1 //===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the target-independent ELF writer. This file writes out
11 // the ELF file in the following order:
12 //
13 // #1. ELF Header
14 // #2. '.text' section
15 // #3. '.data' section
16 // #4. '.bss' section (conceptual position in file)
17 // ...
18 // #X. '.shstrtab' section
19 // #Y. Section Table
20 //
21 // The entries in the section table are laid out as:
22 // #0. Null entry [required]
23 // #1. ".text" entry - the program code
24 // #2. ".data" entry - global variables with initializers. [ if needed ]
25 // #3. ".bss" entry - global variables without initializers. [ if needed ]
26 // ...
27 // #N. ".shstrtab" entry - String table for the section names.
28 //
29 //===----------------------------------------------------------------------===//
30
31 #define DEBUG_TYPE "elfwriter"
32 #include "ELF.h"
33 #include "ELFWriter.h"
34 #include "ELFCodeEmitter.h"
35 #include "llvm/Constants.h"
36 #include "llvm/Module.h"
37 #include "llvm/PassManager.h"
38 #include "llvm/DerivedTypes.h"
39 #include "llvm/CodeGen/BinaryObject.h"
40 #include "llvm/CodeGen/MachineCodeEmitter.h"
41 #include "llvm/CodeGen/ObjectCodeEmitter.h"
42 #include "llvm/CodeGen/MachineCodeEmitter.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/MC/MCContext.h"
45 #include "llvm/MC/MCSectionELF.h"
46 #include "llvm/MC/MCAsmInfo.h"
47 #include "llvm/Target/Mangler.h"
48 #include "llvm/Target/TargetAsmInfo.h"
49 #include "llvm/Target/TargetData.h"
50 #include "llvm/Target/TargetELFWriterInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetLoweringObjectFile.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetRegisterInfo.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/ADT/SmallString.h"
59 using namespace llvm;
60
61 char ELFWriter::ID = 0;
62
63 //===----------------------------------------------------------------------===//
64 // ELFWriter Implementation
65 //===----------------------------------------------------------------------===//
66
ELFWriter(raw_ostream & o,TargetMachine & tm)67 ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
68 : MachineFunctionPass(ID), O(o), TM(tm),
69 OutContext(*new MCContext(*TM.getMCAsmInfo(), *TM.getRegisterInfo(),
70 &TM.getTargetLowering()->getObjFileLowering(),
71 new TargetAsmInfo(tm))),
72 TLOF(TM.getTargetLowering()->getObjFileLowering()),
73 is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
74 isLittleEndian(TM.getTargetData()->isLittleEndian()),
75 ElfHdr(isLittleEndian, is64Bit) {
76
77 MAI = TM.getMCAsmInfo();
78 TEW = TM.getELFWriterInfo();
79
80 // Create the object code emitter object for this target.
81 ElfCE = new ELFCodeEmitter(*this);
82
83 // Initial number of sections
84 NumSections = 0;
85 }
86
~ELFWriter()87 ELFWriter::~ELFWriter() {
88 delete ElfCE;
89 delete &OutContext;
90
91 while(!SymbolList.empty()) {
92 delete SymbolList.back();
93 SymbolList.pop_back();
94 }
95
96 while(!PrivateSyms.empty()) {
97 delete PrivateSyms.back();
98 PrivateSyms.pop_back();
99 }
100
101 while(!SectionList.empty()) {
102 delete SectionList.back();
103 SectionList.pop_back();
104 }
105
106 // Release the name mangler object.
107 delete Mang; Mang = 0;
108 }
109
110 // doInitialization - Emit the file header and all of the global variables for
111 // the module to the ELF file.
doInitialization(Module & M)112 bool ELFWriter::doInitialization(Module &M) {
113 // Initialize TargetLoweringObjectFile.
114 const_cast<TargetLoweringObjectFile&>(TLOF).Initialize(OutContext, TM);
115
116 Mang = new Mangler(OutContext, *TM.getTargetData());
117
118 // ELF Header
119 // ----------
120 // Fields e_shnum e_shstrndx are only known after all section have
121 // been emitted. They locations in the ouput buffer are recorded so
122 // to be patched up later.
123 //
124 // Note
125 // ----
126 // emitWord method behaves differently for ELF32 and ELF64, writing
127 // 4 bytes in the former and 8 in the last for *_off and *_addr elf types
128
129 ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
130 ElfHdr.emitByte('E'); // e_ident[EI_MAG1]
131 ElfHdr.emitByte('L'); // e_ident[EI_MAG2]
132 ElfHdr.emitByte('F'); // e_ident[EI_MAG3]
133
134 ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
135 ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA]
136 ElfHdr.emitByte(ELF::EV_CURRENT); // e_ident[EI_VERSION]
137 ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
138
139 ElfHdr.emitWord16(ELF::ET_REL); // e_type
140 ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
141 ElfHdr.emitWord32(ELF::EV_CURRENT); // e_version
142 ElfHdr.emitWord(0); // e_entry, no entry point in .o file
143 ElfHdr.emitWord(0); // e_phoff, no program header for .o
144 ELFHdr_e_shoff_Offset = ElfHdr.size();
145 ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes
146 ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants
147 ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size
148 ElfHdr.emitWord16(0); // e_phentsize = prog header entry size
149 ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0
150
151 // e_shentsize = Section header entry size
152 ElfHdr.emitWord16(TEW->getSHdrSize());
153
154 // e_shnum = # of section header ents
155 ELFHdr_e_shnum_Offset = ElfHdr.size();
156 ElfHdr.emitWord16(0); // Placeholder
157
158 // e_shstrndx = Section # of '.shstrtab'
159 ELFHdr_e_shstrndx_Offset = ElfHdr.size();
160 ElfHdr.emitWord16(0); // Placeholder
161
162 // Add the null section, which is required to be first in the file.
