
7517 break;
7518 case BO_LAnd:
7519 case BO_LOr:
7520 ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
7521 break;
7522 case BO_MulAssign:
7523 case BO_DivAssign:
7524 CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
7525 Opc == BO_DivAssign);
7526 CompLHSTy = CompResultTy;
7527 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7528 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7529 break;
7530 case BO_RemAssign:
7531 CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
7532 CompLHSTy = CompResultTy;
7533 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7534 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7535 break;
7536 case BO_AddAssign:
7537 CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
7538 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7539 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7540 break;
7541 case BO_SubAssign:
7542 CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
7543 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7544 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7545 break;
7546 case BO_ShlAssign:
7547 case BO_ShrAssign:
7548 CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true);
7549 CompLHSTy = CompResultTy;
7550 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7551 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7552 break;
7553 case BO_AndAssign:
7554 case BO_XorAssign:
7555 case BO_OrAssign:
7556 CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
7557 CompLHSTy = CompResultTy;
7558 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7559 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7560 break;
7561 case BO_Comma:
7562 ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
7563 if (getLangOptions().CPlusPlus && !rhs.isInvalid()) {
7564 VK = rhs.get()->getValueKind();
7565 OK = rhs.get()->getObjectKind();
7566 }
7567 break;
7568 }
7569 if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid())
7570 return ExprError();
7571 if (CompResultTy.isNull())
7572 return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc,
7573 ResultTy, VK, OK, OpLoc));
7574 if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() != OK_ObjCProperty) {
7575 VK = VK_LValue;
7576 OK = lhs.get()->getObjectKind();
7577 }
7578 return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc,
7579 ResultTy, VK, OK, CompLHSTy,
7580 CompResultTy, OpLoc));
7581 }
7582
7583 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
7584 /// operators are mixed in a way that suggests that the programmer forgot that
7585 /// comparison operators have higher precedence. The most typical example of
7586 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * lhs,Expr * rhs)7587 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
7588 SourceLocation OpLoc,Expr *lhs,Expr *rhs){
7589 typedef BinaryOperator BinOp;
7590 BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
7591 rhsopc = static_cast<BinOp::Opcode>(-1);
7592 if (BinOp *BO = dyn_cast<BinOp>(lhs))
7593 lhsopc = BO->getOpcode();
7594 if (BinOp *BO = dyn_cast<BinOp>(rhs))
7595 rhsopc = BO->getOpcode();
7596
7597 // Subs are not binary operators.
7598 if (lhsopc == -1 && rhsopc == -1)
7599 return;
7600
7601 // Bitwise operations are sometimes used as eager logical ops.
7602 // Don't diagnose this.
7603 if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
7604 (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
7605 return;
7606
7607 if (BinOp::isComparisonOp(lhsopc)) {
7608 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
7609 << SourceRange(lhs->getLocStart(), OpLoc)
7610 << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc);
7611 SuggestParentheses(Self, OpLoc,
7612 Self.PDiag(diag::note_precedence_bitwise_silence)
7613 << BinOp::getOpcodeStr(lhsopc),
7614 lhs->getSourceRange());
7615 SuggestParentheses(Self, OpLoc,
7616 Self.PDiag(diag::note_precedence_bitwise_first)
7617 << BinOp::getOpcodeStr(Opc),
7618 SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
7619 } else if (BinOp::isComparisonOp(rhsopc)) {
7620 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
7621 << SourceRange(OpLoc, rhs->getLocEnd())
7622 << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc);
7623 SuggestParentheses(Self, OpLoc,
7624 Self.PDiag(diag::note_precedence_bitwise_silence)
7625 << BinOp::getOpcodeStr(rhsopc),
7626 rhs->getSourceRange());
7627 SuggestParentheses(Self, OpLoc,
7628 Self.PDiag(diag::note_precedence_bitwise_first)
7629 << BinOp::getOpcodeStr(Opc),
7630 SourceRange(lhs->getLocStart(),
7631 cast<BinOp>(rhs)->getLHS()->getLocStart()));
7632 }
7633 }
7634
7635 /// \brief It accepts a '&' expr that is inside a '|' one.
7636 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
7637 /// in parentheses.
7638 static void
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)7639 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
7640 BinaryOperator *Bop) {
7641 assert(Bop->getOpcode() == BO_And);
7642 Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
7643 << Bop->getSourceRange() << OpLoc;
7644 SuggestParentheses(Self, Bop->getOperatorLoc(),
7645 Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
7646 Bop->getSourceRange());
7647 }
7648
7649 /// \brief It accepts a '&&' expr that is inside a '||' one.
7650 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
7651 /// in parentheses.
7652 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)7653 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
7654 BinaryOperator *Bop) {
7655 assert(Bop->getOpcode() == BO_LAnd);
7656 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
7657 << Bop->getSourceRange() << OpLoc;
7658 SuggestParentheses(Self, Bop->getOperatorLoc(),
7659 Self.PDiag(diag::note_logical_and_in_logical_or_silence),
7660 Bop->getSourceRange());
7661 }
7662
7663 /// \brief Returns true if the given expression can be evaluated as a constant
7664 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)7665 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
7666 bool Res;
7667 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
7668 }
7669
7670 /// \brief Returns true if the given expression can be evaluated as a constant
7671 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)7672 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
7673 bool Res;
7674 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
7675 }
7676
7677 /// \brief Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * OrLHS,Expr * OrRHS)7678 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
7679 Expr *OrLHS, Expr *OrRHS) {
7680 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
7681 if (Bop->getOpcode() == BO_LAnd) {
7682 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
7683 if (EvaluatesAsFalse(S, OrRHS))
7684 return;
7685 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
7686 if (!EvaluatesAsTrue(S, Bop->getLHS()))
7687 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
7688 } else if (Bop->getOpcode() == BO_LOr) {
7689 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
7690 // If it's "a || b && 1 || c" we didn't warn earlier for
7691 // "a || b && 1", but warn now.
7692 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
7693 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
7694 }
7695 }
7696 }
7697 }
7698
7699 /// \brief Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * OrLHS,Expr * OrRHS)7700 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
7701 Expr *OrLHS, Expr *OrRHS) {
7702 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
7703 if (Bop->getOpcode() == BO_LAnd) {
7704 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
7705 if (EvaluatesAsFalse(S, OrLHS))
7706 return;
7707 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
7708 if (!EvaluatesAsTrue(S, Bop->getRHS()))
7709 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
7710 }
7711 }
7712 }
7713
7714 /// \brief Look for '&' in the left or right hand of a '|' expr.
DiagnoseBitwiseAndInBitwiseOr(Sema & S,SourceLocation OpLoc,Expr * OrArg)7715 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
7716 Expr *OrArg) {
7717 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
7718 if (Bop->getOpcode() == BO_And)
7719 return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
7720 }
7721 }
7722
7723 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
7724 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * lhs,Expr * rhs)7725 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
7726 SourceLocation OpLoc, Expr *lhs, Expr *rhs){
7727 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
7728 if (BinaryOperator::isBitwiseOp(Opc))
7729 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
7730
7731 // Diagnose "arg1 & arg2 | arg3"
7732 if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
7733 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, lhs);
7734 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, rhs);
7735 }
7736
7737 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
7738 // We don't warn for 'assert(a || b && "bad")' since this is safe.
7739 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
7740 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
7741 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
7742 }
7743 }
7744
7745 // Binary Operators. 'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * lhs,Expr * rhs)7746 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
7747 tok::TokenKind Kind,
7748 Expr *lhs, Expr *rhs) {
7749 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
7750 assert((lhs != 0) && "ActOnBinOp(): missing left expression");
7751 assert((rhs != 0) && "ActOnBinOp(): missing right expression");
7752
7753 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
7754 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
7755
7756 return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
7757 }
7758
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * lhs,Expr * rhs)7759 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
7760 BinaryOperatorKind Opc,
7761 Expr *lhs, Expr *rhs) {
7762 if (getLangOptions().CPlusPlus) {
7763 bool UseBuiltinOperator;
7764
7765 if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
7766 UseBuiltinOperator = false;
7767 } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
7768 UseBuiltinOperator = true;
7769 } else {
7770 UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
7771 !rhs->getType()->isOverloadableType();
7772 }
7773
7774 if (!UseBuiltinOperator) {
7775 // Find all of the overloaded operators visible from this
7776 // point. We perform both an operator-name lookup from the local
7777 // scope and an argument-dependent lookup based on the types of
7778 // the arguments.
7779 UnresolvedSet<16> Functions;
7780 OverloadedOperatorKind OverOp
7781 = BinaryOperator::getOverloadedOperator(Opc);
7782 if (S && OverOp != OO_None)
7783 LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
7784 Functions);
7785
7786 // Build the (potentially-overloaded, potentially-dependent)
7787 // binary operation.
7788 return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
7789 }
7790 }
7791
7792 // Build a built-in binary operation.
