1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CharUnits.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExternalASTSource.h"
23 #include "clang/AST/ASTMutationListener.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "CXXABI.h"
34 #include <map>
35
36 using namespace clang;
37
38 unsigned ASTContext::NumImplicitDefaultConstructors;
39 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
40 unsigned ASTContext::NumImplicitCopyConstructors;
41 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
42 unsigned ASTContext::NumImplicitMoveConstructors;
43 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
44 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
45 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
46 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
47 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
48 unsigned ASTContext::NumImplicitDestructors;
49 unsigned ASTContext::NumImplicitDestructorsDeclared;
50
51 enum FloatingRank {
52 FloatRank, DoubleRank, LongDoubleRank
53 };
54
55 void
Profile(llvm::FoldingSetNodeID & ID,TemplateTemplateParmDecl * Parm)56 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
57 TemplateTemplateParmDecl *Parm) {
58 ID.AddInteger(Parm->getDepth());
59 ID.AddInteger(Parm->getPosition());
60 ID.AddBoolean(Parm->isParameterPack());
61
62 TemplateParameterList *Params = Parm->getTemplateParameters();
63 ID.AddInteger(Params->size());
64 for (TemplateParameterList::const_iterator P = Params->begin(),
65 PEnd = Params->end();
66 P != PEnd; ++P) {
67 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
68 ID.AddInteger(0);
69 ID.AddBoolean(TTP->isParameterPack());
70 continue;
71 }
72
73 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
74 ID.AddInteger(1);
75 ID.AddBoolean(NTTP->isParameterPack());
76 ID.AddPointer(NTTP->getType().getAsOpaquePtr());
77 if (NTTP->isExpandedParameterPack()) {
78 ID.AddBoolean(true);
79 ID.AddInteger(NTTP->getNumExpansionTypes());
80 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
81 ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
82 } else
83 ID.AddBoolean(false);
84 continue;
85 }
86
87 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
88 ID.AddInteger(2);
89 Profile(ID, TTP);
90 }
91 }
92
93 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const94 ASTContext::getCanonicalTemplateTemplateParmDecl(
95 TemplateTemplateParmDecl *TTP) const {
96 // Check if we already have a canonical template template parameter.
97 llvm::FoldingSetNodeID ID;
98 CanonicalTemplateTemplateParm::Profile(ID, TTP);
99 void *InsertPos = 0;
100 CanonicalTemplateTemplateParm *Canonical
101 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
102 if (Canonical)
103 return Canonical->getParam();
104
105 // Build a canonical template parameter list.
106 TemplateParameterList *Params = TTP->getTemplateParameters();
107 llvm::SmallVector<NamedDecl *, 4> CanonParams;
108 CanonParams.reserve(Params->size());
109 for (TemplateParameterList::const_iterator P = Params->begin(),
110 PEnd = Params->end();
111 P != PEnd; ++P) {
112 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
113 CanonParams.push_back(
114 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
115 SourceLocation(),
116 SourceLocation(),
117 TTP->getDepth(),
118 TTP->getIndex(), 0, false,
119 TTP->isParameterPack()));
120 else if (NonTypeTemplateParmDecl *NTTP
121 = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
122 QualType T = getCanonicalType(NTTP->getType());
123 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
124 NonTypeTemplateParmDecl *Param;
125 if (NTTP->isExpandedParameterPack()) {
126 llvm::SmallVector<QualType, 2> ExpandedTypes;
127 llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
128 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
129 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
130 ExpandedTInfos.push_back(
131 getTrivialTypeSourceInfo(ExpandedTypes.back()));
132 }
133
134 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
135 SourceLocation(),
136 SourceLocation(),
137 NTTP->getDepth(),
138 NTTP->getPosition(), 0,
139 T,
140 TInfo,
141 ExpandedTypes.data(),
142 ExpandedTypes.size(),
143 ExpandedTInfos.data());
144 } else {
145 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
146 SourceLocation(),
147 SourceLocation(),
148 NTTP->getDepth(),
149 NTTP->getPosition(), 0,
150 T,
151 NTTP->isParameterPack(),
152 TInfo);
153 }
154 CanonParams.push_back(Param);
155
156 } else
157 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
158 cast<TemplateTemplateParmDecl>(*P)));
159 }
160
161 TemplateTemplateParmDecl *CanonTTP
162 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
163 SourceLocation(), TTP->getDepth(),
164 TTP->getPosition(),
165 TTP->isParameterPack(),
166 0,
167 TemplateParameterList::Create(*this, SourceLocation(),
168 SourceLocation(),
169 CanonParams.data(),
170 CanonParams.size(),
171 SourceLocation()));
172
173 // Get the new insert position for the node we care about.
174 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
175 assert(Canonical == 0 && "Shouldn't be in the map!");
176 (void)Canonical;
177
178 // Create the canonical template template parameter entry.
179 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
180 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
181 return CanonTTP;
182 }
183
createCXXABI(const TargetInfo & T)184 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
185 if (!LangOpts.CPlusPlus) return 0;
186
187 switch (T.getCXXABI()) {
188 case CXXABI_ARM:
189 return CreateARMCXXABI(*this);
190 case CXXABI_Itanium:
191 return CreateItaniumCXXABI(*this);
192 case CXXABI_Microsoft:
193 return CreateMicrosoftCXXABI(*this);
194 }
195 return 0;
196 }
197
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)198 static const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
199 const LangOptions &LOpts) {
200 if (LOpts.FakeAddressSpaceMap) {
201 // The fake address space map must have a distinct entry for each
202 // language-specific address space.
203 static const unsigned FakeAddrSpaceMap[] = {
204 1, // opencl_global
205 2, // opencl_local
206 3 // opencl_constant
207 };
208 return FakeAddrSpaceMap;
209 } else {
210 return T.getAddressSpaceMap();
211 }
212 }
213
ASTContext(const LangOptions & LOpts,SourceManager & SM,const TargetInfo & t,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins,unsigned size_reserve)214 ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
215 const TargetInfo &t,
216 IdentifierTable &idents, SelectorTable &sels,
217 Builtin::Context &builtins,
218 unsigned size_reserve) :
219 FunctionProtoTypes(this_()),
220 TemplateSpecializationTypes(this_()),
221 DependentTemplateSpecializationTypes(this_()),
222 SubstTemplateTemplateParmPacks(this_()),
223 GlobalNestedNameSpecifier(0), IsInt128Installed(false),
224 CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
225 ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
226 jmp_bufDecl(0), sigjmp_bufDecl(0), BlockDescriptorType(0),
227 BlockDescriptorExtendedType(0), cudaConfigureCallDecl(0),
228 NullTypeSourceInfo(QualType()),
229 SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
230 AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
231 Idents(idents), Selectors(sels),
232 BuiltinInfo(builtins),
233 DeclarationNames(*this),
234 ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
235 LastSDM(0, 0),
236 UniqueBlockByRefTypeID(0) {
237 ObjCIdRedefinitionType = QualType();
238 ObjCClassRedefinitionType = QualType();
239 ObjCSelRedefinitionType = QualType();
240 if (size_reserve > 0) Types.reserve(size_reserve);
241 TUDecl = TranslationUnitDecl::Create(*this);
242 InitBuiltinTypes();
243 }
244
~ASTContext()245 ASTContext::~ASTContext() {
246 // Release the DenseMaps associated with DeclContext objects.
247 // FIXME: Is this the ideal solution?
248 ReleaseDeclContextMaps();
249
250 // Call all of the deallocation functions.
251 for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
252 Deallocations[I].first(Deallocations[I].second);
253
254 // Release all of the memory associated with overridden C++ methods.
255 for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
256 OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
257 OM != OMEnd; ++OM)
258 OM->second.Destroy();
259
260 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
261 // because they can contain DenseMaps.
262 for (llvm::DenseMap<const ObjCContainerDecl*,
263 const ASTRecordLayout*>::iterator
264 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
265 // Increment in loop to prevent using deallocated memory.
266 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
267 R->Destroy(*this);
268
269 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
270 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
271 // Increment in loop to prevent using deallocated memory.
272 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
273 R->Destroy(*this);
274 }
275
276 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
277 AEnd = DeclAttrs.end();
278 A != AEnd; ++A)
279 A->second->~AttrVec();
280 }
281
AddDeallocation(void (* Callback)(void *),void * Data)282 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
283 Deallocations.push_back(std::make_pair(Callback, Data));
284 }
285
286 void
setExternalSource(llvm::OwningPtr<ExternalASTSource> & Source)287 ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
288 ExternalSource.reset(Source.take());
289 }
290
PrintStats() const291 void ASTContext::PrintStats() const {
292 llvm::errs() << "\n*** AST Context Stats:\n";
293 llvm::errs() << " " << Types.size() << " types total.\n";
294
295 unsigned counts[] = {
296 #define TYPE(Name, Parent) 0,
297 #define ABSTRACT_TYPE(Name, Parent)
298 #include "clang/AST/TypeNodes.def"
299 0 // Extra
300 };
301
302 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
303 Type *T = Types[i];
304 counts[(unsigned)T->getTypeClass()]++;
305 }
306
307 unsigned Idx = 0;
308 unsigned TotalBytes = 0;
309 #define TYPE(Name, Parent) \
310 if (counts[Idx]) \
311 llvm::errs() << " " << counts[Idx] << " " << #Name \
312 << " types\n"; \
313 TotalBytes += counts[Idx] * sizeof(Name##Type); \
314 ++Idx;
315 #define ABSTRACT_TYPE(Name, Parent)
316 #include "clang/AST/TypeNodes.def"
317
318 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
319
320 // Implicit special member functions.
321 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
322 << NumImplicitDefaultConstructors
323 << " implicit default constructors created\n";
324 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
325 << NumImplicitCopyConstructors
326 << " implicit copy constructors created\n";
327 if (getLangOptions().CPlusPlus)
328 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
329 << NumImplicitMoveConstructors
330 << " implicit move constructors created\n";
331 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
332 << NumImplicitCopyAssignmentOperators
333 << " implicit copy assignment operators created\n";
334 if (getLangOptions().CPlusPlus)
335 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
336 << NumImplicitMoveAssignmentOperators
337 << " implicit move assignment operators created\n";
338 llvm::errs() << NumImplicitDestructorsDeclared << "/"
339 << NumImplicitDestructors
340 << " implicit destructors created\n";
341
342 if (ExternalSource.get()) {
343 llvm::errs() << "\n";
344 ExternalSource->PrintStats();
345 }
346
347 BumpAlloc.PrintStats();
348 }
349
350
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)351 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
352 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
353 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
354 Types.push_back(Ty);
355 }
356
InitBuiltinTypes()357 void ASTContext::InitBuiltinTypes() {
358 assert(VoidTy.isNull() && "Context reinitialized?");
359
360 // C99 6.2.5p19.
361 InitBuiltinType(VoidTy, BuiltinType::Void);
362
363 // C99 6.2.5p2.
364 InitBuiltinType(BoolTy, BuiltinType::Bool);
365 // C99 6.2.5p3.
366 if (LangOpts.CharIsSigned)
367 InitBuiltinType(CharTy, BuiltinType::Char_S);
368 else
369 InitBuiltinType(CharTy, BuiltinType::Char_U);
370 // C99 6.2.5p4.
371 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
372 InitBuiltinType(ShortTy, BuiltinType::Short);
373 InitBuiltinType(IntTy, BuiltinType::Int);
374 InitBuiltinType(LongTy, BuiltinType::Long);
375 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
376
377 // C99 6.2.5p6.
378 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
379 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
380 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
381 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
382 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
383
384 // C99 6.2.5p10.
385 InitBuiltinType(FloatTy, BuiltinType::Float);
386 InitBuiltinType(DoubleTy, BuiltinType::Double);
387 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
388
389 // GNU extension, 128-bit integers.
390 InitBuiltinType(Int128Ty, BuiltinType::Int128);
391 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
392
393 if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
394 if (TargetInfo::isTypeSigned(Target.getWCharType()))
395 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
396 else // -fshort-wchar makes wchar_t be unsigned.
397 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
398 } else // C99
399 WCharTy = getFromTargetType(Target.getWCharType());
400
401 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
402 InitBuiltinType(Char16Ty, BuiltinType::Char16);
403 else // C99
404 Char16Ty = getFromTargetType(Target.getChar16Type());
405
406 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
407 InitBuiltinType(Char32Ty, BuiltinType::Char32);
408 else // C99
409 Char32Ty = getFromTargetType(Target.getChar32Type());
410
411 // Placeholder type for type-dependent expressions whose type is
412 // completely unknown. No code should ever check a type against
413 // DependentTy and users should never see it; however, it is here to
414 // help diagnose failures to properly check for type-dependent
415 // expressions.
416 InitBuiltinType(DependentTy, BuiltinType::Dependent);
417
418 // Placeholder type for functions.
419 InitBuiltinType(OverloadTy, BuiltinType::Overload);
420
421 // Placeholder type for bound members.
422 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
423
424 // "any" type; useful for debugger-like clients.
425 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
426
427 // C99 6.2.5p11.
428 FloatComplexTy = getComplexType(FloatTy);
429 DoubleComplexTy = getComplexType(DoubleTy);
430 LongDoubleComplexTy = getComplexType(LongDoubleTy);
431
432 BuiltinVaListType = QualType();
433
434 // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
435 ObjCIdTypedefType = QualType();
436 ObjCClassTypedefType = QualType();
437 ObjCSelTypedefType = QualType();
438
439 // Builtin types for 'id', 'Class', and 'SEL'.
440 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
441 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
442 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
443
444 ObjCConstantStringType = QualType();
445
446 // void * type
447 VoidPtrTy = getPointerType(VoidTy);
448
449 // nullptr type (C++0x 2.14.7)
450 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
451 }
452
getDiagnostics() const453 Diagnostic &ASTContext::getDiagnostics() const {
454 return SourceMgr.getDiagnostics();
455 }
456
getDeclAttrs(const Decl * D)457 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
458 AttrVec *&Result = DeclAttrs[D];
459 if (!Result) {
460 void *Mem = Allocate(sizeof(AttrVec));
461 Result = new (Mem) AttrVec;
462 }
463
464 return *Result;
465 }
466
467 /// \brief Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)468 void ASTContext::eraseDeclAttrs(const Decl *D) {
469 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
470 if (Pos != DeclAttrs.end()) {
471 Pos->second->~AttrVec();
472 DeclAttrs.erase(Pos);
473 }
474 }
475
476 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)477 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
478 assert(Var->isStaticDataMember() && "Not a static data member");
479 llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
480 = InstantiatedFromStaticDataMember.find(Var);
481 if (Pos == InstantiatedFromStaticDataMember.end())
482 return 0;
483
484 return Pos->second;
485 }
486
487 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)488 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
489 TemplateSpecializationKind TSK,
490 SourceLocation PointOfInstantiation) {
491 assert(Inst->isStaticDataMember() && "Not a static data member");
492 assert(Tmpl->isStaticDataMember() && "Not a static data member");
493 assert(!InstantiatedFromStaticDataMember[Inst] &&
494 "Already noted what static data member was instantiated from");
495 InstantiatedFromStaticDataMember[Inst]
496 = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
497 }
498
499 NamedDecl *
getInstantiatedFromUsingDecl(UsingDecl * UUD)500 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
501 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
502 = InstantiatedFromUsingDecl.find(UUD);
503 if (Pos == InstantiatedFromUsingDecl.end())
504 return 0;
505
506 return Pos->second;
507 }
508
509 void
setInstantiatedFromUsingDecl(UsingDecl * Inst,NamedDecl * Pattern)510 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
511 assert((isa<UsingDecl>(Pattern) ||
512 isa<UnresolvedUsingValueDecl>(Pattern) ||
513 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
514 "pattern decl is not a using decl");
515 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
516 InstantiatedFromUsingDecl[Inst] = Pattern;
517 }
518
519 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)520 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
521 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
522 = InstantiatedFromUsingShadowDecl.find(Inst);
523 if (Pos == InstantiatedFromUsingShadowDecl.end())
524 return 0;
525
526 return Pos->second;
527 }
528
529 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)530 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
531 UsingShadowDecl *Pattern) {
532 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
533 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
534 }
535
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)536 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
537 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
538 = InstantiatedFromUnnamedFieldDecl.find(Field);
539 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
540 return 0;
541
542 return Pos->second;
543 }
544
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)545 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
546 FieldDecl *Tmpl) {
547 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
548 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
549 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
550 "Already noted what unnamed field was instantiated from");
551
552 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
553 }
554
ZeroBitfieldFollowsNonBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const555 bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
556 const FieldDecl *LastFD) const {
557 return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
558 FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0);
559
560 }
561
ZeroBitfieldFollowsBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const562 bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
563 const FieldDecl *LastFD) const {
564 return (FD->isBitField() && LastFD && LastFD->isBitField() &&
565 FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0 &&
566 LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() != 0);
567
568 }
569
BitfieldFollowsBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const570 bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
571 const FieldDecl *LastFD) const {
572 return (FD->isBitField() && LastFD && LastFD->isBitField() &&
573 FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() &&
574 LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
575 }
576
NoneBitfieldFollowsBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const577 bool ASTContext::NoneBitfieldFollowsBitfield(const FieldDecl *FD,
578 const FieldDecl *LastFD) const {
579 return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
580 LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
581 }
582
BitfieldFollowsNoneBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const583 bool ASTContext::BitfieldFollowsNoneBitfield(const FieldDecl *FD,
584 const FieldDecl *LastFD) const {
585 return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
586 FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
587 }
588
589 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const590 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
591 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
592 = OverriddenMethods.find(Method);
593 if (Pos == OverriddenMethods.end())
594 return 0;
595
596 return Pos->second.begin();
597 }
598
599 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const600 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
601 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
602 = OverriddenMethods.find(Method);
603 if (Pos == OverriddenMethods.end())
604 return 0;
605
606 return Pos->second.end();
607 }
608
609 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const610 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
611 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
612 = OverriddenMethods.find(Method);
613 if (Pos == OverriddenMethods.end())
614 return 0;
615
616 return Pos->second.size();
617 }
618
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)619 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
620 const CXXMethodDecl *Overridden) {
621 OverriddenMethods[Method].push_back(Overridden);
622 }
623
624 //===----------------------------------------------------------------------===//
625 // Type Sizing and Analysis
626 //===----------------------------------------------------------------------===//
627
628 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
629 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const630 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
631 const BuiltinType *BT = T->getAs<BuiltinType>();
632 assert(BT && "Not a floating point type!");
633 switch (BT->getKind()) {
634 default: assert(0 && "Not a floating point type!");
635 case BuiltinType::Float: return Target.getFloatFormat();
636 case BuiltinType::Double: return Target.getDoubleFormat();
637 case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
638 }
639 }
640
641 /// getDeclAlign - Return a conservative estimate of the alignment of the
642 /// specified decl. Note that bitfields do not have a valid alignment, so
643 /// this method will assert on them.
644 /// If @p RefAsPointee, references are treated like their underlying type
645 /// (for alignof), else they're treated like pointers (for CodeGen).
getDeclAlign(const Decl * D,bool RefAsPointee) const646 CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
647 unsigned Align = Target.getCharWidth();
648
649 bool UseAlignAttrOnly = false;
650 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
651 Align = AlignFromAttr;
652
653 // __attribute__((aligned)) can increase or decrease alignment
654 // *except* on a struct or struct member, where it only increases
655 // alignment unless 'packed' is also specified.
656 //
657 // It is an error for [[align]] to decrease alignment, so we can
658 // ignore that possibility; Sema should diagnose it.
659 if (isa<FieldDecl>(D)) {
660 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
661 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
662 } else {
663 UseAlignAttrOnly = true;
664 }
665 }
666 else if (isa<FieldDecl>(D))
667 UseAlignAttrOnly =
668 D->hasAttr<PackedAttr>() ||
669 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
670
671 // If we're using the align attribute only, just ignore everything
672 // else about the declaration and its type.
673 if (UseAlignAttrOnly) {
674 // do nothing
675
676 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
677 QualType T = VD->getType();
678 if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
679 if (RefAsPointee)
680 T = RT->getPointeeType();
681 else
682 T = getPointerType(RT->getPointeeType());
683 }
684 if (!T->isIncompleteType() && !T->isFunctionType()) {
685 // Adjust alignments of declarations with array type by the
686 // large-array alignment on the target.
687 unsigned MinWidth = Target.getLargeArrayMinWidth();
688 const ArrayType *arrayType;
689 if (MinWidth && (arrayType = getAsArrayType(T))) {
690 if (isa<VariableArrayType>(arrayType))
691 Align = std::max(Align, Target.getLargeArrayAlign());
692 else if (isa<ConstantArrayType>(arrayType) &&
693 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
694 Align = std::max(Align, Target.getLargeArrayAlign());
695
696 // Walk through any array types while we're at it.
697 T = getBaseElementType(arrayType);
698 }
699 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
700 }
701
702 // Fields can be subject to extra alignment constraints, like if
703 // the field is packed, the struct is packed, or the struct has a
704 // a max-field-alignment constraint (#pragma pack). So calculate
705 // the actual alignment of the field within the struct, and then
706 // (as we're expected to) constrain that by the alignment of the type.
707 if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
708 // So calculate the alignment of the field.
709 const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
710
711 // Start with the record's overall alignment.
712 unsigned fieldAlign = toBits(layout.getAlignment());
713
714 // Use the GCD of that and the offset within the record.
715 uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
716 if (offset > 0) {
717 // Alignment is always a power of 2, so the GCD will be a power of 2,
718 // which means we get to do this crazy thing instead of Euclid's.
719 uint64_t lowBitOfOffset = offset & (~offset + 1);
720 if (lowBitOfOffset < fieldAlign)
721 fieldAlign = static_cast<unsigned>(lowBitOfOffset);
722 }
723
724 Align = std::min(Align, fieldAlign);
725 }
726 }
727
728 return toCharUnitsFromBits(Align);
729 }
730
731 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const732 ASTContext::getTypeInfoInChars(const Type *T) const {
733 std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
734 return std::make_pair(toCharUnitsFromBits(Info.first),
735 toCharUnitsFromBits(Info.second));
736 }
737
738 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const739 ASTContext::getTypeInfoInChars(QualType T) const {
740 return getTypeInfoInChars(T.getTypePtr());
741 }
742
743 /// getTypeSize - Return the size of the specified type, in bits. This method
744 /// does not work on incomplete types.
745 ///
746 /// FIXME: Pointers into different addr spaces could have different sizes and
747 /// alignment requirements: getPointerInfo should take an AddrSpace, this
748 /// should take a QualType, &c.
749 std::pair<uint64_t, unsigned>
getTypeInfo(const Type * T) const750 ASTContext::getTypeInfo(const Type *T) const {
751 uint64_t Width=0;
752 unsigned Align=8;
753 switch (T->getTypeClass()) {
754 #define TYPE(Class, Base)
755 #define ABSTRACT_TYPE(Class, Base)
756 #define NON_CANONICAL_TYPE(Class, Base)
757 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
758 #include "clang/AST/TypeNodes.def"
759 llvm_unreachable("Should not see dependent types");
760 break;
761
762 case Type::FunctionNoProto:
763 case Type::FunctionProto:
764 // GCC extension: alignof(function) = 32 bits
765 Width = 0;
766 Align = 32;
767 break;
768
769 case Type::IncompleteArray:
770 case Type::VariableArray:
771 Width = 0;
772 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
773 break;
774
775 case Type::ConstantArray: {
776 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
777
778 std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
779 Width = EltInfo.first*CAT->getSize().getZExtValue();
780 Align = EltInfo.second;
781 Width = llvm::RoundUpToAlignment(Width, Align);
782 break;
783 }
784 case Type::ExtVector:
785 case Type::Vector: {
786 const VectorType *VT = cast<VectorType>(T);
787 std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
788 Width = EltInfo.first*VT->getNumElements();
789 Align = Width;
790 // If the alignment is not a power of 2, round up to the next power of 2.
791 // This happens for non-power-of-2 length vectors.
792 if (Align & (Align-1)) {
793 Align = llvm::NextPowerOf2(Align);
794 Width = llvm::RoundUpToAlignment(Width, Align);
795 }
796 break;
797 }
798
799 case Type::Builtin:
800 switch (cast<BuiltinType>(T)->getKind()) {
801 default: assert(0 && "Unknown builtin type!");
802 case BuiltinType::Void:
803 // GCC extension: alignof(void) = 8 bits.
804 Width = 0;
805 Align = 8;
806 break;
807
808 case BuiltinType::Bool:
809 Width = Target.getBoolWidth();
810 Align = Target.getBoolAlign();
811 break;
812 case BuiltinType::Char_S:
813 case BuiltinType::Char_U:
814 case BuiltinType::UChar:
815 case BuiltinType::SChar:
816 Width = Target.getCharWidth();
817 Align = Target.getCharAlign();
818 break;
819 case BuiltinType::WChar_S:
820 case BuiltinType::WChar_U:
821 Width = Target.getWCharWidth();
822 Align = Target.getWCharAlign();
823 break;
824 case BuiltinType::Char16:
825 Width = Target.getChar16Width();
826 Align = Target.getChar16Align();
827 break;
828 case BuiltinType::Char32:
829 Width = Target.getChar32Width();
830 Align = Target.getChar32Align();
831 break;
832 case BuiltinType::UShort:
833 case BuiltinType::Short:
834 Width = Target.getShortWidth();
835 Align = Target.getShortAlign();
836 break;
837 case BuiltinType::UInt:
838 case BuiltinType::Int:
839 Width = Target.getIntWidth();
840 Align = Target.getIntAlign();
841 break;
842 case BuiltinType::ULong:
843 case BuiltinType::Long:
844 Width = Target.getLongWidth();
845 Align = Target.getLongAlign();
846 break;
847 case BuiltinType::ULongLong:
848 case BuiltinType::LongLong:
849 Width = Target.getLongLongWidth();
850 Align = Target.getLongLongAlign();
851 break;
852 case BuiltinType::Int128:
853 case BuiltinType::UInt128:
854 Width = 128;
855 Align = 128; // int128_t is 128-bit aligned on all targets.
856 break;
857 case BuiltinType::Float:
858 Width = Target.getFloatWidth();
859 Align = Target.getFloatAlign();
860 break;
861 case BuiltinType::Double:
862 Width = Target.getDoubleWidth();
863 Align = Target.getDoubleAlign();
864 break;
865 case BuiltinType::LongDouble:
866 Width = Target.getLongDoubleWidth();
867 Align = Target.getLongDoubleAlign();
868 break;
869 case BuiltinType::NullPtr:
870 Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
871 Align = Target.getPointerAlign(0); // == sizeof(void*)
872 break;
873 case BuiltinType::ObjCId:
874 case BuiltinType::ObjCClass:
875 case BuiltinType::ObjCSel:
876 Width = Target.getPointerWidth(0);
877 Align = Target.getPointerAlign(0);
878 break;
879 }
880 break;
881 case Type::ObjCObjectPointer:
882 Width = Target.getPointerWidth(0);
883 Align = Target.getPointerAlign(0);
884 break;
885 case Type::BlockPointer: {
886 unsigned AS = getTargetAddressSpace(
887 cast<BlockPointerType>(T)->getPointeeType());
888 Width = Target.getPointerWidth(AS);
889 Align = Target.getPointerAlign(AS);
890 break;
891 }
892 case Type::LValueReference:
893 case Type::RValueReference: {
894 // alignof and sizeof should never enter this code path here, so we go
895 // the pointer route.