163 getNullSection();
164
165 // The first entry in the symtab is the null symbol and the second
166 // is a local symbol containing the module/file name
167 SymbolList.push_back(new ELFSym());
168 SymbolList.push_back(ELFSym::getFileSym());
169
170 return false;
171 }
172
173 // AddPendingGlobalSymbol - Add a global to be processed and to
174 // the global symbol lookup, use a zero index because the table
175 // index will be determined later.
AddPendingGlobalSymbol(const GlobalValue * GV,bool AddToLookup)176 void ELFWriter::AddPendingGlobalSymbol(const GlobalValue *GV,
177 bool AddToLookup /* = false */) {
178 PendingGlobals.insert(GV);
179 if (AddToLookup)
180 GblSymLookup[GV] = 0;
181 }
182
183 // AddPendingExternalSymbol - Add the external to be processed
184 // and to the external symbol lookup, use a zero index because
185 // the symbol table index will be determined later.
AddPendingExternalSymbol(const char * External)186 void ELFWriter::AddPendingExternalSymbol(const char *External) {
187 PendingExternals.insert(External);
188 ExtSymLookup[External] = 0;
189 }
190
getDataSection()191 ELFSection &ELFWriter::getDataSection() {
192 const MCSectionELF *Data = (const MCSectionELF *)TLOF.getDataSection();
193 return getSection(Data->getSectionName(), Data->getType(),
194 Data->getFlags(), 4);
195 }
196
getBSSSection()197 ELFSection &ELFWriter::getBSSSection() {
198 const MCSectionELF *BSS = (const MCSectionELF *)TLOF.getBSSSection();
199 return getSection(BSS->getSectionName(), BSS->getType(), BSS->getFlags(), 4);
200 }
201
202 // getCtorSection - Get the static constructor section
getCtorSection()203 ELFSection &ELFWriter::getCtorSection() {
204 const MCSectionELF *Ctor = (const MCSectionELF *)TLOF.getStaticCtorSection();
205 return getSection(Ctor->getSectionName(), Ctor->getType(), Ctor->getFlags());
206 }
207
208 // getDtorSection - Get the static destructor section
getDtorSection()209 ELFSection &ELFWriter::getDtorSection() {
210 const MCSectionELF *Dtor = (const MCSectionELF *)TLOF.getStaticDtorSection();
211 return getSection(Dtor->getSectionName(), Dtor->getType(), Dtor->getFlags());
212 }
213
214 // getTextSection - Get the text section for the specified function
getTextSection(const Function * F)215 ELFSection &ELFWriter::getTextSection(const Function *F) {
216 const MCSectionELF *Text =
217 (const MCSectionELF *)TLOF.SectionForGlobal(F, Mang, TM);
218 return getSection(Text->getSectionName(), Text->getType(), Text->getFlags());
219 }
220
221 // getJumpTableSection - Get a read only section for constants when
222 // emitting jump tables. TODO: add PIC support
getJumpTableSection()223 ELFSection &ELFWriter::getJumpTableSection() {
224 const MCSectionELF *JT =
225 (const MCSectionELF *)TLOF.getSectionForConstant(SectionKind::getReadOnly());
226 return getSection(JT->getSectionName(), JT->getType(), JT->getFlags(),
227 TM.getTargetData()->getPointerABIAlignment());
228 }
229
230 // getConstantPoolSection - Get a constant pool section based on the machine
231 // constant pool entry type and relocation info.
getConstantPoolSection(MachineConstantPoolEntry & CPE)232 ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) {
233 SectionKind Kind;
234 switch (CPE.getRelocationInfo()) {
235 default: llvm_unreachable("Unknown section kind");
236 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
237 case 1:
238 Kind = SectionKind::getReadOnlyWithRelLocal();
239 break;
240 case 0:
241 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
242 case 4: Kind = SectionKind::getMergeableConst4(); break;
243 case 8: Kind = SectionKind::getMergeableConst8(); break;
244 case 16: Kind = SectionKind::getMergeableConst16(); break;
245 default: Kind = SectionKind::getMergeableConst(); break;
246 }
247 }
248
249 const MCSectionELF *CPSect =
250 (const MCSectionELF *)TLOF.getSectionForConstant(Kind);
251 return getSection(CPSect->getSectionName(), CPSect->getType(),
252 CPSect->getFlags(), CPE.getAlignment());
253 }
254
255 // getRelocSection - Return the relocation section of section 'S'. 'RelA'
256 // is true if the relocation section contains entries with addends.
getRelocSection(ELFSection & S)257 ELFSection &ELFWriter::getRelocSection(ELFSection &S) {
258 unsigned SectionType = TEW->hasRelocationAddend() ?