7793 return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
7794 }
7795
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)7796 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
7797 UnaryOperatorKind Opc,
7798 Expr *InputExpr) {
7799 ExprResult Input = Owned(InputExpr);
7800 ExprValueKind VK = VK_RValue;
7801 ExprObjectKind OK = OK_Ordinary;
7802 QualType resultType;
7803 switch (Opc) {
7804 case UO_PreInc:
7805 case UO_PreDec:
7806 case UO_PostInc:
7807 case UO_PostDec:
7808 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
7809 Opc == UO_PreInc ||
7810 Opc == UO_PostInc,
7811 Opc == UO_PreInc ||
7812 Opc == UO_PreDec);
7813 break;
7814 case UO_AddrOf:
7815 resultType = CheckAddressOfOperand(*this, Input.get(), OpLoc);
7816 break;
7817 case UO_Deref: {
7818 ExprResult resolved = CheckPlaceholderExpr(Input.get());
7819 if (!resolved.isUsable()) return ExprError();
7820 Input = move(resolved);
7821 Input = DefaultFunctionArrayLvalueConversion(Input.take());
7822 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
7823 break;
7824 }
7825 case UO_Plus:
7826 case UO_Minus:
7827 Input = UsualUnaryConversions(Input.take());
7828 if (Input.isInvalid()) return ExprError();
7829 resultType = Input.get()->getType();
7830 if (resultType->isDependentType())
7831 break;
7832 if (resultType->isArithmeticType() || // C99 6.5.3.3p1
7833 resultType->isVectorType())
7834 break;
7835 else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
7836 resultType->isEnumeralType())
7837 break;
7838 else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
7839 Opc == UO_Plus &&
7840 resultType->isPointerType())
7841 break;
7842 else if (resultType->isPlaceholderType()) {
7843 Input = CheckPlaceholderExpr(Input.take());
7844 if (Input.isInvalid()) return ExprError();
7845 return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
7846 }
7847
7848 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
7849 << resultType << Input.get()->getSourceRange());
7850
7851 case UO_Not: // bitwise complement
7852 Input = UsualUnaryConversions(Input.take());
7853 if (Input.isInvalid()) return ExprError();
7854 resultType = Input.get()->getType();
7855 if (resultType->isDependentType())
7856 break;
7857 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
7858 if (resultType->isComplexType() || resultType->isComplexIntegerType())
7859 // C99 does not support '~' for complex conjugation.
7860 Diag(OpLoc, diag::ext_integer_complement_complex)
7861 << resultType << Input.get()->getSourceRange();
7862 else if (resultType->hasIntegerRepresentation())
7863 break;
7864 else if (resultType->isPlaceholderType()) {
7865 Input = CheckPlaceholderExpr(Input.take());
7866 if (Input.isInvalid()) return ExprError();
7867 return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
7868 } else {
7869 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
7870 << resultType << Input.get()->getSourceRange());
7871 }
7872 break;
7873
7874 case UO_LNot: // logical negation
7875 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
7876 Input = DefaultFunctionArrayLvalueConversion(Input.take());
7877 if (Input.isInvalid()) return ExprError();
7878 resultType = Input.get()->getType();
7879 if (resultType->isDependentType())
7880 break;
7881 if (resultType->isScalarType()) {
7882 // C99 6.5.3.3p1: ok, fallthrough;
7883 if (Context.getLangOptions().CPlusPlus) {
7884 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
7885 // operand contextually converted to bool.
7886 Input = ImpCastExprToType(Input.take(), Context.BoolTy,
7887 ScalarTypeToBooleanCastKind(resultType));
7888 }
7889 } else if (resultType->isPlaceholderType()) {
7890 Input = CheckPlaceholderExpr(Input.take());
7891 if (Input.isInvalid()) return ExprError();
7892 return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
7893 } else {
7894 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
7895 << resultType << Input.get()->getSourceRange());
7896 }
7897
7898 // LNot always has type int. C99 6.5.3.3p5.
7899 // In C++, it's bool. C++ 5.3.1p8
7900 resultType = Context.getLogicalOperationType();
7901 break;
7902 case UO_Real:
7903 case UO_Imag:
7904 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
7905 // _Real and _Imag map ordinary l-values into ordinary l-values.
7906 if (Input.isInvalid()) return ExprError();
7907 if (Input.get()->getValueKind() != VK_RValue &&
7908 Input.get()->getObjectKind() == OK_Ordinary)
7909 VK = Input.get()->getValueKind();
7910 break;
7911 case UO_Extension:
7912 resultType = Input.get()->getType();
7913 VK = Input.get()->getValueKind();
7914 OK = Input.get()->getObjectKind();
7915 break;
7916 }
7917 if (resultType.isNull() || Input.isInvalid())
7918 return ExprError();
7919
7920 return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
7921 VK, OK, OpLoc));
7922 }
7923
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)7924 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
7925 UnaryOperatorKind Opc,
7926 Expr *Input) {
7927 if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
7928 UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
7929 // Find all of the overloaded operators visible from this
7930 // point. We perform both an operator-name lookup from the local
7931 // scope and an argument-dependent lookup based on the types of
7932 // the arguments.
7933 UnresolvedSet<16> Functions;
7934 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
7935 if (S && OverOp != OO_None)
7936 LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
7937 Functions);
7938
7939 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
7940 }
7941
7942 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
7943 }
7944
7945 // Unary Operators. 'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)7946 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
7947 tok::TokenKind Op, Expr *Input) {
7948 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
7949 }
7950
7951 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)7952 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
7953 LabelDecl *TheDecl) {
7954 TheDecl->setUsed();
7955 // Create the AST node. The address of a label always has type 'void*'.
7956 return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
7957 Context.getPointerType(Context.VoidTy)));
7958 }
7959
7960 /// Given the last statement in a statement-expression, check whether
7961 /// the result is a producing expression (like a call to an
7962 /// ns_returns_retained function) and, if so, rebuild it to hoist the
7963 /// release out of the full-expression. Otherwise, return null.
7964 /// Cannot fail.
maybeRebuildARCConsumingStmt(Stmt * s)7965 static Expr *maybeRebuildARCConsumingStmt(Stmt *s) {
7966 // Should always be wrapped with one of these.
7967 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(s);
7968 if (!cleanups) return 0;
7969
7970 ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
7971 if (!cast || cast->getCastKind() != CK_ObjCConsumeObject)
7972 return 0;
7973
7974 // Splice out the cast. This shouldn't modify any interesting
7975 // features of the statement.
7976 Expr *producer = cast->getSubExpr();
7977 assert(producer->getType() == cast->getType());
7978 assert(producer->getValueKind() == cast->getValueKind());
7979 cleanups->setSubExpr(producer);
7980 return cleanups;
7981 }
7982
7983 ExprResult
ActOnStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)7984 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
7985 SourceLocation RPLoc) { // "({..})"
7986 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
7987 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
7988
7989 bool isFileScope
7990 = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
7991 if (isFileScope)
7992 return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
7993
7994 // FIXME: there are a variety of strange constraints to enforce here, for
7995 // example, it is not possible to goto into a stmt expression apparently.
7996 // More semantic analysis is needed.
7997
7998 // If there are sub stmts in the compound stmt, take the type of the last one
7999 // as the type of the stmtexpr.
8000 QualType Ty = Context.VoidTy;
8001 bool StmtExprMayBindToTemp = false;
8002 if (!Compound->body_empty()) {
8003 Stmt *LastStmt = Compound->body_back();
8004 LabelStmt *LastLabelStmt = 0;
8005 // If LastStmt is a label, skip down through into the body.
8006 while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8007 LastLabelStmt = Label;
8008 LastStmt = Label->getSubStmt();
8009 }
8010
8011 if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8012 // Do function/array conversion on the last expression, but not
8013 // lvalue-to-rvalue. However, initialize an unqualified type.
8014 ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8015 if (LastExpr.isInvalid())
8016 return ExprError();
8017 Ty = LastExpr.get()->getType().getUnqualifiedType();
8018
8019 if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8020 // In ARC, if the final expression ends in a consume, splice
8021 // the consume out and bind it later. In the alternate case
8022 // (when dealing with a retainable type), the result
8023 // initialization will create a produce. In both cases the
8024 // result will be +1, and we'll need to balance that out with
8025 // a bind.
8026 if (Expr *rebuiltLastStmt
8027 = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8028 LastExpr = rebuiltLastStmt;
8029 } else {
8030 LastExpr = PerformCopyInitialization(
8031 InitializedEntity::InitializeResult(LPLoc,
8032 Ty,
8033 false),
8034 SourceLocation(),
8035 LastExpr);
8036 }
8037
8038 if (LastExpr.isInvalid())
8039 return ExprError();
8040 if (LastExpr.get() != 0) {
8041 if (!LastLabelStmt)
8042 Compound->setLastStmt(LastExpr.take());
8043 else
8044 LastLabelStmt->setSubStmt(LastExpr.take());
8045 StmtExprMayBindToTemp = true;
8046 }
8047 }
8048 }
8049 }
8050
8051 // FIXME: Check that expression type is complete/non-abstract; statement
8052 // expressions are not lvalues.
8053 Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8054 if (StmtExprMayBindToTemp)
8055 return MaybeBindToTemporary(ResStmtExpr);
8056 return Owned(ResStmtExpr);
8057 }
8058
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)8059 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8060 TypeSourceInfo *TInfo,
8061 OffsetOfComponent *CompPtr,
8062 unsigned NumComponents,
8063 SourceLocation RParenLoc) {
8064 QualType ArgTy = TInfo->getType();
8065 bool Dependent = ArgTy->isDependentType();
8066 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
8067
8068 // We must have at least one component that refers to the type, and the first
8069 // one is known to be a field designator. Verify that the ArgTy represents
8070 // a struct/union/class.
8071 if (!Dependent && !ArgTy->isRecordType())
8072 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
8073 << ArgTy << TypeRange);
8074
8075 // Type must be complete per C99 7.17p3 because a declaring a variable
8076 // with an incomplete type would be ill-formed.
8077 if (!Dependent
8078 && RequireCompleteType(BuiltinLoc, ArgTy,
8079 PDiag(diag::err_offsetof_incomplete_type)
8080 << TypeRange))
8081 return ExprError();
8082
8083 // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
8084 // GCC extension, diagnose them.
8085 // FIXME: This diagnostic isn't actually visible because the location is in
8086 // a system header!
8087 if (NumComponents != 1)
8088 Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
8089 << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
8090
8091 bool DidWarnAboutNonPOD = false;
8092 QualType CurrentType = ArgTy;
8093 typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
8094 llvm::SmallVector<OffsetOfNode, 4> Comps;
8095 llvm::SmallVector<Expr*, 4> Exprs;
8096 for (unsigned i = 0; i != NumComponents; ++i) {
8097 const OffsetOfComponent &OC = CompPtr[i];
8098 if (OC.isBrackets) {
8099 // Offset of an array sub-field. TODO: Should we allow vector elements?