896 unsigned AS = getTargetAddressSpace(
897 cast<ReferenceType>(T)->getPointeeType());
898 Width = Target.getPointerWidth(AS);
899 Align = Target.getPointerAlign(AS);
900 break;
901 }
902 case Type::Pointer: {
903 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
904 Width = Target.getPointerWidth(AS);
905 Align = Target.getPointerAlign(AS);
906 break;
907 }
908 case Type::MemberPointer: {
909 const MemberPointerType *MPT = cast<MemberPointerType>(T);
910 std::pair<uint64_t, unsigned> PtrDiffInfo =
911 getTypeInfo(getPointerDiffType());
912 Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
913 Align = PtrDiffInfo.second;
914 break;
915 }
916 case Type::Complex: {
917 // Complex types have the same alignment as their elements, but twice the
918 // size.
919 std::pair<uint64_t, unsigned> EltInfo =
920 getTypeInfo(cast<ComplexType>(T)->getElementType());
921 Width = EltInfo.first*2;
922 Align = EltInfo.second;
923 break;
924 }
925 case Type::ObjCObject:
926 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
927 case Type::ObjCInterface: {
928 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
929 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
930 Width = toBits(Layout.getSize());
931 Align = toBits(Layout.getAlignment());
932 break;
933 }
934 case Type::Record:
935 case Type::Enum: {
936 const TagType *TT = cast<TagType>(T);
937
938 if (TT->getDecl()->isInvalidDecl()) {
939 Width = 8;
940 Align = 8;
941 break;
942 }
943
944 if (const EnumType *ET = dyn_cast<EnumType>(TT))
945 return getTypeInfo(ET->getDecl()->getIntegerType());
946
947 const RecordType *RT = cast<RecordType>(TT);
948 const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
949 Width = toBits(Layout.getSize());
950 Align = toBits(Layout.getAlignment());
951 break;
952 }
953
954 case Type::SubstTemplateTypeParm:
955 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
956 getReplacementType().getTypePtr());
957
958 case Type::Auto: {
959 const AutoType *A = cast<AutoType>(T);
960 assert(A->isDeduced() && "Cannot request the size of a dependent type");
961 return getTypeInfo(A->getDeducedType().getTypePtr());
962 }
963
964 case Type::Paren:
965 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
966
967 case Type::Typedef: {
968 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
969 std::pair<uint64_t, unsigned> Info
970 = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
971 // If the typedef has an aligned attribute on it, it overrides any computed
972 // alignment we have. This violates the GCC documentation (which says that
973 // attribute(aligned) can only round up) but matches its implementation.
974 if (unsigned AttrAlign = Typedef->getMaxAlignment())
975 Align = AttrAlign;
976 else
977 Align = Info.second;
978 Width = Info.first;
979 break;
980 }
981
982 case Type::TypeOfExpr:
983 return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
984 .getTypePtr());
985
986 case Type::TypeOf:
987 return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
988
989 case Type::Decltype:
990 return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
991 .getTypePtr());
992
993 case Type::UnaryTransform:
994 return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
995
996 case Type::Elaborated:
997 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
998
999 case Type::Attributed:
1000 return getTypeInfo(
1001 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1002
1003 case Type::TemplateSpecialization: {
1004 assert(getCanonicalType(T) != T &&
1005 "Cannot request the size of a dependent type");
1006 const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1007 // A type alias template specialization may refer to a typedef with the
1008 // aligned attribute on it.
1009 if (TST->isTypeAlias())
1010 return getTypeInfo(TST->getAliasedType().getTypePtr());
1011 else
1012 return getTypeInfo(getCanonicalType(T));
1013 }
1014
1015 }
1016
1017 assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
1018 return std::make_pair(Width, Align);
1019 }
1020
1021 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const1022 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1023 return CharUnits::fromQuantity(BitSize / getCharWidth());
1024 }
1025
1026 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const1027 int64_t ASTContext::toBits(CharUnits CharSize) const {
1028 return CharSize.getQuantity() * getCharWidth();
1029 }
1030
1031 /// getTypeSizeInChars - Return the size of the specified type, in characters.
1032 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const1033 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1034 return toCharUnitsFromBits(getTypeSize(T));
1035 }
getTypeSizeInChars(const Type * T) const1036 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1037 return toCharUnitsFromBits(getTypeSize(T));
1038 }
1039
1040 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1041 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const1042 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1043 return toCharUnitsFromBits(getTypeAlign(T));
1044 }
getTypeAlignInChars(const Type * T) const1045 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1046 return toCharUnitsFromBits(getTypeAlign(T));
1047 }
1048
1049 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1050 /// type for the current target in bits. This can be different than the ABI
1051 /// alignment in cases where it is beneficial for performance to overalign
1052 /// a data type.
getPreferredTypeAlign(const Type * T) const1053 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1054 unsigned ABIAlign = getTypeAlign(T);
1055
1056 // Double and long long should be naturally aligned if possible.
1057 if (const ComplexType* CT = T->getAs<ComplexType>())
1058 T = CT->getElementType().getTypePtr();
1059 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1060 T->isSpecificBuiltinType(BuiltinType::LongLong))
1061 return std::max(ABIAlign, (unsigned)getTypeSize(T));
1062
1063 return ABIAlign;
1064 }
1065
1066 /// ShallowCollectObjCIvars -
1067 /// Collect all ivars, including those synthesized, in the current class.
1068 ///
ShallowCollectObjCIvars(const ObjCInterfaceDecl * OI,llvm::SmallVectorImpl<ObjCIvarDecl * > & Ivars) const1069 void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1070 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1071 // FIXME. This need be removed but there are two many places which
1072 // assume const-ness of ObjCInterfaceDecl
1073 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1074 for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1075 Iv= Iv->getNextIvar())
1076 Ivars.push_back(Iv);
1077 }
1078
1079 /// DeepCollectObjCIvars -
1080 /// This routine first collects all declared, but not synthesized, ivars in
1081 /// super class and then collects all ivars, including those synthesized for
1082 /// current class. This routine is used for implementation of current class
1083 /// when all ivars, declared and synthesized are known.
1084 ///
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,llvm::SmallVectorImpl<ObjCIvarDecl * > & Ivars) const1085 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1086 bool leafClass,
1087 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1088 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1089 DeepCollectObjCIvars(SuperClass, false, Ivars);
1090 if (!leafClass) {
1091 for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1092 E = OI->ivar_end(); I != E; ++I)
1093 Ivars.push_back(*I);
1094 }
1095 else {
1096 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1097 for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1098 Iv= Iv->getNextIvar())
1099 Ivars.push_back(Iv);
1100 }
1101 }
1102
1103 /// CollectInheritedProtocols - Collect all protocols in current class and
1104 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)1105 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1106 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1107 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1108 // We can use protocol_iterator here instead of
1109 // all_referenced_protocol_iterator since we are walking all categories.
1110 for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1111 PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1112 ObjCProtocolDecl *Proto = (*P);
1113 Protocols.insert(Proto);
1114 for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1115 PE = Proto->protocol_end(); P != PE; ++P) {
1116 Protocols.insert(*P);
1117 CollectInheritedProtocols(*P, Protocols);
1118 }
1119 }
1120
1121 // Categories of this Interface.
1122 for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1123 CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1124 CollectInheritedProtocols(CDeclChain, Protocols);
1125 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1126 while (SD) {
1127 CollectInheritedProtocols(SD, Protocols);
1128 SD = SD->getSuperClass();
1129 }
1130 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1131 for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1132 PE = OC->protocol_end(); P != PE; ++P) {
1133 ObjCProtocolDecl *Proto = (*P);
1134 Protocols.insert(Proto);
1135 for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1136 PE = Proto->protocol_end(); P != PE; ++P)
1137 CollectInheritedProtocols(*P, Protocols);
1138 }
1139 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1140 for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1141 PE = OP->protocol_end(); P != PE; ++P) {
1142 ObjCProtocolDecl *Proto = (*P);
1143 Protocols.insert(Proto);
1144 for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1145 PE = Proto->protocol_end(); P != PE; ++P)
1146 CollectInheritedProtocols(*P, Protocols);
1147 }
1148 }
1149 }
1150
CountNonClassIvars(const ObjCInterfaceDecl * OI) const1151 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1152 unsigned count = 0;
1153 // Count ivars declared in class extension.
1154 for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1155 CDecl = CDecl->getNextClassExtension())
1156 count += CDecl->ivar_size();
1157
1158 // Count ivar defined in this class's implementation. This
1159 // includes synthesized ivars.
1160 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1161 count += ImplDecl->ivar_size();
1162
1163 return count;
1164 }
1165
1166 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
getObjCImplementation(ObjCInterfaceDecl * D)1167 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1168 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1169 I = ObjCImpls.find(D);
1170 if (I != ObjCImpls.end())
1171 return cast<ObjCImplementationDecl>(I->second);
1172 return 0;
1173 }
1174 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
getObjCImplementation(ObjCCategoryDecl * D)1175 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1176 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1177 I = ObjCImpls.find(D);
1178 if (I != ObjCImpls.end())
1179 return cast<ObjCCategoryImplDecl>(I->second);
1180 return 0;
1181 }
1182
1183 /// \brief Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)1184 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1185 ObjCImplementationDecl *ImplD) {
1186 assert(IFaceD && ImplD && "Passed null params");
1187 ObjCImpls[IFaceD] = ImplD;
1188 }
1189 /// \brief Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)1190 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1191 ObjCCategoryImplDecl *ImplD) {
1192 assert(CatD && ImplD && "Passed null params");
1193 ObjCImpls[CatD] = ImplD;
1194 }
1195
1196 /// \brief Get the copy initialization expression of VarDecl,or NULL if
1197 /// none exists.
getBlockVarCopyInits(const VarDecl * VD)1198 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1199 assert(VD && "Passed null params");
1200 assert(VD->hasAttr<BlocksAttr>() &&
1201 "getBlockVarCopyInits - not __block var");
1202 llvm::DenseMap<const VarDecl*, Expr*>::iterator
1203 I = BlockVarCopyInits.find(VD);
1204 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1205 }
1206
1207 /// \brief Set the copy inialization expression of a block var decl.
setBlockVarCopyInits(VarDecl * VD,Expr * Init)1208 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1209 assert(VD && Init && "Passed null params");
1210 assert(VD->hasAttr<BlocksAttr>() &&
1211 "setBlockVarCopyInits - not __block var");
1212 BlockVarCopyInits[VD] = Init;
1213 }
1214
1215 /// \brief Allocate an uninitialized TypeSourceInfo.
1216 ///
1217 /// The caller should initialize the memory held by TypeSourceInfo using
1218 /// the TypeLoc wrappers.
1219 ///
1220 /// \param T the type that will be the basis for type source info. This type
1221 /// should refer to how the declarator was written in source code, not to
1222 /// what type semantic analysis resolved the declarator to.
CreateTypeSourceInfo(QualType T,unsigned DataSize) const1223 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1224 unsigned DataSize) const {
1225 if (!DataSize)
1226 DataSize = TypeLoc::getFullDataSizeForType(T);
1227 else
1228 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1229 "incorrect data size provided to CreateTypeSourceInfo!");
1230
1231 TypeSourceInfo *TInfo =
1232 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1233 new (TInfo) TypeSourceInfo(T);
1234 return TInfo;
1235 }
1236
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const1237 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1238 SourceLocation L) const {
1239 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1240 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1241 return DI;
1242 }
1243
1244 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const1245 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1246 return getObjCLayout(D, 0);
1247 }
1248
1249 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const1250 ASTContext::getASTObjCImplementationLayout(
1251 const ObjCImplementationDecl *D) const {
1252 return getObjCLayout(D->getClassInterface(), D);
1253 }
1254
1255 //===----------------------------------------------------------------------===//
1256 // Type creation/memoization methods
1257 //===----------------------------------------------------------------------===//
1258
1259 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const1260 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1261 unsigned fastQuals = quals.getFastQualifiers();
1262 quals.removeFastQualifiers();
1263
1264 // Check if we've already instantiated this type.
1265 llvm::FoldingSetNodeID ID;
1266 ExtQuals::Profile(ID, baseType, quals);
1267 void *insertPos = 0;
1268 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1269 assert(eq->getQualifiers() == quals);
1270 return QualType(eq, fastQuals);
1271 }
1272
1273 // If the base type is not canonical, make the appropriate canonical type.
1274 QualType canon;
1275 if (!baseType->isCanonicalUnqualified()) {
1276 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1277 canonSplit.second.addConsistentQualifiers(quals);
1278 canon = getExtQualType(canonSplit.first, canonSplit.second);
1279
1280 // Re-find the insert position.
1281 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1282 }
1283
1284 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1285 ExtQualNodes.InsertNode(eq, insertPos);
1286 return QualType(eq, fastQuals);
1287 }
1288
1289 QualType
getAddrSpaceQualType(QualType T,unsigned AddressSpace) const1290 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1291 QualType CanT = getCanonicalType(T);
1292 if (CanT.getAddressSpace() == AddressSpace)
1293 return T;
1294
1295 // If we are composing extended qualifiers together, merge together
1296 // into one ExtQuals node.
1297 QualifierCollector Quals;
1298 const Type *TypeNode = Quals.strip(T);
1299
1300 // If this type already has an address space specified, it cannot get
1301 // another one.
1302 assert(!Quals.hasAddressSpace() &&
1303 "Type cannot be in multiple addr spaces!");
1304 Quals.addAddressSpace(AddressSpace);
1305
1306 return getExtQualType(TypeNode, Quals);
1307 }
1308
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const1309 QualType ASTContext::getObjCGCQualType(QualType T,
1310 Qualifiers::GC GCAttr) const {
1311 QualType CanT = getCanonicalType(T);
1312 if (CanT.getObjCGCAttr() == GCAttr)
1313 return T;
1314
1315 if (const PointerType *ptr = T->getAs<PointerType>()) {
1316 QualType Pointee = ptr->getPointeeType();
1317 if (Pointee->isAnyPointerType()) {
1318 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1319 return getPointerType(ResultType);
1320 }
1321 }
1322
1323 // If we are composing extended qualifiers together, merge together
1324 // into one ExtQuals node.
1325 QualifierCollector Quals;
1326 const Type *TypeNode = Quals.strip(T);
1327
1328 // If this type already has an ObjCGC specified, it cannot get
1329 // another one.
1330 assert(!Quals.hasObjCGCAttr() &&
1331 "Type cannot have multiple ObjCGCs!");
1332 Quals.addObjCGCAttr(GCAttr);
1333
1334 return getExtQualType(TypeNode, Quals);
1335 }
1336
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)1337 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1338 FunctionType::ExtInfo Info) {
1339 if (T->getExtInfo() == Info)
1340 return T;
1341
1342 QualType Result;
1343 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1344 Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1345 } else {
1346 const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1347 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1348 EPI.ExtInfo = Info;
1349 Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1350 FPT->getNumArgs(), EPI);
1351 }
1352
1353 return cast<FunctionType>(Result.getTypePtr());
1354 }
1355
1356 /// getComplexType - Return the uniqued reference to the type for a complex
1357 /// number with the specified element type.
getComplexType(QualType T) const1358 QualType ASTContext::getComplexType(QualType T) const {
1359 // Unique pointers, to guarantee there is only one pointer of a particular
1360 // structure.
1361 llvm::FoldingSetNodeID ID;
1362 ComplexType::Profile(ID, T);
1363
1364 void *InsertPos = 0;
1365 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1366 return QualType(CT, 0);
1367
1368 // If the pointee type isn't canonical, this won't be a canonical type either,
1369 // so fill in the canonical type field.
1370 QualType Canonical;
1371 if (!T.isCanonical()) {
1372 Canonical = getComplexType(getCanonicalType(T));
1373
1374 // Get the new insert position for the node we care about.
1375 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1376 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1377 }
1378 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1379 Types.push_back(New);
1380 ComplexTypes.InsertNode(New, InsertPos);
1381 return QualType(New, 0);
1382 }
1383
1384 /// getPointerType - Return the uniqued reference to the type for a pointer to
1385 /// the specified type.
getPointerType(QualType T) const1386 QualType ASTContext::getPointerType(QualType T) const {
1387 // Unique pointers, to guarantee there is only one pointer of a particular
1388 // structure.
1389 llvm::FoldingSetNodeID ID;
1390 PointerType::Profile(ID, T);
1391
1392 void *InsertPos = 0;
1393 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1394 return QualType(PT, 0);
1395
1396 // If the pointee type isn't canonical, this won't be a canonical type either,
1397 // so fill in the canonical type field.
1398 QualType Canonical;
1399 if (!T.isCanonical()) {
1400 Canonical = getPointerType(getCanonicalType(T));
1401
1402 // Get the new insert position for the node we care about.
1403 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1404 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1405 }
1406 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1407 Types.push_back(New);
1408 PointerTypes.InsertNode(New, InsertPos);
1409 return QualType(New, 0);
1410 }
1411
1412 /// getBlockPointerType - Return the uniqued reference to the type for
1413 /// a pointer to the specified block.
getBlockPointerType(QualType T) const1414 QualType ASTContext::getBlockPointerType(QualType T) const {
1415 assert(T->isFunctionType() && "block of function types only");
1416 // Unique pointers, to guarantee there is only one block of a particular
1417 // structure.
1418 llvm::FoldingSetNodeID ID;
1419 BlockPointerType::Profile(ID, T);
1420
1421 void *InsertPos = 0;
1422 if (BlockPointerType *PT =
1423 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1424 return QualType(PT, 0);
1425
1426 // If the block pointee type isn't canonical, this won't be a canonical
1427 // type either so fill in the canonical type field.
1428 QualType Canonical;
1429 if (!T.isCanonical()) {
1430 Canonical = getBlockPointerType(getCanonicalType(T));
1431
1432 // Get the new insert position for the node we care about.
1433 BlockPointerType *NewIP =
1434 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1435 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1436 }
1437 BlockPointerType *New
1438 = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1439 Types.push_back(New);
1440 BlockPointerTypes.InsertNode(New, InsertPos);
1441 return QualType(New, 0);
1442 }
1443
1444 /// getLValueReferenceType - Return the uniqued reference to the type for an
1445 /// lvalue reference to the specified type.
1446 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const1447 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1448 assert(getCanonicalType(T) != OverloadTy &&
1449 "Unresolved overloaded function type");
1450
1451 // Unique pointers, to guarantee there is only one pointer of a particular
1452 // structure.
1453 llvm::FoldingSetNodeID ID;
1454 ReferenceType::Profile(ID, T, SpelledAsLValue);
1455
1456 void *InsertPos = 0;
1457 if (LValueReferenceType *RT =
1458 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1459 return QualType(RT, 0);
1460
1461 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1462
1463 // If the referencee type isn't canonical, this won't be a canonical type
1464 // either, so fill in the canonical type field.
1465 QualType Canonical;
1466 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1467 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1468 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1469
1470 // Get the new insert position for the node we care about.
1471 LValueReferenceType *NewIP =
1472 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1473 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1474 }
1475
1476 LValueReferenceType *New
1477 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1478 SpelledAsLValue);
1479 Types.push_back(New);
1480 LValueReferenceTypes.InsertNode(New, InsertPos);
1481
1482 return QualType(New, 0);
1483 }
1484
1485 /// getRValueReferenceType - Return the uniqued reference to the type for an
1486 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const1487 QualType ASTContext::getRValueReferenceType(QualType T) const {
1488 // Unique pointers, to guarantee there is only one pointer of a particular
1489 // structure.
1490 llvm::FoldingSetNodeID ID;
1491 ReferenceType::Profile(ID, T, false);
1492
1493 void *InsertPos = 0;
1494 if (RValueReferenceType *RT =
1495 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1496 return QualType(RT, 0);
1497
1498 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1499
1500 // If the referencee type isn't canonical, this won't be a canonical type
1501 // either, so fill in the canonical type field.
1502 QualType Canonical;
1503 if (InnerRef || !T.isCanonical()) {
1504 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1505 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1506
1507 // Get the new insert position for the node we care about.
1508 RValueReferenceType *NewIP =
1509 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1510 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1511 }
1512
1513 RValueReferenceType *New
1514 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1515 Types.push_back(New);
1516 RValueReferenceTypes.InsertNode(New, InsertPos);
1517 return QualType(New, 0);
1518 }
1519
1520 /// getMemberPointerType - Return the uniqued reference to the type for a
1521 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const1522 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1523 // Unique pointers, to guarantee there is only one pointer of a particular
1524 // structure.
1525 llvm::FoldingSetNodeID ID;
1526 MemberPointerType::Profile(ID, T, Cls);
1527
1528 void *InsertPos = 0;
1529 if (MemberPointerType *PT =
1530 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1531 return QualType(PT, 0);
1532
1533 // If the pointee or class type isn't canonical, this won't be a canonical
1534 // type either, so fill in the canonical type field.
1535 QualType Canonical;
1536 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1537 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1538
1539 // Get the new insert position for the node we care about.
1540 MemberPointerType *NewIP =
1541 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1542 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1543 }
1544 MemberPointerType *New
1545 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1546 Types.push_back(New);
1547 MemberPointerTypes.InsertNode(New, InsertPos);
1548 return QualType(New, 0);
1549 }
1550
1551 /// getConstantArrayType - Return the unique reference to the type for an
1552 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const1553 QualType ASTContext::getConstantArrayType(QualType EltTy,
1554 const llvm::APInt &ArySizeIn,
1555 ArrayType::ArraySizeModifier ASM,
1556 unsigned IndexTypeQuals) const {
1557 assert((EltTy->isDependentType() ||
1558 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1559 "Constant array of VLAs is illegal!");
1560
1561 // Convert the array size into a canonical width matching the pointer size for
1562 // the target.
1563 llvm::APInt ArySize(ArySizeIn);
1564 ArySize =
1565 ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
1566
1567 llvm::FoldingSetNodeID ID;
1568 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1569
1570 void *InsertPos = 0;
1571 if (ConstantArrayType *ATP =
1572 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1573 return QualType(ATP, 0);
1574
1575 // If the element type isn't canonical or has qualifiers, this won't
1576 // be a canonical type either, so fill in the canonical type field.
1577 QualType Canon;
1578 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1579 SplitQualType canonSplit = getCanonicalType(EltTy).split();
1580 Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1581 ASM, IndexTypeQuals);
1582 Canon = getQualifiedType(Canon, canonSplit.second);
1583
1584 // Get the new insert position for the node we care about.
1585 ConstantArrayType *NewIP =
1586 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1587 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1588 }
1589
1590 ConstantArrayType *New = new(*this,TypeAlignment)
1591 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1592 ConstantArrayTypes.InsertNode(New, InsertPos);
1593 Types.push_back(New);
1594 return QualType(New, 0);
1595 }
1596
1597 /// getVariableArrayDecayedType - Turns the given type, which may be
1598 /// variably-modified, into the corresponding type with all the known
1599 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const1600 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1601 // Vastly most common case.
1602 if (!type->isVariablyModifiedType()) return type;
1603
1604 QualType result;
1605
1606 SplitQualType split = type.getSplitDesugaredType();
1607 const Type *ty = split.first;
1608 switch (ty->getTypeClass()) {
1609 #define TYPE(Class, Base)
1610 #define ABSTRACT_TYPE(Class, Base)
1611 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1612 #include "clang/AST/TypeNodes.def"
1613 llvm_unreachable("didn't desugar past all non-canonical types?");
1614
1615 // These types should never be variably-modified.
1616 case Type::Builtin:
1617 case Type::Complex:
1618 case Type::Vector:
1619 case Type::ExtVector:
1620 case Type::DependentSizedExtVector:
1621 case Type::ObjCObject:
1622 case Type::ObjCInterface:
1623 case Type::ObjCObjectPointer:
1624 case Type::Record:
1625 case Type::Enum:
1626 case Type::UnresolvedUsing:
1627 case Type::TypeOfExpr:
1628 case Type::TypeOf:
1629 case Type::Decltype:
1630 case Type::UnaryTransform:
1631 case Type::DependentName:
1632 case Type::InjectedClassName:
1633 case Type::TemplateSpecialization:
1634 case Type::DependentTemplateSpecialization:
1635 case Type::TemplateTypeParm:
1636 case Type::SubstTemplateTypeParmPack:
1637 case Type::Auto:
1638 case Type::PackExpansion:
1639 llvm_unreachable("type should never be variably-modified");
1640
1641 // These types can be variably-modified but should never need to
1642 // further decay.