259 ELF::SHT_RELA : ELF::SHT_REL;
260
261 std::string SectionName(".rel");
262 if (TEW->hasRelocationAddend())
263 SectionName.append("a");
264 SectionName.append(S.getName());
265
266 return getSection(SectionName, SectionType, 0, TEW->getPrefELFAlignment());
267 }
268
269 // getGlobalELFVisibility - Returns the ELF specific visibility type
getGlobalELFVisibility(const GlobalValue * GV)270 unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) {
271 switch (GV->getVisibility()) {
272 default:
273 llvm_unreachable("unknown visibility type");
274 case GlobalValue::DefaultVisibility:
275 return ELF::STV_DEFAULT;
276 case GlobalValue::HiddenVisibility:
277 return ELF::STV_HIDDEN;
278 case GlobalValue::ProtectedVisibility:
279 return ELF::STV_PROTECTED;
280 }
281 return 0;
282 }
283
284 // getGlobalELFBinding - Returns the ELF specific binding type
getGlobalELFBinding(const GlobalValue * GV)285 unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) {
286 if (GV->hasInternalLinkage())
287 return ELF::STB_LOCAL;
288
289 if (GV->isWeakForLinker() && !GV->hasCommonLinkage())
290 return ELF::STB_WEAK;
291
292 return ELF::STB_GLOBAL;
293 }
294
295 // getGlobalELFType - Returns the ELF specific type for a global
getGlobalELFType(const GlobalValue * GV)296 unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) {
297 if (GV->isDeclaration())
298 return ELF::STT_NOTYPE;
299
300 if (isa<Function>(GV))
301 return ELF::STT_FUNC;
302
303 return ELF::STT_OBJECT;
304 }
305
306 // IsELFUndefSym - True if the global value must be marked as a symbol
307 // which points to a SHN_UNDEF section. This means that the symbol has
308 // no definition on the module.
IsELFUndefSym(const GlobalValue * GV)309 static bool IsELFUndefSym(const GlobalValue *GV) {
310 return GV->isDeclaration() || (isa<Function>(GV));
311 }
312
313 // AddToSymbolList - Update the symbol lookup and If the symbol is
314 // private add it to PrivateSyms list, otherwise to SymbolList.
AddToSymbolList(ELFSym * GblSym)315 void ELFWriter::AddToSymbolList(ELFSym *GblSym) {
316 assert(GblSym->isGlobalValue() && "Symbol must be a global value");
317
318 const GlobalValue *GV = GblSym->getGlobalValue();
319 if (GV->hasPrivateLinkage()) {
320 // For a private symbols, keep track of the index inside
321 // the private list since it will never go to the symbol
322 // table and won't be patched up later.
323 PrivateSyms.push_back(GblSym);
324 GblSymLookup[GV] = PrivateSyms.size()-1;
325 } else {
326 // Non private symbol are left with zero indices until
327 // they are patched up during the symbol table emition
328 // (where the indicies are created).
329 SymbolList.push_back(GblSym);
330 GblSymLookup[GV] = 0;
331 }
332 }
333
334 /// HasCommonSymbols - True if this section holds common symbols, this is
335 /// indicated on the ELF object file by a symbol with SHN_COMMON section
336 /// header index.
HasCommonSymbols(const MCSectionELF & S)337 static bool HasCommonSymbols(const MCSectionELF &S) {
338 // FIXME: this is wrong, a common symbol can be in .data for example.
339 if (StringRef(S.getSectionName()).startswith(".gnu.linkonce."))
340 return true;
341
342 return false;
343 }
344
345
346 // EmitGlobal - Choose the right section for global and emit it
EmitGlobal(const GlobalValue * GV)347 void ELFWriter::EmitGlobal(const GlobalValue *GV) {
348
349 // Check if the referenced symbol is already emitted
350 if (GblSymLookup.find(GV) != GblSymLookup.end())
351 return;
352
353 // Handle ELF Bind, Visibility and Type for the current symbol
354 unsigned SymBind = getGlobalELFBinding(GV);
355 unsigned SymType = getGlobalELFType(GV);
356 bool IsUndefSym = IsELFUndefSym(GV);
357
358 ELFSym *GblSym = IsUndefSym ? ELFSym::getUndefGV(GV, SymBind)
359 : ELFSym::getGV(GV, SymBind, SymType, getGlobalELFVisibility(GV));
360
361 if (!IsUndefSym) {
362 assert(isa<GlobalVariable>(GV) && "GV not a global variable!");
363 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
364
365 // Handle special llvm globals
366 if (EmitSpecialLLVMGlobal(GVar))
367 return;
368
369 // Get the ELF section where this global belongs from TLOF
370 const MCSectionELF *S =
371 (const MCSectionELF *)TLOF.SectionForGlobal(GV, Mang, TM);
372 ELFSection &ES =
373 getSection(S->getSectionName(), S->getType(), S->getFlags());
374 SectionKind Kind = S->getKind();
375
376 // The symbol align should update the section alignment if needed
377 const TargetData *TD = TM.getTargetData();
378 unsigned Align = TD->getPreferredAlignment(GVar);
379 unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType());
380 GblSym->Size = Size;
381
382 if (HasCommonSymbols(*S)) { // Symbol must go to a common section
383 GblSym->SectionIdx = ELF::SHN_COMMON;
384
385 // A new linkonce section is created for each global in the
386 // common section, the default alignment is 1 and the symbol
387 // value contains its alignment.
388 ES.Align = 1;
389 GblSym->Value = Align;
390
391 } else if (Kind.isBSS() || Kind.isThreadBSS()) { // Symbol goes to BSS.
392 GblSym->SectionIdx = ES.SectionIdx;
393
394 // Update the size with alignment and the next object can
395 // start in the right offset in the section
396 if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1);
397 ES.Align = std::max(ES.Align, Align);
398
399 // GblSym->Value should contain the virtual offset inside the section.