8100 if (!CurrentType->isDependentType()) {
8101 const ArrayType *AT = Context.getAsArrayType(CurrentType);
8102 if(!AT)
8103 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
8104 << CurrentType);
8105 CurrentType = AT->getElementType();
8106 } else
8107 CurrentType = Context.DependentTy;
8108
8109 // The expression must be an integral expression.
8110 // FIXME: An integral constant expression?
8111 Expr *Idx = static_cast<Expr*>(OC.U.E);
8112 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
8113 !Idx->getType()->isIntegerType())
8114 return ExprError(Diag(Idx->getLocStart(),
8115 diag::err_typecheck_subscript_not_integer)
8116 << Idx->getSourceRange());
8117
8118 // Record this array index.
8119 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
8120 Exprs.push_back(Idx);
8121 continue;
8122 }
8123
8124 // Offset of a field.
8125 if (CurrentType->isDependentType()) {
8126 // We have the offset of a field, but we can't look into the dependent
8127 // type. Just record the identifier of the field.
8128 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
8129 CurrentType = Context.DependentTy;
8130 continue;
8131 }
8132
8133 // We need to have a complete type to look into.
8134 if (RequireCompleteType(OC.LocStart, CurrentType,
8135 diag::err_offsetof_incomplete_type))
8136 return ExprError();
8137
8138 // Look for the designated field.
8139 const RecordType *RC = CurrentType->getAs<RecordType>();
8140 if (!RC)
8141 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
8142 << CurrentType);
8143 RecordDecl *RD = RC->getDecl();
8144
8145 // C++ [lib.support.types]p5:
8146 // The macro offsetof accepts a restricted set of type arguments in this
8147 // International Standard. type shall be a POD structure or a POD union
8148 // (clause 9).
8149 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
8150 if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
8151 DiagRuntimeBehavior(BuiltinLoc, 0,
8152 PDiag(diag::warn_offsetof_non_pod_type)
8153 << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
8154 << CurrentType))
8155 DidWarnAboutNonPOD = true;
8156 }
8157
8158 // Look for the field.
8159 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
8160 LookupQualifiedName(R, RD);
8161 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
8162 IndirectFieldDecl *IndirectMemberDecl = 0;
8163 if (!MemberDecl) {
8164 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
8165 MemberDecl = IndirectMemberDecl->getAnonField();
8166 }
8167
8168 if (!MemberDecl)
8169 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
8170 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
8171 OC.LocEnd));
8172
8173 // C99 7.17p3:
8174 // (If the specified member is a bit-field, the behavior is undefined.)
8175 //
8176 // We diagnose this as an error.
8177 if (MemberDecl->getBitWidth()) {
8178 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
8179 << MemberDecl->getDeclName()
8180 << SourceRange(BuiltinLoc, RParenLoc);
8181 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
8182 return ExprError();
8183 }
8184
8185 RecordDecl *Parent = MemberDecl->getParent();
8186 if (IndirectMemberDecl)
8187 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
8188
8189 // If the member was found in a base class, introduce OffsetOfNodes for
8190 // the base class indirections.
8191 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
8192 /*DetectVirtual=*/false);
8193 if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
8194 CXXBasePath &Path = Paths.front();
8195 for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
8196 B != BEnd; ++B)
8197 Comps.push_back(OffsetOfNode(B->Base));
8198 }
8199
8200 if (IndirectMemberDecl) {
8201 for (IndirectFieldDecl::chain_iterator FI =
8202 IndirectMemberDecl->chain_begin(),
8203 FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
8204 assert(isa<FieldDecl>(*FI));
8205 Comps.push_back(OffsetOfNode(OC.LocStart,
8206 cast<FieldDecl>(*FI), OC.LocEnd));
8207 }
8208 } else
8209 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
8210
8211 CurrentType = MemberDecl->getType().getNonReferenceType();
8212 }
8213
8214 return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
8215 TInfo, Comps.data(), Comps.size(),
8216 Exprs.data(), Exprs.size(), RParenLoc));
8217 }
8218
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType argty,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RPLoc)8219 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
8220 SourceLocation BuiltinLoc,
8221 SourceLocation TypeLoc,
8222 ParsedType argty,
8223 OffsetOfComponent *CompPtr,
8224 unsigned NumComponents,
8225 SourceLocation RPLoc) {
8226
8227 TypeSourceInfo *ArgTInfo;
8228 QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
8229 if (ArgTy.isNull())
8230 return ExprError();
8231
8232 if (!ArgTInfo)
8233 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
8234
8235 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
8236 RPLoc);
8237 }
8238
8239
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)8240 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
8241 Expr *CondExpr,
8242 Expr *LHSExpr, Expr *RHSExpr,
8243 SourceLocation RPLoc) {
8244 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
8245
8246 ExprValueKind VK = VK_RValue;
8247 ExprObjectKind OK = OK_Ordinary;
8248 QualType resType;
8249 bool ValueDependent = false;
8250 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
8251 resType = Context.DependentTy;
8252 ValueDependent = true;
8253 } else {
8254 // The conditional expression is required to be a constant expression.
8255 llvm::APSInt condEval(32);
8256 SourceLocation ExpLoc;
8257 if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
8258 return ExprError(Diag(ExpLoc,
8259 diag::err_typecheck_choose_expr_requires_constant)
8260 << CondExpr->getSourceRange());
8261
8262 // If the condition is > zero, then the AST type is the same as the LSHExpr.
8263 Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
8264
8265 resType = ActiveExpr->getType();
8266 ValueDependent = ActiveExpr->isValueDependent();
8267 VK = ActiveExpr->getValueKind();
8268 OK = ActiveExpr->getObjectKind();
8269 }
8270
8271 return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
8272 resType, VK, OK, RPLoc,
8273 resType->isDependentType(),
8274 ValueDependent));
8275 }
8276
8277 //===----------------------------------------------------------------------===//
8278 // Clang Extensions.
8279 //===----------------------------------------------------------------------===//
8280
8281 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * BlockScope)8282 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
8283 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
8284 PushBlockScope(BlockScope, Block);
8285 CurContext->addDecl(Block);
8286 if (BlockScope)
8287 PushDeclContext(BlockScope, Block);
8288 else
8289 CurContext = Block;
8290 }
8291
ActOnBlockArguments(Declarator & ParamInfo,Scope * CurScope)8292 void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
8293 assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
8294 assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
8295 BlockScopeInfo *CurBlock = getCurBlock();
8296
8297 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
8298 QualType T = Sig->getType();
8299
8300 // GetTypeForDeclarator always produces a function type for a block
8301 // literal signature. Furthermore, it is always a FunctionProtoType
8302 // unless the function was written with a typedef.
8303 assert(T->isFunctionType() &&
8304 "GetTypeForDeclarator made a non-function block signature");
8305
8306 // Look for an explicit signature in that function type.
8307 FunctionProtoTypeLoc ExplicitSignature;
8308
8309 TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
8310 if (isa<FunctionProtoTypeLoc>(tmp)) {
8311 ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
8312
8313 // Check whether that explicit signature was synthesized by
8314 // GetTypeForDeclarator. If so, don't save that as part of the
8315 // written signature.
8316 if (ExplicitSignature.getLocalRangeBegin() ==
8317 ExplicitSignature.getLocalRangeEnd()) {
8318 // This would be much cheaper if we stored TypeLocs instead of
8319 // TypeSourceInfos.
8320 TypeLoc Result = ExplicitSignature.getResultLoc();
8321 unsigned Size = Result.getFullDataSize();
8322 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
8323 Sig->getTypeLoc().initializeFullCopy(Result, Size);
8324
8325 ExplicitSignature = FunctionProtoTypeLoc();
8326 }
8327 }
8328
8329 CurBlock->TheDecl->setSignatureAsWritten(Sig);
8330 CurBlock->FunctionType = T;
8331
8332 const FunctionType *Fn = T->getAs<FunctionType>();
8333 QualType RetTy = Fn->getResultType();
8334 bool isVariadic =
8335 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
8336
8337 CurBlock->TheDecl->setIsVariadic(isVariadic);
8338
8339 // Don't allow returning a objc interface by value.
8340 if (RetTy->isObjCObjectType()) {
8341 Diag(ParamInfo.getSourceRange().getBegin(),
8342 diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
8343 return;
8344 }
8345
8346 // Context.DependentTy is used as a placeholder for a missing block
8347 // return type. TODO: what should we do with declarators like:
8348 // ^ * { ... }
8349 // If the answer is "apply template argument deduction"....
8350 if (RetTy != Context.DependentTy)
8351 CurBlock->ReturnType = RetTy;
8352
8353 // Push block parameters from the declarator if we had them.
8354 llvm::SmallVector<ParmVarDecl*, 8> Params;
8355 if (ExplicitSignature) {
8356 for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
8357 ParmVarDecl *Param = ExplicitSignature.getArg(I);
8358 if (Param->getIdentifier() == 0 &&
8359 !Param->isImplicit() &&
8360 !Param->isInvalidDecl() &&
8361 !getLangOptions().CPlusPlus)
8362 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
8363 Params.push_back(Param);
8364 }
8365
8366 // Fake up parameter variables if we have a typedef, like
8367 // ^ fntype { ... }
8368 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
8369 for (FunctionProtoType::arg_type_iterator
8370 I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
8371 ParmVarDecl *Param =
8372 BuildParmVarDeclForTypedef(CurBlock->TheDecl,
8373 ParamInfo.getSourceRange().getBegin(),
8374 *I);
8375 Params.push_back(Param);
8376 }
8377 }
8378
8379 // Set the parameters on the block decl.