1643 case Type::FunctionNoProto:
1644 case Type::FunctionProto:
1645 case Type::BlockPointer:
1646 case Type::MemberPointer:
1647 return type;
1648
1649 // These types can be variably-modified. All these modifications
1650 // preserve structure except as noted by comments.
1651 // TODO: if we ever care about optimizing VLAs, there are no-op
1652 // optimizations available here.
1653 case Type::Pointer:
1654 result = getPointerType(getVariableArrayDecayedType(
1655 cast<PointerType>(ty)->getPointeeType()));
1656 break;
1657
1658 case Type::LValueReference: {
1659 const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1660 result = getLValueReferenceType(
1661 getVariableArrayDecayedType(lv->getPointeeType()),
1662 lv->isSpelledAsLValue());
1663 break;
1664 }
1665
1666 case Type::RValueReference: {
1667 const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1668 result = getRValueReferenceType(
1669 getVariableArrayDecayedType(lv->getPointeeType()));
1670 break;
1671 }
1672
1673 case Type::ConstantArray: {
1674 const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1675 result = getConstantArrayType(
1676 getVariableArrayDecayedType(cat->getElementType()),
1677 cat->getSize(),
1678 cat->getSizeModifier(),
1679 cat->getIndexTypeCVRQualifiers());
1680 break;
1681 }
1682
1683 case Type::DependentSizedArray: {
1684 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1685 result = getDependentSizedArrayType(
1686 getVariableArrayDecayedType(dat->getElementType()),
1687 dat->getSizeExpr(),
1688 dat->getSizeModifier(),
1689 dat->getIndexTypeCVRQualifiers(),
1690 dat->getBracketsRange());
1691 break;
1692 }
1693
1694 // Turn incomplete types into [*] types.
1695 case Type::IncompleteArray: {
1696 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1697 result = getVariableArrayType(
1698 getVariableArrayDecayedType(iat->getElementType()),
1699 /*size*/ 0,
1700 ArrayType::Normal,
1701 iat->getIndexTypeCVRQualifiers(),
1702 SourceRange());
1703 break;
1704 }
1705
1706 // Turn VLA types into [*] types.
1707 case Type::VariableArray: {
1708 const VariableArrayType *vat = cast<VariableArrayType>(ty);
1709 result = getVariableArrayType(
1710 getVariableArrayDecayedType(vat->getElementType()),
1711 /*size*/ 0,
1712 ArrayType::Star,
1713 vat->getIndexTypeCVRQualifiers(),
1714 vat->getBracketsRange());
1715 break;
1716 }
1717 }
1718
1719 // Apply the top-level qualifiers from the original.
1720 return getQualifiedType(result, split.second);
1721 }
1722
1723 /// getVariableArrayType - Returns a non-unique reference to the type for a
1724 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const1725 QualType ASTContext::getVariableArrayType(QualType EltTy,
1726 Expr *NumElts,
1727 ArrayType::ArraySizeModifier ASM,
1728 unsigned IndexTypeQuals,
1729 SourceRange Brackets) const {
1730 // Since we don't unique expressions, it isn't possible to unique VLA's
1731 // that have an expression provided for their size.
1732 QualType Canon;
1733
1734 // Be sure to pull qualifiers off the element type.
1735 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1736 SplitQualType canonSplit = getCanonicalType(EltTy).split();
1737 Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1738 IndexTypeQuals, Brackets);
1739 Canon = getQualifiedType(Canon, canonSplit.second);
1740 }
1741
1742 VariableArrayType *New = new(*this, TypeAlignment)
1743 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1744
1745 VariableArrayTypes.push_back(New);
1746 Types.push_back(New);
1747 return QualType(New, 0);
1748 }
1749
1750 /// getDependentSizedArrayType - Returns a non-unique reference to
1751 /// the type for a dependently-sized array of the specified element
1752 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const1753 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1754 Expr *numElements,
1755 ArrayType::ArraySizeModifier ASM,
1756 unsigned elementTypeQuals,
1757 SourceRange brackets) const {
1758 assert((!numElements || numElements->isTypeDependent() ||
1759 numElements->isValueDependent()) &&
1760 "Size must be type- or value-dependent!");
1761
1762 // Dependently-sized array types that do not have a specified number
1763 // of elements will have their sizes deduced from a dependent
1764 // initializer. We do no canonicalization here at all, which is okay
1765 // because they can't be used in most locations.
1766 if (!numElements) {
1767 DependentSizedArrayType *newType
1768 = new (*this, TypeAlignment)
1769 DependentSizedArrayType(*this, elementType, QualType(),
1770 numElements, ASM, elementTypeQuals,
1771 brackets);
1772 Types.push_back(newType);
1773 return QualType(newType, 0);
1774 }
1775
1776 // Otherwise, we actually build a new type every time, but we
1777 // also build a canonical type.
1778
1779 SplitQualType canonElementType = getCanonicalType(elementType).split();
1780
1781 void *insertPos = 0;
1782 llvm::FoldingSetNodeID ID;
1783 DependentSizedArrayType::Profile(ID, *this,
1784 QualType(canonElementType.first, 0),
1785 ASM, elementTypeQuals, numElements);
1786
1787 // Look for an existing type with these properties.
1788 DependentSizedArrayType *canonTy =
1789 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1790
1791 // If we don't have one, build one.
1792 if (!canonTy) {
1793 canonTy = new (*this, TypeAlignment)
1794 DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1795 QualType(), numElements, ASM, elementTypeQuals,
1796 brackets);
1797 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1798 Types.push_back(canonTy);
1799 }
1800
1801 // Apply qualifiers from the element type to the array.
1802 QualType canon = getQualifiedType(QualType(canonTy,0),
1803 canonElementType.second);
1804
1805 // If we didn't need extra canonicalization for the element type,
1806 // then just use that as our result.
1807 if (QualType(canonElementType.first, 0) == elementType)
1808 return canon;
1809
1810 // Otherwise, we need to build a type which follows the spelling
1811 // of the element type.
1812 DependentSizedArrayType *sugaredType
1813 = new (*this, TypeAlignment)
1814 DependentSizedArrayType(*this, elementType, canon, numElements,
1815 ASM, elementTypeQuals, brackets);
1816 Types.push_back(sugaredType);
1817 return QualType(sugaredType, 0);
1818 }
1819
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const1820 QualType ASTContext::getIncompleteArrayType(QualType elementType,
1821 ArrayType::ArraySizeModifier ASM,
1822 unsigned elementTypeQuals) const {
1823 llvm::FoldingSetNodeID ID;
1824 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1825
1826 void *insertPos = 0;
1827 if (IncompleteArrayType *iat =
1828 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1829 return QualType(iat, 0);
1830
1831 // If the element type isn't canonical, this won't be a canonical type
1832 // either, so fill in the canonical type field. We also have to pull
1833 // qualifiers off the element type.
1834 QualType canon;
1835
1836 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1837 SplitQualType canonSplit = getCanonicalType(elementType).split();
1838 canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1839 ASM, elementTypeQuals);
1840 canon = getQualifiedType(canon, canonSplit.second);
1841
1842 // Get the new insert position for the node we care about.
1843 IncompleteArrayType *existing =
1844 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1845 assert(!existing && "Shouldn't be in the map!"); (void) existing;
1846 }
1847
1848 IncompleteArrayType *newType = new (*this, TypeAlignment)
1849 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1850
1851 IncompleteArrayTypes.InsertNode(newType, insertPos);
1852 Types.push_back(newType);
1853 return QualType(newType, 0);
1854 }
1855
1856 /// getVectorType - Return the unique reference to a vector type of
1857 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const1858 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1859 VectorType::VectorKind VecKind) const {
1860 assert(vecType->isBuiltinType());
1861
1862 // Check if we've already instantiated a vector of this type.
1863 llvm::FoldingSetNodeID ID;
1864 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1865
1866 void *InsertPos = 0;
1867 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1868 return QualType(VTP, 0);
1869
1870 // If the element type isn't canonical, this won't be a canonical type either,
1871 // so fill in the canonical type field.
1872 QualType Canonical;
1873 if (!vecType.isCanonical()) {
1874 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1875
1876 // Get the new insert position for the node we care about.
1877 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1878 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1879 }
1880 VectorType *New = new (*this, TypeAlignment)
1881 VectorType(vecType, NumElts, Canonical, VecKind);
1882 VectorTypes.InsertNode(New, InsertPos);
1883 Types.push_back(New);
1884 return QualType(New, 0);
1885 }
1886
1887 /// getExtVectorType - Return the unique reference to an extended vector type of
1888 /// the specified element type and size. VectorType must be a built-in type.
1889 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const1890 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1891 assert(vecType->isBuiltinType() || vecType->isDependentType());
1892
1893 // Check if we've already instantiated a vector of this type.
1894 llvm::FoldingSetNodeID ID;
1895 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1896 VectorType::GenericVector);
1897 void *InsertPos = 0;
1898 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1899 return QualType(VTP, 0);
1900
1901 // If the element type isn't canonical, this won't be a canonical type either,
1902 // so fill in the canonical type field.
1903 QualType Canonical;
1904 if (!vecType.isCanonical()) {
1905 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1906
1907 // Get the new insert position for the node we care about.
1908 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1909 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1910 }
1911 ExtVectorType *New = new (*this, TypeAlignment)
1912 ExtVectorType(vecType, NumElts, Canonical);
1913 VectorTypes.InsertNode(New, InsertPos);
1914 Types.push_back(New);
1915 return QualType(New, 0);
1916 }
1917
1918 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const1919 ASTContext::getDependentSizedExtVectorType(QualType vecType,
1920 Expr *SizeExpr,
1921 SourceLocation AttrLoc) const {
1922 llvm::FoldingSetNodeID ID;
1923 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1924 SizeExpr);
1925
1926 void *InsertPos = 0;
1927 DependentSizedExtVectorType *Canon
1928 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1929 DependentSizedExtVectorType *New;
1930 if (Canon) {
1931 // We already have a canonical version of this array type; use it as
1932 // the canonical type for a newly-built type.
1933 New = new (*this, TypeAlignment)
1934 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1935 SizeExpr, AttrLoc);
1936 } else {
1937 QualType CanonVecTy = getCanonicalType(vecType);
1938 if (CanonVecTy == vecType) {
1939 New = new (*this, TypeAlignment)
1940 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1941 AttrLoc);
1942
1943 DependentSizedExtVectorType *CanonCheck
1944 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1945 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1946 (void)CanonCheck;
1947 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1948 } else {
1949 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1950 SourceLocation());
1951 New = new (*this, TypeAlignment)
1952 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1953 }
1954 }
1955
1956 Types.push_back(New);
1957 return QualType(New, 0);
1958 }
1959
1960 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1961 ///
1962 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const1963 ASTContext::getFunctionNoProtoType(QualType ResultTy,
1964 const FunctionType::ExtInfo &Info) const {
1965 const CallingConv DefaultCC = Info.getCC();
1966 const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1967 CC_X86StdCall : DefaultCC;
1968 // Unique functions, to guarantee there is only one function of a particular
1969 // structure.
1970 llvm::FoldingSetNodeID ID;
1971 FunctionNoProtoType::Profile(ID, ResultTy, Info);
1972
1973 void *InsertPos = 0;
1974 if (FunctionNoProtoType *FT =
1975 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1976 return QualType(FT, 0);
1977
1978 QualType Canonical;
1979 if (!ResultTy.isCanonical() ||
1980 getCanonicalCallConv(CallConv) != CallConv) {
1981 Canonical =
1982 getFunctionNoProtoType(getCanonicalType(ResultTy),
1983 Info.withCallingConv(getCanonicalCallConv(CallConv)));
1984
1985 // Get the new insert position for the node we care about.
1986 FunctionNoProtoType *NewIP =
1987 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1988 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1989 }
1990
1991 FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1992 FunctionNoProtoType *New = new (*this, TypeAlignment)
1993 FunctionNoProtoType(ResultTy, Canonical, newInfo);
1994 Types.push_back(New);
1995 FunctionNoProtoTypes.InsertNode(New, InsertPos);
1996 return QualType(New, 0);
1997 }
1998
1999 /// getFunctionType - Return a normal function type with a typed argument
2000 /// list. isVariadic indicates whether the argument list includes '...'.
2001 QualType
getFunctionType(QualType ResultTy,const QualType * ArgArray,unsigned NumArgs,const FunctionProtoType::ExtProtoInfo & EPI) const2002 ASTContext::getFunctionType(QualType ResultTy,
2003 const QualType *ArgArray, unsigned NumArgs,
2004 const FunctionProtoType::ExtProtoInfo &EPI) const {
2005 // Unique functions, to guarantee there is only one function of a particular
2006 // structure.
2007 llvm::FoldingSetNodeID ID;
2008 FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2009
2010 void *InsertPos = 0;
2011 if (FunctionProtoType *FTP =
2012 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2013 return QualType(FTP, 0);
2014
2015 // Determine whether the type being created is already canonical or not.
2016 bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2017 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2018 if (!ArgArray[i].isCanonicalAsParam())
2019 isCanonical = false;
2020
2021 const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2022 const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2023 CC_X86StdCall : DefaultCC;
2024
2025 // If this type isn't canonical, get the canonical version of it.
2026 // The exception spec is not part of the canonical type.
2027 QualType Canonical;
2028 if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2029 llvm::SmallVector<QualType, 16> CanonicalArgs;
2030 CanonicalArgs.reserve(NumArgs);
2031 for (unsigned i = 0; i != NumArgs; ++i)
2032 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2033
2034 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2035 CanonicalEPI.ExceptionSpecType = EST_None;
2036 CanonicalEPI.NumExceptions = 0;
2037 CanonicalEPI.ExtInfo
2038 = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2039
2040 Canonical = getFunctionType(getCanonicalType(ResultTy),
2041 CanonicalArgs.data(), NumArgs,
2042 CanonicalEPI);
2043
2044 // Get the new insert position for the node we care about.
2045 FunctionProtoType *NewIP =
2046 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2047 assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2048 }
2049
2050 // FunctionProtoType objects are allocated with extra bytes after
2051 // them for three variable size arrays at the end:
2052 // - parameter types
2053 // - exception types
2054 // - consumed-arguments flags
2055 // Instead of the exception types, there could be a noexcept
2056 // expression.
2057 size_t Size = sizeof(FunctionProtoType) +
2058 NumArgs * sizeof(QualType);
2059 if (EPI.ExceptionSpecType == EST_Dynamic)
2060 Size += EPI.NumExceptions * sizeof(QualType);
2061 else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2062 Size += sizeof(Expr*);
2063 }
2064 if (EPI.ConsumedArguments)
2065 Size += NumArgs * sizeof(bool);
2066
2067 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2068 FunctionProtoType::ExtProtoInfo newEPI = EPI;
2069 newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2070 new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2071 Types.push_back(FTP);
2072 FunctionProtoTypes.InsertNode(FTP, InsertPos);
2073 return QualType(FTP, 0);
2074 }
2075
2076 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)2077 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2078 if (!isa<CXXRecordDecl>(D)) return false;
2079 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2080 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2081 return true;
2082 if (RD->getDescribedClassTemplate() &&
2083 !isa<ClassTemplateSpecializationDecl>(RD))
2084 return true;
2085 return false;
2086 }
2087 #endif
2088
2089 /// getInjectedClassNameType - Return the unique reference to the
2090 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const2091 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2092 QualType TST) const {
2093 assert(NeedsInjectedClassNameType(Decl));
2094 if (Decl->TypeForDecl) {
2095 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2096 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2097 assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2098 Decl->TypeForDecl = PrevDecl->TypeForDecl;
2099 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2100 } else {
2101 Type *newType =
2102 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2103 Decl->TypeForDecl = newType;
2104 Types.push_back(newType);
2105 }
2106 return QualType(Decl->TypeForDecl, 0);
2107 }
2108
2109 /// getTypeDeclType - Return the unique reference to the type for the
2110 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const2111 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2112 assert(Decl && "Passed null for Decl param");
2113 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2114
2115 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2116 return getTypedefType(Typedef);
2117
2118 assert(!isa<TemplateTypeParmDecl>(Decl) &&
2119 "Template type parameter types are always available.");
2120
2121 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2122 assert(!Record->getPreviousDeclaration() &&
2123 "struct/union has previous declaration");
2124 assert(!NeedsInjectedClassNameType(Record));
2125 return getRecordType(Record);
2126 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2127 assert(!Enum->getPreviousDeclaration() &&
2128 "enum has previous declaration");
2129 return getEnumType(Enum);
2130 } else if (const UnresolvedUsingTypenameDecl *Using =
2131 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2132 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2133 Decl->TypeForDecl = newType;
2134 Types.push_back(newType);
2135 } else
2136 llvm_unreachable("TypeDecl without a type?");
2137
2138 return QualType(Decl->TypeForDecl, 0);
2139 }
2140
2141 /// getTypedefType - Return the unique reference to the type for the
2142 /// specified typedef name decl.
2143 QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const2144 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2145 QualType Canonical) const {
2146 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2147
2148 if (Canonical.isNull())
2149 Canonical = getCanonicalType(Decl->getUnderlyingType());
2150 TypedefType *newType = new(*this, TypeAlignment)
2151 TypedefType(Type::Typedef, Decl, Canonical);
2152 Decl->TypeForDecl = newType;
2153 Types.push_back(newType);
2154 return QualType(newType, 0);
2155 }
2156
getRecordType(const RecordDecl * Decl) const2157 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2158 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2159
2160 if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2161 if (PrevDecl->TypeForDecl)
2162 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2163
2164 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2165 Decl->TypeForDecl = newType;
2166 Types.push_back(newType);
2167 return QualType(newType, 0);
2168 }
2169
getEnumType(const EnumDecl * Decl) const2170 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2171 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2172
2173 if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2174 if (PrevDecl->TypeForDecl)
2175 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2176
2177 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2178 Decl->TypeForDecl = newType;
2179 Types.push_back(newType);
2180 return QualType(newType, 0);
2181 }
2182
getAttributedType(AttributedType::Kind attrKind,QualType modifiedType,QualType equivalentType)2183 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2184 QualType modifiedType,
2185 QualType equivalentType) {
2186 llvm::FoldingSetNodeID id;
2187 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2188
2189 void *insertPos = 0;
2190 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2191 if (type) return QualType(type, 0);
2192
2193 QualType canon = getCanonicalType(equivalentType);
2194 type = new (*this, TypeAlignment)
2195 AttributedType(canon, attrKind, modifiedType, equivalentType);
2196
2197 Types.push_back(type);
2198 AttributedTypes.InsertNode(type, insertPos);
2199
2200 return QualType(type, 0);
2201 }
2202
2203
2204 /// \brief Retrieve a substitution-result type.
2205 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const2206 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2207 QualType Replacement) const {
2208 assert(Replacement.isCanonical()
2209 && "replacement types must always be canonical");
2210
2211 llvm::FoldingSetNodeID ID;
2212 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2213 void *InsertPos = 0;
2214 SubstTemplateTypeParmType *SubstParm
2215 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2216
2217 if (!SubstParm) {
2218 SubstParm = new (*this, TypeAlignment)
2219 SubstTemplateTypeParmType(Parm, Replacement);
2220 Types.push_back(SubstParm);
2221 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2222 }
2223
2224 return QualType(SubstParm, 0);
2225 }
2226
2227 /// \brief Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)2228 QualType ASTContext::getSubstTemplateTypeParmPackType(
2229 const TemplateTypeParmType *Parm,
2230 const TemplateArgument &ArgPack) {
2231 #ifndef NDEBUG
2232 for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2233 PEnd = ArgPack.pack_end();
2234 P != PEnd; ++P) {
2235 assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2236 assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2237 }
2238 #endif
2239
2240 llvm::FoldingSetNodeID ID;
2241 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2242 void *InsertPos = 0;
2243 if (SubstTemplateTypeParmPackType *SubstParm
2244 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2245 return QualType(SubstParm, 0);
2246
2247 QualType Canon;
2248 if (!Parm->isCanonicalUnqualified()) {
2249 Canon = getCanonicalType(QualType(Parm, 0));
2250 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2251 ArgPack);
2252 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2253 }
2254
2255 SubstTemplateTypeParmPackType *SubstParm
2256 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2257 ArgPack);
2258 Types.push_back(SubstParm);
2259 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2260 return QualType(SubstParm, 0);
2261 }
2262
2263 /// \brief Retrieve the template type parameter type for a template
2264 /// parameter or parameter pack with the given depth, index, and (optionally)
2265 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const2266 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2267 bool ParameterPack,
2268 TemplateTypeParmDecl *TTPDecl) const {
2269 llvm::FoldingSetNodeID ID;
2270 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2271 void *InsertPos = 0;
2272 TemplateTypeParmType *TypeParm
2273 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2274
2275 if (TypeParm)
2276 return QualType(TypeParm, 0);
2277
2278 if (TTPDecl) {
2279 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2280 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2281
2282 TemplateTypeParmType *TypeCheck
2283 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2284 assert(!TypeCheck && "Template type parameter canonical type broken");
2285 (void)TypeCheck;
2286 } else
2287 TypeParm = new (*this, TypeAlignment)
2288 TemplateTypeParmType(Depth, Index, ParameterPack);
2289
2290 Types.push_back(TypeParm);
2291 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2292
2293 return QualType(TypeParm, 0);
2294 }
2295
2296 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const2297 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2298 SourceLocation NameLoc,
2299 const TemplateArgumentListInfo &Args,
2300 QualType Underlying) const {
2301 assert(!Name.getAsDependentTemplateName() &&
2302 "No dependent template names here!");
2303 QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2304
2305 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2306 TemplateSpecializationTypeLoc TL
2307 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2308 TL.setTemplateNameLoc(NameLoc);
2309 TL.setLAngleLoc(Args.getLAngleLoc());
2310 TL.setRAngleLoc(Args.getRAngleLoc());
2311 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2312 TL.setArgLocInfo(i, Args[i].getLocInfo());
2313 return DI;
2314 }
2315
2316 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const2317 ASTContext::getTemplateSpecializationType(TemplateName Template,
2318 const TemplateArgumentListInfo &Args,
2319 QualType Underlying) const {
2320 assert(!Template.getAsDependentTemplateName() &&
2321 "No dependent template names here!");
2322
2323 unsigned NumArgs = Args.size();
2324
2325 llvm::SmallVector<TemplateArgument, 4> ArgVec;
2326 ArgVec.reserve(NumArgs);
2327 for (unsigned i = 0; i != NumArgs; ++i)
2328 ArgVec.push_back(Args[i].getArgument());
2329
2330 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2331 Underlying);
2332 }
2333
2334 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs,QualType Underlying) const2335 ASTContext::getTemplateSpecializationType(TemplateName Template,
2336 const TemplateArgument *Args,
2337 unsigned NumArgs,
2338 QualType Underlying) const {
2339 assert(!Template.getAsDependentTemplateName() &&
2340 "No dependent template names here!");
2341 // Look through qualified template names.
2342 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2343 Template = TemplateName(QTN->getTemplateDecl());
2344
2345 bool isTypeAlias =
2346 Template.getAsTemplateDecl() &&
2347 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2348
2349 QualType CanonType;
2350 if (!Underlying.isNull())
2351 CanonType = getCanonicalType(Underlying);
2352 else {
2353 assert(!isTypeAlias &&
2354 "Underlying type for template alias must be computed by caller");
2355 CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2356 NumArgs);
2357 }
2358
2359 // Allocate the (non-canonical) template specialization type, but don't
2360 // try to unique it: these types typically have location information that
2361 // we don't unique and don't want to lose.
2362 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2363 sizeof(TemplateArgument) * NumArgs +
2364 (isTypeAlias ? sizeof(QualType) : 0),
2365 TypeAlignment);
2366 TemplateSpecializationType *Spec
2367 = new (Mem) TemplateSpecializationType(Template,
2368 Args, NumArgs,
2369 CanonType,
2370 isTypeAlias ? Underlying : QualType());
2371
2372 Types.push_back(Spec);
2373 return QualType(Spec, 0);
2374 }
2375
2376 QualType
getCanonicalTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs) const2377 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2378 const TemplateArgument *Args,
2379 unsigned NumArgs) const {
2380 assert(!Template.getAsDependentTemplateName() &&
2381 "No dependent template names here!");
2382 assert((!Template.getAsTemplateDecl() ||
2383 !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2384 "Underlying type for template alias must be computed by caller");
2385
2386 // Look through qualified template names.
2387 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2388 Template = TemplateName(QTN->getTemplateDecl());
2389
2390 // Build the canonical template specialization type.
2391 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2392 llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2393 CanonArgs.reserve(NumArgs);
2394 for (unsigned I = 0; I != NumArgs; ++I)
2395 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2396
2397 // Determine whether this canonical template specialization type already
2398 // exists.
2399 llvm::FoldingSetNodeID ID;
2400 TemplateSpecializationType::Profile(ID, CanonTemplate,
2401 CanonArgs.data(), NumArgs, *this);
2402
2403 void *InsertPos = 0;
2404 TemplateSpecializationType *Spec
2405 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2406
2407 if (!Spec) {
2408 // Allocate a new canonical template specialization type.