400 // Virtual because the BSS space is not allocated on ELF objects
401 GblSym->Value = ES.Size;
402 ES.Size += Size;
403
404 } else { // The symbol must go to some kind of data section
405 GblSym->SectionIdx = ES.SectionIdx;
406
407 // GblSym->Value should contain the symbol offset inside the section,
408 // and all symbols should start on their required alignment boundary
409 ES.Align = std::max(ES.Align, Align);
410 ES.emitAlignment(Align);
411 GblSym->Value = ES.size();
412
413 // Emit the global to the data section 'ES'
414 EmitGlobalConstant(GVar->getInitializer(), ES);
415 }
416 }
417
418 AddToSymbolList(GblSym);
419 }
420
EmitGlobalConstantStruct(const ConstantStruct * CVS,ELFSection & GblS)421 void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
422 ELFSection &GblS) {
423
424 // Print the fields in successive locations. Pad to align if needed!
425 const TargetData *TD = TM.getTargetData();
426 unsigned Size = TD->getTypeAllocSize(CVS->getType());
427 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
428 uint64_t sizeSoFar = 0;
429 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
430 const Constant* field = CVS->getOperand(i);
431
432 // Check if padding is needed and insert one or more 0s.
433 uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
434 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
435 - cvsLayout->getElementOffset(i)) - fieldSize;
436 sizeSoFar += fieldSize + padSize;
437
438 // Now print the actual field value.
439 EmitGlobalConstant(field, GblS);
440
441 // Insert padding - this may include padding to increase the size of the
442 // current field up to the ABI size (if the struct is not packed) as well
443 // as padding to ensure that the next field starts at the right offset.
444 GblS.emitZeros(padSize);
445 }
446 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
447 "Layout of constant struct may be incorrect!");
448 }
449
EmitGlobalConstant(const Constant * CV,ELFSection & GblS)450 void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
451 const TargetData *TD = TM.getTargetData();
452 unsigned Size = TD->getTypeAllocSize(CV->getType());
453
454 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
455 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
456 EmitGlobalConstant(CVA->getOperand(i), GblS);
457 return;
458 } else if (isa<ConstantAggregateZero>(CV)) {
459 GblS.emitZeros(Size);
460 return;
461 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
462 EmitGlobalConstantStruct(CVS, GblS);
463 return;
464 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
465 APInt Val = CFP->getValueAPF().bitcastToAPInt();
466 if (CFP->getType()->isDoubleTy())
467 GblS.emitWord64(Val.getZExtValue());
468 else if (CFP->getType()->isFloatTy())
469 GblS.emitWord32(Val.getZExtValue());
470 else if (CFP->getType()->isX86_FP80Ty()) {
471 unsigned PadSize = TD->getTypeAllocSize(CFP->getType())-
472 TD->getTypeStoreSize(CFP->getType());
473 GblS.emitWordFP80(Val.getRawData(), PadSize);
474 } else if (CFP->getType()->isPPC_FP128Ty())
475 llvm_unreachable("PPC_FP128Ty global emission not implemented");
476 return;
477 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
478 if (Size == 1)
479 GblS.emitByte(CI->getZExtValue());
480 else if (Size == 2)
481 GblS.emitWord16(CI->getZExtValue());
482 else if (Size == 4)
483 GblS.emitWord32(CI->getZExtValue());
484 else
485 EmitGlobalConstantLargeInt(CI, GblS);
486 return;
487 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
488 VectorType *PTy = CP->getType();
489 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
490 EmitGlobalConstant(CP->getOperand(I), GblS);
491 return;
492 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
493 // Resolve a constant expression which returns a (Constant, Offset)
494 // pair. If 'Res.first' is a GlobalValue, emit a relocation with
495 // the offset 'Res.second', otherwise emit a global constant like
496 // it is always done for not contant expression types.
497 CstExprResTy Res = ResolveConstantExpr(CE);
498 const Constant *Op = Res.first;
499
500 if (isa<GlobalValue>(Op))
501 EmitGlobalDataRelocation(cast<const GlobalValue>(Op),
502 TD->getTypeAllocSize(Op->getType()),
503 GblS, Res.second);
504 else
505 EmitGlobalConstant(Op, GblS);
506
507 return;
508 } else if (CV->getType()->getTypeID() == Type::PointerTyID) {
509 // Fill the data entry with zeros or emit a relocation entry
510 if (isa<ConstantPointerNull>(CV))
511 GblS.emitZeros(Size);
512 else
513 EmitGlobalDataRelocation(cast<const GlobalValue>(CV),
514 Size, GblS);
515 return;
516 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
517 // This is a constant address for a global variable or function and
518 // therefore must be referenced using a relocation entry.
519 EmitGlobalDataRelocation(GV, Size, GblS);
520 return;
521 }
522
523 std::string msg;
524 raw_string_ostream ErrorMsg(msg);
525 ErrorMsg << "Constant unimp for type: " << *CV->getType();
526 report_fatal_error(ErrorMsg.str());
527 }
528
529 // ResolveConstantExpr - Resolve the constant expression until it stop
530 // yielding other constant expressions.