8380 if (!Params.empty()) {
8381 CurBlock->TheDecl->setParams(Params.data(), Params.size());
8382 CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
8383 CurBlock->TheDecl->param_end(),
8384 /*CheckParameterNames=*/false);
8385 }
8386
8387 // Finally we can process decl attributes.
8388 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
8389
8390 if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
8391 Diag(ParamInfo.getAttributes()->getLoc(),
8392 diag::warn_attribute_sentinel_not_variadic) << 1;
8393 // FIXME: remove the attribute.
8394 }
8395
8396 // Put the parameter variables in scope. We can bail out immediately
8397 // if we don't have any.
8398 if (Params.empty())
8399 return;
8400
8401 for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
8402 E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
8403 (*AI)->setOwningFunction(CurBlock->TheDecl);
8404
8405 // If this has an identifier, add it to the scope stack.
8406 if ((*AI)->getIdentifier()) {
8407 CheckShadow(CurBlock->TheScope, *AI);
8408
8409 PushOnScopeChains(*AI, CurBlock->TheScope);
8410 }
8411 }
8412 }
8413
8414 /// ActOnBlockError - If there is an error parsing a block, this callback
8415 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)8416 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
8417 // Pop off CurBlock, handle nested blocks.
8418 PopDeclContext();
8419 PopFunctionOrBlockScope();
8420 }
8421
8422 /// ActOnBlockStmtExpr - This is called when the body of a block statement
8423 /// literal was successfully completed. ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)8424 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
8425 Stmt *Body, Scope *CurScope) {
8426 // If blocks are disabled, emit an error.
8427 if (!LangOpts.Blocks)
8428 Diag(CaretLoc, diag::err_blocks_disable);
8429
8430 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
8431
8432 PopDeclContext();
8433
8434 QualType RetTy = Context.VoidTy;
8435 if (!BSI->ReturnType.isNull())
8436 RetTy = BSI->ReturnType;
8437
8438 bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
8439 QualType BlockTy;
8440
8441 // Set the captured variables on the block.
8442 BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
8443 BSI->CapturesCXXThis);
8444
8445 // If the user wrote a function type in some form, try to use that.
8446 if (!BSI->FunctionType.isNull()) {
8447 const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
8448
8449 FunctionType::ExtInfo Ext = FTy->getExtInfo();
8450 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
8451
8452 // Turn protoless block types into nullary block types.
8453 if (isa<FunctionNoProtoType>(FTy)) {
8454 FunctionProtoType::ExtProtoInfo EPI;
8455 EPI.ExtInfo = Ext;
8456 BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
8457
8458 // Otherwise, if we don't need to change anything about the function type,
8459 // preserve its sugar structure.
8460 } else if (FTy->getResultType() == RetTy &&
8461 (!NoReturn || FTy->getNoReturnAttr())) {
8462 BlockTy = BSI->FunctionType;
8463
8464 // Otherwise, make the minimal modifications to the function type.
8465 } else {
8466 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
8467 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8468 EPI.TypeQuals = 0; // FIXME: silently?
8469 EPI.ExtInfo = Ext;
8470 BlockTy = Context.getFunctionType(RetTy,
8471 FPT->arg_type_begin(),
8472 FPT->getNumArgs(),
8473 EPI);
8474 }
8475
8476 // If we don't have a function type, just build one from nothing.
8477 } else {
8478 FunctionProtoType::ExtProtoInfo EPI;
8479 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
8480 BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
8481 }
8482
8483 DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
8484 BSI->TheDecl->param_end());
8485 BlockTy = Context.getBlockPointerType(BlockTy);
8486
8487 // If needed, diagnose invalid gotos and switches in the block.
8488 if (getCurFunction()->NeedsScopeChecking() &&
8489 !hasAnyUnrecoverableErrorsInThisFunction())
8490 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
8491
8492 BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
8493
8494 for (BlockDecl::capture_const_iterator ci = BSI->TheDecl->capture_begin(),
8495 ce = BSI->TheDecl->capture_end(); ci != ce; ++ci) {
8496 const VarDecl *variable = ci->getVariable();
8497 QualType T = variable->getType();
8498 QualType::DestructionKind destructKind = T.isDestructedType();
8499 if (destructKind != QualType::DK_none)
8500 getCurFunction()->setHasBranchProtectedScope();
8501 }
8502
8503 BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
8504 const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
8505 PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
8506
8507 return Owned(Result);
8508 }
8509
ActOnVAArg(SourceLocation BuiltinLoc,Expr * expr,ParsedType type,SourceLocation RPLoc)8510 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
8511 Expr *expr, ParsedType type,
8512 SourceLocation RPLoc) {
8513 TypeSourceInfo *TInfo;
8514 GetTypeFromParser(type, &TInfo);
8515 return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
8516 }
8517
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)8518 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
8519 Expr *E, TypeSourceInfo *TInfo,
8520 SourceLocation RPLoc) {
8521 Expr *OrigExpr = E;
8522
8523 // Get the va_list type
8524 QualType VaListType = Context.getBuiltinVaListType();
8525 if (VaListType->isArrayType()) {
8526 // Deal with implicit array decay; for example, on x86-64,
8527 // va_list is an array, but it's supposed to decay to
8528 // a pointer for va_arg.
8529 VaListType = Context.getArrayDecayedType(VaListType);
8530 // Make sure the input expression also decays appropriately.
8531 ExprResult Result = UsualUnaryConversions(E);
8532 if (Result.isInvalid())
8533 return ExprError();
8534 E = Result.take();
8535 } else {
8536 // Otherwise, the va_list argument must be an l-value because
8537 // it is modified by va_arg.
8538 if (!E->isTypeDependent() &&
8539 CheckForModifiableLvalue(E, BuiltinLoc, *this))
8540 return ExprError();
8541 }
8542
8543 if (!E->isTypeDependent() &&
8544 !Context.hasSameType(VaListType, E->getType())) {
8545 return ExprError(Diag(E->getLocStart(),
8546 diag::err_first_argument_to_va_arg_not_of_type_va_list)
8547 << OrigExpr->getType() << E->getSourceRange());
8548 }
8549
8550 if (!TInfo->getType()->isDependentType()) {
8551 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
8552 PDiag(diag::err_second_parameter_to_va_arg_incomplete)
8553 << TInfo->getTypeLoc().getSourceRange()))
8554 return ExprError();
8555
8556 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
8557 TInfo->getType(),
8558 PDiag(diag::err_second_parameter_to_va_arg_abstract)
8559 << TInfo->getTypeLoc().getSourceRange()))
8560 return ExprError();
8561
8562 if (!TInfo->getType().isPODType(Context))
8563 Diag(TInfo->getTypeLoc().getBeginLoc(),
8564 diag::warn_second_parameter_to_va_arg_not_pod)
8565 << TInfo->getType()
8566 << TInfo->getTypeLoc().getSourceRange();
8567
8568 // Check for va_arg where arguments of the given type will be promoted
8569 // (i.e. this va_arg is guaranteed to have undefined behavior).
8570 QualType PromoteType;
8571 if (TInfo->getType()->isPromotableIntegerType()) {
8572 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
8573 if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
8574 PromoteType = QualType();
8575 }
8576 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
8577 PromoteType = Context.DoubleTy;
8578 if (!PromoteType.isNull())
8579 Diag(TInfo->getTypeLoc().getBeginLoc(),
8580 diag::warn_second_parameter_to_va_arg_never_compatible)
8581 << TInfo->getType()
8582 << PromoteType
8583 << TInfo->getTypeLoc().getSourceRange();
8584 }
8585
8586 QualType T = TInfo->getType().getNonLValueExprType(Context);
8587 return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
8588 }
8589
ActOnGNUNullExpr(SourceLocation TokenLoc)8590 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
8591 // The type of __null will be int or long, depending on the size of
8592 // pointers on the target.
8593 QualType Ty;
8594 unsigned pw = Context.Target.getPointerWidth(0);
8595 if (pw == Context.Target.getIntWidth())
8596 Ty = Context.IntTy;
8597 else if (pw == Context.Target.getLongWidth())
8598 Ty = Context.LongTy;
8599 else if (pw == Context.Target.getLongLongWidth())
8600 Ty = Context.LongLongTy;
8601 else {
8602 assert(!"I don't know size of pointer!");
8603 Ty = Context.IntTy;
8604 }
8605
8606 return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
8607 }
8608
MakeObjCStringLiteralFixItHint(Sema & SemaRef,QualType DstType,Expr * SrcExpr,FixItHint & Hint)8609 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
8610 Expr *SrcExpr, FixItHint &Hint) {
8611 if (!SemaRef.getLangOptions().ObjC1)
8612 return;
8613
8614 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
8615 if (!PT)
8616 return;
8617
8618 // Check if the destination is of type 'id'.
8619 if (!PT->isObjCIdType()) {
8620 // Check if the destination is the 'NSString' interface.
8621 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
8622 if (!ID || !ID->getIdentifier()->isStr("NSString"))
8623 return;
8624 }
8625
8626 // Strip off any parens and casts.
8627 StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
8628 if (!SL || SL->isWide())
8629 return;
8630
8631 Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
8632 }
8633
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)8634 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
8635 SourceLocation Loc,
8636 QualType DstType, QualType SrcType,
8637 Expr *SrcExpr, AssignmentAction Action,
8638 bool *Complained) {
8639 if (Complained)
8640 *Complained = false;
8641
8642 // Decode the result (notice that AST's are still created for extensions).