2409 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2410 sizeof(TemplateArgument) * NumArgs),
2411 TypeAlignment);
2412 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2413 CanonArgs.data(), NumArgs,
2414 QualType(), QualType());
2415 Types.push_back(Spec);
2416 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2417 }
2418
2419 assert(Spec->isDependentType() &&
2420 "Non-dependent template-id type must have a canonical type");
2421 return QualType(Spec, 0);
2422 }
2423
2424 QualType
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType) const2425 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2426 NestedNameSpecifier *NNS,
2427 QualType NamedType) const {
2428 llvm::FoldingSetNodeID ID;
2429 ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2430
2431 void *InsertPos = 0;
2432 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2433 if (T)
2434 return QualType(T, 0);
2435
2436 QualType Canon = NamedType;
2437 if (!Canon.isCanonical()) {
2438 Canon = getCanonicalType(NamedType);
2439 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2440 assert(!CheckT && "Elaborated canonical type broken");
2441 (void)CheckT;
2442 }
2443
2444 T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2445 Types.push_back(T);
2446 ElaboratedTypes.InsertNode(T, InsertPos);
2447 return QualType(T, 0);
2448 }
2449
2450 QualType
getParenType(QualType InnerType) const2451 ASTContext::getParenType(QualType InnerType) const {
2452 llvm::FoldingSetNodeID ID;
2453 ParenType::Profile(ID, InnerType);
2454
2455 void *InsertPos = 0;
2456 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2457 if (T)
2458 return QualType(T, 0);
2459
2460 QualType Canon = InnerType;
2461 if (!Canon.isCanonical()) {
2462 Canon = getCanonicalType(InnerType);
2463 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2464 assert(!CheckT && "Paren canonical type broken");
2465 (void)CheckT;
2466 }
2467
2468 T = new (*this) ParenType(InnerType, Canon);
2469 Types.push_back(T);
2470 ParenTypes.InsertNode(T, InsertPos);
2471 return QualType(T, 0);
2472 }
2473
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const2474 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2475 NestedNameSpecifier *NNS,
2476 const IdentifierInfo *Name,
2477 QualType Canon) const {
2478 assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2479
2480 if (Canon.isNull()) {
2481 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2482 ElaboratedTypeKeyword CanonKeyword = Keyword;
2483 if (Keyword == ETK_None)
2484 CanonKeyword = ETK_Typename;
2485
2486 if (CanonNNS != NNS || CanonKeyword != Keyword)
2487 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2488 }
2489
2490 llvm::FoldingSetNodeID ID;
2491 DependentNameType::Profile(ID, Keyword, NNS, Name);
2492
2493 void *InsertPos = 0;
2494 DependentNameType *T
2495 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2496 if (T)
2497 return QualType(T, 0);
2498
2499 T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2500 Types.push_back(T);
2501 DependentNameTypes.InsertNode(T, InsertPos);
2502 return QualType(T, 0);
2503 }
2504
2505 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const2506 ASTContext::getDependentTemplateSpecializationType(
2507 ElaboratedTypeKeyword Keyword,
2508 NestedNameSpecifier *NNS,
2509 const IdentifierInfo *Name,
2510 const TemplateArgumentListInfo &Args) const {
2511 // TODO: avoid this copy
2512 llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2513 for (unsigned I = 0, E = Args.size(); I != E; ++I)
2514 ArgCopy.push_back(Args[I].getArgument());
2515 return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2516 ArgCopy.size(),
2517 ArgCopy.data());
2518 }
2519
2520 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args) const2521 ASTContext::getDependentTemplateSpecializationType(
2522 ElaboratedTypeKeyword Keyword,
2523 NestedNameSpecifier *NNS,
2524 const IdentifierInfo *Name,
2525 unsigned NumArgs,
2526 const TemplateArgument *Args) const {
2527 assert((!NNS || NNS->isDependent()) &&
2528 "nested-name-specifier must be dependent");
2529
2530 llvm::FoldingSetNodeID ID;
2531 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2532 Name, NumArgs, Args);
2533
2534 void *InsertPos = 0;
2535 DependentTemplateSpecializationType *T
2536 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2537 if (T)
2538 return QualType(T, 0);
2539
2540 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2541
2542 ElaboratedTypeKeyword CanonKeyword = Keyword;
2543 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2544
2545 bool AnyNonCanonArgs = false;
2546 llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2547 for (unsigned I = 0; I != NumArgs; ++I) {
2548 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2549 if (!CanonArgs[I].structurallyEquals(Args[I]))
2550 AnyNonCanonArgs = true;
2551 }
2552
2553 QualType Canon;
2554 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2555 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2556 Name, NumArgs,
2557 CanonArgs.data());
2558
2559 // Find the insert position again.
2560 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2561 }
2562
2563 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2564 sizeof(TemplateArgument) * NumArgs),
2565 TypeAlignment);
2566 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2567 Name, NumArgs, Args, Canon);
2568 Types.push_back(T);
2569 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2570 return QualType(T, 0);
2571 }
2572
getPackExpansionType(QualType Pattern,llvm::Optional<unsigned> NumExpansions)2573 QualType ASTContext::getPackExpansionType(QualType Pattern,
2574 llvm::Optional<unsigned> NumExpansions) {
2575 llvm::FoldingSetNodeID ID;
2576 PackExpansionType::Profile(ID, Pattern, NumExpansions);
2577
2578 assert(Pattern->containsUnexpandedParameterPack() &&
2579 "Pack expansions must expand one or more parameter packs");
2580 void *InsertPos = 0;
2581 PackExpansionType *T
2582 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2583 if (T)
2584 return QualType(T, 0);
2585
2586 QualType Canon;
2587 if (!Pattern.isCanonical()) {
2588 Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2589
2590 // Find the insert position again.
2591 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2592 }
2593
2594 T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2595 Types.push_back(T);
2596 PackExpansionTypes.InsertNode(T, InsertPos);
2597 return QualType(T, 0);
2598 }
2599
2600 /// CmpProtocolNames - Comparison predicate for sorting protocols
2601 /// alphabetically.
CmpProtocolNames(const ObjCProtocolDecl * LHS,const ObjCProtocolDecl * RHS)2602 static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2603 const ObjCProtocolDecl *RHS) {
2604 return LHS->getDeclName() < RHS->getDeclName();
2605 }
2606
areSortedAndUniqued(ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)2607 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2608 unsigned NumProtocols) {
2609 if (NumProtocols == 0) return true;
2610
2611 for (unsigned i = 1; i != NumProtocols; ++i)
2612 if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2613 return false;
2614 return true;
2615 }
2616
SortAndUniqueProtocols(ObjCProtocolDecl ** Protocols,unsigned & NumProtocols)2617 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2618 unsigned &NumProtocols) {
2619 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2620
2621 // Sort protocols, keyed by name.
2622 std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2623
2624 // Remove duplicates.
2625 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2626 NumProtocols = ProtocolsEnd-Protocols;
2627 }
2628
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const2629 QualType ASTContext::getObjCObjectType(QualType BaseType,
2630 ObjCProtocolDecl * const *Protocols,
2631 unsigned NumProtocols) const {
2632 // If the base type is an interface and there aren't any protocols
2633 // to add, then the interface type will do just fine.
2634 if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2635 return BaseType;
2636
2637 // Look in the folding set for an existing type.
2638 llvm::FoldingSetNodeID ID;
2639 ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2640 void *InsertPos = 0;
2641 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2642 return QualType(QT, 0);
2643
2644 // Build the canonical type, which has the canonical base type and
2645 // a sorted-and-uniqued list of protocols.
2646 QualType Canonical;
2647 bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2648 if (!ProtocolsSorted || !BaseType.isCanonical()) {
2649 if (!ProtocolsSorted) {
2650 llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2651 Protocols + NumProtocols);
2652 unsigned UniqueCount = NumProtocols;
2653
2654 SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2655 Canonical = getObjCObjectType(getCanonicalType(BaseType),
2656 &Sorted[0], UniqueCount);
2657 } else {
2658 Canonical = getObjCObjectType(getCanonicalType(BaseType),
2659 Protocols, NumProtocols);
2660 }
2661
2662 // Regenerate InsertPos.
2663 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2664 }
2665
2666 unsigned Size = sizeof(ObjCObjectTypeImpl);
2667 Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2668 void *Mem = Allocate(Size, TypeAlignment);
2669 ObjCObjectTypeImpl *T =
2670 new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2671
2672 Types.push_back(T);
2673 ObjCObjectTypes.InsertNode(T, InsertPos);
2674 return QualType(T, 0);
2675 }
2676
2677 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2678 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const2679 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2680 llvm::FoldingSetNodeID ID;
2681 ObjCObjectPointerType::Profile(ID, ObjectT);
2682
2683 void *InsertPos = 0;
2684 if (ObjCObjectPointerType *QT =
2685 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2686 return QualType(QT, 0);
2687
2688 // Find the canonical object type.
2689 QualType Canonical;
2690 if (!ObjectT.isCanonical()) {
2691 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2692
2693 // Regenerate InsertPos.
2694 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2695 }
2696
2697 // No match.
2698 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2699 ObjCObjectPointerType *QType =
2700 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2701
2702 Types.push_back(QType);
2703 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2704 return QualType(QType, 0);
2705 }
2706
2707 /// getObjCInterfaceType - Return the unique reference to the type for the
2708 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl) const2709 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2710 if (Decl->TypeForDecl)
2711 return QualType(Decl->TypeForDecl, 0);
2712
2713 // FIXME: redeclarations?
2714 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2715 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2716 Decl->TypeForDecl = T;
2717 Types.push_back(T);
2718 return QualType(T, 0);
2719 }
2720
2721 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2722 /// TypeOfExprType AST's (since expression's are never shared). For example,
2723 /// multiple declarations that refer to "typeof(x)" all contain different
2724 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
2725 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const2726 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2727 TypeOfExprType *toe;
2728 if (tofExpr->isTypeDependent()) {
2729 llvm::FoldingSetNodeID ID;
2730 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2731
2732 void *InsertPos = 0;
2733 DependentTypeOfExprType *Canon
2734 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2735 if (Canon) {
2736 // We already have a "canonical" version of an identical, dependent
2737 // typeof(expr) type. Use that as our canonical type.
2738 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2739 QualType((TypeOfExprType*)Canon, 0));
2740 }
2741 else {
2742 // Build a new, canonical typeof(expr) type.
2743 Canon
2744 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2745 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2746 toe = Canon;
2747 }
2748 } else {
2749 QualType Canonical = getCanonicalType(tofExpr->getType());
2750 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2751 }
2752 Types.push_back(toe);
2753 return QualType(toe, 0);
2754 }
2755
2756 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
2757 /// TypeOfType AST's. The only motivation to unique these nodes would be
2758 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2759 /// an issue. This doesn't effect the type checker, since it operates
2760 /// on canonical type's (which are always unique).
getTypeOfType(QualType tofType) const2761 QualType ASTContext::getTypeOfType(QualType tofType) const {
2762 QualType Canonical = getCanonicalType(tofType);
2763 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2764 Types.push_back(tot);
2765 return QualType(tot, 0);
2766 }
2767
2768 /// getDecltypeForExpr - Given an expr, will return the decltype for that
2769 /// expression, according to the rules in C++0x [dcl.type.simple]p4
getDecltypeForExpr(const Expr * e,const ASTContext & Context)2770 static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2771 if (e->isTypeDependent())
2772 return Context.DependentTy;
2773
2774 // If e is an id expression or a class member access, decltype(e) is defined
2775 // as the type of the entity named by e.
2776 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2777 if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2778 return VD->getType();
2779 }
2780 if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2781 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2782 return FD->getType();
2783 }
2784 // If e is a function call or an invocation of an overloaded operator,
2785 // (parentheses around e are ignored), decltype(e) is defined as the
2786 // return type of that function.
2787 if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2788 return CE->getCallReturnType();
2789
2790 QualType T = e->getType();
2791
2792 // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2793 // defined as T&, otherwise decltype(e) is defined as T.
2794 if (e->isLValue())
2795 T = Context.getLValueReferenceType(T);
2796
2797 return T;
2798 }
2799
2800 /// getDecltypeType - Unlike many "get<Type>" functions, we don't unique
2801 /// DecltypeType AST's. The only motivation to unique these nodes would be
2802 /// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2803 /// an issue. This doesn't effect the type checker, since it operates
2804 /// on canonical type's (which are always unique).
getDecltypeType(Expr * e) const2805 QualType ASTContext::getDecltypeType(Expr *e) const {
2806 DecltypeType *dt;
2807
2808 // C++0x [temp.type]p2:
2809 // If an expression e involves a template parameter, decltype(e) denotes a
2810 // unique dependent type. Two such decltype-specifiers refer to the same
2811 // type only if their expressions are equivalent (14.5.6.1).
2812 if (e->isInstantiationDependent()) {
2813 llvm::FoldingSetNodeID ID;
2814 DependentDecltypeType::Profile(ID, *this, e);
2815
2816 void *InsertPos = 0;
2817 DependentDecltypeType *Canon
2818 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2819 if (Canon) {
2820 // We already have a "canonical" version of an equivalent, dependent
2821 // decltype type. Use that as our canonical type.
2822 dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2823 QualType((DecltypeType*)Canon, 0));
2824 }
2825 else {
2826 // Build a new, canonical typeof(expr) type.
2827 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2828 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2829 dt = Canon;
2830 }
2831 } else {
2832 QualType T = getDecltypeForExpr(e, *this);
2833 dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2834 }
2835 Types.push_back(dt);
2836 return QualType(dt, 0);
2837 }
2838
2839 /// getUnaryTransformationType - We don't unique these, since the memory
2840 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const2841 QualType ASTContext::getUnaryTransformType(QualType BaseType,
2842 QualType UnderlyingType,
2843 UnaryTransformType::UTTKind Kind)
2844 const {
2845 UnaryTransformType *Ty =
2846 new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2847 Kind,
2848 UnderlyingType->isDependentType() ?
2849 QualType() : UnderlyingType);
2850 Types.push_back(Ty);
2851 return QualType(Ty, 0);
2852 }
2853
2854 /// getAutoType - We only unique auto types after they've been deduced.
getAutoType(QualType DeducedType) const2855 QualType ASTContext::getAutoType(QualType DeducedType) const {
2856 void *InsertPos = 0;
2857 if (!DeducedType.isNull()) {
2858 // Look in the folding set for an existing type.
2859 llvm::FoldingSetNodeID ID;
2860 AutoType::Profile(ID, DeducedType);
2861 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2862 return QualType(AT, 0);
2863 }
2864
2865 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2866 Types.push_back(AT);
2867 if (InsertPos)
2868 AutoTypes.InsertNode(AT, InsertPos);
2869 return QualType(AT, 0);
2870 }
2871
2872 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const2873 QualType ASTContext::getAutoDeductType() const {
2874 if (AutoDeductTy.isNull())
2875 AutoDeductTy = getAutoType(QualType());
2876 assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2877 return AutoDeductTy;
2878 }
2879
2880 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const2881 QualType ASTContext::getAutoRRefDeductType() const {
2882 if (AutoRRefDeductTy.isNull())
2883 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2884 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2885 return AutoRRefDeductTy;
2886 }
2887
2888 /// getTagDeclType - Return the unique reference to the type for the
2889 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const2890 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2891 assert (Decl);
2892 // FIXME: What is the design on getTagDeclType when it requires casting
2893 // away const? mutable?
2894 return getTypeDeclType(const_cast<TagDecl*>(Decl));
2895 }
2896
2897 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2898 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2899 /// needs to agree with the definition in <stddef.h>.
getSizeType() const2900 CanQualType ASTContext::getSizeType() const {
2901 return getFromTargetType(Target.getSizeType());
2902 }
2903
2904 /// getSignedWCharType - Return the type of "signed wchar_t".
2905 /// Used when in C++, as a GCC extension.
getSignedWCharType() const2906 QualType ASTContext::getSignedWCharType() const {
2907 // FIXME: derive from "Target" ?
2908 return WCharTy;
2909 }
2910
2911 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2912 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const2913 QualType ASTContext::getUnsignedWCharType() const {
2914 // FIXME: derive from "Target" ?
2915 return UnsignedIntTy;
2916 }
2917
2918 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2919 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const2920 QualType ASTContext::getPointerDiffType() const {
2921 return getFromTargetType(Target.getPtrDiffType(0));
2922 }
2923
2924 //===----------------------------------------------------------------------===//
2925 // Type Operators
2926 //===----------------------------------------------------------------------===//
2927
getCanonicalParamType(QualType T) const2928 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2929 // Push qualifiers into arrays, and then discard any remaining
2930 // qualifiers.
2931 T = getCanonicalType(T);
2932 T = getVariableArrayDecayedType(T);
2933 const Type *Ty = T.getTypePtr();
2934 QualType Result;
2935 if (isa<ArrayType>(Ty)) {
2936 Result = getArrayDecayedType(QualType(Ty,0));
2937 } else if (isa<FunctionType>(Ty)) {
2938 Result = getPointerType(QualType(Ty, 0));
2939 } else {
2940 Result = QualType(Ty, 0);
2941 }
2942
2943 return CanQualType::CreateUnsafe(Result);
2944 }
2945
getUnqualifiedArrayType(QualType type,Qualifiers & quals)2946 QualType ASTContext::getUnqualifiedArrayType(QualType type,
2947 Qualifiers &quals) {
2948 SplitQualType splitType = type.getSplitUnqualifiedType();
2949
2950 // FIXME: getSplitUnqualifiedType() actually walks all the way to
2951 // the unqualified desugared type and then drops it on the floor.
2952 // We then have to strip that sugar back off with
2953 // getUnqualifiedDesugaredType(), which is silly.
2954 const ArrayType *AT =
2955 dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2956
2957 // If we don't have an array, just use the results in splitType.
2958 if (!AT) {
2959 quals = splitType.second;
2960 return QualType(splitType.first, 0);
2961 }
2962
2963 // Otherwise, recurse on the array's element type.
2964 QualType elementType = AT->getElementType();
2965 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2966
2967 // If that didn't change the element type, AT has no qualifiers, so we
2968 // can just use the results in splitType.
2969 if (elementType == unqualElementType) {
2970 assert(quals.empty()); // from the recursive call
2971 quals = splitType.second;
2972 return QualType(splitType.first, 0);
2973 }
2974
2975 // Otherwise, add in the qualifiers from the outermost type, then
2976 // build the type back up.
2977 quals.addConsistentQualifiers(splitType.second);
2978
2979 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2980 return getConstantArrayType(unqualElementType, CAT->getSize(),
2981 CAT->getSizeModifier(), 0);
2982 }
2983
2984 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2985 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2986 }
2987
2988 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2989 return getVariableArrayType(unqualElementType,
2990 VAT->getSizeExpr(),
2991 VAT->getSizeModifier(),
2992 VAT->getIndexTypeCVRQualifiers(),
2993 VAT->getBracketsRange());
2994 }
2995
2996 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2997 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2998 DSAT->getSizeModifier(), 0,
2999 SourceRange());
3000 }
3001
3002 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
3003 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3004 /// they point to and return true. If T1 and T2 aren't pointer types
3005 /// or pointer-to-member types, or if they are not similar at this
3006 /// level, returns false and leaves T1 and T2 unchanged. Top-level
3007 /// qualifiers on T1 and T2 are ignored. This function will typically
3008 /// be called in a loop that successively "unwraps" pointer and
3009 /// pointer-to-member types to compare them at each level.
UnwrapSimilarPointerTypes(QualType & T1,QualType & T2)3010 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3011 const PointerType *T1PtrType = T1->getAs<PointerType>(),
3012 *T2PtrType = T2->getAs<PointerType>();
3013 if (T1PtrType && T2PtrType) {
3014 T1 = T1PtrType->getPointeeType();
3015 T2 = T2PtrType->getPointeeType();
3016 return true;
3017 }
3018
3019 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3020 *T2MPType = T2->getAs<MemberPointerType>();
3021 if (T1MPType && T2MPType &&
3022 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3023 QualType(T2MPType->getClass(), 0))) {
3024 T1 = T1MPType->getPointeeType();
3025 T2 = T2MPType->getPointeeType();
3026 return true;
3027 }
3028
3029 if (getLangOptions().ObjC1) {
3030 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3031 *T2OPType = T2->getAs<ObjCObjectPointerType>();
3032 if (T1OPType && T2OPType) {
3033 T1 = T1OPType->getPointeeType();
3034 T2 = T2OPType->getPointeeType();
3035 return true;
3036 }
3037 }
3038
3039 // FIXME: Block pointers, too?
3040
3041 return false;
3042 }
3043
3044 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const3045 ASTContext::getNameForTemplate(TemplateName Name,
3046 SourceLocation NameLoc) const {
3047 switch (Name.getKind()) {
3048 case TemplateName::QualifiedTemplate:
3049 case TemplateName::Template:
3050 // DNInfo work in progress: CHECKME: what about DNLoc?
3051 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3052 NameLoc);
3053
3054 case TemplateName::OverloadedTemplate: {
3055 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3056 // DNInfo work in progress: CHECKME: what about DNLoc?
3057 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3058 }
3059
3060 case TemplateName::DependentTemplate: {
3061 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3062 DeclarationName DName;
3063 if (DTN->isIdentifier()) {
3064 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3065 return DeclarationNameInfo(DName, NameLoc);
3066 } else {
3067 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3068 // DNInfo work in progress: FIXME: source locations?
3069 DeclarationNameLoc DNLoc;
3070 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3071 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3072 return DeclarationNameInfo(DName, NameLoc, DNLoc);
3073 }
3074 }
3075
3076 case TemplateName::SubstTemplateTemplateParm: {
3077 SubstTemplateTemplateParmStorage *subst
3078 = Name.getAsSubstTemplateTemplateParm();
3079 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3080 NameLoc);
3081 }
3082
3083 case TemplateName::SubstTemplateTemplateParmPack: {
3084 SubstTemplateTemplateParmPackStorage *subst
3085 = Name.getAsSubstTemplateTemplateParmPack();
3086 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3087 NameLoc);
3088 }
3089 }
3090
3091 llvm_unreachable("bad template name kind!");
3092 }
3093
getCanonicalTemplateName(TemplateName Name) const3094 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3095 switch (Name.getKind()) {
3096 case TemplateName::QualifiedTemplate:
3097 case TemplateName::Template: {
3098 TemplateDecl *Template = Name.getAsTemplateDecl();
3099 if (TemplateTemplateParmDecl *TTP
3100 = dyn_cast<TemplateTemplateParmDecl>(Template))
3101 Template = getCanonicalTemplateTemplateParmDecl(TTP);
3102
3103 // The canonical template name is the canonical template declaration.
3104 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3105 }
3106
3107 case TemplateName::OverloadedTemplate:
3108 llvm_unreachable("cannot canonicalize overloaded template");
3109
3110 case TemplateName::DependentTemplate: {
3111 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3112 assert(DTN && "Non-dependent template names must refer to template decls.");
3113 return DTN->CanonicalTemplateName;
3114 }
3115
3116 case TemplateName::SubstTemplateTemplateParm: {
3117 SubstTemplateTemplateParmStorage *subst
3118 = Name.getAsSubstTemplateTemplateParm();
3119 return getCanonicalTemplateName(subst->getReplacement());
3120 }
3121
3122 case TemplateName::SubstTemplateTemplateParmPack: {
3123 SubstTemplateTemplateParmPackStorage *subst
3124 = Name.getAsSubstTemplateTemplateParmPack();
3125 TemplateTemplateParmDecl *canonParameter
3126 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3127 TemplateArgument canonArgPack
3128 = getCanonicalTemplateArgument(subst->getArgumentPack());
3129 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3130 }
3131 }
3132
3133 llvm_unreachable("bad template name!");
3134 }
3135
hasSameTemplateName(TemplateName X,TemplateName Y)3136 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3137 X = getCanonicalTemplateName(X);
3138 Y = getCanonicalTemplateName(Y);
3139 return X.getAsVoidPointer() == Y.getAsVoidPointer();
3140 }
3141
3142 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const3143 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3144 switch (Arg.getKind()) {
3145 case TemplateArgument::Null:
3146 return Arg;
3147
3148 case TemplateArgument::Expression:
3149 return Arg;
3150
3151 case TemplateArgument::Declaration:
3152 return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3153
3154 case TemplateArgument::Template:
3155 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3156
3157 case TemplateArgument::TemplateExpansion:
3158 return TemplateArgument(getCanonicalTemplateName(
3159 Arg.getAsTemplateOrTemplatePattern()),
3160 Arg.getNumTemplateExpansions());
3161
3162 case TemplateArgument::Integral:
3163 return TemplateArgument(*Arg.getAsIntegral(),
3164 getCanonicalType(Arg.getIntegralType()));
3165
3166 case TemplateArgument::Type:
3167 return TemplateArgument(getCanonicalType(Arg.getAsType()));
3168
3169 case TemplateArgument::Pack: {
3170 if (Arg.pack_size() == 0)
3171 return Arg;
3172
3173 TemplateArgument *CanonArgs
3174 = new (*this) TemplateArgument[Arg.pack_size()];
3175 unsigned Idx = 0;
3176 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3177 AEnd = Arg.pack_end();
3178 A != AEnd; (void)++A, ++Idx)
3179 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3180
3181 return TemplateArgument(CanonArgs, Arg.pack_size());
3182 }
3183 }
3184
3185 // Silence GCC warning
3186 assert(false && "Unhandled template argument kind");
3187 return TemplateArgument();
3188 }
3189
3190 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const3191 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3192 if (!NNS)
3193 return 0;
3194
3195 switch (NNS->getKind()) {
3196 case NestedNameSpecifier::Identifier:
3197 // Canonicalize the prefix but keep the identifier the same.
3198 return NestedNameSpecifier::Create(*this,
3199 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3200 NNS->getAsIdentifier());
3201
3202 case NestedNameSpecifier::Namespace:
3203 // A namespace is canonical; build a nested-name-specifier with
3204 // this namespace and no prefix.
3205 return NestedNameSpecifier::Create(*this, 0,
3206 NNS->getAsNamespace()->getOriginalNamespace());
3207
3208 case NestedNameSpecifier::NamespaceAlias:
3209 // A namespace is canonical; build a nested-name-specifier with
3210 // this namespace and no prefix.
3211 return NestedNameSpecifier::Create(*this, 0,
3212 NNS->getAsNamespaceAlias()->getNamespace()
3213 ->getOriginalNamespace());
3214
3215 case NestedNameSpecifier::TypeSpec:
3216 case NestedNameSpecifier::TypeSpecWithTemplate: {
3217 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3218
3219 // If we have some kind of dependent-named type (e.g., "typename T::type"),
3220 // break it apart into its prefix and identifier, then reconsititute those
3221 // as the canonical nested-name-specifier. This is required to canonicalize
3222 // a dependent nested-name-specifier involving typedefs of dependent-name
3223 // types, e.g.,
3224 // typedef typename T::type T1;
3225 // typedef typename T1::type T2;
3226 if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3227 NestedNameSpecifier *Prefix
3228 = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3229 return NestedNameSpecifier::Create(*this, Prefix,
3230 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3231 }
3232
3233 // Do the same thing as above, but with dependent-named specializations.