ResolveConstantExpr(const Constant * CV)531 CstExprResTy ELFWriter::ResolveConstantExpr(const Constant *CV) {
532 const TargetData *TD = TM.getTargetData();
533
534 // There ins't constant expression inside others anymore
535 if (!isa<ConstantExpr>(CV))
536 return std::make_pair(CV, 0);
537
538 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
539 switch (CE->getOpcode()) {
540 case Instruction::BitCast:
541 return ResolveConstantExpr(CE->getOperand(0));
542
543 case Instruction::GetElementPtr: {
544 const Constant *ptrVal = CE->getOperand(0);
545 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
546 int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), idxVec);
547 return std::make_pair(ptrVal, Offset);
548 }
549 case Instruction::IntToPtr: {
550 Constant *Op = CE->getOperand(0);
551 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
552 false/*ZExt*/);
553 return ResolveConstantExpr(Op);
554 }
555 case Instruction::PtrToInt: {
556 Constant *Op = CE->getOperand(0);
557 Type *Ty = CE->getType();
558
559 // We can emit the pointer value into this slot if the slot is an
560 // integer slot greater or equal to the size of the pointer.
561 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
562 return ResolveConstantExpr(Op);
563
564 llvm_unreachable("Integer size less then pointer size");
565 }
566 case Instruction::Add:
567 case Instruction::Sub: {
568 // Only handle cases where there's a constant expression with GlobalValue
569 // as first operand and ConstantInt as second, which are the cases we can
570 // solve direclty using a relocation entry. GlobalValue=Op0, CstInt=Op1
571 // 1) Instruction::Add => (global) + CstInt
572 // 2) Instruction::Sub => (global) + -CstInt
573 const Constant *Op0 = CE->getOperand(0);
574 const Constant *Op1 = CE->getOperand(1);
575 assert(isa<ConstantInt>(Op1) && "Op1 must be a ConstantInt");
576
577 CstExprResTy Res = ResolveConstantExpr(Op0);
578 assert(isa<GlobalValue>(Res.first) && "Op0 must be a GlobalValue");
579
580 const APInt &RHS = cast<ConstantInt>(Op1)->getValue();
581 switch (CE->getOpcode()) {
582 case Instruction::Add:
583 return std::make_pair(Res.first, RHS.getSExtValue());
584 case Instruction::Sub:
585 return std::make_pair(Res.first, (-RHS).getSExtValue());
586 }
587 }
588 }
589
590 report_fatal_error(CE->getOpcodeName() +
591 StringRef(": Unsupported ConstantExpr type"));
592
593 return std::make_pair(CV, 0); // silence warning
594 }
595
EmitGlobalDataRelocation(const GlobalValue * GV,unsigned Size,ELFSection & GblS,int64_t Offset)596 void ELFWriter::EmitGlobalDataRelocation(const GlobalValue *GV, unsigned Size,
597 ELFSection &GblS, int64_t Offset) {
598 // Create the relocation entry for the global value
599 MachineRelocation MR =
600 MachineRelocation::getGV(GblS.getCurrentPCOffset(),
601 TEW->getAbsoluteLabelMachineRelTy(),
602 const_cast<GlobalValue*>(GV),
603 Offset);
604
605 // Fill the data entry with zeros
606 GblS.emitZeros(Size);
607
608 // Add the relocation entry for the current data section
609 GblS.addRelocation(MR);
610 }
611
EmitGlobalConstantLargeInt(const ConstantInt * CI,ELFSection & S)612 void ELFWriter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
613 ELFSection &S) {
614 const TargetData *TD = TM.getTargetData();
615 unsigned BitWidth = CI->getBitWidth();
616 assert(isPowerOf2_32(BitWidth) &&
617 "Non-power-of-2-sized integers not handled!");
618
619 const uint64_t *RawData = CI->getValue().getRawData();
620 uint64_t Val = 0;
621 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
622 Val = (TD->isBigEndian()) ? RawData[e - i - 1] : RawData[i];
623 S.emitWord64(Val);
624 }
625 }
626
627 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
628 /// special global used by LLVM. If so, emit it and return true, otherwise
629 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)630 bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
631 if (GV->getName() == "llvm.used")
632 llvm_unreachable("not implemented yet");
633
634 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
635 if (GV->getSection() == "llvm.metadata" ||
636 GV->hasAvailableExternallyLinkage())
637 return true;
638
639 if (!GV->hasAppendingLinkage()) return false;
640
641 assert(GV->hasInitializer() && "Not a special LLVM global!");
642
643 const TargetData *TD = TM.getTargetData();
644 unsigned Align = TD->getPointerPrefAlignment();
645 if (GV->getName() == "llvm.global_ctors") {
646 ELFSection &Ctor = getCtorSection();
647 Ctor.emitAlignment(Align);
648 EmitXXStructorList(GV->getInitializer(), Ctor);
649 return true;
650 }
651
652 if (GV->getName() == "llvm.global_dtors") {
653 ELFSection &Dtor = getDtorSection();
654 Dtor.emitAlignment(Align);
655 EmitXXStructorList(GV->getInitializer(), Dtor);
656 return true;
657 }
658
659 return false;
660 }
661
662 /// EmitXXStructorList - Emit the ctor or dtor list. This just emits out the
663 /// function pointers, ignoring the init priority.
EmitXXStructorList(const Constant * List,ELFSection & Xtor)664 void ELFWriter::EmitXXStructorList(const Constant *List, ELFSection &Xtor) {
665 // Should be an array of '{ i32, void ()* }' structs. The first value is the
666 // init priority, which we ignore.
667 if (List->isNullValue()) return;
668 const ConstantArray *InitList = cast<ConstantArray>(List);
669 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
670 if (InitList->getOperand(i)->isNullValue())
671 continue;
672 ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i));
673
674 if (CS->getOperand(1)->isNullValue())
675 continue;
676
677 // Emit the function pointer.
678 EmitGlobalConstant(CS->getOperand(1), Xtor);
679 }
680 }
681
runOnMachineFunction(MachineFunction & MF)682 bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
683 // Nothing to do here, this is all done through the ElfCE object above.