8643 bool CheckInferredResultType = false;
8644 bool isInvalid = false;
8645 unsigned DiagKind;
8646 FixItHint Hint;
8647
8648 switch (ConvTy) {
8649 default: assert(0 && "Unknown conversion type");
8650 case Compatible: return false;
8651 case PointerToInt:
8652 DiagKind = diag::ext_typecheck_convert_pointer_int;
8653 break;
8654 case IntToPointer:
8655 DiagKind = diag::ext_typecheck_convert_int_pointer;
8656 break;
8657 case IncompatiblePointer:
8658 MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
8659 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
8660 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
8661 SrcType->isObjCObjectPointerType();
8662 break;
8663 case IncompatiblePointerSign:
8664 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
8665 break;
8666 case FunctionVoidPointer:
8667 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
8668 break;
8669 case IncompatiblePointerDiscardsQualifiers: {
8670 // Perform array-to-pointer decay if necessary.
8671 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
8672
8673 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
8674 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
8675 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
8676 DiagKind = diag::err_typecheck_incompatible_address_space;
8677 break;
8678
8679
8680 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
8681 DiagKind = diag::err_typecheck_incompatible_ownership;
8682 break;
8683 }
8684
8685 llvm_unreachable("unknown error case for discarding qualifiers!");
8686 // fallthrough
8687 }
8688 case CompatiblePointerDiscardsQualifiers:
8689 // If the qualifiers lost were because we were applying the
8690 // (deprecated) C++ conversion from a string literal to a char*
8691 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
8692 // Ideally, this check would be performed in
8693 // checkPointerTypesForAssignment. However, that would require a
8694 // bit of refactoring (so that the second argument is an
8695 // expression, rather than a type), which should be done as part
8696 // of a larger effort to fix checkPointerTypesForAssignment for
8697 // C++ semantics.
8698 if (getLangOptions().CPlusPlus &&
8699 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
8700 return false;
8701 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
8702 break;
8703 case IncompatibleNestedPointerQualifiers:
8704 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
8705 break;
8706 case IntToBlockPointer:
8707 DiagKind = diag::err_int_to_block_pointer;
8708 break;
8709 case IncompatibleBlockPointer:
8710 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
8711 break;
8712 case IncompatibleObjCQualifiedId:
8713 // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
8714 // it can give a more specific diagnostic.
8715 DiagKind = diag::warn_incompatible_qualified_id;
8716 break;
8717 case IncompatibleVectors:
8718 DiagKind = diag::warn_incompatible_vectors;
8719 break;
8720 case IncompatibleObjCWeakRef:
8721 DiagKind = diag::err_arc_weak_unavailable_assign;
8722 break;
8723 case Incompatible:
8724 DiagKind = diag::err_typecheck_convert_incompatible;
8725 isInvalid = true;
8726 break;
8727 }
8728
8729 QualType FirstType, SecondType;
8730 switch (Action) {
8731 case AA_Assigning:
8732 case AA_Initializing:
8733 // The destination type comes first.
8734 FirstType = DstType;
8735 SecondType = SrcType;
8736 break;
8737
8738 case AA_Returning:
8739 case AA_Passing:
8740 case AA_Converting:
8741 case AA_Sending:
8742 case AA_Casting:
8743 // The source type comes first.
8744 FirstType = SrcType;
8745 SecondType = DstType;
8746 break;
8747 }
8748
8749 Diag(Loc, DiagKind) << FirstType << SecondType << Action
8750 << SrcExpr->getSourceRange() << Hint;
8751 if (CheckInferredResultType)
8752 EmitRelatedResultTypeNote(SrcExpr);
8753
8754 if (Complained)
8755 *Complained = true;
8756 return isInvalid;
8757 }
8758
VerifyIntegerConstantExpression(const Expr * E,llvm::APSInt * Result)8759 bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
8760 llvm::APSInt ICEResult;
8761 if (E->isIntegerConstantExpr(ICEResult, Context)) {
8762 if (Result)
8763 *Result = ICEResult;
8764 return false;
8765 }
8766
8767 Expr::EvalResult EvalResult;
8768
8769 if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
8770 EvalResult.HasSideEffects) {
8771 Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
8772
8773 if (EvalResult.Diag) {
8774 // We only show the note if it's not the usual "invalid subexpression"
8775 // or if it's actually in a subexpression.
8776 if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
8777 E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
8778 Diag(EvalResult.DiagLoc, EvalResult.Diag);
8779 }
8780
8781 return true;
8782 }
8783
8784 Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
8785 E->getSourceRange();
8786
8787 if (EvalResult.Diag &&
8788 Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
8789 != Diagnostic::Ignored)
8790 Diag(EvalResult.DiagLoc, EvalResult.Diag);
8791
8792 if (Result)
8793 *Result = EvalResult.Val.getInt();
8794 return false;
8795 }
8796
8797 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext)8798 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
8799 ExprEvalContexts.push_back(
8800 ExpressionEvaluationContextRecord(NewContext,
8801 ExprTemporaries.size(),
8802 ExprNeedsCleanups));
8803 ExprNeedsCleanups = false;
8804 }
8805
8806 void
PopExpressionEvaluationContext()8807 Sema::PopExpressionEvaluationContext() {
8808 // Pop the current expression evaluation context off the stack.
8809 ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
8810 ExprEvalContexts.pop_back();
8811
8812 if (Rec.Context == PotentiallyPotentiallyEvaluated) {
8813 if (Rec.PotentiallyReferenced) {
8814 // Mark any remaining declarations in the current position of the stack
8815 // as "referenced". If they were not meant to be referenced, semantic
8816 // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
8817 for (PotentiallyReferencedDecls::iterator
8818 I = Rec.PotentiallyReferenced->begin(),
8819 IEnd = Rec.PotentiallyReferenced->end();
8820 I != IEnd; ++I)
8821 MarkDeclarationReferenced(I->first, I->second);
8822 }
8823
8824 if (Rec.PotentiallyDiagnosed) {
8825 // Emit any pending diagnostics.
8826 for (PotentiallyEmittedDiagnostics::iterator
8827 I = Rec.PotentiallyDiagnosed->begin(),
8828 IEnd = Rec.PotentiallyDiagnosed->end();
8829 I != IEnd; ++I)
8830 Diag(I->first, I->second);
8831 }
8832 }
8833
8834 // When are coming out of an unevaluated context, clear out any
8835 // temporaries that we may have created as part of the evaluation of
8836 // the expression in that context: they aren't relevant because they
8837 // will never be constructed.
8838 if (Rec.Context == Unevaluated) {
8839 ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
8840 ExprTemporaries.end());
8841 ExprNeedsCleanups = Rec.ParentNeedsCleanups;
8842
8843 // Otherwise, merge the contexts together.
8844 } else {
8845 ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
8846 }
8847
8848 // Destroy the popped expression evaluation record.
8849 Rec.Destroy();
8850 }
8851
DiscardCleanupsInEvaluationContext()8852 void Sema::DiscardCleanupsInEvaluationContext() {
8853 ExprTemporaries.erase(
8854 ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
8855 ExprTemporaries.end());
8856 ExprNeedsCleanups = false;
8857 }
8858
8859 /// \brief Note that the given declaration was referenced in the source code.
8860 ///
8861 /// This routine should be invoke whenever a given declaration is referenced
8862 /// in the source code, and where that reference occurred. If this declaration
8863 /// reference means that the the declaration is used (C++ [basic.def.odr]p2,
8864 /// C99 6.9p3), then the declaration will be marked as used.
8865 ///
8866 /// \param Loc the location where the declaration was referenced.
8867 ///
8868 /// \param D the declaration that has been referenced by the source code.
MarkDeclarationReferenced(SourceLocation Loc,Decl * D)8869 void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
8870 assert(D && "No declaration?");
8871
8872 D->setReferenced();
8873
8874 if (D->isUsed(false))
8875 return;
8876
8877 // Mark a parameter or variable declaration "used", regardless of whether we're in a
8878 // template or not. The reason for this is that unevaluated expressions
8879 // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
8880 // -Wunused-parameters)
8881 if (isa<ParmVarDecl>(D) ||
8882 (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
8883 D->setUsed();
8884 return;
8885 }
8886
8887 if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
8888 return;
8889
8890 // Do not mark anything as "used" within a dependent context; wait for
8891 // an instantiation.
8892 if (CurContext->isDependentContext())
8893 return;
8894
8895 switch (ExprEvalContexts.back().Context) {
8896 case Unevaluated:
8897 // We are in an expression that is not potentially evaluated; do nothing.
8898 return;
8899
8900 case PotentiallyEvaluated:
8901 // We are in a potentially-evaluated expression, so this declaration is
8902 // "used"; handle this below.
8903 break;
8904
8905 case PotentiallyPotentiallyEvaluated:
8906 // We are in an expression that may be potentially evaluated; queue this
8907 // declaration reference until we know whether the expression is
8908 // potentially evaluated.
8909 ExprEvalContexts.back().addReferencedDecl(Loc, D);
8910 return;
8911
8912 case PotentiallyEvaluatedIfUsed:
8913 // Referenced declarations will only be used if the construct in the
8914 // containing expression is used.
8915 return;
8916 }
8917
8918 // Note that this declaration has been used.
8919 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
8920 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor()) {
8921 if (Constructor->isTrivial())
8922 return;
8923 if (!Constructor->isUsed(false))
8924 DefineImplicitDefaultConstructor(Loc, Constructor);
8925 } else if (Constructor->isDefaulted() &&
8926 Constructor->isCopyConstructor()) {
8927 if (!Constructor->isUsed(false))
8928 DefineImplicitCopyConstructor(Loc, Constructor);
8929 }
8930
8931 MarkVTableUsed(Loc, Constructor->getParent());
8932 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
8933 if (Destructor->isDefaulted() && !Destructor->isUsed(false))
8934 DefineImplicitDestructor(Loc, Destructor);
8935 if (Destructor->isVirtual())
8936 MarkVTableUsed(Loc, Destructor->getParent());
8937 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
8938 if (MethodDecl->isDefaulted() && MethodDecl->isOverloadedOperator() &&
8939 MethodDecl->getOverloadedOperator() == OO_Equal) {
8940 if (!MethodDecl->isUsed(false))
8941 DefineImplicitCopyAssignment(Loc, MethodDecl);
8942 } else if (MethodDecl->isVirtual())
8943 MarkVTableUsed(Loc, MethodDecl->getParent());
8944 }
8945 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
8946 // Recursive functions should be marked when used from another function.