3234 if (const DependentTemplateSpecializationType *DTST
3235 = T->getAs<DependentTemplateSpecializationType>()) {
3236 NestedNameSpecifier *Prefix
3237 = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3238
3239 T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3240 Prefix, DTST->getIdentifier(),
3241 DTST->getNumArgs(),
3242 DTST->getArgs());
3243 T = getCanonicalType(T);
3244 }
3245
3246 return NestedNameSpecifier::Create(*this, 0, false,
3247 const_cast<Type*>(T.getTypePtr()));
3248 }
3249
3250 case NestedNameSpecifier::Global:
3251 // The global specifier is canonical and unique.
3252 return NNS;
3253 }
3254
3255 // Required to silence a GCC warning
3256 return 0;
3257 }
3258
3259
getAsArrayType(QualType T) const3260 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3261 // Handle the non-qualified case efficiently.
3262 if (!T.hasLocalQualifiers()) {
3263 // Handle the common positive case fast.
3264 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3265 return AT;
3266 }
3267
3268 // Handle the common negative case fast.
3269 if (!isa<ArrayType>(T.getCanonicalType()))
3270 return 0;
3271
3272 // Apply any qualifiers from the array type to the element type. This
3273 // implements C99 6.7.3p8: "If the specification of an array type includes
3274 // any type qualifiers, the element type is so qualified, not the array type."
3275
3276 // If we get here, we either have type qualifiers on the type, or we have
3277 // sugar such as a typedef in the way. If we have type qualifiers on the type
3278 // we must propagate them down into the element type.
3279
3280 SplitQualType split = T.getSplitDesugaredType();
3281 Qualifiers qs = split.second;
3282
3283 // If we have a simple case, just return now.
3284 const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3285 if (ATy == 0 || qs.empty())
3286 return ATy;
3287
3288 // Otherwise, we have an array and we have qualifiers on it. Push the
3289 // qualifiers into the array element type and return a new array type.
3290 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3291
3292 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3293 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3294 CAT->getSizeModifier(),
3295 CAT->getIndexTypeCVRQualifiers()));
3296 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3297 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3298 IAT->getSizeModifier(),
3299 IAT->getIndexTypeCVRQualifiers()));
3300
3301 if (const DependentSizedArrayType *DSAT
3302 = dyn_cast<DependentSizedArrayType>(ATy))
3303 return cast<ArrayType>(
3304 getDependentSizedArrayType(NewEltTy,
3305 DSAT->getSizeExpr(),
3306 DSAT->getSizeModifier(),
3307 DSAT->getIndexTypeCVRQualifiers(),
3308 DSAT->getBracketsRange()));
3309
3310 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3311 return cast<ArrayType>(getVariableArrayType(NewEltTy,
3312 VAT->getSizeExpr(),
3313 VAT->getSizeModifier(),
3314 VAT->getIndexTypeCVRQualifiers(),
3315 VAT->getBracketsRange()));
3316 }
3317
getAdjustedParameterType(QualType T)3318 QualType ASTContext::getAdjustedParameterType(QualType T) {
3319 // C99 6.7.5.3p7:
3320 // A declaration of a parameter as "array of type" shall be
3321 // adjusted to "qualified pointer to type", where the type
3322 // qualifiers (if any) are those specified within the [ and ] of
3323 // the array type derivation.
3324 if (T->isArrayType())
3325 return getArrayDecayedType(T);
3326
3327 // C99 6.7.5.3p8:
3328 // A declaration of a parameter as "function returning type"
3329 // shall be adjusted to "pointer to function returning type", as
3330 // in 6.3.2.1.
3331 if (T->isFunctionType())
3332 return getPointerType(T);
3333
3334 return T;
3335 }
3336
getSignatureParameterType(QualType T)3337 QualType ASTContext::getSignatureParameterType(QualType T) {
3338 T = getVariableArrayDecayedType(T);
3339 T = getAdjustedParameterType(T);
3340 return T.getUnqualifiedType();
3341 }
3342
3343 /// getArrayDecayedType - Return the properly qualified result of decaying the
3344 /// specified array type to a pointer. This operation is non-trivial when
3345 /// handling typedefs etc. The canonical type of "T" must be an array type,
3346 /// this returns a pointer to a properly qualified element of the array.
3347 ///
3348 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const3349 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3350 // Get the element type with 'getAsArrayType' so that we don't lose any
3351 // typedefs in the element type of the array. This also handles propagation
3352 // of type qualifiers from the array type into the element type if present
3353 // (C99 6.7.3p8).
3354 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3355 assert(PrettyArrayType && "Not an array type!");
3356
3357 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3358
3359 // int x[restrict 4] -> int *restrict
3360 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3361 }
3362
getBaseElementType(const ArrayType * array) const3363 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3364 return getBaseElementType(array->getElementType());
3365 }
3366
getBaseElementType(QualType type) const3367 QualType ASTContext::getBaseElementType(QualType type) const {
3368 Qualifiers qs;
3369 while (true) {
3370 SplitQualType split = type.getSplitDesugaredType();
3371 const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3372 if (!array) break;
3373
3374 type = array->getElementType();
3375 qs.addConsistentQualifiers(split.second);
3376 }
3377
3378 return getQualifiedType(type, qs);
3379 }
3380
3381 /// getConstantArrayElementCount - Returns number of constant array elements.
3382 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const3383 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
3384 uint64_t ElementCount = 1;
3385 do {
3386 ElementCount *= CA->getSize().getZExtValue();
3387 CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3388 } while (CA);
3389 return ElementCount;
3390 }
3391
3392 /// getFloatingRank - Return a relative rank for floating point types.
3393 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)3394 static FloatingRank getFloatingRank(QualType T) {
3395 if (const ComplexType *CT = T->getAs<ComplexType>())
3396 return getFloatingRank(CT->getElementType());
3397
3398 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3399 switch (T->getAs<BuiltinType>()->getKind()) {
3400 default: assert(0 && "getFloatingRank(): not a floating type");
3401 case BuiltinType::Float: return FloatRank;
3402 case BuiltinType::Double: return DoubleRank;
3403 case BuiltinType::LongDouble: return LongDoubleRank;
3404 }
3405 }
3406
3407 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3408 /// point or a complex type (based on typeDomain/typeSize).
3409 /// 'typeDomain' is a real floating point or complex type.
3410 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const3411 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3412 QualType Domain) const {
3413 FloatingRank EltRank = getFloatingRank(Size);
3414 if (Domain->isComplexType()) {
3415 switch (EltRank) {
3416 default: assert(0 && "getFloatingRank(): illegal value for rank");
3417 case FloatRank: return FloatComplexTy;
3418 case DoubleRank: return DoubleComplexTy;
3419 case LongDoubleRank: return LongDoubleComplexTy;
3420 }
3421 }
3422
3423 assert(Domain->isRealFloatingType() && "Unknown domain!");
3424 switch (EltRank) {
3425 default: assert(0 && "getFloatingRank(): illegal value for rank");
3426 case FloatRank: return FloatTy;
3427 case DoubleRank: return DoubleTy;
3428 case LongDoubleRank: return LongDoubleTy;
3429 }
3430 }
3431
3432 /// getFloatingTypeOrder - Compare the rank of the two specified floating
3433 /// point types, ignoring the domain of the type (i.e. 'double' ==
3434 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
3435 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const3436 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3437 FloatingRank LHSR = getFloatingRank(LHS);
3438 FloatingRank RHSR = getFloatingRank(RHS);
3439
3440 if (LHSR == RHSR)
3441 return 0;
3442 if (LHSR > RHSR)
3443 return 1;
3444 return -1;
3445 }
3446
3447 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3448 /// routine will assert if passed a built-in type that isn't an integer or enum,
3449 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const3450 unsigned ASTContext::getIntegerRank(const Type *T) const {
3451 assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3452 if (const EnumType* ET = dyn_cast<EnumType>(T))
3453 T = ET->getDecl()->getPromotionType().getTypePtr();
3454
3455 if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3456 T->isSpecificBuiltinType(BuiltinType::WChar_U))
3457 T = getFromTargetType(Target.getWCharType()).getTypePtr();
3458
3459 if (T->isSpecificBuiltinType(BuiltinType::Char16))
3460 T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3461
3462 if (T->isSpecificBuiltinType(BuiltinType::Char32))
3463 T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3464
3465 switch (cast<BuiltinType>(T)->getKind()) {
3466 default: assert(0 && "getIntegerRank(): not a built-in integer");
3467 case BuiltinType::Bool:
3468 return 1 + (getIntWidth(BoolTy) << 3);
3469 case BuiltinType::Char_S:
3470 case BuiltinType::Char_U:
3471 case BuiltinType::SChar:
3472 case BuiltinType::UChar:
3473 return 2 + (getIntWidth(CharTy) << 3);
3474 case BuiltinType::Short:
3475 case BuiltinType::UShort:
3476 return 3 + (getIntWidth(ShortTy) << 3);
3477 case BuiltinType::Int:
3478 case BuiltinType::UInt:
3479 return 4 + (getIntWidth(IntTy) << 3);
3480 case BuiltinType::Long:
3481 case BuiltinType::ULong:
3482 return 5 + (getIntWidth(LongTy) << 3);
3483 case BuiltinType::LongLong:
3484 case BuiltinType::ULongLong:
3485 return 6 + (getIntWidth(LongLongTy) << 3);
3486 case BuiltinType::Int128:
3487 case BuiltinType::UInt128:
3488 return 7 + (getIntWidth(Int128Ty) << 3);
3489 }
3490 }
3491
3492 /// \brief Whether this is a promotable bitfield reference according
3493 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3494 ///
3495 /// \returns the type this bit-field will promote to, or NULL if no
3496 /// promotion occurs.
isPromotableBitField(Expr * E) const3497 QualType ASTContext::isPromotableBitField(Expr *E) const {
3498 if (E->isTypeDependent() || E->isValueDependent())
3499 return QualType();
3500
3501 FieldDecl *Field = E->getBitField();
3502 if (!Field)
3503 return QualType();
3504
3505 QualType FT = Field->getType();
3506
3507 llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3508 uint64_t BitWidth = BitWidthAP.getZExtValue();
3509 uint64_t IntSize = getTypeSize(IntTy);
3510 // GCC extension compatibility: if the bit-field size is less than or equal
3511 // to the size of int, it gets promoted no matter what its type is.
3512 // For instance, unsigned long bf : 4 gets promoted to signed int.
3513 if (BitWidth < IntSize)
3514 return IntTy;
3515
3516 if (BitWidth == IntSize)
3517 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3518
3519 // Types bigger than int are not subject to promotions, and therefore act
3520 // like the base type.
3521 // FIXME: This doesn't quite match what gcc does, but what gcc does here
3522 // is ridiculous.
3523 return QualType();
3524 }
3525
3526 /// getPromotedIntegerType - Returns the type that Promotable will
3527 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3528 /// integer type.
getPromotedIntegerType(QualType Promotable) const3529 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3530 assert(!Promotable.isNull());
3531 assert(Promotable->isPromotableIntegerType());
3532 if (const EnumType *ET = Promotable->getAs<EnumType>())
3533 return ET->getDecl()->getPromotionType();
3534 if (Promotable->isSignedIntegerType())
3535 return IntTy;
3536 uint64_t PromotableSize = getTypeSize(Promotable);
3537 uint64_t IntSize = getTypeSize(IntTy);
3538 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3539 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3540 }
3541
3542 /// \brief Recurses in pointer/array types until it finds an objc retainable
3543 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const3544 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3545 while (!T.isNull()) {
3546 if (T.getObjCLifetime() != Qualifiers::OCL_None)
3547 return T.getObjCLifetime();
3548 if (T->isArrayType())
3549 T = getBaseElementType(T);
3550 else if (const PointerType *PT = T->getAs<PointerType>())
3551 T = PT->getPointeeType();
3552 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3553 T = RT->getPointeeType();
3554 else
3555 break;
3556 }
3557
3558 return Qualifiers::OCL_None;
3559 }
3560
3561 /// getIntegerTypeOrder - Returns the highest ranked integer type:
3562 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
3563 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const3564 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3565 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3566 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3567 if (LHSC == RHSC) return 0;
3568
3569 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3570 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3571
3572 unsigned LHSRank = getIntegerRank(LHSC);
3573 unsigned RHSRank = getIntegerRank(RHSC);
3574
3575 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
3576 if (LHSRank == RHSRank) return 0;
3577 return LHSRank > RHSRank ? 1 : -1;
3578 }
3579
3580 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3581 if (LHSUnsigned) {
3582 // If the unsigned [LHS] type is larger, return it.
3583 if (LHSRank >= RHSRank)
3584 return 1;
3585
3586 // If the signed type can represent all values of the unsigned type, it
3587 // wins. Because we are dealing with 2's complement and types that are
3588 // powers of two larger than each other, this is always safe.
3589 return -1;
3590 }
3591
3592 // If the unsigned [RHS] type is larger, return it.
3593 if (RHSRank >= LHSRank)
3594 return -1;
3595
3596 // If the signed type can represent all values of the unsigned type, it
3597 // wins. Because we are dealing with 2's complement and types that are
3598 // powers of two larger than each other, this is always safe.
3599 return 1;
3600 }
3601
3602 static RecordDecl *
CreateRecordDecl(const ASTContext & Ctx,RecordDecl::TagKind TK,DeclContext * DC,IdentifierInfo * Id)3603 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3604 DeclContext *DC, IdentifierInfo *Id) {
3605 SourceLocation Loc;
3606 if (Ctx.getLangOptions().CPlusPlus)
3607 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3608 else
3609 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3610 }
3611
3612 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const3613 QualType ASTContext::getCFConstantStringType() const {
3614 if (!CFConstantStringTypeDecl) {
3615 CFConstantStringTypeDecl =
3616 CreateRecordDecl(*this, TTK_Struct, TUDecl,
3617 &Idents.get("NSConstantString"));
3618 CFConstantStringTypeDecl->startDefinition();
3619
3620 QualType FieldTypes[4];
3621
3622 // const int *isa;
3623 FieldTypes[0] = getPointerType(IntTy.withConst());
3624 // int flags;
3625 FieldTypes[1] = IntTy;
3626 // const char *str;
3627 FieldTypes[2] = getPointerType(CharTy.withConst());
3628 // long length;
3629 FieldTypes[3] = LongTy;
3630
3631 // Create fields
3632 for (unsigned i = 0; i < 4; ++i) {
3633 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3634 SourceLocation(),
3635 SourceLocation(), 0,
3636 FieldTypes[i], /*TInfo=*/0,
3637 /*BitWidth=*/0,
3638 /*Mutable=*/false,
3639 /*HasInit=*/false);
3640 Field->setAccess(AS_public);
3641 CFConstantStringTypeDecl->addDecl(Field);
3642 }
3643
3644 CFConstantStringTypeDecl->completeDefinition();
3645 }
3646
3647 return getTagDeclType(CFConstantStringTypeDecl);
3648 }
3649
setCFConstantStringType(QualType T)3650 void ASTContext::setCFConstantStringType(QualType T) {
3651 const RecordType *Rec = T->getAs<RecordType>();
3652 assert(Rec && "Invalid CFConstantStringType");
3653 CFConstantStringTypeDecl = Rec->getDecl();
3654 }
3655
3656 // getNSConstantStringType - Return the type used for constant NSStrings.
getNSConstantStringType() const3657 QualType ASTContext::getNSConstantStringType() const {
3658 if (!NSConstantStringTypeDecl) {
3659 NSConstantStringTypeDecl =
3660 CreateRecordDecl(*this, TTK_Struct, TUDecl,
3661 &Idents.get("__builtin_NSString"));
3662 NSConstantStringTypeDecl->startDefinition();
3663
3664 QualType FieldTypes[3];
3665
3666 // const int *isa;
3667 FieldTypes[0] = getPointerType(IntTy.withConst());
3668 // const char *str;
3669 FieldTypes[1] = getPointerType(CharTy.withConst());
3670 // unsigned int length;
3671 FieldTypes[2] = UnsignedIntTy;
3672
3673 // Create fields
3674 for (unsigned i = 0; i < 3; ++i) {
3675 FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3676 SourceLocation(),
3677 SourceLocation(), 0,
3678 FieldTypes[i], /*TInfo=*/0,
3679 /*BitWidth=*/0,
3680 /*Mutable=*/false,
3681 /*HasInit=*/false);
3682 Field->setAccess(AS_public);
3683 NSConstantStringTypeDecl->addDecl(Field);
3684 }
3685
3686 NSConstantStringTypeDecl->completeDefinition();
3687 }
3688
3689 return getTagDeclType(NSConstantStringTypeDecl);
3690 }
3691
setNSConstantStringType(QualType T)3692 void ASTContext::setNSConstantStringType(QualType T) {
3693 const RecordType *Rec = T->getAs<RecordType>();
3694 assert(Rec && "Invalid NSConstantStringType");
3695 NSConstantStringTypeDecl = Rec->getDecl();
3696 }
3697
getObjCFastEnumerationStateType() const3698 QualType ASTContext::getObjCFastEnumerationStateType() const {
3699 if (!ObjCFastEnumerationStateTypeDecl) {
3700 ObjCFastEnumerationStateTypeDecl =
3701 CreateRecordDecl(*this, TTK_Struct, TUDecl,
3702 &Idents.get("__objcFastEnumerationState"));
3703 ObjCFastEnumerationStateTypeDecl->startDefinition();
3704
3705 QualType FieldTypes[] = {
3706 UnsignedLongTy,
3707 getPointerType(ObjCIdTypedefType),
3708 getPointerType(UnsignedLongTy),
3709 getConstantArrayType(UnsignedLongTy,
3710 llvm::APInt(32, 5), ArrayType::Normal, 0)
3711 };
3712
3713 for (size_t i = 0; i < 4; ++i) {
3714 FieldDecl *Field = FieldDecl::Create(*this,
3715 ObjCFastEnumerationStateTypeDecl,
3716 SourceLocation(),
3717 SourceLocation(), 0,
3718 FieldTypes[i], /*TInfo=*/0,
3719 /*BitWidth=*/0,
3720 /*Mutable=*/false,
3721 /*HasInit=*/false);
3722 Field->setAccess(AS_public);
3723 ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3724 }
3725
3726 ObjCFastEnumerationStateTypeDecl->completeDefinition();
3727 }
3728
3729 return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3730 }
3731
getBlockDescriptorType() const3732 QualType ASTContext::getBlockDescriptorType() const {
3733 if (BlockDescriptorType)
3734 return getTagDeclType(BlockDescriptorType);
3735
3736 RecordDecl *T;
3737 // FIXME: Needs the FlagAppleBlock bit.
3738 T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3739 &Idents.get("__block_descriptor"));
3740 T->startDefinition();
3741
3742 QualType FieldTypes[] = {
3743 UnsignedLongTy,
3744 UnsignedLongTy,
3745 };
3746
3747 const char *FieldNames[] = {
3748 "reserved",
3749 "Size"
3750 };
3751
3752 for (size_t i = 0; i < 2; ++i) {
3753 FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3754 SourceLocation(),
3755 &Idents.get(FieldNames[i]),
3756 FieldTypes[i], /*TInfo=*/0,
3757 /*BitWidth=*/0,
3758 /*Mutable=*/false,
3759 /*HasInit=*/false);
3760 Field->setAccess(AS_public);
3761 T->addDecl(Field);
3762 }
3763
3764 T->completeDefinition();
3765
3766 BlockDescriptorType = T;
3767
3768 return getTagDeclType(BlockDescriptorType);
3769 }
3770
setBlockDescriptorType(QualType T)3771 void ASTContext::setBlockDescriptorType(QualType T) {
3772 const RecordType *Rec = T->getAs<RecordType>();
3773 assert(Rec && "Invalid BlockDescriptorType");
3774 BlockDescriptorType = Rec->getDecl();
3775 }
3776
getBlockDescriptorExtendedType() const3777 QualType ASTContext::getBlockDescriptorExtendedType() const {
3778 if (BlockDescriptorExtendedType)
3779 return getTagDeclType(BlockDescriptorExtendedType);
3780
3781 RecordDecl *T;
3782 // FIXME: Needs the FlagAppleBlock bit.
3783 T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3784 &Idents.get("__block_descriptor_withcopydispose"));
3785 T->startDefinition();
3786
3787 QualType FieldTypes[] = {
3788 UnsignedLongTy,
3789 UnsignedLongTy,
3790 getPointerType(VoidPtrTy),
3791 getPointerType(VoidPtrTy)
3792 };
3793
3794 const char *FieldNames[] = {
3795 "reserved",
3796 "Size",
3797 "CopyFuncPtr",
3798 "DestroyFuncPtr"
3799 };
3800
3801 for (size_t i = 0; i < 4; ++i) {
3802 FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3803 SourceLocation(),
3804 &Idents.get(FieldNames[i]),
3805 FieldTypes[i], /*TInfo=*/0,
3806 /*BitWidth=*/0,
3807 /*Mutable=*/false,
3808 /*HasInit=*/false);
3809 Field->setAccess(AS_public);
3810 T->addDecl(Field);
3811 }
3812
3813 T->completeDefinition();
3814
3815 BlockDescriptorExtendedType = T;
3816
3817 return getTagDeclType(BlockDescriptorExtendedType);
3818 }
3819
setBlockDescriptorExtendedType(QualType T)3820 void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3821 const RecordType *Rec = T->getAs<RecordType>();
3822 assert(Rec && "Invalid BlockDescriptorType");
3823 BlockDescriptorExtendedType = Rec->getDecl();
3824 }
3825
BlockRequiresCopying(QualType Ty) const3826 bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3827 if (Ty->isObjCRetainableType())
3828 return true;
3829 if (getLangOptions().CPlusPlus) {
3830 if (const RecordType *RT = Ty->getAs<RecordType>()) {
3831 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3832 return RD->hasConstCopyConstructor();
3833
3834 }
3835 }
3836 return false;
3837 }
3838
3839 QualType
BuildByRefType(llvm::StringRef DeclName,QualType Ty) const3840 ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3841 // type = struct __Block_byref_1_X {
3842 // void *__isa;
3843 // struct __Block_byref_1_X *__forwarding;
3844 // unsigned int __flags;
3845 // unsigned int __size;
3846 // void *__copy_helper; // as needed
3847 // void *__destroy_help // as needed
3848 // int X;
3849 // } *
3850
3851 bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3852
3853 // FIXME: Move up
3854 llvm::SmallString<36> Name;
3855 llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3856 ++UniqueBlockByRefTypeID << '_' << DeclName;
3857 RecordDecl *T;
3858 T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3859 T->startDefinition();
3860 QualType Int32Ty = IntTy;
3861 assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3862 QualType FieldTypes[] = {
3863 getPointerType(VoidPtrTy),
3864 getPointerType(getTagDeclType(T)),
3865 Int32Ty,
3866 Int32Ty,
3867 getPointerType(VoidPtrTy),
3868 getPointerType(VoidPtrTy),
3869 Ty
3870 };
3871
3872 llvm::StringRef FieldNames[] = {
3873 "__isa",
3874 "__forwarding",
3875 "__flags",
3876 "__size",
3877 "__copy_helper",
3878 "__destroy_helper",
3879 DeclName,
3880 };
3881
3882 for (size_t i = 0; i < 7; ++i) {
3883 if (!HasCopyAndDispose && i >=4 && i <= 5)
3884 continue;
3885 FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3886 SourceLocation(),
3887 &Idents.get(FieldNames[i]),
3888 FieldTypes[i], /*TInfo=*/0,
3889 /*BitWidth=*/0, /*Mutable=*/false,
3890 /*HasInit=*/false);
3891 Field->setAccess(AS_public);
3892 T->addDecl(Field);
3893 }
3894
3895 T->completeDefinition();
3896
3897 return getPointerType(getTagDeclType(T));
3898 }
3899
setObjCFastEnumerationStateType(QualType T)3900 void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3901 const RecordType *Rec = T->getAs<RecordType>();
3902 assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3903 ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3904 }
3905
3906 // This returns true if a type has been typedefed to BOOL:
3907 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)3908 static bool isTypeTypedefedAsBOOL(QualType T) {
3909 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3910 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3911 return II->isStr("BOOL");
3912
3913 return false;
3914 }
3915
3916 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
3917 /// purpose.
getObjCEncodingTypeSize(QualType type) const3918 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3919 if (!type->isIncompleteArrayType() && type->isIncompleteType())
3920 return CharUnits::Zero();
3921
3922 CharUnits sz = getTypeSizeInChars(type);
3923
3924 // Make all integer and enum types at least as large as an int
3925 if (sz.isPositive() && type->isIntegralOrEnumerationType())
3926 sz = std::max(sz, getTypeSizeInChars(IntTy));
3927 // Treat arrays as pointers, since that's how they're passed in.
3928 else if (type->isArrayType())
3929 sz = getTypeSizeInChars(VoidPtrTy);
3930 return sz;
3931 }
3932
3933 static inline
charUnitsToString(const CharUnits & CU)3934 std::string charUnitsToString(const CharUnits &CU) {
3935 return llvm::itostr(CU.getQuantity());
3936 }
3937
3938 /// getObjCEncodingForBlock - Return the encoded type for this block
3939 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const3940 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3941 std::string S;
3942
3943 const BlockDecl *Decl = Expr->getBlockDecl();
3944 QualType BlockTy =
3945 Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3946 // Encode result type.
3947 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3948 // Compute size of all parameters.
3949 // Start with computing size of a pointer in number of bytes.
3950 // FIXME: There might(should) be a better way of doing this computation!