684 return false;
685 }
686
687 /// doFinalization - Now that the module has been completely processed, emit
688 /// the ELF file to 'O'.
doFinalization(Module & M)689 bool ELFWriter::doFinalization(Module &M) {
690 // Emit .data section placeholder
691 getDataSection();
692
693 // Emit .bss section placeholder
694 getBSSSection();
695
696 // Build and emit data, bss and "common" sections.
697 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
698 I != E; ++I)
699 EmitGlobal(I);
700
701 // Emit all pending globals
702 for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end();
703 I != E; ++I)
704 EmitGlobal(*I);
705
706 // Emit all pending externals
707 for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end();
708 I != E; ++I)
709 SymbolList.push_back(ELFSym::getExtSym(*I));
710
711 // Emit a symbol for each section created until now, skip null section
712 for (unsigned i = 1, e = SectionList.size(); i < e; ++i) {
713 ELFSection &ES = *SectionList[i];
714 ELFSym *SectionSym = ELFSym::getSectionSym();
715 SectionSym->SectionIdx = ES.SectionIdx;
716 SymbolList.push_back(SectionSym);
717 ES.Sym = SymbolList.back();
718 }
719
720 // Emit string table
721 EmitStringTable(M.getModuleIdentifier());
722
723 // Emit the symbol table now, if non-empty.
724 EmitSymbolTable();
725
726 // Emit the relocation sections.
727 EmitRelocations();
728
729 // Emit the sections string table.
730 EmitSectionTableStringTable();
731
732 // Dump the sections and section table to the .o file.
733 OutputSectionsAndSectionTable();
734
735 return false;
736 }
737
738 // RelocateField - Patch relocatable field with 'Offset' in 'BO'
739 // using a 'Value' of known 'Size'
RelocateField(BinaryObject & BO,uint32_t Offset,int64_t Value,unsigned Size)740 void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset,
741 int64_t Value, unsigned Size) {
742 if (Size == 32)
743 BO.fixWord32(Value, Offset);
744 else if (Size == 64)
745 BO.fixWord64(Value, Offset);
746 else
747 llvm_unreachable("don't know howto patch relocatable field");
748 }
749
750 /// EmitRelocations - Emit relocations
EmitRelocations()751 void ELFWriter::EmitRelocations() {
752
753 // True if the target uses the relocation entry to hold the addend,
754 // otherwise the addend is written directly to the relocatable field.
755 bool HasRelA = TEW->hasRelocationAddend();
756
757 // Create Relocation sections for each section which needs it.
758 for (unsigned i=0, e=SectionList.size(); i != e; ++i) {
759 ELFSection &S = *SectionList[i];
760
761 // This section does not have relocations
762 if (!S.hasRelocations()) continue;
763 ELFSection &RelSec = getRelocSection(S);
764
765 // 'Link' - Section hdr idx of the associated symbol table
766 // 'Info' - Section hdr idx of the section to which the relocation applies
767 ELFSection &SymTab = getSymbolTableSection();
768 RelSec.Link = SymTab.SectionIdx;
769 RelSec.Info = S.SectionIdx;
770 RelSec.EntSize = TEW->getRelocationEntrySize();
771
772 // Get the relocations from Section
773 std::vector<MachineRelocation> Relos = S.getRelocations();
774 for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(),
775 MRE = Relos.end(); MRI != MRE; ++MRI) {
776 MachineRelocation &MR = *MRI;
777
778 // Relocatable field offset from the section start
779 unsigned RelOffset = MR.getMachineCodeOffset();
780
781 // Symbol index in the symbol table
782 unsigned SymIdx = 0;
783
784 // Target specific relocation field type and size
785 unsigned RelType = TEW->getRelocationType(MR.getRelocationType());
786 unsigned RelTySize = TEW->getRelocationTySize(RelType);
787 int64_t Addend = 0;
788
789 // There are several machine relocations types, and each one of
790 // them needs a different approach to retrieve the symbol table index.
791 if (MR.isGlobalValue()) {
792 const GlobalValue *G = MR.getGlobalValue();
793 int64_t GlobalOffset = MR.getConstantVal();
794 SymIdx = GblSymLookup[G];
795 if (G->hasPrivateLinkage()) {
796 // If the target uses a section offset in the relocation:
797 // SymIdx + Addend = section sym for global + section offset
798 unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx;
799 Addend = PrivateSyms[SymIdx]->Value + GlobalOffset;
800 SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
801 } else {
802 Addend = TEW->getDefaultAddendForRelTy(RelType, GlobalOffset);
803 }
804 } else if (MR.isExternalSymbol()) {
805 const char *ExtSym = MR.getExternalSymbol();
806 SymIdx = ExtSymLookup[ExtSym];
807 Addend = TEW->getDefaultAddendForRelTy(RelType);
808 } else {
809 // Get the symbol index for the section symbol
810 unsigned SectionIdx = MR.getConstantVal();
811 SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
812
813 // The symbol offset inside the section
814 int64_t SymOffset = (int64_t)MR.getResultPointer();
815
816 // For pc relative relocations where symbols are defined in the same
817 // section they are referenced, ignore the relocation entry and patch
818 // the relocatable field with the symbol offset directly.