8947 if (CurContext == Function) return;
8948
8949 // Implicit instantiation of function templates and member functions of
8950 // class templates.
8951 if (Function->isImplicitlyInstantiable()) {
8952 bool AlreadyInstantiated = false;
8953 if (FunctionTemplateSpecializationInfo *SpecInfo
8954 = Function->getTemplateSpecializationInfo()) {
8955 if (SpecInfo->getPointOfInstantiation().isInvalid())
8956 SpecInfo->setPointOfInstantiation(Loc);
8957 else if (SpecInfo->getTemplateSpecializationKind()
8958 == TSK_ImplicitInstantiation)
8959 AlreadyInstantiated = true;
8960 } else if (MemberSpecializationInfo *MSInfo
8961 = Function->getMemberSpecializationInfo()) {
8962 if (MSInfo->getPointOfInstantiation().isInvalid())
8963 MSInfo->setPointOfInstantiation(Loc);
8964 else if (MSInfo->getTemplateSpecializationKind()
8965 == TSK_ImplicitInstantiation)
8966 AlreadyInstantiated = true;
8967 }
8968
8969 if (!AlreadyInstantiated) {
8970 if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
8971 cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
8972 PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
8973 Loc));
8974 else
8975 PendingInstantiations.push_back(std::make_pair(Function, Loc));
8976 }
8977 } else {
8978 // Walk redefinitions, as some of them may be instantiable.
8979 for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
8980 e(Function->redecls_end()); i != e; ++i) {
8981 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
8982 MarkDeclarationReferenced(Loc, *i);
8983 }
8984 }
8985
8986 // Keep track of used but undefined functions.
8987 if (!Function->isPure() && !Function->hasBody() &&
8988 Function->getLinkage() != ExternalLinkage) {
8989 SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
8990 if (old.isInvalid()) old = Loc;
8991 }
8992
8993 Function->setUsed(true);
8994 return;
8995 }
8996
8997 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
8998 // Implicit instantiation of static data members of class templates.
8999 if (Var->isStaticDataMember() &&
9000 Var->getInstantiatedFromStaticDataMember()) {
9001 MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
9002 assert(MSInfo && "Missing member specialization information?");
9003 if (MSInfo->getPointOfInstantiation().isInvalid() &&
9004 MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
9005 MSInfo->setPointOfInstantiation(Loc);
9006 // This is a modification of an existing AST node. Notify listeners.
9007 if (ASTMutationListener *L = getASTMutationListener())
9008 L->StaticDataMemberInstantiated(Var);
9009 PendingInstantiations.push_back(std::make_pair(Var, Loc));
9010 }
9011 }
9012
9013 // Keep track of used but undefined variables. We make a hole in
9014 // the warning for static const data members with in-line
9015 // initializers.
9016 if (Var->hasDefinition() == VarDecl::DeclarationOnly
9017 && Var->getLinkage() != ExternalLinkage
9018 && !(Var->isStaticDataMember() && Var->hasInit())) {
9019 SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
9020 if (old.isInvalid()) old = Loc;
9021 }
9022
9023 D->setUsed(true);
9024 return;
9025 }
9026 }
9027
9028 namespace {
9029 // Mark all of the declarations referenced
9030 // FIXME: Not fully implemented yet! We need to have a better understanding
9031 // of when we're entering
9032 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
9033 Sema &S;
9034 SourceLocation Loc;
9035
9036 public:
9037 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
9038
MarkReferencedDecls(Sema & S,SourceLocation Loc)9039 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
9040
9041 bool TraverseTemplateArgument(const TemplateArgument &Arg);
9042 bool TraverseRecordType(RecordType *T);
9043 };
9044 }
9045
TraverseTemplateArgument(const TemplateArgument & Arg)9046 bool MarkReferencedDecls::TraverseTemplateArgument(
9047 const TemplateArgument &Arg) {
9048 if (Arg.getKind() == TemplateArgument::Declaration) {
9049 S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
9050 }
9051
9052 return Inherited::TraverseTemplateArgument(Arg);
9053 }
9054
TraverseRecordType(RecordType * T)9055 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
9056 if (ClassTemplateSpecializationDecl *Spec
9057 = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
9058 const TemplateArgumentList &Args = Spec->getTemplateArgs();
9059 return TraverseTemplateArguments(Args.data(), Args.size());
9060 }
9061
9062 return true;
9063 }
9064
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)9065 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
9066 MarkReferencedDecls Marker(*this, Loc);
9067 Marker.TraverseType(Context.getCanonicalType(T));
9068 }
9069
9070 namespace {
9071 /// \brief Helper class that marks all of the declarations referenced by
9072 /// potentially-evaluated subexpressions as "referenced".
9073 class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
9074 Sema &S;
9075
9076 public:
9077 typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
9078
EvaluatedExprMarker(Sema & S)9079 explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
9080
VisitDeclRefExpr(DeclRefExpr * E)9081 void VisitDeclRefExpr(DeclRefExpr *E) {
9082 S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
9083 }
9084
VisitMemberExpr(MemberExpr * E)9085 void VisitMemberExpr(MemberExpr *E) {
9086 S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
9087 Inherited::VisitMemberExpr(E);
9088 }
9089
VisitCXXNewExpr(CXXNewExpr * E)9090 void VisitCXXNewExpr(CXXNewExpr *E) {
9091 if (E->getConstructor())
9092 S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
9093 if (E->getOperatorNew())
9094 S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
9095 if (E->getOperatorDelete())
9096 S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
9097 Inherited::VisitCXXNewExpr(E);
9098 }
9099
VisitCXXDeleteExpr(CXXDeleteExpr * E)9100 void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
9101 if (E->getOperatorDelete())
9102 S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
9103 QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
9104 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
9105 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
9106 S.MarkDeclarationReferenced(E->getLocStart(),
9107 S.LookupDestructor(Record));
9108 }
9109
9110 Inherited::VisitCXXDeleteExpr(E);
9111 }
9112
VisitCXXConstructExpr(CXXConstructExpr * E)9113 void VisitCXXConstructExpr(CXXConstructExpr *E) {
9114 S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
9115 Inherited::VisitCXXConstructExpr(E);
9116 }
9117
VisitBlockDeclRefExpr(BlockDeclRefExpr * E)9118 void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
9119 S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
9120 }
9121
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * E)9122 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
9123 Visit(E->getExpr());
9124 }
9125 };
9126 }
9127
9128 /// \brief Mark any declarations that appear within this expression or any
9129 /// potentially-evaluated subexpressions as "referenced".
MarkDeclarationsReferencedInExpr(Expr * E)9130 void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
9131 EvaluatedExprMarker(*this).Visit(E);
9132 }
9133
9134 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
9135 /// of the program being compiled.
9136 ///
9137 /// This routine emits the given diagnostic when the code currently being
9138 /// type-checked is "potentially evaluated", meaning that there is a
9139 /// possibility that the code will actually be executable. Code in sizeof()
9140 /// expressions, code used only during overload resolution, etc., are not
9141 /// potentially evaluated. This routine will suppress such diagnostics or,
9142 /// in the absolutely nutty case of potentially potentially evaluated
9143 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
9144 /// later.
9145 ///
9146 /// This routine should be used for all diagnostics that describe the run-time
9147 /// behavior of a program, such as passing a non-POD value through an ellipsis.
9148 /// Failure to do so will likely result in spurious diagnostics or failures
9149 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * stmt,const PartialDiagnostic & PD)9150 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
9151 const PartialDiagnostic &PD) {
9152 switch (ExprEvalContexts.back().Context) {
9153 case Unevaluated:
9154 // The argument will never be evaluated, so don't complain.
9155 break;
9156
9157 case PotentiallyEvaluated:
9158 case PotentiallyEvaluatedIfUsed:
9159 if (stmt && getCurFunctionOrMethodDecl()) {
9160 FunctionScopes.back()->PossiblyUnreachableDiags.
9161 push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt));
9162 }
9163 else
9164 Diag(Loc, PD);
9165
9166 return true;
9167
9168 case PotentiallyPotentiallyEvaluated:
9169 ExprEvalContexts.back().addDiagnostic(Loc, PD);
9170 break;
9171 }
9172
9173 return false;
9174 }
9175
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)9176 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
9177 CallExpr *CE, FunctionDecl *FD) {
9178 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
9179 return false;
9180
9181 PartialDiagnostic Note =
9182 FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
9183 << FD->getDeclName() : PDiag();
9184 SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
9185
9186 if (RequireCompleteType(Loc, ReturnType,
9187 FD ?
9188 PDiag(diag::err_call_function_incomplete_return)
9189 << CE->getSourceRange() << FD->getDeclName() :
9190 PDiag(diag::err_call_incomplete_return)
9191 << CE->getSourceRange(),
9192 std::make_pair(NoteLoc, Note)))
9193 return true;
9194
9195 return false;
9196 }
9197
9198 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
9199 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)9200 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
9201 SourceLocation Loc;
9202
9203 unsigned diagnostic = diag::warn_condition_is_assignment;
9204 bool IsOrAssign = false;
9205
9206 if (isa<BinaryOperator>(E)) {
9207 BinaryOperator *Op = cast<BinaryOperator>(E);
9208 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
9209 return;
9210
9211 IsOrAssign = Op->getOpcode() == BO_OrAssign;
9212
9213 // Greylist some idioms by putting them into a warning subcategory.