3951 SourceLocation Loc;
3952 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3953 CharUnits ParmOffset = PtrSize;
3954 for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3955 E = Decl->param_end(); PI != E; ++PI) {
3956 QualType PType = (*PI)->getType();
3957 CharUnits sz = getObjCEncodingTypeSize(PType);
3958 assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3959 ParmOffset += sz;
3960 }
3961 // Size of the argument frame
3962 S += charUnitsToString(ParmOffset);
3963 // Block pointer and offset.
3964 S += "@?0";
3965 ParmOffset = PtrSize;
3966
3967 // Argument types.
3968 ParmOffset = PtrSize;
3969 for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3970 Decl->param_end(); PI != E; ++PI) {
3971 ParmVarDecl *PVDecl = *PI;
3972 QualType PType = PVDecl->getOriginalType();
3973 if (const ArrayType *AT =
3974 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3975 // Use array's original type only if it has known number of
3976 // elements.
3977 if (!isa<ConstantArrayType>(AT))
3978 PType = PVDecl->getType();
3979 } else if (PType->isFunctionType())
3980 PType = PVDecl->getType();
3981 getObjCEncodingForType(PType, S);
3982 S += charUnitsToString(ParmOffset);
3983 ParmOffset += getObjCEncodingTypeSize(PType);
3984 }
3985
3986 return S;
3987 }
3988
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl,std::string & S)3989 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3990 std::string& S) {
3991 // Encode result type.
3992 getObjCEncodingForType(Decl->getResultType(), S);
3993 CharUnits ParmOffset;
3994 // Compute size of all parameters.
3995 for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3996 E = Decl->param_end(); PI != E; ++PI) {
3997 QualType PType = (*PI)->getType();
3998 CharUnits sz = getObjCEncodingTypeSize(PType);
3999 if (sz.isZero())
4000 return true;
4001
4002 assert (sz.isPositive() &&
4003 "getObjCEncodingForFunctionDecl - Incomplete param type");
4004 ParmOffset += sz;
4005 }
4006 S += charUnitsToString(ParmOffset);
4007 ParmOffset = CharUnits::Zero();
4008
4009 // Argument types.
4010 for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4011 E = Decl->param_end(); PI != E; ++PI) {
4012 ParmVarDecl *PVDecl = *PI;
4013 QualType PType = PVDecl->getOriginalType();
4014 if (const ArrayType *AT =
4015 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4016 // Use array's original type only if it has known number of
4017 // elements.
4018 if (!isa<ConstantArrayType>(AT))
4019 PType = PVDecl->getType();
4020 } else if (PType->isFunctionType())
4021 PType = PVDecl->getType();
4022 getObjCEncodingForType(PType, S);
4023 S += charUnitsToString(ParmOffset);
4024 ParmOffset += getObjCEncodingTypeSize(PType);
4025 }
4026
4027 return false;
4028 }
4029
4030 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
4031 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,std::string & S) const4032 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4033 std::string& S) const {
4034 // FIXME: This is not very efficient.
4035 // Encode type qualifer, 'in', 'inout', etc. for the return type.
4036 getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
4037 // Encode result type.
4038 getObjCEncodingForType(Decl->getResultType(), S);
4039 // Compute size of all parameters.
4040 // Start with computing size of a pointer in number of bytes.
4041 // FIXME: There might(should) be a better way of doing this computation!
4042 SourceLocation Loc;
4043 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4044 // The first two arguments (self and _cmd) are pointers; account for
4045 // their size.
4046 CharUnits ParmOffset = 2 * PtrSize;
4047 for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4048 E = Decl->sel_param_end(); PI != E; ++PI) {
4049 QualType PType = (*PI)->getType();
4050 CharUnits sz = getObjCEncodingTypeSize(PType);
4051 if (sz.isZero())
4052 return true;
4053
4054 assert (sz.isPositive() &&
4055 "getObjCEncodingForMethodDecl - Incomplete param type");
4056 ParmOffset += sz;
4057 }
4058 S += charUnitsToString(ParmOffset);
4059 S += "@0:";
4060 S += charUnitsToString(PtrSize);
4061
4062 // Argument types.
4063 ParmOffset = 2 * PtrSize;
4064 for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4065 E = Decl->sel_param_end(); PI != E; ++PI) {
4066 ParmVarDecl *PVDecl = *PI;
4067 QualType PType = PVDecl->getOriginalType();
4068 if (const ArrayType *AT =
4069 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4070 // Use array's original type only if it has known number of
4071 // elements.
4072 if (!isa<ConstantArrayType>(AT))
4073 PType = PVDecl->getType();
4074 } else if (PType->isFunctionType())
4075 PType = PVDecl->getType();
4076 // Process argument qualifiers for user supplied arguments; such as,
4077 // 'in', 'inout', etc.
4078 getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
4079 getObjCEncodingForType(PType, S);
4080 S += charUnitsToString(ParmOffset);
4081 ParmOffset += getObjCEncodingTypeSize(PType);
4082 }
4083
4084 return false;
4085 }
4086
4087 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
4088 /// property declaration. If non-NULL, Container must be either an
4089 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4090 /// NULL when getting encodings for protocol properties.
4091 /// Property attributes are stored as a comma-delimited C string. The simple
4092 /// attributes readonly and bycopy are encoded as single characters. The
4093 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
4094 /// encoded as single characters, followed by an identifier. Property types
4095 /// are also encoded as a parametrized attribute. The characters used to encode
4096 /// these attributes are defined by the following enumeration:
4097 /// @code
4098 /// enum PropertyAttributes {
4099 /// kPropertyReadOnly = 'R', // property is read-only.
4100 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned
4101 /// kPropertyByref = '&', // property is a reference to the value last assigned
4102 /// kPropertyDynamic = 'D', // property is dynamic
4103 /// kPropertyGetter = 'G', // followed by getter selector name
4104 /// kPropertySetter = 'S', // followed by setter selector name
4105 /// kPropertyInstanceVariable = 'V' // followed by instance variable name
4106 /// kPropertyType = 't' // followed by old-style type encoding.
4107 /// kPropertyWeak = 'W' // 'weak' property
4108 /// kPropertyStrong = 'P' // property GC'able
4109 /// kPropertyNonAtomic = 'N' // property non-atomic
4110 /// };
4111 /// @endcode
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container,std::string & S) const4112 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4113 const Decl *Container,
4114 std::string& S) const {
4115 // Collect information from the property implementation decl(s).
4116 bool Dynamic = false;
4117 ObjCPropertyImplDecl *SynthesizePID = 0;
4118
4119 // FIXME: Duplicated code due to poor abstraction.
4120 if (Container) {
4121 if (const ObjCCategoryImplDecl *CID =
4122 dyn_cast<ObjCCategoryImplDecl>(Container)) {
4123 for (ObjCCategoryImplDecl::propimpl_iterator
4124 i = CID->propimpl_begin(), e = CID->propimpl_end();
4125 i != e; ++i) {
4126 ObjCPropertyImplDecl *PID = *i;
4127 if (PID->getPropertyDecl() == PD) {
4128 if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4129 Dynamic = true;
4130 } else {
4131 SynthesizePID = PID;
4132 }
4133 }
4134 }
4135 } else {
4136 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4137 for (ObjCCategoryImplDecl::propimpl_iterator
4138 i = OID->propimpl_begin(), e = OID->propimpl_end();
4139 i != e; ++i) {
4140 ObjCPropertyImplDecl *PID = *i;
4141 if (PID->getPropertyDecl() == PD) {
4142 if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4143 Dynamic = true;
4144 } else {
4145 SynthesizePID = PID;
4146 }
4147 }
4148 }
4149 }
4150 }
4151
4152 // FIXME: This is not very efficient.
4153 S = "T";
4154
4155 // Encode result type.
4156 // GCC has some special rules regarding encoding of properties which
4157 // closely resembles encoding of ivars.
4158 getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4159 true /* outermost type */,
4160 true /* encoding for property */);
4161
4162 if (PD->isReadOnly()) {
4163 S += ",R";
4164 } else {
4165 switch (PD->getSetterKind()) {
4166 case ObjCPropertyDecl::Assign: break;
4167 case ObjCPropertyDecl::Copy: S += ",C"; break;
4168 case ObjCPropertyDecl::Retain: S += ",&"; break;
4169 }
4170 }
4171
4172 // It really isn't clear at all what this means, since properties
4173 // are "dynamic by default".
4174 if (Dynamic)
4175 S += ",D";
4176
4177 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4178 S += ",N";
4179
4180 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4181 S += ",G";
4182 S += PD->getGetterName().getAsString();
4183 }
4184
4185 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4186 S += ",S";
4187 S += PD->getSetterName().getAsString();
4188 }
4189
4190 if (SynthesizePID) {
4191 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4192 S += ",V";
4193 S += OID->getNameAsString();
4194 }
4195
4196 // FIXME: OBJCGC: weak & strong
4197 }
4198
4199 /// getLegacyIntegralTypeEncoding -
4200 /// Another legacy compatibility encoding: 32-bit longs are encoded as
4201 /// 'l' or 'L' , but not always. For typedefs, we need to use
4202 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
4203 ///
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const4204 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4205 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4206 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4207 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4208 PointeeTy = UnsignedIntTy;
4209 else
4210 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4211 PointeeTy = IntTy;
4212 }
4213 }
4214 }
4215
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field) const4216 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4217 const FieldDecl *Field) const {
4218 // We follow the behavior of gcc, expanding structures which are
4219 // directly pointed to, and expanding embedded structures. Note that
4220 // these rules are sufficient to prevent recursive encoding of the
4221 // same type.
4222 getObjCEncodingForTypeImpl(T, S, true, true, Field,
4223 true /* outermost type */);
4224 }
4225
ObjCEncodingForPrimitiveKind(const ASTContext * C,QualType T)4226 static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4227 switch (T->getAs<BuiltinType>()->getKind()) {
4228 default: assert(0 && "Unhandled builtin type kind");
4229 case BuiltinType::Void: return 'v';
4230 case BuiltinType::Bool: return 'B';
4231 case BuiltinType::Char_U:
4232 case BuiltinType::UChar: return 'C';
4233 case BuiltinType::UShort: return 'S';
4234 case BuiltinType::UInt: return 'I';
4235 case BuiltinType::ULong:
4236 return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4237 case BuiltinType::UInt128: return 'T';
4238 case BuiltinType::ULongLong: return 'Q';
4239 case BuiltinType::Char_S:
4240 case BuiltinType::SChar: return 'c';
4241 case BuiltinType::Short: return 's';
4242 case BuiltinType::WChar_S:
4243 case BuiltinType::WChar_U:
4244 case BuiltinType::Int: return 'i';
4245 case BuiltinType::Long:
4246 return C->getIntWidth(T) == 32 ? 'l' : 'q';
4247 case BuiltinType::LongLong: return 'q';
4248 case BuiltinType::Int128: return 't';
4249 case BuiltinType::Float: return 'f';
4250 case BuiltinType::Double: return 'd';
4251 case BuiltinType::LongDouble: return 'D';
4252 }
4253 }
4254
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)4255 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4256 QualType T, const FieldDecl *FD) {
4257 const Expr *E = FD->getBitWidth();
4258 assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
4259 S += 'b';
4260 // The NeXT runtime encodes bit fields as b followed by the number of bits.
4261 // The GNU runtime requires more information; bitfields are encoded as b,
4262 // then the offset (in bits) of the first element, then the type of the
4263 // bitfield, then the size in bits. For example, in this structure:
4264 //
4265 // struct
4266 // {
4267 // int integer;
4268 // int flags:2;
4269 // };
4270 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4271 // runtime, but b32i2 for the GNU runtime. The reason for this extra
4272 // information is not especially sensible, but we're stuck with it for
4273 // compatibility with GCC, although providing it breaks anything that
4274 // actually uses runtime introspection and wants to work on both runtimes...
4275 if (!Ctx->getLangOptions().NeXTRuntime) {
4276 const RecordDecl *RD = FD->getParent();
4277 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4278 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4279 if (T->isEnumeralType())
4280 S += 'i';
4281 else
4282 S += ObjCEncodingForPrimitiveKind(Ctx, T);
4283 }
4284 unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4285 S += llvm::utostr(N);
4286 }
4287
4288 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,bool ExpandPointedToStructures,bool ExpandStructures,const FieldDecl * FD,bool OutermostType,bool EncodingProperty,bool StructField) const4289 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4290 bool ExpandPointedToStructures,
4291 bool ExpandStructures,
4292 const FieldDecl *FD,
4293 bool OutermostType,
4294 bool EncodingProperty,
4295 bool StructField) const {
4296 if (T->getAs<BuiltinType>()) {
4297 if (FD && FD->isBitField())
4298 return EncodeBitField(this, S, T, FD);
4299 S += ObjCEncodingForPrimitiveKind(this, T);
4300 return;
4301 }
4302
4303 if (const ComplexType *CT = T->getAs<ComplexType>()) {
4304 S += 'j';
4305 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4306 false);
4307 return;
4308 }
4309
4310 // encoding for pointer or r3eference types.
4311 QualType PointeeTy;
4312 if (const PointerType *PT = T->getAs<PointerType>()) {
4313 if (PT->isObjCSelType()) {
4314 S += ':';
4315 return;
4316 }
4317 PointeeTy = PT->getPointeeType();
4318 }
4319 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4320 PointeeTy = RT->getPointeeType();
4321 if (!PointeeTy.isNull()) {
4322 bool isReadOnly = false;
4323 // For historical/compatibility reasons, the read-only qualifier of the
4324 // pointee gets emitted _before_ the '^'. The read-only qualifier of
4325 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4326 // Also, do not emit the 'r' for anything but the outermost type!
4327 if (isa<TypedefType>(T.getTypePtr())) {
4328 if (OutermostType && T.isConstQualified()) {
4329 isReadOnly = true;
4330 S += 'r';
4331 }
4332 } else if (OutermostType) {
4333 QualType P = PointeeTy;
4334 while (P->getAs<PointerType>())
4335 P = P->getAs<PointerType>()->getPointeeType();
4336 if (P.isConstQualified()) {
4337 isReadOnly = true;
4338 S += 'r';
4339 }
4340 }
4341 if (isReadOnly) {
4342 // Another legacy compatibility encoding. Some ObjC qualifier and type
4343 // combinations need to be rearranged.
4344 // Rewrite "in const" from "nr" to "rn"
4345 if (llvm::StringRef(S).endswith("nr"))
4346 S.replace(S.end()-2, S.end(), "rn");
4347 }
4348
4349 if (PointeeTy->isCharType()) {
4350 // char pointer types should be encoded as '*' unless it is a
4351 // type that has been typedef'd to 'BOOL'.
4352 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4353 S += '*';
4354 return;
4355 }
4356 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4357 // GCC binary compat: Need to convert "struct objc_class *" to "#".
4358 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4359 S += '#';
4360 return;
4361 }
4362 // GCC binary compat: Need to convert "struct objc_object *" to "@".
4363 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4364 S += '@';
4365 return;
4366 }
4367 // fall through...
4368 }
4369 S += '^';
4370 getLegacyIntegralTypeEncoding(PointeeTy);
4371
4372 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4373 NULL);
4374 return;
4375 }
4376
4377 if (const ArrayType *AT =
4378 // Ignore type qualifiers etc.
4379 dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4380 if (isa<IncompleteArrayType>(AT) && !StructField) {
4381 // Incomplete arrays are encoded as a pointer to the array element.
4382 S += '^';
4383
4384 getObjCEncodingForTypeImpl(AT->getElementType(), S,
4385 false, ExpandStructures, FD);
4386 } else {
4387 S += '[';
4388
4389 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4390 if (getTypeSize(CAT->getElementType()) == 0)
4391 S += '0';
4392 else
4393 S += llvm::utostr(CAT->getSize().getZExtValue());
4394 } else {
4395 //Variable length arrays are encoded as a regular array with 0 elements.
4396 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4397 "Unknown array type!");
4398 S += '0';
4399 }
4400
4401 getObjCEncodingForTypeImpl(AT->getElementType(), S,
4402 false, ExpandStructures, FD);
4403 S += ']';
4404 }
4405 return;
4406 }
4407
4408 if (T->getAs<FunctionType>()) {
4409 S += '?';
4410 return;
4411 }
4412
4413 if (const RecordType *RTy = T->getAs<RecordType>()) {
4414 RecordDecl *RDecl = RTy->getDecl();
4415 S += RDecl->isUnion() ? '(' : '{';
4416 // Anonymous structures print as '?'
4417 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4418 S += II->getName();
4419 if (ClassTemplateSpecializationDecl *Spec
4420 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4421 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4422 std::string TemplateArgsStr
4423 = TemplateSpecializationType::PrintTemplateArgumentList(
4424 TemplateArgs.data(),
4425 TemplateArgs.size(),
4426 (*this).PrintingPolicy);
4427
4428 S += TemplateArgsStr;
4429 }
4430 } else {
4431 S += '?';
4432 }
4433 if (ExpandStructures) {
4434 S += '=';
4435 if (!RDecl->isUnion()) {
4436 getObjCEncodingForStructureImpl(RDecl, S, FD);
4437 } else {
4438 for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4439 FieldEnd = RDecl->field_end();
4440 Field != FieldEnd; ++Field) {
4441 if (FD) {
4442 S += '"';
4443 S += Field->getNameAsString();
4444 S += '"';
4445 }
4446
4447 // Special case bit-fields.
4448 if (Field->isBitField()) {
4449 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4450 (*Field));
4451 } else {
4452 QualType qt = Field->getType();
4453 getLegacyIntegralTypeEncoding(qt);
4454 getObjCEncodingForTypeImpl(qt, S, false, true,
4455 FD, /*OutermostType*/false,
4456 /*EncodingProperty*/false,
4457 /*StructField*/true);
4458 }
4459 }
4460 }
4461 }
4462 S += RDecl->isUnion() ? ')' : '}';
4463 return;
4464 }
4465
4466 if (T->isEnumeralType()) {
4467 if (FD && FD->isBitField())
4468 EncodeBitField(this, S, T, FD);
4469 else
4470 S += 'i';
4471 return;
4472 }
4473
4474 if (T->isBlockPointerType()) {
4475 S += "@?"; // Unlike a pointer-to-function, which is "^?".
4476 return;
4477 }
4478
4479 // Ignore protocol qualifiers when mangling at this level.
4480 if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4481 T = OT->getBaseType();
4482
4483 if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4484 // @encode(class_name)
4485 ObjCInterfaceDecl *OI = OIT->getDecl();
4486 S += '{';
4487 const IdentifierInfo *II = OI->getIdentifier();
4488 S += II->getName();
4489 S += '=';
4490 llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4491 DeepCollectObjCIvars(OI, true, Ivars);
4492 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4493 FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4494 if (Field->isBitField())
4495 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4496 else
4497 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4498 }
4499 S += '}';
4500 return;
4501 }
4502
4503 if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4504 if (OPT->isObjCIdType()) {
4505 S += '@';
4506 return;
4507 }
4508
4509 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4510 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4511 // Since this is a binary compatibility issue, need to consult with runtime
4512 // folks. Fortunately, this is a *very* obsure construct.
4513 S += '#';
4514 return;
4515 }
4516
4517 if (OPT->isObjCQualifiedIdType()) {
4518 getObjCEncodingForTypeImpl(getObjCIdType(), S,
4519 ExpandPointedToStructures,
4520 ExpandStructures, FD);
4521 if (FD || EncodingProperty) {
4522 // Note that we do extended encoding of protocol qualifer list
4523 // Only when doing ivar or property encoding.
4524 S += '"';
4525 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4526 E = OPT->qual_end(); I != E; ++I) {
4527 S += '<';
4528 S += (*I)->getNameAsString();
4529 S += '>';
4530 }
4531 S += '"';
4532 }
4533 return;
4534 }
4535
4536 QualType PointeeTy = OPT->getPointeeType();
4537 if (!EncodingProperty &&
4538 isa<TypedefType>(PointeeTy.getTypePtr())) {
4539 // Another historical/compatibility reason.
4540 // We encode the underlying type which comes out as
4541 // {...};
4542 S += '^';
4543 getObjCEncodingForTypeImpl(PointeeTy, S,
4544 false, ExpandPointedToStructures,
4545 NULL);
4546 return;
4547 }
4548
4549 S += '@';
4550 if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4551 S += '"';
4552 S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4553 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4554 E = OPT->qual_end(); I != E; ++I) {
4555 S += '<';
4556 S += (*I)->getNameAsString();
4557 S += '>';
4558 }
4559 S += '"';
4560 }
4561 return;
4562 }
4563
4564 // gcc just blithely ignores member pointers.
4565 // TODO: maybe there should be a mangling for these
4566 if (T->getAs<MemberPointerType>())
4567 return;
4568
4569 if (T->isVectorType()) {
4570 // This matches gcc's encoding, even though technically it is
4571 // insufficient.
4572 // FIXME. We should do a better job than gcc.
4573 return;
4574 }
4575
4576 assert(0 && "@encode for type not implemented!");
4577 }
4578
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases) const4579 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4580 std::string &S,
4581 const FieldDecl *FD,
4582 bool includeVBases) const {
4583 assert(RDecl && "Expected non-null RecordDecl");
4584 assert(!RDecl->isUnion() && "Should not be called for unions");
4585 if (!RDecl->getDefinition())
4586 return;
4587
4588 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4589 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4590 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4591
4592 if (CXXRec) {
4593 for (CXXRecordDecl::base_class_iterator
4594 BI = CXXRec->bases_begin(),
4595 BE = CXXRec->bases_end(); BI != BE; ++BI) {
4596 if (!BI->isVirtual()) {
4597 CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4598 if (base->isEmpty())
4599 continue;
4600 uint64_t offs = layout.getBaseClassOffsetInBits(base);
4601 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4602 std::make_pair(offs, base));
4603 }
4604 }
4605 }
4606
4607 unsigned i = 0;
4608 for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4609 FieldEnd = RDecl->field_end();
4610 Field != FieldEnd; ++Field, ++i) {
4611 uint64_t offs = layout.getFieldOffset(i);
4612 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4613 std::make_pair(offs, *Field));
4614 }
4615
4616 if (CXXRec && includeVBases) {
4617 for (CXXRecordDecl::base_class_iterator
4618 BI = CXXRec->vbases_begin(),
4619 BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4620 CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4621 if (base->isEmpty())
4622 continue;
4623 uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4624 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4625 std::make_pair(offs, base));
4626 }
4627 }
4628
4629 CharUnits size;
4630 if (CXXRec) {
4631 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4632 } else {
4633 size = layout.getSize();
4634 }
4635
4636 uint64_t CurOffs = 0;
4637 std::multimap<uint64_t, NamedDecl *>::iterator
4638 CurLayObj = FieldOrBaseOffsets.begin();
4639
4640 if (CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) {
4641 assert(CXXRec && CXXRec->isDynamicClass() &&
4642 "Offset 0 was empty but no VTable ?");
4643 if (FD) {
4644 S += "\"_vptr$";
4645 std::string recname = CXXRec->getNameAsString();
4646 if (recname.empty()) recname = "?";
4647 S += recname;
4648 S += '"';
4649 }
4650 S += "^^?";
4651 CurOffs += getTypeSize(VoidPtrTy);
4652 }
4653
4654 if (!RDecl->hasFlexibleArrayMember()) {
4655 // Mark the end of the structure.
4656 uint64_t offs = toBits(size);
4657 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4658 std::make_pair(offs, (NamedDecl*)0));
4659 }
4660
4661 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4662 assert(CurOffs <= CurLayObj->first);
4663
4664 if (CurOffs < CurLayObj->first) {
4665 uint64_t padding = CurLayObj->first - CurOffs;
4666 // FIXME: There doesn't seem to be a way to indicate in the encoding that
4667 // packing/alignment of members is different that normal, in which case
4668 // the encoding will be out-of-sync with the real layout.
4669 // If the runtime switches to just consider the size of types without
4670 // taking into account alignment, we could make padding explicit in the
4671 // encoding (e.g. using arrays of chars). The encoding strings would be
4672 // longer then though.
4673 CurOffs += padding;
4674 }
4675
4676 NamedDecl *dcl = CurLayObj->second;
4677 if (dcl == 0)
4678 break; // reached end of structure.
4679
4680 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4681 // We expand the bases without their virtual bases since those are going
4682 // in the initial structure. Note that this differs from gcc which
4683 // expands virtual bases each time one is encountered in the hierarchy,
4684 // making the encoding type bigger than it really is.
4685 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4686 assert(!base->isEmpty());
4687 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4688 } else {
4689 FieldDecl *field = cast<FieldDecl>(dcl);
4690 if (FD) {
4691 S += '"';
4692 S += field->getNameAsString();
4693 S += '"';
4694 }
4695
4696 if (field->isBitField()) {
4697 EncodeBitField(this, S, field->getType(), field);
4698 CurOffs += field->getBitWidth()->EvaluateAsInt(*this).getZExtValue();
4699 } else {
4700 QualType qt = field->getType();
4701 getLegacyIntegralTypeEncoding(qt);
4702 getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4703 /*OutermostType*/false,
4704 /*EncodingProperty*/false,
4705 /*StructField*/true);
4706 CurOffs += getTypeSize(field->getType());
4707 }
4708 }
4709 }
4710 }
4711
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const4712 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4713 std::string& S) const {
4714 if (QT & Decl::OBJC_TQ_In)
4715 S += 'n';
4716 if (QT & Decl::OBJC_TQ_Inout)
4717 S += 'N';
4718 if (QT & Decl::OBJC_TQ_Out)
4719 S += 'o';
4720 if (QT & Decl::OBJC_TQ_Bycopy)
4721 S += 'O';
4722 if (QT & Decl::OBJC_TQ_Byref)
4723 S += 'R';
4724 if (QT & Decl::OBJC_TQ_Oneway)
4725 S += 'V';
4726 }
4727
setBuiltinVaListType(QualType T)4728 void ASTContext::setBuiltinVaListType(QualType T) {
4729 assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4730
4731 BuiltinVaListType = T;
4732 }
4733
setObjCIdType(QualType T)4734 void ASTContext::setObjCIdType(QualType T) {
4735 ObjCIdTypedefType = T;
4736 }
4737
setObjCSelType(QualType T)4738 void ASTContext::setObjCSelType(QualType T) {
4739 ObjCSelTypedefType = T;
4740 }
4741
setObjCProtoType(QualType QT)4742 void ASTContext::setObjCProtoType(QualType QT) {
4743 ObjCProtoType = QT;
4744 }
4745
setObjCClassType(QualType T)4746 void ASTContext::setObjCClassType(QualType T) {
4747 ObjCClassTypedefType = T;
4748 }
4749
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)4750 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4751 assert(ObjCConstantStringType.isNull() &&
4752 "'NSConstantString' type already set!");
4753
4754 ObjCConstantStringType = getObjCInterfaceType(Decl);
4755 }
4756
4757 /// \brief Retrieve the template name that corresponds to a non-empty
4758 /// lookup.