819 if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) {
820 int64_t Value = TEW->computeRelocation(SymOffset, RelOffset, RelType);
821 RelocateField(S, RelOffset, Value, RelTySize);
822 continue;
823 }
824
825 Addend = TEW->getDefaultAddendForRelTy(RelType, SymOffset);
826 }
827
828 // The target without addend on the relocation symbol must be
829 // patched in the relocation place itself to contain the addend
830 // otherwise write zeros to make sure there is no garbage there
831 RelocateField(S, RelOffset, HasRelA ? 0 : Addend, RelTySize);
832
833 // Get the relocation entry and emit to the relocation section
834 ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend);
835 EmitRelocation(RelSec, Rel, HasRelA);
836 }
837 }
838 }
839
840 /// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
EmitRelocation(BinaryObject & RelSec,ELFRelocation & Rel,bool HasRelA)841 void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel,
842 bool HasRelA) {
843 RelSec.emitWord(Rel.getOffset());
844 RelSec.emitWord(Rel.getInfo(is64Bit));
845 if (HasRelA)
846 RelSec.emitWord(Rel.getAddend());
847 }
848
849 /// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
EmitSymbol(BinaryObject & SymbolTable,ELFSym & Sym)850 void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
851 if (is64Bit) {
852 SymbolTable.emitWord32(Sym.NameIdx);
853 SymbolTable.emitByte(Sym.Info);
854 SymbolTable.emitByte(Sym.Other);
855 SymbolTable.emitWord16(Sym.SectionIdx);
856 SymbolTable.emitWord64(Sym.Value);
857 SymbolTable.emitWord64(Sym.Size);
858 } else {
859 SymbolTable.emitWord32(Sym.NameIdx);
860 SymbolTable.emitWord32(Sym.Value);
861 SymbolTable.emitWord32(Sym.Size);
862 SymbolTable.emitByte(Sym.Info);
863 SymbolTable.emitByte(Sym.Other);
864 SymbolTable.emitWord16(Sym.SectionIdx);
865 }
866 }
867
868 /// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
869 /// Section Header Table
EmitSectionHeader(BinaryObject & SHdrTab,const ELFSection & SHdr)870 void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
871 const ELFSection &SHdr) {
872 SHdrTab.emitWord32(SHdr.NameIdx);
873 SHdrTab.emitWord32(SHdr.Type);
874 if (is64Bit) {
875 SHdrTab.emitWord64(SHdr.Flags);
876 SHdrTab.emitWord(SHdr.Addr);
877 SHdrTab.emitWord(SHdr.Offset);
878 SHdrTab.emitWord64(SHdr.Size);
879 SHdrTab.emitWord32(SHdr.Link);
880 SHdrTab.emitWord32(SHdr.Info);
881 SHdrTab.emitWord64(SHdr.Align);
882 SHdrTab.emitWord64(SHdr.EntSize);
883 } else {
884 SHdrTab.emitWord32(SHdr.Flags);
885 SHdrTab.emitWord(SHdr.Addr);
886 SHdrTab.emitWord(SHdr.Offset);
887 SHdrTab.emitWord32(SHdr.Size);
888 SHdrTab.emitWord32(SHdr.Link);
889 SHdrTab.emitWord32(SHdr.Info);
890 SHdrTab.emitWord32(SHdr.Align);
891 SHdrTab.emitWord32(SHdr.EntSize);
892 }
893 }
894
895 /// EmitStringTable - If the current symbol table is non-empty, emit the string
896 /// table for it
EmitStringTable(const std::string & ModuleName)897 void ELFWriter::EmitStringTable(const std::string &ModuleName) {
898 if (!SymbolList.size()) return; // Empty symbol table.
899 ELFSection &StrTab = getStringTableSection();
900
901 // Set the zero'th symbol to a null byte, as required.
902 StrTab.emitByte(0);
903
904 // Walk on the symbol list and write symbol names into the string table.
905 unsigned Index = 1;
906 for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
907 ELFSym &Sym = *(*I);
908
909 std::string Name;
910 if (Sym.isGlobalValue()) {
911 SmallString<40> NameStr;
912 Mang->getNameWithPrefix(NameStr, Sym.getGlobalValue(), false);
913 Name.append(NameStr.begin(), NameStr.end());
914 } else if (Sym.isExternalSym())
915 Name.append(Sym.getExternalSymbol());
916 else if (Sym.isFileType())
917 Name.append(ModuleName);
918
919 if (Name.empty()) {
920 Sym.NameIdx = 0;
921 } else {
922 Sym.NameIdx = Index;
923 StrTab.emitString(Name);
924
925 // Keep track of the number of bytes emitted to this section.
926 Index += Name.size()+1;
927 }
928 }
929 assert(Index == StrTab.size());
930 StrTab.Size = Index;
931 }
932
933 // SortSymbols - On the symbol table local symbols must come before
934 // all other symbols with non-local bindings. The return value is
935 // the position of the first non local symbol.
SortSymbols()936 unsigned ELFWriter::SortSymbols() {
937 unsigned FirstNonLocalSymbol;
938 std::vector<ELFSym*> LocalSyms, OtherSyms;
939
940 for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
941 if ((*I)->isLocalBind())
942 LocalSyms.push_back(*I);
943 else
944 OtherSyms.push_back(*I);
945 }
946 SymbolList.clear();
947 FirstNonLocalSymbol = LocalSyms.size();
948
949 for (unsigned i = 0; i < FirstNonLocalSymbol; ++i)
950 SymbolList.push_back(LocalSyms[i]);
951
952 for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I)
953 SymbolList.push_back(*I);
954
955 LocalSyms.clear();
956 OtherSyms.clear();
957
958 return FirstNonLocalSymbol;
959 }
960
961 /// EmitSymbolTable - Emit the symbol table itself.