9214 if (ObjCMessageExpr *ME
9215 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
9216 Selector Sel = ME->getSelector();
9217
9218 // self = [<foo> init...]
9219 if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
9220 diagnostic = diag::warn_condition_is_idiomatic_assignment;
9221
9222 // <foo> = [<bar> nextObject]
9223 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
9224 diagnostic = diag::warn_condition_is_idiomatic_assignment;
9225 }
9226
9227 Loc = Op->getOperatorLoc();
9228 } else if (isa<CXXOperatorCallExpr>(E)) {
9229 CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
9230 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
9231 return;
9232
9233 IsOrAssign = Op->getOperator() == OO_PipeEqual;
9234 Loc = Op->getOperatorLoc();
9235 } else {
9236 // Not an assignment.
9237 return;
9238 }
9239
9240 Diag(Loc, diagnostic) << E->getSourceRange();
9241
9242 SourceLocation Open = E->getSourceRange().getBegin();
9243 SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
9244 Diag(Loc, diag::note_condition_assign_silence)
9245 << FixItHint::CreateInsertion(Open, "(")
9246 << FixItHint::CreateInsertion(Close, ")");
9247
9248 if (IsOrAssign)
9249 Diag(Loc, diag::note_condition_or_assign_to_comparison)
9250 << FixItHint::CreateReplacement(Loc, "!=");
9251 else
9252 Diag(Loc, diag::note_condition_assign_to_comparison)
9253 << FixItHint::CreateReplacement(Loc, "==");
9254 }
9255
9256 /// \brief Redundant parentheses over an equality comparison can indicate
9257 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * parenE)9258 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
9259 // Don't warn if the parens came from a macro.
9260 SourceLocation parenLoc = parenE->getLocStart();
9261 if (parenLoc.isInvalid() || parenLoc.isMacroID())
9262 return;
9263 // Don't warn for dependent expressions.
9264 if (parenE->isTypeDependent())
9265 return;
9266
9267 Expr *E = parenE->IgnoreParens();
9268
9269 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
9270 if (opE->getOpcode() == BO_EQ &&
9271 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
9272 == Expr::MLV_Valid) {
9273 SourceLocation Loc = opE->getOperatorLoc();
9274
9275 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
9276 Diag(Loc, diag::note_equality_comparison_silence)
9277 << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
9278 << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
9279 Diag(Loc, diag::note_equality_comparison_to_assign)
9280 << FixItHint::CreateReplacement(Loc, "=");
9281 }
9282 }
9283
CheckBooleanCondition(Expr * E,SourceLocation Loc)9284 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
9285 DiagnoseAssignmentAsCondition(E);
9286 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
9287 DiagnoseEqualityWithExtraParens(parenE);
9288
9289 ExprResult result = CheckPlaceholderExpr(E);
9290 if (result.isInvalid()) return ExprError();
9291 E = result.take();
9292
9293 if (!E->isTypeDependent()) {
9294 if (getLangOptions().CPlusPlus)
9295 return CheckCXXBooleanCondition(E); // C++ 6.4p4
9296
9297 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
9298 if (ERes.isInvalid())
9299 return ExprError();
9300 E = ERes.take();
9301
9302 QualType T = E->getType();
9303 if (!T->isScalarType()) { // C99 6.8.4.1p1
9304 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
9305 << T << E->getSourceRange();
9306 return ExprError();
9307 }
9308 }
9309
9310 return Owned(E);
9311 }
9312
ActOnBooleanCondition(Scope * S,SourceLocation Loc,Expr * Sub)9313 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
9314 Expr *Sub) {
9315 if (!Sub)
9316 return ExprError();
9317
9318 return CheckBooleanCondition(Sub, Loc);
9319 }
9320
9321 namespace {
9322 /// A visitor for rebuilding a call to an __unknown_any expression
9323 /// to have an appropriate type.
9324 struct RebuildUnknownAnyFunction
9325 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
9326
9327 Sema &S;
9328
RebuildUnknownAnyFunction__anonba682ad90311::RebuildUnknownAnyFunction9329 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
9330
VisitStmt__anonba682ad90311::RebuildUnknownAnyFunction9331 ExprResult VisitStmt(Stmt *S) {
9332 llvm_unreachable("unexpected statement!");
9333 return ExprError();
9334 }
9335
VisitExpr__anonba682ad90311::RebuildUnknownAnyFunction9336 ExprResult VisitExpr(Expr *expr) {
9337 S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call)
9338 << expr->getSourceRange();
9339 return ExprError();
9340 }
9341
9342 /// Rebuild an expression which simply semantically wraps another
9343 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anonba682ad90311::RebuildUnknownAnyFunction9344 template <class T> ExprResult rebuildSugarExpr(T *expr) {
9345 ExprResult subResult = Visit(expr->getSubExpr());
9346 if (subResult.isInvalid()) return ExprError();
9347
9348 Expr *subExpr = subResult.take();
9349 expr->setSubExpr(subExpr);
9350 expr->setType(subExpr->getType());
9351 expr->setValueKind(subExpr->getValueKind());
9352 assert(expr->getObjectKind() == OK_Ordinary);
9353 return expr;
9354 }
9355
VisitParenExpr__anonba682ad90311::RebuildUnknownAnyFunction9356 ExprResult VisitParenExpr(ParenExpr *paren) {
9357 return rebuildSugarExpr(paren);
9358 }
9359
VisitUnaryExtension__anonba682ad90311::RebuildUnknownAnyFunction9360 ExprResult VisitUnaryExtension(UnaryOperator *op) {
9361 return rebuildSugarExpr(op);
9362 }
9363
VisitUnaryAddrOf__anonba682ad90311::RebuildUnknownAnyFunction9364 ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
9365 ExprResult subResult = Visit(op->getSubExpr());
9366 if (subResult.isInvalid()) return ExprError();
9367
9368 Expr *subExpr = subResult.take();
9369 op->setSubExpr(subExpr);
9370 op->setType(S.Context.getPointerType(subExpr->getType()));
9371 assert(op->getValueKind() == VK_RValue);
9372 assert(op->getObjectKind() == OK_Ordinary);
9373 return op;
9374 }
9375
resolveDecl__anonba682ad90311::RebuildUnknownAnyFunction9376 ExprResult resolveDecl(Expr *expr, ValueDecl *decl) {
9377 if (!isa<FunctionDecl>(decl)) return VisitExpr(expr);
9378
9379 expr->setType(decl->getType());
9380
9381 assert(expr->getValueKind() == VK_RValue);
9382 if (S.getLangOptions().CPlusPlus &&
9383 !(isa<CXXMethodDecl>(decl) &&
9384 cast<CXXMethodDecl>(decl)->isInstance()))
9385 expr->setValueKind(VK_LValue);
9386
9387 return expr;
9388 }
9389
VisitMemberExpr__anonba682ad90311::RebuildUnknownAnyFunction9390 ExprResult VisitMemberExpr(MemberExpr *mem) {
9391 return resolveDecl(mem, mem->getMemberDecl());
9392 }
9393
VisitDeclRefExpr__anonba682ad90311::RebuildUnknownAnyFunction9394 ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
9395 return resolveDecl(ref, ref->getDecl());
9396 }
9397 };
9398 }
9399
9400 /// Given a function expression of unknown-any type, try to rebuild it
9401 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * fn)9402 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) {
9403 ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn);
9404 if (result.isInvalid()) return ExprError();
9405 return S.DefaultFunctionArrayConversion(result.take());
9406 }
9407
9408 namespace {
9409 /// A visitor for rebuilding an expression of type __unknown_anytype
9410 /// into one which resolves the type directly on the referring
9411 /// expression. Strict preservation of the original source
9412 /// structure is not a goal.
9413 struct RebuildUnknownAnyExpr
9414 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
9415
9416 Sema &S;
9417
9418 /// The current destination type.
9419 QualType DestType;
9420
RebuildUnknownAnyExpr__anonba682ad90411::RebuildUnknownAnyExpr9421 RebuildUnknownAnyExpr(Sema &S, QualType castType)
9422 : S(S), DestType(castType) {}
9423
VisitStmt__anonba682ad90411::RebuildUnknownAnyExpr9424 ExprResult VisitStmt(Stmt *S) {
9425 llvm_unreachable("unexpected statement!");
9426 return ExprError();
9427 }
9428
VisitExpr__anonba682ad90411::RebuildUnknownAnyExpr9429 ExprResult VisitExpr(Expr *expr) {
9430 S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr)
9431 << expr->getSourceRange();
9432 return ExprError();
9433 }
9434
9435 ExprResult VisitCallExpr(CallExpr *call);
9436 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message);
9437
9438 /// Rebuild an expression which simply semantically wraps another
9439 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anonba682ad90411::RebuildUnknownAnyExpr9440 template <class T> ExprResult rebuildSugarExpr(T *expr) {
9441 ExprResult subResult = Visit(expr->getSubExpr());
9442 if (subResult.isInvalid()) return ExprError();
9443 Expr *subExpr = subResult.take();
9444 expr->setSubExpr(subExpr);
9445 expr->setType(subExpr->getType());
9446 expr->setValueKind(subExpr->getValueKind());
9447 assert(expr->getObjectKind() == OK_Ordinary);
9448 return expr;
9449 }
9450
VisitParenExpr__anonba682ad90411::RebuildUnknownAnyExpr9451 ExprResult VisitParenExpr(ParenExpr *paren) {
9452 return rebuildSugarExpr(paren);
9453 }
9454
VisitUnaryExtension__anonba682ad90411::RebuildUnknownAnyExpr9455 ExprResult VisitUnaryExtension(UnaryOperator *op) {
9456 return rebuildSugarExpr(op);
9457 }
9458
VisitUnaryAddrOf__anonba682ad90411::RebuildUnknownAnyExpr9459 ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
9460 const PointerType *ptr = DestType->getAs<PointerType>();
9461 if (!ptr) {
9462 S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof)
9463 << op->getSourceRange();
9464 return ExprError();
9465 }
9466 assert(op->getValueKind() == VK_RValue);
9467 assert(op->getObjectKind() == OK_Ordinary);
9468 op->setType(DestType);
9469
9470 // Build the sub-expression as if it were an object of the pointee type.