4759 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const4760 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4761 UnresolvedSetIterator End) const {
4762 unsigned size = End - Begin;
4763 assert(size > 1 && "set is not overloaded!");
4764
4765 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4766 size * sizeof(FunctionTemplateDecl*));
4767 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4768
4769 NamedDecl **Storage = OT->getStorage();
4770 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4771 NamedDecl *D = *I;
4772 assert(isa<FunctionTemplateDecl>(D) ||
4773 (isa<UsingShadowDecl>(D) &&
4774 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4775 *Storage++ = D;
4776 }
4777
4778 return TemplateName(OT);
4779 }
4780
4781 /// \brief Retrieve the template name that represents a qualified
4782 /// template name such as \c std::vector.
4783 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const4784 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4785 bool TemplateKeyword,
4786 TemplateDecl *Template) const {
4787 assert(NNS && "Missing nested-name-specifier in qualified template name");
4788
4789 // FIXME: Canonicalization?
4790 llvm::FoldingSetNodeID ID;
4791 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4792
4793 void *InsertPos = 0;
4794 QualifiedTemplateName *QTN =
4795 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4796 if (!QTN) {
4797 QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4798 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4799 }
4800
4801 return TemplateName(QTN);
4802 }
4803
4804 /// \brief Retrieve the template name that represents a dependent
4805 /// template name such as \c MetaFun::template apply.
4806 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const4807 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4808 const IdentifierInfo *Name) const {
4809 assert((!NNS || NNS->isDependent()) &&
4810 "Nested name specifier must be dependent");
4811
4812 llvm::FoldingSetNodeID ID;
4813 DependentTemplateName::Profile(ID, NNS, Name);
4814
4815 void *InsertPos = 0;
4816 DependentTemplateName *QTN =
4817 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4818
4819 if (QTN)
4820 return TemplateName(QTN);
4821
4822 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4823 if (CanonNNS == NNS) {
4824 QTN = new (*this,4) DependentTemplateName(NNS, Name);
4825 } else {
4826 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4827 QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4828 DependentTemplateName *CheckQTN =
4829 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4830 assert(!CheckQTN && "Dependent type name canonicalization broken");
4831 (void)CheckQTN;
4832 }
4833
4834 DependentTemplateNames.InsertNode(QTN, InsertPos);
4835 return TemplateName(QTN);
4836 }
4837
4838 /// \brief Retrieve the template name that represents a dependent
4839 /// template name such as \c MetaFun::template operator+.
4840 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const4841 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4842 OverloadedOperatorKind Operator) const {
4843 assert((!NNS || NNS->isDependent()) &&
4844 "Nested name specifier must be dependent");
4845
4846 llvm::FoldingSetNodeID ID;
4847 DependentTemplateName::Profile(ID, NNS, Operator);
4848
4849 void *InsertPos = 0;
4850 DependentTemplateName *QTN
4851 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4852
4853 if (QTN)
4854 return TemplateName(QTN);
4855
4856 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4857 if (CanonNNS == NNS) {
4858 QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4859 } else {
4860 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4861 QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4862
4863 DependentTemplateName *CheckQTN
4864 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4865 assert(!CheckQTN && "Dependent template name canonicalization broken");
4866 (void)CheckQTN;
4867 }
4868
4869 DependentTemplateNames.InsertNode(QTN, InsertPos);
4870 return TemplateName(QTN);
4871 }
4872
4873 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const4874 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
4875 TemplateName replacement) const {
4876 llvm::FoldingSetNodeID ID;
4877 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
4878
4879 void *insertPos = 0;
4880 SubstTemplateTemplateParmStorage *subst
4881 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
4882
4883 if (!subst) {
4884 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
4885 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
4886 }
4887
4888 return TemplateName(subst);
4889 }
4890
4891 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const4892 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4893 const TemplateArgument &ArgPack) const {
4894 ASTContext &Self = const_cast<ASTContext &>(*this);
4895 llvm::FoldingSetNodeID ID;
4896 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4897
4898 void *InsertPos = 0;
4899 SubstTemplateTemplateParmPackStorage *Subst
4900 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4901
4902 if (!Subst) {
4903 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
4904 ArgPack.pack_size(),
4905 ArgPack.pack_begin());
4906 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4907 }
4908
4909 return TemplateName(Subst);
4910 }
4911
4912 /// getFromTargetType - Given one of the integer types provided by
4913 /// TargetInfo, produce the corresponding type. The unsigned @p Type
4914 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const4915 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4916 switch (Type) {
4917 case TargetInfo::NoInt: return CanQualType();
4918 case TargetInfo::SignedShort: return ShortTy;
4919 case TargetInfo::UnsignedShort: return UnsignedShortTy;
4920 case TargetInfo::SignedInt: return IntTy;
4921 case TargetInfo::UnsignedInt: return UnsignedIntTy;
4922 case TargetInfo::SignedLong: return LongTy;
4923 case TargetInfo::UnsignedLong: return UnsignedLongTy;
4924 case TargetInfo::SignedLongLong: return LongLongTy;
4925 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4926 }
4927
4928 assert(false && "Unhandled TargetInfo::IntType value");
4929 return CanQualType();
4930 }
4931
4932 //===----------------------------------------------------------------------===//
4933 // Type Predicates.
4934 //===----------------------------------------------------------------------===//
4935
4936 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4937 /// garbage collection attribute.
4938 ///
getObjCGCAttrKind(QualType Ty) const4939 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4940 if (getLangOptions().getGCMode() == LangOptions::NonGC)
4941 return Qualifiers::GCNone;
4942
4943 assert(getLangOptions().ObjC1);
4944 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4945
4946 // Default behaviour under objective-C's gc is for ObjC pointers
4947 // (or pointers to them) be treated as though they were declared
4948 // as __strong.
4949 if (GCAttrs == Qualifiers::GCNone) {
4950 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4951 return Qualifiers::Strong;
4952 else if (Ty->isPointerType())
4953 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4954 } else {
4955 // It's not valid to set GC attributes on anything that isn't a
4956 // pointer.
4957 #ifndef NDEBUG
4958 QualType CT = Ty->getCanonicalTypeInternal();
4959 while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4960 CT = AT->getElementType();
4961 assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4962 #endif
4963 }
4964 return GCAttrs;
4965 }
4966
4967 //===----------------------------------------------------------------------===//
4968 // Type Compatibility Testing
4969 //===----------------------------------------------------------------------===//
4970
4971 /// areCompatVectorTypes - Return true if the two specified vector types are
4972 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)4973 static bool areCompatVectorTypes(const VectorType *LHS,
4974 const VectorType *RHS) {
4975 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4976 return LHS->getElementType() == RHS->getElementType() &&
4977 LHS->getNumElements() == RHS->getNumElements();
4978 }
4979
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)4980 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4981 QualType SecondVec) {
4982 assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4983 assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4984
4985 if (hasSameUnqualifiedType(FirstVec, SecondVec))
4986 return true;
4987
4988 // Treat Neon vector types and most AltiVec vector types as if they are the
4989 // equivalent GCC vector types.
4990 const VectorType *First = FirstVec->getAs<VectorType>();
4991 const VectorType *Second = SecondVec->getAs<VectorType>();
4992 if (First->getNumElements() == Second->getNumElements() &&
4993 hasSameType(First->getElementType(), Second->getElementType()) &&
4994 First->getVectorKind() != VectorType::AltiVecPixel &&
4995 First->getVectorKind() != VectorType::AltiVecBool &&
4996 Second->getVectorKind() != VectorType::AltiVecPixel &&
4997 Second->getVectorKind() != VectorType::AltiVecBool)
4998 return true;
4999
5000 return false;
5001 }
5002
5003 //===----------------------------------------------------------------------===//
5004 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5005 //===----------------------------------------------------------------------===//
5006
5007 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5008 /// inheritance hierarchy of 'rProto'.
5009 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const5010 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5011 ObjCProtocolDecl *rProto) const {
5012 if (lProto == rProto)
5013 return true;
5014 for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5015 E = rProto->protocol_end(); PI != E; ++PI)
5016 if (ProtocolCompatibleWithProtocol(lProto, *PI))
5017 return true;
5018 return false;
5019 }
5020
5021 /// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5022 /// return true if lhs's protocols conform to rhs's protocol; false
5023 /// otherwise.
QualifiedIdConformsQualifiedId(QualType lhs,QualType rhs)5024 bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5025 if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5026 return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5027 return false;
5028 }
5029
5030 /// ObjCQualifiedClassTypesAreCompatible - compare Class<p,...> and
5031 /// Class<p1, ...>.
ObjCQualifiedClassTypesAreCompatible(QualType lhs,QualType rhs)5032 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5033 QualType rhs) {
5034 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5035 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5036 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5037
5038 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5039 E = lhsQID->qual_end(); I != E; ++I) {
5040 bool match = false;
5041 ObjCProtocolDecl *lhsProto = *I;
5042 for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5043 E = rhsOPT->qual_end(); J != E; ++J) {
5044 ObjCProtocolDecl *rhsProto = *J;
5045 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5046 match = true;
5047 break;
5048 }
5049 }
5050 if (!match)
5051 return false;
5052 }
5053 return true;
5054 }
5055
5056 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5057 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(QualType lhs,QualType rhs,bool compare)5058 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5059 bool compare) {
5060 // Allow id<P..> and an 'id' or void* type in all cases.
5061 if (lhs->isVoidPointerType() ||
5062 lhs->isObjCIdType() || lhs->isObjCClassType())
5063 return true;
5064 else if (rhs->isVoidPointerType() ||
5065 rhs->isObjCIdType() || rhs->isObjCClassType())
5066 return true;
5067
5068 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5069 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5070
5071 if (!rhsOPT) return false;
5072
5073 if (rhsOPT->qual_empty()) {
5074 // If the RHS is a unqualified interface pointer "NSString*",
5075 // make sure we check the class hierarchy.
5076 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5077 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5078 E = lhsQID->qual_end(); I != E; ++I) {
5079 // when comparing an id<P> on lhs with a static type on rhs,
5080 // see if static class implements all of id's protocols, directly or
5081 // through its super class and categories.
5082 if (!rhsID->ClassImplementsProtocol(*I, true))
5083 return false;
5084 }
5085 }
5086 // If there are no qualifiers and no interface, we have an 'id'.
5087 return true;
5088 }
5089 // Both the right and left sides have qualifiers.
5090 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5091 E = lhsQID->qual_end(); I != E; ++I) {
5092 ObjCProtocolDecl *lhsProto = *I;
5093 bool match = false;
5094
5095 // when comparing an id<P> on lhs with a static type on rhs,
5096 // see if static class implements all of id's protocols, directly or
5097 // through its super class and categories.
5098 for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5099 E = rhsOPT->qual_end(); J != E; ++J) {
5100 ObjCProtocolDecl *rhsProto = *J;
5101 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5102 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5103 match = true;
5104 break;
5105 }
5106 }
5107 // If the RHS is a qualified interface pointer "NSString<P>*",
5108 // make sure we check the class hierarchy.
5109 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5110 for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5111 E = lhsQID->qual_end(); I != E; ++I) {
5112 // when comparing an id<P> on lhs with a static type on rhs,
5113 // see if static class implements all of id's protocols, directly or
5114 // through its super class and categories.
5115 if (rhsID->ClassImplementsProtocol(*I, true)) {
5116 match = true;
5117 break;
5118 }
5119 }
5120 }
5121 if (!match)
5122 return false;
5123 }
5124
5125 return true;
5126 }
5127
5128 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5129 assert(rhsQID && "One of the LHS/RHS should be id<x>");
5130
5131 if (const ObjCObjectPointerType *lhsOPT =
5132 lhs->getAsObjCInterfacePointerType()) {
5133 // If both the right and left sides have qualifiers.
5134 for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5135 E = lhsOPT->qual_end(); I != E; ++I) {
5136 ObjCProtocolDecl *lhsProto = *I;
5137 bool match = false;
5138
5139 // when comparing an id<P> on rhs with a static type on lhs,
5140 // see if static class implements all of id's protocols, directly or
5141 // through its super class and categories.
5142 // First, lhs protocols in the qualifier list must be found, direct
5143 // or indirect in rhs's qualifier list or it is a mismatch.
5144 for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5145 E = rhsQID->qual_end(); J != E; ++J) {
5146 ObjCProtocolDecl *rhsProto = *J;
5147 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5148 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5149 match = true;
5150 break;
5151 }
5152 }
5153 if (!match)
5154 return false;
5155 }
5156
5157 // Static class's protocols, or its super class or category protocols
5158 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5159 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5160 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5161 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5162 // This is rather dubious but matches gcc's behavior. If lhs has
5163 // no type qualifier and its class has no static protocol(s)
5164 // assume that it is mismatch.
5165 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5166 return false;
5167 for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5168 LHSInheritedProtocols.begin(),
5169 E = LHSInheritedProtocols.end(); I != E; ++I) {
5170 bool match = false;
5171 ObjCProtocolDecl *lhsProto = (*I);
5172 for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5173 E = rhsQID->qual_end(); J != E; ++J) {
5174 ObjCProtocolDecl *rhsProto = *J;
5175 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5176 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5177 match = true;
5178 break;
5179 }
5180 }
5181 if (!match)
5182 return false;
5183 }
5184 }
5185 return true;
5186 }
5187 return false;
5188 }
5189
5190 /// canAssignObjCInterfaces - Return true if the two interface types are
5191 /// compatible for assignment from RHS to LHS. This handles validation of any
5192 /// protocol qualifiers on the LHS or RHS.
5193 ///
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)5194 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5195 const ObjCObjectPointerType *RHSOPT) {
5196 const ObjCObjectType* LHS = LHSOPT->getObjectType();
5197 const ObjCObjectType* RHS = RHSOPT->getObjectType();
5198
5199 // If either type represents the built-in 'id' or 'Class' types, return true.
5200 if (LHS->isObjCUnqualifiedIdOrClass() ||
5201 RHS->isObjCUnqualifiedIdOrClass())
5202 return true;
5203
5204 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5205 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5206 QualType(RHSOPT,0),
5207 false);
5208
5209 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5210 return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5211 QualType(RHSOPT,0));
5212
5213 // If we have 2 user-defined types, fall into that path.
5214 if (LHS->getInterface() && RHS->getInterface())
5215 return canAssignObjCInterfaces(LHS, RHS);
5216
5217 return false;
5218 }
5219
5220 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5221 /// for providing type-safety for objective-c pointers used to pass/return
5222 /// arguments in block literals. When passed as arguments, passing 'A*' where
5223 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5224 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)5225 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5226 const ObjCObjectPointerType *LHSOPT,
5227 const ObjCObjectPointerType *RHSOPT,
5228 bool BlockReturnType) {
5229 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5230 return true;
5231
5232 if (LHSOPT->isObjCBuiltinType()) {
5233 return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5234 }
5235
5236 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5237 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5238 QualType(RHSOPT,0),
5239 false);
5240
5241 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5242 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5243 if (LHS && RHS) { // We have 2 user-defined types.
5244 if (LHS != RHS) {
5245 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5246 return BlockReturnType;
5247 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5248 return !BlockReturnType;
5249 }
5250 else
5251 return true;
5252 }
5253 return false;
5254 }
5255
5256 /// getIntersectionOfProtocols - This routine finds the intersection of set
5257 /// of protocols inherited from two distinct objective-c pointer objects.
5258 /// It is used to build composite qualifier list of the composite type of
5259 /// the conditional expression involving two objective-c pointer objects.
5260 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,llvm::SmallVectorImpl<ObjCProtocolDecl * > & IntersectionOfProtocols)5261 void getIntersectionOfProtocols(ASTContext &Context,
5262 const ObjCObjectPointerType *LHSOPT,
5263 const ObjCObjectPointerType *RHSOPT,
5264 llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5265
5266 const ObjCObjectType* LHS = LHSOPT->getObjectType();
5267 const ObjCObjectType* RHS = RHSOPT->getObjectType();
5268 assert(LHS->getInterface() && "LHS must have an interface base");
5269 assert(RHS->getInterface() && "RHS must have an interface base");
5270
5271 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5272 unsigned LHSNumProtocols = LHS->getNumProtocols();
5273 if (LHSNumProtocols > 0)
5274 InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5275 else {
5276 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5277 Context.CollectInheritedProtocols(LHS->getInterface(),
5278 LHSInheritedProtocols);
5279 InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5280 LHSInheritedProtocols.end());
5281 }
5282
5283 unsigned RHSNumProtocols = RHS->getNumProtocols();
5284 if (RHSNumProtocols > 0) {
5285 ObjCProtocolDecl **RHSProtocols =
5286 const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5287 for (unsigned i = 0; i < RHSNumProtocols; ++i)
5288 if (InheritedProtocolSet.count(RHSProtocols[i]))
5289 IntersectionOfProtocols.push_back(RHSProtocols[i]);
5290 }
5291 else {
5292 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5293 Context.CollectInheritedProtocols(RHS->getInterface(),
5294 RHSInheritedProtocols);
5295 for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5296 RHSInheritedProtocols.begin(),
5297 E = RHSInheritedProtocols.end(); I != E; ++I)
5298 if (InheritedProtocolSet.count((*I)))
5299 IntersectionOfProtocols.push_back((*I));
5300 }
5301 }
5302
5303 /// areCommonBaseCompatible - Returns common base class of the two classes if
5304 /// one found. Note that this is O'2 algorithm. But it will be called as the
5305 /// last type comparison in a ?-exp of ObjC pointer types before a
5306 /// warning is issued. So, its invokation is extremely rare.
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)5307 QualType ASTContext::areCommonBaseCompatible(
5308 const ObjCObjectPointerType *Lptr,
5309 const ObjCObjectPointerType *Rptr) {
5310 const ObjCObjectType *LHS = Lptr->getObjectType();
5311 const ObjCObjectType *RHS = Rptr->getObjectType();
5312 const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5313 const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5314 if (!LDecl || !RDecl || (LDecl == RDecl))
5315 return QualType();
5316
5317 do {
5318 LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5319 if (canAssignObjCInterfaces(LHS, RHS)) {
5320 llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
5321 getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5322
5323 QualType Result = QualType(LHS, 0);
5324 if (!Protocols.empty())
5325 Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5326 Result = getObjCObjectPointerType(Result);
5327 return Result;
5328 }
5329 } while ((LDecl = LDecl->getSuperClass()));
5330
5331 return QualType();
5332 }
5333
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)5334 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5335 const ObjCObjectType *RHS) {
5336 assert(LHS->getInterface() && "LHS is not an interface type");
5337 assert(RHS->getInterface() && "RHS is not an interface type");
5338
5339 // Verify that the base decls are compatible: the RHS must be a subclass of
5340 // the LHS.
5341 if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5342 return false;
5343
5344 // RHS must have a superset of the protocols in the LHS. If the LHS is not
5345 // protocol qualified at all, then we are good.
5346 if (LHS->getNumProtocols() == 0)
5347 return true;
5348
5349 // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't,
5350 // more detailed analysis is required.
5351 if (RHS->getNumProtocols() == 0) {
5352 // OK, if LHS is a superclass of RHS *and*
5353 // this superclass is assignment compatible with LHS.
5354 // false otherwise.
5355 bool IsSuperClass =
5356 LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5357 if (IsSuperClass) {
5358 // OK if conversion of LHS to SuperClass results in narrowing of types
5359 // ; i.e., SuperClass may implement at least one of the protocols
5360 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5361 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5362 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5363 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5364 // If super class has no protocols, it is not a match.
5365 if (SuperClassInheritedProtocols.empty())
5366 return false;
5367
5368 for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5369 LHSPE = LHS->qual_end();
5370 LHSPI != LHSPE; LHSPI++) {
5371 bool SuperImplementsProtocol = false;
5372 ObjCProtocolDecl *LHSProto = (*LHSPI);
5373
5374 for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5375 SuperClassInheritedProtocols.begin(),
5376 E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5377 ObjCProtocolDecl *SuperClassProto = (*I);
5378 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5379 SuperImplementsProtocol = true;
5380 break;
5381 }
5382 }
5383 if (!SuperImplementsProtocol)
5384 return false;
5385 }
5386 return true;
5387 }
5388 return false;
5389 }
5390
5391 for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5392 LHSPE = LHS->qual_end();
5393 LHSPI != LHSPE; LHSPI++) {
5394 bool RHSImplementsProtocol = false;
5395
5396 // If the RHS doesn't implement the protocol on the left, the types
5397 // are incompatible.
5398 for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5399 RHSPE = RHS->qual_end();
5400 RHSPI != RHSPE; RHSPI++) {
5401 if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5402 RHSImplementsProtocol = true;
5403 break;
5404 }
5405 }
5406 // FIXME: For better diagnostics, consider passing back the protocol name.
5407 if (!RHSImplementsProtocol)
5408 return false;
5409 }
5410 // The RHS implements all protocols listed on the LHS.
5411 return true;
5412 }
5413
areComparableObjCPointerTypes(QualType LHS,QualType RHS)5414 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5415 // get the "pointed to" types
5416 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5417 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5418
5419 if (!LHSOPT || !RHSOPT)
5420 return false;
5421
5422 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5423 canAssignObjCInterfaces(RHSOPT, LHSOPT);
5424 }
5425
canBindObjCObjectType(QualType To,QualType From)5426 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5427 return canAssignObjCInterfaces(
5428 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5429 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5430 }
5431
5432 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5433 /// both shall have the identically qualified version of a compatible type.
5434 /// C99 6.2.7p1: Two types have compatible types if their types are the
5435 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)5436 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5437 bool CompareUnqualified) {
5438 if (getLangOptions().CPlusPlus)
5439 return hasSameType(LHS, RHS);
5440
5441 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5442 }
5443
propertyTypesAreCompatible(QualType LHS,QualType RHS)5444 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5445 return typesAreCompatible(LHS, RHS);
5446 }
5447
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)5448 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5449 return !mergeTypes(LHS, RHS, true).isNull();
5450 }
5451
5452 /// mergeTransparentUnionType - if T is a transparent union type and a member
5453 /// of T is compatible with SubType, return the merged type, else return
5454 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)5455 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5456 bool OfBlockPointer,
5457 bool Unqualified) {
5458 if (const RecordType *UT = T->getAsUnionType()) {
5459 RecordDecl *UD = UT->getDecl();
5460 if (UD->hasAttr<TransparentUnionAttr>()) {
5461 for (RecordDecl::field_iterator it = UD->field_begin(),
5462 itend = UD->field_end(); it != itend; ++it) {
5463 QualType ET = it->getType().getUnqualifiedType();
5464 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5465 if (!MT.isNull())
5466 return MT;
5467 }
5468 }
5469 }
5470
5471 return QualType();
5472 }
5473
5474 /// mergeFunctionArgumentTypes - merge two types which appear as function
5475 /// argument types
mergeFunctionArgumentTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)5476 QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5477 bool OfBlockPointer,
5478 bool Unqualified) {
5479 // GNU extension: two types are compatible if they appear as a function
5480 // argument, one of the types is a transparent union type and the other
5481 // type is compatible with a union member
5482 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5483 Unqualified);
5484 if (!lmerge.isNull())
5485 return lmerge;
5486
5487 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5488 Unqualified);
5489 if (!rmerge.isNull())
5490 return rmerge;
5491
5492 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5493 }
5494
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)5495 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5496 bool OfBlockPointer,
5497 bool Unqualified) {
5498 const FunctionType *lbase = lhs->getAs<FunctionType>();
5499 const FunctionType *rbase = rhs->getAs<FunctionType>();
5500 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5501 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5502 bool allLTypes = true;
5503 bool allRTypes = true;
5504
5505 // Check return type
5506 QualType retType;
5507 if (OfBlockPointer) {
5508 QualType RHS = rbase->getResultType();
5509 QualType LHS = lbase->getResultType();
5510 bool UnqualifiedResult = Unqualified;
5511 if (!UnqualifiedResult)
5512 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5513 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5514 }
5515 else
5516 retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5517 Unqualified);
5518 if (retType.isNull()) return QualType();
5519
5520 if (Unqualified)
5521 retType = retType.getUnqualifiedType();
5522
5523 CanQualType LRetType = getCanonicalType(lbase->getResultType());
5524 CanQualType RRetType = getCanonicalType(rbase->getResultType());
5525 if (Unqualified) {
5526 LRetType = LRetType.getUnqualifiedType();
5527 RRetType = RRetType.getUnqualifiedType();
5528 }
5529
5530 if (getCanonicalType(retType) != LRetType)
5531 allLTypes = false;
5532 if (getCanonicalType(retType) != RRetType)
5533 allRTypes = false;
5534
5535 // FIXME: double check this
5536 // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5537 // rbase->getRegParmAttr() != 0 &&
5538 // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5539 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5540 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5541
5542 // Compatible functions must have compatible calling conventions
5543 if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5544 return QualType();
5545
5546 // Regparm is part of the calling convention.
5547 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5548 return QualType();
5549 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5550 return QualType();
5551
5552 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5553 return QualType();
5554
5555 // It's noreturn if either type is.