EmitSymbolTable()962 void ELFWriter::EmitSymbolTable() {
963 if (!SymbolList.size()) return; // Empty symbol table.
964
965 // Now that we have emitted the string table and know the offset into the
966 // string table of each symbol, emit the symbol table itself.
967 ELFSection &SymTab = getSymbolTableSection();
968 SymTab.Align = TEW->getPrefELFAlignment();
969
970 // Section Index of .strtab.
971 SymTab.Link = getStringTableSection().SectionIdx;
972
973 // Size of each symtab entry.
974 SymTab.EntSize = TEW->getSymTabEntrySize();
975
976 // Reorder the symbol table with local symbols first!
977 unsigned FirstNonLocalSymbol = SortSymbols();
978
979 // Emit all the symbols to the symbol table.
980 for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) {
981 ELFSym &Sym = *SymbolList[i];
982
983 // Emit symbol to the symbol table
984 EmitSymbol(SymTab, Sym);
985
986 // Record the symbol table index for each symbol
987 if (Sym.isGlobalValue())
988 GblSymLookup[Sym.getGlobalValue()] = i;
989 else if (Sym.isExternalSym())
990 ExtSymLookup[Sym.getExternalSymbol()] = i;
991
992 // Keep track on the symbol index into the symbol table
993 Sym.SymTabIdx = i;
994 }
995
996 // One greater than the symbol table index of the last local symbol
997 SymTab.Info = FirstNonLocalSymbol;
998 SymTab.Size = SymTab.size();
999 }
1000
1001 /// EmitSectionTableStringTable - This method adds and emits a section for the
1002 /// ELF Section Table string table: the string table that holds all of the
1003 /// section names.
EmitSectionTableStringTable()1004 void ELFWriter::EmitSectionTableStringTable() {
1005 // First step: add the section for the string table to the list of sections:
1006 ELFSection &SHStrTab = getSectionHeaderStringTableSection();
1007
1008 // Now that we know which section number is the .shstrtab section, update the
1009 // e_shstrndx entry in the ELF header.
1010 ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
1011
1012 // Set the NameIdx of each section in the string table and emit the bytes for
1013 // the string table.
1014 unsigned Index = 0;
1015
1016 for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
1017 ELFSection &S = *(*I);
1018 // Set the index into the table. Note if we have lots of entries with
1019 // common suffixes, we could memoize them here if we cared.
1020 S.NameIdx = Index;
1021 SHStrTab.emitString(S.getName());
1022
1023 // Keep track of the number of bytes emitted to this section.
1024 Index += S.getName().size()+1;
1025 }
1026
1027 // Set the size of .shstrtab now that we know what it is.
1028 assert(Index == SHStrTab.size());
1029 SHStrTab.Size = Index;
1030 }
1031
1032 /// OutputSectionsAndSectionTable - Now that we have constructed the file header
1033 /// and all of the sections, emit these to the ostream destination and emit the
1034 /// SectionTable.
OutputSectionsAndSectionTable()1035 void ELFWriter::OutputSectionsAndSectionTable() {
1036 // Pass #1: Compute the file offset for each section.
1037 size_t FileOff = ElfHdr.size(); // File header first.
1038
1039 // Adjust alignment of all section if needed, skip the null section.
1040 for (unsigned i=1, e=SectionList.size(); i < e; ++i) {
1041 ELFSection &ES = *SectionList[i];
1042 if (!ES.size()) {
1043 ES.Offset = FileOff;
1044 continue;
1045 }
1046
1047 // Update Section size
1048 if (!ES.Size)
1049 ES.Size = ES.size();
1050
1051 // Align FileOff to whatever the alignment restrictions of the section are.
1052 if (ES.Align)
1053 FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1);
1054
1055 ES.Offset = FileOff;
1056 FileOff += ES.Size;
1057 }
1058
1059 // Align Section Header.
1060 unsigned TableAlign = TEW->getPrefELFAlignment();
1061 FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
1062
1063 // Now that we know where all of the sections will be emitted, set the e_shnum
1064 // entry in the ELF header.
1065 ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);
1066
1067 // Now that we know the offset in the file of the section table, update the
1068 // e_shoff address in the ELF header.
1069 ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);
1070
1071 // Now that we know all of the data in the file header, emit it and all of the
1072 // sections!
1073 O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
1074 FileOff = ElfHdr.size();
1075
1076 // Section Header Table blob
1077 BinaryObject SHdrTable(isLittleEndian, is64Bit);
1078
1079 // Emit all of sections to the file and build the section header table.
1080 for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
1081 ELFSection &S = *(*I);
1082 DEBUG(dbgs() << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
1083 << ", Size: " << S.Size << ", Offset: " << S.Offset
1084 << ", SectionData Size: " << S.size() << "\n");
1085
1086 // Align FileOff to whatever the alignment restrictions of the section are.
1087 if (S.size()) {
1088 if (S.Align) {
1089 for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
1090 FileOff != NewFileOff; ++FileOff)
1091 O << (char)0xAB;
1092 }
1093 O.write((char *)&S.getData()[0], S.Size);
1094 FileOff += S.Size;
1095 }
1096
1097 EmitSectionHeader(SHdrTable, S);
1098 }
1099
1100 // Align output for the section table.
1101 for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
1102 FileOff != NewFileOff; ++FileOff)
1103 O << (char)0xAB;
1104
1105 // Emit the section table itself.
1106 O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());
1107 }
1108