9471 DestType = ptr->getPointeeType();
9472 ExprResult subResult = Visit(op->getSubExpr());
9473 if (subResult.isInvalid()) return ExprError();
9474 op->setSubExpr(subResult.take());
9475 return op;
9476 }
9477
9478 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice);
9479
9480 ExprResult resolveDecl(Expr *expr, ValueDecl *decl);
9481
VisitMemberExpr__anonba682ad90411::RebuildUnknownAnyExpr9482 ExprResult VisitMemberExpr(MemberExpr *mem) {
9483 return resolveDecl(mem, mem->getMemberDecl());
9484 }
9485
VisitDeclRefExpr__anonba682ad90411::RebuildUnknownAnyExpr9486 ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
9487 return resolveDecl(ref, ref->getDecl());
9488 }
9489 };
9490 }
9491
9492 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * call)9493 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
9494 Expr *callee = call->getCallee();
9495
9496 enum FnKind {
9497 FK_MemberFunction,
9498 FK_FunctionPointer,
9499 FK_BlockPointer
9500 };
9501
9502 FnKind kind;
9503 QualType type = callee->getType();
9504 if (type == S.Context.BoundMemberTy) {
9505 assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call));
9506 kind = FK_MemberFunction;
9507 type = Expr::findBoundMemberType(callee);
9508 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
9509 type = ptr->getPointeeType();
9510 kind = FK_FunctionPointer;
9511 } else {
9512 type = type->castAs<BlockPointerType>()->getPointeeType();
9513 kind = FK_BlockPointer;
9514 }
9515 const FunctionType *fnType = type->castAs<FunctionType>();
9516
9517 // Verify that this is a legal result type of a function.
9518 if (DestType->isArrayType() || DestType->isFunctionType()) {
9519 unsigned diagID = diag::err_func_returning_array_function;
9520 if (kind == FK_BlockPointer)
9521 diagID = diag::err_block_returning_array_function;
9522
9523 S.Diag(call->getExprLoc(), diagID)
9524 << DestType->isFunctionType() << DestType;
9525 return ExprError();
9526 }
9527
9528 // Otherwise, go ahead and set DestType as the call's result.
9529 call->setType(DestType.getNonLValueExprType(S.Context));
9530 call->setValueKind(Expr::getValueKindForType(DestType));
9531 assert(call->getObjectKind() == OK_Ordinary);
9532
9533 // Rebuild the function type, replacing the result type with DestType.
9534 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType))
9535 DestType = S.Context.getFunctionType(DestType,
9536 proto->arg_type_begin(),
9537 proto->getNumArgs(),
9538 proto->getExtProtoInfo());
9539 else
9540 DestType = S.Context.getFunctionNoProtoType(DestType,
9541 fnType->getExtInfo());
9542
9543 // Rebuild the appropriate pointer-to-function type.
9544 switch (kind) {
9545 case FK_MemberFunction:
9546 // Nothing to do.
9547 break;
9548
9549 case FK_FunctionPointer:
9550 DestType = S.Context.getPointerType(DestType);
9551 break;
9552
9553 case FK_BlockPointer:
9554 DestType = S.Context.getBlockPointerType(DestType);
9555 break;
9556 }
9557
9558 // Finally, we can recurse.
9559 ExprResult calleeResult = Visit(callee);
9560 if (!calleeResult.isUsable()) return ExprError();
9561 call->setCallee(calleeResult.take());
9562
9563 // Bind a temporary if necessary.
9564 return S.MaybeBindToTemporary(call);
9565 }
9566
VisitObjCMessageExpr(ObjCMessageExpr * msg)9567 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) {
9568 // Verify that this is a legal result type of a call.
9569 if (DestType->isArrayType() || DestType->isFunctionType()) {
9570 S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function)
9571 << DestType->isFunctionType() << DestType;
9572 return ExprError();
9573 }
9574
9575 // Rewrite the method result type if available.
9576 if (ObjCMethodDecl *method = msg->getMethodDecl()) {
9577 assert(method->getResultType() == S.Context.UnknownAnyTy);
9578 method->setResultType(DestType);
9579 }
9580
9581 // Change the type of the message.
9582 msg->setType(DestType.getNonReferenceType());
9583 msg->setValueKind(Expr::getValueKindForType(DestType));
9584
9585 return S.MaybeBindToTemporary(msg);
9586 }
9587
VisitImplicitCastExpr(ImplicitCastExpr * ice)9588 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) {
9589 // The only case we should ever see here is a function-to-pointer decay.
9590 assert(ice->getCastKind() == CK_FunctionToPointerDecay);
9591 assert(ice->getValueKind() == VK_RValue);
9592 assert(ice->getObjectKind() == OK_Ordinary);
9593
9594 ice->setType(DestType);
9595
9596 // Rebuild the sub-expression as the pointee (function) type.
9597 DestType = DestType->castAs<PointerType>()->getPointeeType();
9598
9599 ExprResult result = Visit(ice->getSubExpr());
9600 if (!result.isUsable()) return ExprError();
9601
9602 ice->setSubExpr(result.take());
9603 return S.Owned(ice);
9604 }
9605
resolveDecl(Expr * expr,ValueDecl * decl)9606 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) {
9607 ExprValueKind valueKind = VK_LValue;
9608 QualType type = DestType;
9609
9610 // We know how to make this work for certain kinds of decls:
9611
9612 // - functions
9613 if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
9614 // This is true because FunctionDecls must always have function
9615 // type, so we can't be resolving the entire thing at once.
9616 assert(type->isFunctionType());
9617
9618 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn))
9619 if (method->isInstance()) {
9620 valueKind = VK_RValue;
9621 type = S.Context.BoundMemberTy;
9622 }
9623
9624 // Function references aren't l-values in C.
9625 if (!S.getLangOptions().CPlusPlus)
9626 valueKind = VK_RValue;
9627
9628 // - variables
9629 } else if (isa<VarDecl>(decl)) {
9630 if (const ReferenceType *refTy = type->getAs<ReferenceType>()) {
9631 type = refTy->getPointeeType();
9632 } else if (type->isFunctionType()) {
9633 S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type)
9634 << decl << expr->getSourceRange();
9635 return ExprError();
9636 }
9637
9638 // - nothing else
9639 } else {
9640 S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl)
9641 << decl << expr->getSourceRange();
9642 return ExprError();
9643 }
9644
9645 decl->setType(DestType);
9646 expr->setType(type);
9647 expr->setValueKind(valueKind);
9648 return S.Owned(expr);
9649 }
9650
9651 /// Check a cast of an unknown-any type. We intentionally only
9652 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange typeRange,QualType castType,Expr * castExpr,CastKind & castKind,ExprValueKind & VK,CXXCastPath & path)9653 ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType,
9654 Expr *castExpr, CastKind &castKind,
9655 ExprValueKind &VK, CXXCastPath &path) {
9656 // Rewrite the casted expression from scratch.
9657 ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr);
9658 if (!result.isUsable()) return ExprError();
9659
9660 castExpr = result.take();
9661 VK = castExpr->getValueKind();
9662 castKind = CK_NoOp;
9663
9664 return castExpr;
9665 }
9666
diagnoseUnknownAnyExpr(Sema & S,Expr * e)9667 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) {
9668 Expr *orig = e;
9669 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
9670 while (true) {
9671 e = e->IgnoreParenImpCasts();
9672 if (CallExpr *call = dyn_cast<CallExpr>(e)) {
9673 e = call->getCallee();
9674 diagID = diag::err_uncasted_call_of_unknown_any;
9675 } else {
9676 break;
9677 }
9678 }
9679
9680 SourceLocation loc;
9681 NamedDecl *d;
9682 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
9683 loc = ref->getLocation();
9684 d = ref->getDecl();
9685 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) {
9686 loc = mem->getMemberLoc();
9687 d = mem->getMemberDecl();
9688 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) {
9689 diagID = diag::err_uncasted_call_of_unknown_any;
9690 loc = msg->getSelectorLoc();
9691 d = msg->getMethodDecl();
9692 assert(d && "unknown method returning __unknown_any?");
9693 } else {
9694 S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr)
9695 << e->getSourceRange();
9696 return ExprError();
9697 }
9698
9699 S.Diag(loc, diagID) << d << orig->getSourceRange();
9700
9701 // Never recoverable.
9702 return ExprError();
9703 }
9704
9705 /// Check for operands with placeholder types and complain if found.
9706 /// Returns true if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)9707 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
9708 // Placeholder types are always *exactly* the appropriate builtin type.
9709 QualType type = E->getType();
9710
9711 // Overloaded expressions.
9712 if (type == Context.OverloadTy)
9713 return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true,
9714 E->getSourceRange(),
9715 QualType(),
9716 diag::err_ovl_unresolvable);
9717
9718 // Bound member functions.
9719 if (type == Context.BoundMemberTy) {
9720 Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
9721 << E->getSourceRange();
9722 return ExprError();
9723 }
9724
9725 // Expressions of unknown type.
9726 if (type == Context.UnknownAnyTy)
9727 return diagnoseUnknownAnyExpr(*this, E);
9728
9729 assert(!type->isPlaceholderType());
9730 return Owned(E);
9731 }
9732
CheckCaseExpression(Expr * expr)9733 bool Sema::CheckCaseExpression(Expr *expr) {
9734 if (expr->isTypeDependent())
9735 return true;
9736 if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context))
9737 return expr->getType()->isIntegralOrEnumerationType();
9738 return false;
9739 }
9740