5556 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5557 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5558 if (NoReturn != lbaseInfo.getNoReturn())
5559 allLTypes = false;
5560 if (NoReturn != rbaseInfo.getNoReturn())
5561 allRTypes = false;
5562
5563 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5564
5565 if (lproto && rproto) { // two C99 style function prototypes
5566 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5567 "C++ shouldn't be here");
5568 unsigned lproto_nargs = lproto->getNumArgs();
5569 unsigned rproto_nargs = rproto->getNumArgs();
5570
5571 // Compatible functions must have the same number of arguments
5572 if (lproto_nargs != rproto_nargs)
5573 return QualType();
5574
5575 // Variadic and non-variadic functions aren't compatible
5576 if (lproto->isVariadic() != rproto->isVariadic())
5577 return QualType();
5578
5579 if (lproto->getTypeQuals() != rproto->getTypeQuals())
5580 return QualType();
5581
5582 // Check argument compatibility
5583 llvm::SmallVector<QualType, 10> types;
5584 for (unsigned i = 0; i < lproto_nargs; i++) {
5585 QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5586 QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5587 QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5588 OfBlockPointer,
5589 Unqualified);
5590 if (argtype.isNull()) return QualType();
5591
5592 if (Unqualified)
5593 argtype = argtype.getUnqualifiedType();
5594
5595 types.push_back(argtype);
5596 if (Unqualified) {
5597 largtype = largtype.getUnqualifiedType();
5598 rargtype = rargtype.getUnqualifiedType();
5599 }
5600
5601 if (getCanonicalType(argtype) != getCanonicalType(largtype))
5602 allLTypes = false;
5603 if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5604 allRTypes = false;
5605 }
5606 if (allLTypes) return lhs;
5607 if (allRTypes) return rhs;
5608
5609 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5610 EPI.ExtInfo = einfo;
5611 return getFunctionType(retType, types.begin(), types.size(), EPI);
5612 }
5613
5614 if (lproto) allRTypes = false;
5615 if (rproto) allLTypes = false;
5616
5617 const FunctionProtoType *proto = lproto ? lproto : rproto;
5618 if (proto) {
5619 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5620 if (proto->isVariadic()) return QualType();
5621 // Check that the types are compatible with the types that
5622 // would result from default argument promotions (C99 6.7.5.3p15).
5623 // The only types actually affected are promotable integer
5624 // types and floats, which would be passed as a different
5625 // type depending on whether the prototype is visible.
5626 unsigned proto_nargs = proto->getNumArgs();
5627 for (unsigned i = 0; i < proto_nargs; ++i) {
5628 QualType argTy = proto->getArgType(i);
5629
5630 // Look at the promotion type of enum types, since that is the type used
5631 // to pass enum values.
5632 if (const EnumType *Enum = argTy->getAs<EnumType>())
5633 argTy = Enum->getDecl()->getPromotionType();
5634
5635 if (argTy->isPromotableIntegerType() ||
5636 getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5637 return QualType();
5638 }
5639
5640 if (allLTypes) return lhs;
5641 if (allRTypes) return rhs;
5642
5643 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5644 EPI.ExtInfo = einfo;
5645 return getFunctionType(retType, proto->arg_type_begin(),
5646 proto->getNumArgs(), EPI);
5647 }
5648
5649 if (allLTypes) return lhs;
5650 if (allRTypes) return rhs;
5651 return getFunctionNoProtoType(retType, einfo);
5652 }
5653
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)5654 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5655 bool OfBlockPointer,
5656 bool Unqualified, bool BlockReturnType) {
5657 // C++ [expr]: If an expression initially has the type "reference to T", the
5658 // type is adjusted to "T" prior to any further analysis, the expression
5659 // designates the object or function denoted by the reference, and the
5660 // expression is an lvalue unless the reference is an rvalue reference and
5661 // the expression is a function call (possibly inside parentheses).
5662 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5663 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5664
5665 if (Unqualified) {
5666 LHS = LHS.getUnqualifiedType();
5667 RHS = RHS.getUnqualifiedType();
5668 }
5669
5670 QualType LHSCan = getCanonicalType(LHS),
5671 RHSCan = getCanonicalType(RHS);
5672
5673 // If two types are identical, they are compatible.
5674 if (LHSCan == RHSCan)
5675 return LHS;
5676
5677 // If the qualifiers are different, the types aren't compatible... mostly.
5678 Qualifiers LQuals = LHSCan.getLocalQualifiers();
5679 Qualifiers RQuals = RHSCan.getLocalQualifiers();
5680 if (LQuals != RQuals) {
5681 // If any of these qualifiers are different, we have a type
5682 // mismatch.
5683 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5684 LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5685 LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5686 return QualType();
5687
5688 // Exactly one GC qualifier difference is allowed: __strong is
5689 // okay if the other type has no GC qualifier but is an Objective
5690 // C object pointer (i.e. implicitly strong by default). We fix
5691 // this by pretending that the unqualified type was actually
5692 // qualified __strong.
5693 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5694 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5695 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5696
5697 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5698 return QualType();
5699
5700 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5701 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5702 }
5703 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5704 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5705 }
5706 return QualType();
5707 }
5708
5709 // Okay, qualifiers are equal.
5710
5711 Type::TypeClass LHSClass = LHSCan->getTypeClass();
5712 Type::TypeClass RHSClass = RHSCan->getTypeClass();
5713
5714 // We want to consider the two function types to be the same for these
5715 // comparisons, just force one to the other.
5716 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5717 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5718
5719 // Same as above for arrays
5720 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5721 LHSClass = Type::ConstantArray;
5722 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5723 RHSClass = Type::ConstantArray;
5724
5725 // ObjCInterfaces are just specialized ObjCObjects.
5726 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5727 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5728
5729 // Canonicalize ExtVector -> Vector.
5730 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5731 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5732
5733 // If the canonical type classes don't match.
5734 if (LHSClass != RHSClass) {
5735 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5736 // a signed integer type, or an unsigned integer type.
5737 // Compatibility is based on the underlying type, not the promotion
5738 // type.
5739 if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5740 if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5741 return RHS;
5742 }
5743 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5744 if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5745 return LHS;
5746 }
5747
5748 return QualType();
5749 }
5750
5751 // The canonical type classes match.
5752 switch (LHSClass) {
5753 #define TYPE(Class, Base)
5754 #define ABSTRACT_TYPE(Class, Base)
5755 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5756 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5757 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
5758 #include "clang/AST/TypeNodes.def"
5759 assert(false && "Non-canonical and dependent types shouldn't get here");
5760 return QualType();
5761
5762 case Type::LValueReference:
5763 case Type::RValueReference:
5764 case Type::MemberPointer:
5765 assert(false && "C++ should never be in mergeTypes");
5766 return QualType();
5767
5768 case Type::ObjCInterface:
5769 case Type::IncompleteArray:
5770 case Type::VariableArray:
5771 case Type::FunctionProto:
5772 case Type::ExtVector:
5773 assert(false && "Types are eliminated above");
5774 return QualType();
5775
5776 case Type::Pointer:
5777 {
5778 // Merge two pointer types, while trying to preserve typedef info
5779 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5780 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5781 if (Unqualified) {
5782 LHSPointee = LHSPointee.getUnqualifiedType();
5783 RHSPointee = RHSPointee.getUnqualifiedType();
5784 }
5785 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5786 Unqualified);
5787 if (ResultType.isNull()) return QualType();
5788 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5789 return LHS;
5790 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5791 return RHS;
5792 return getPointerType(ResultType);
5793 }
5794 case Type::BlockPointer:
5795 {
5796 // Merge two block pointer types, while trying to preserve typedef info
5797 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5798 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5799 if (Unqualified) {
5800 LHSPointee = LHSPointee.getUnqualifiedType();
5801 RHSPointee = RHSPointee.getUnqualifiedType();
5802 }
5803 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5804 Unqualified);
5805 if (ResultType.isNull()) return QualType();
5806 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5807 return LHS;
5808 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5809 return RHS;
5810 return getBlockPointerType(ResultType);
5811 }
5812 case Type::ConstantArray:
5813 {
5814 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5815 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5816 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5817 return QualType();
5818
5819 QualType LHSElem = getAsArrayType(LHS)->getElementType();
5820 QualType RHSElem = getAsArrayType(RHS)->getElementType();
5821 if (Unqualified) {
5822 LHSElem = LHSElem.getUnqualifiedType();
5823 RHSElem = RHSElem.getUnqualifiedType();
5824 }
5825
5826 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5827 if (ResultType.isNull()) return QualType();
5828 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5829 return LHS;
5830 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5831 return RHS;
5832 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5833 ArrayType::ArraySizeModifier(), 0);
5834 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5835 ArrayType::ArraySizeModifier(), 0);
5836 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5837 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5838 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5839 return LHS;
5840 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5841 return RHS;
5842 if (LVAT) {
5843 // FIXME: This isn't correct! But tricky to implement because
5844 // the array's size has to be the size of LHS, but the type
5845 // has to be different.
5846 return LHS;
5847 }
5848 if (RVAT) {
5849 // FIXME: This isn't correct! But tricky to implement because
5850 // the array's size has to be the size of RHS, but the type
5851 // has to be different.
5852 return RHS;
5853 }
5854 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5855 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5856 return getIncompleteArrayType(ResultType,
5857 ArrayType::ArraySizeModifier(), 0);
5858 }
5859 case Type::FunctionNoProto:
5860 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5861 case Type::Record:
5862 case Type::Enum:
5863 return QualType();
5864 case Type::Builtin:
5865 // Only exactly equal builtin types are compatible, which is tested above.
5866 return QualType();
5867 case Type::Complex:
5868 // Distinct complex types are incompatible.
5869 return QualType();
5870 case Type::Vector:
5871 // FIXME: The merged type should be an ExtVector!
5872 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5873 RHSCan->getAs<VectorType>()))
5874 return LHS;
5875 return QualType();
5876 case Type::ObjCObject: {
5877 // Check if the types are assignment compatible.
5878 // FIXME: This should be type compatibility, e.g. whether
5879 // "LHS x; RHS x;" at global scope is legal.
5880 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5881 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5882 if (canAssignObjCInterfaces(LHSIface, RHSIface))
5883 return LHS;
5884
5885 return QualType();
5886 }
5887 case Type::ObjCObjectPointer: {
5888 if (OfBlockPointer) {
5889 if (canAssignObjCInterfacesInBlockPointer(
5890 LHS->getAs<ObjCObjectPointerType>(),
5891 RHS->getAs<ObjCObjectPointerType>(),
5892 BlockReturnType))
5893 return LHS;
5894 return QualType();
5895 }
5896 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5897 RHS->getAs<ObjCObjectPointerType>()))
5898 return LHS;
5899
5900 return QualType();
5901 }
5902 }
5903
5904 return QualType();
5905 }
5906
5907 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5908 /// 'RHS' attributes and returns the merged version; including for function
5909 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)5910 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5911 QualType LHSCan = getCanonicalType(LHS),
5912 RHSCan = getCanonicalType(RHS);
5913 // If two types are identical, they are compatible.
5914 if (LHSCan == RHSCan)
5915 return LHS;
5916 if (RHSCan->isFunctionType()) {
5917 if (!LHSCan->isFunctionType())
5918 return QualType();
5919 QualType OldReturnType =
5920 cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5921 QualType NewReturnType =
5922 cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5923 QualType ResReturnType =
5924 mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5925 if (ResReturnType.isNull())
5926 return QualType();
5927 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5928 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5929 // In either case, use OldReturnType to build the new function type.
5930 const FunctionType *F = LHS->getAs<FunctionType>();
5931 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5932 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5933 EPI.ExtInfo = getFunctionExtInfo(LHS);
5934 QualType ResultType
5935 = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5936 FPT->getNumArgs(), EPI);
5937 return ResultType;
5938 }
5939 }
5940 return QualType();
5941 }
5942
5943 // If the qualifiers are different, the types can still be merged.
5944 Qualifiers LQuals = LHSCan.getLocalQualifiers();
5945 Qualifiers RQuals = RHSCan.getLocalQualifiers();
5946 if (LQuals != RQuals) {
5947 // If any of these qualifiers are different, we have a type mismatch.
5948 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5949 LQuals.getAddressSpace() != RQuals.getAddressSpace())
5950 return QualType();
5951
5952 // Exactly one GC qualifier difference is allowed: __strong is
5953 // okay if the other type has no GC qualifier but is an Objective
5954 // C object pointer (i.e. implicitly strong by default). We fix
5955 // this by pretending that the unqualified type was actually
5956 // qualified __strong.
5957 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5958 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5959 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5960
5961 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5962 return QualType();
5963
5964 if (GC_L == Qualifiers::Strong)
5965 return LHS;
5966 if (GC_R == Qualifiers::Strong)
5967 return RHS;
5968 return QualType();
5969 }
5970
5971 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5972 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5973 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5974 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5975 if (ResQT == LHSBaseQT)
5976 return LHS;
5977 if (ResQT == RHSBaseQT)
5978 return RHS;
5979 }
5980 return QualType();
5981 }
5982
5983 //===----------------------------------------------------------------------===//
5984 // Integer Predicates
5985 //===----------------------------------------------------------------------===//
5986
getIntWidth(QualType T) const5987 unsigned ASTContext::getIntWidth(QualType T) const {
5988 if (const EnumType *ET = dyn_cast<EnumType>(T))
5989 T = ET->getDecl()->getIntegerType();
5990 if (T->isBooleanType())
5991 return 1;
5992 // For builtin types, just use the standard type sizing method
5993 return (unsigned)getTypeSize(T);
5994 }
5995
getCorrespondingUnsignedType(QualType T)5996 QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5997 assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5998
5999 // Turn <4 x signed int> -> <4 x unsigned int>
6000 if (const VectorType *VTy = T->getAs<VectorType>())
6001 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6002 VTy->getNumElements(), VTy->getVectorKind());
6003
6004 // For enums, we return the unsigned version of the base type.
6005 if (const EnumType *ETy = T->getAs<EnumType>())
6006 T = ETy->getDecl()->getIntegerType();
6007
6008 const BuiltinType *BTy = T->getAs<BuiltinType>();
6009 assert(BTy && "Unexpected signed integer type");
6010 switch (BTy->getKind()) {
6011 case BuiltinType::Char_S:
6012 case BuiltinType::SChar:
6013 return UnsignedCharTy;
6014 case BuiltinType::Short:
6015 return UnsignedShortTy;
6016 case BuiltinType::Int:
6017 return UnsignedIntTy;
6018 case BuiltinType::Long:
6019 return UnsignedLongTy;
6020 case BuiltinType::LongLong:
6021 return UnsignedLongLongTy;
6022 case BuiltinType::Int128:
6023 return UnsignedInt128Ty;
6024 default:
6025 assert(0 && "Unexpected signed integer type");
6026 return QualType();
6027 }
6028 }
6029
~ASTMutationListener()6030 ASTMutationListener::~ASTMutationListener() { }
6031
6032
6033 //===----------------------------------------------------------------------===//
6034 // Builtin Type Computation
6035 //===----------------------------------------------------------------------===//
6036
6037 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6038 /// pointer over the consumed characters. This returns the resultant type. If
6039 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6040 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
6041 /// a vector of "i*".
6042 ///
6043 /// RequiresICE is filled in on return to indicate whether the value is required
6044 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)6045 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6046 ASTContext::GetBuiltinTypeError &Error,
6047 bool &RequiresICE,
6048 bool AllowTypeModifiers) {
6049 // Modifiers.
6050 int HowLong = 0;
6051 bool Signed = false, Unsigned = false;
6052 RequiresICE = false;
6053
6054 // Read the prefixed modifiers first.
6055 bool Done = false;
6056 while (!Done) {
6057 switch (*Str++) {
6058 default: Done = true; --Str; break;
6059 case 'I':
6060 RequiresICE = true;
6061 break;
6062 case 'S':
6063 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6064 assert(!Signed && "Can't use 'S' modifier multiple times!");
6065 Signed = true;
6066 break;
6067 case 'U':
6068 assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6069 assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6070 Unsigned = true;
6071 break;
6072 case 'L':
6073 assert(HowLong <= 2 && "Can't have LLLL modifier");
6074 ++HowLong;
6075 break;
6076 }
6077 }
6078
6079 QualType Type;
6080
6081 // Read the base type.
6082 switch (*Str++) {
6083 default: assert(0 && "Unknown builtin type letter!");
6084 case 'v':
6085 assert(HowLong == 0 && !Signed && !Unsigned &&
6086 "Bad modifiers used with 'v'!");
6087 Type = Context.VoidTy;
6088 break;
6089 case 'f':
6090 assert(HowLong == 0 && !Signed && !Unsigned &&
6091 "Bad modifiers used with 'f'!");
6092 Type = Context.FloatTy;
6093 break;
6094 case 'd':
6095 assert(HowLong < 2 && !Signed && !Unsigned &&
6096 "Bad modifiers used with 'd'!");
6097 if (HowLong)
6098 Type = Context.LongDoubleTy;
6099 else
6100 Type = Context.DoubleTy;
6101 break;
6102 case 's':
6103 assert(HowLong == 0 && "Bad modifiers used with 's'!");
6104 if (Unsigned)
6105 Type = Context.UnsignedShortTy;
6106 else
6107 Type = Context.ShortTy;
6108 break;
6109 case 'i':
6110 if (HowLong == 3)
6111 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6112 else if (HowLong == 2)
6113 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6114 else if (HowLong == 1)
6115 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6116 else
6117 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6118 break;
6119 case 'c':
6120 assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6121 if (Signed)
6122 Type = Context.SignedCharTy;
6123 else if (Unsigned)
6124 Type = Context.UnsignedCharTy;
6125 else
6126 Type = Context.CharTy;
6127 break;
6128 case 'b': // boolean
6129 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6130 Type = Context.BoolTy;
6131 break;
6132 case 'z': // size_t.
6133 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6134 Type = Context.getSizeType();
6135 break;
6136 case 'F':
6137 Type = Context.getCFConstantStringType();
6138 break;
6139 case 'G':
6140 Type = Context.getObjCIdType();
6141 break;
6142 case 'H':
6143 Type = Context.getObjCSelType();
6144 break;
6145 case 'a':
6146 Type = Context.getBuiltinVaListType();
6147 assert(!Type.isNull() && "builtin va list type not initialized!");
6148 break;
6149 case 'A':
6150 // This is a "reference" to a va_list; however, what exactly
6151 // this means depends on how va_list is defined. There are two
6152 // different kinds of va_list: ones passed by value, and ones
6153 // passed by reference. An example of a by-value va_list is
6154 // x86, where va_list is a char*. An example of by-ref va_list
6155 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6156 // we want this argument to be a char*&; for x86-64, we want
6157 // it to be a __va_list_tag*.
6158 Type = Context.getBuiltinVaListType();
6159 assert(!Type.isNull() && "builtin va list type not initialized!");
6160 if (Type->isArrayType())
6161 Type = Context.getArrayDecayedType(Type);
6162 else
6163 Type = Context.getLValueReferenceType(Type);
6164 break;
6165 case 'V': {
6166 char *End;
6167 unsigned NumElements = strtoul(Str, &End, 10);
6168 assert(End != Str && "Missing vector size");
6169 Str = End;
6170
6171 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6172 RequiresICE, false);
6173 assert(!RequiresICE && "Can't require vector ICE");
6174
6175 // TODO: No way to make AltiVec vectors in builtins yet.
6176 Type = Context.getVectorType(ElementType, NumElements,
6177 VectorType::GenericVector);
6178 break;
6179 }
6180 case 'X': {
6181 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6182 false);
6183 assert(!RequiresICE && "Can't require complex ICE");
6184 Type = Context.getComplexType(ElementType);
6185 break;
6186 }
6187 case 'P':
6188 Type = Context.getFILEType();
6189 if (Type.isNull()) {
6190 Error = ASTContext::GE_Missing_stdio;
6191 return QualType();
6192 }
6193 break;
6194 case 'J':
6195 if (Signed)
6196 Type = Context.getsigjmp_bufType();
6197 else
6198 Type = Context.getjmp_bufType();
6199
6200 if (Type.isNull()) {
6201 Error = ASTContext::GE_Missing_setjmp;
6202 return QualType();
6203 }
6204 break;
6205 }
6206
6207 // If there are modifiers and if we're allowed to parse them, go for it.
6208 Done = !AllowTypeModifiers;
6209 while (!Done) {
6210 switch (char c = *Str++) {
6211 default: Done = true; --Str; break;
6212 case '*':
6213 case '&': {
6214 // Both pointers and references can have their pointee types
6215 // qualified with an address space.
6216 char *End;
6217 unsigned AddrSpace = strtoul(Str, &End, 10);
6218 if (End != Str && AddrSpace != 0) {
6219 Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6220 Str = End;
6221 }
6222 if (c == '*')
6223 Type = Context.getPointerType(Type);
6224 else
6225 Type = Context.getLValueReferenceType(Type);
6226 break;
6227 }
6228 // FIXME: There's no way to have a built-in with an rvalue ref arg.
6229 case 'C':
6230 Type = Type.withConst();
6231 break;
6232 case 'D':
6233 Type = Context.getVolatileType(Type);
6234 break;
6235 }
6236 }
6237
6238 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6239 "Integer constant 'I' type must be an integer");
6240
6241 return Type;
6242 }
6243
6244 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const6245 QualType ASTContext::GetBuiltinType(unsigned Id,
6246 GetBuiltinTypeError &Error,
6247 unsigned *IntegerConstantArgs) const {
6248 const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6249
6250 llvm::SmallVector<QualType, 8> ArgTypes;
6251
6252 bool RequiresICE = false;
6253 Error = GE_None;
6254 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6255 RequiresICE, true);
6256 if (Error != GE_None)
6257 return QualType();
6258
6259 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6260
6261 while (TypeStr[0] && TypeStr[0] != '.') {
6262 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6263 if (Error != GE_None)
6264 return QualType();
6265
6266 // If this argument is required to be an IntegerConstantExpression and the
6267 // caller cares, fill in the bitmask we return.
6268 if (RequiresICE && IntegerConstantArgs)
6269 *IntegerConstantArgs |= 1 << ArgTypes.size();
6270
6271 // Do array -> pointer decay. The builtin should use the decayed type.
6272 if (Ty->isArrayType())
6273 Ty = getArrayDecayedType(Ty);
6274
6275 ArgTypes.push_back(Ty);
6276 }
6277
6278 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6279 "'.' should only occur at end of builtin type list!");
6280
6281 FunctionType::ExtInfo EI;
6282 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6283
6284 bool Variadic = (TypeStr[0] == '.');
6285
6286 // We really shouldn't be making a no-proto type here, especially in C++.
6287 if (ArgTypes.empty() && Variadic)
6288 return getFunctionNoProtoType(ResType, EI);
6289
6290 FunctionProtoType::ExtProtoInfo EPI;
6291 EPI.ExtInfo = EI;
6292 EPI.Variadic = Variadic;
6293
6294 return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6295 }
6296
GetGVALinkageForFunction(const FunctionDecl * FD)6297 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6298 GVALinkage External = GVA_StrongExternal;
6299
6300 Linkage L = FD->getLinkage();
6301 switch (L) {
6302 case NoLinkage:
6303 case InternalLinkage:
6304 case UniqueExternalLinkage:
6305 return GVA_Internal;
6306
6307 case ExternalLinkage:
6308 switch (FD->getTemplateSpecializationKind()) {
6309 case TSK_Undeclared:
6310 case TSK_ExplicitSpecialization:
6311 External = GVA_StrongExternal;
6312 break;
6313
6314 case TSK_ExplicitInstantiationDefinition:
6315 return GVA_ExplicitTemplateInstantiation;
6316
6317 case TSK_ExplicitInstantiationDeclaration:
6318 case TSK_ImplicitInstantiation:
6319 External = GVA_TemplateInstantiation;
6320 break;
6321 }
6322 }
6323
6324 if (!FD->isInlined())
6325 return External;
6326
6327 if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6328 // GNU or C99 inline semantics. Determine whether this symbol should be
6329 // externally visible.
6330 if (FD->isInlineDefinitionExternallyVisible())
6331 return External;
6332
6333 // C99 inline semantics, where the symbol is not externally visible.
6334 return GVA_C99Inline;
6335 }
6336
6337 // C++0x [temp.explicit]p9:
6338 // [ Note: The intent is that an inline function that is the subject of
6339 // an explicit instantiation declaration will still be implicitly
6340 // instantiated when used so that the body can be considered for
6341 // inlining, but that no out-of-line copy of the inline function would be
6342 // generated in the translation unit. -- end note ]
6343 if (FD->getTemplateSpecializationKind()
6344 == TSK_ExplicitInstantiationDeclaration)
6345 return GVA_C99Inline;
6346
6347 return GVA_CXXInline;
6348 }
6349
GetGVALinkageForVariable(const VarDecl * VD)6350 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6351 // If this is a static data member, compute the kind of template
6352 // specialization. Otherwise, this variable is not part of a
6353 // template.
6354 TemplateSpecializationKind TSK = TSK_Undeclared;
6355 if (VD->isStaticDataMember())
6356 TSK = VD->getTemplateSpecializationKind();
6357
6358 Linkage L = VD->getLinkage();
6359 if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6360 VD->getType()->getLinkage() == UniqueExternalLinkage)
6361 L = UniqueExternalLinkage;
6362
6363 switch (L) {
6364 case NoLinkage:
6365 case InternalLinkage:
6366 case UniqueExternalLinkage:
6367 return GVA_Internal;
6368
6369 case ExternalLinkage:
6370 switch (TSK) {
6371 case TSK_Undeclared:
6372 case TSK_ExplicitSpecialization:
6373 return GVA_StrongExternal;
6374
6375 case TSK_ExplicitInstantiationDeclaration:
6376 llvm_unreachable("Variable should not be instantiated");
6377 // Fall through to treat this like any other instantiation.
6378
6379 case TSK_ExplicitInstantiationDefinition:
6380 return GVA_ExplicitTemplateInstantiation;
6381
6382 case TSK_ImplicitInstantiation:
6383 return GVA_TemplateInstantiation;
6384 }
6385 }
6386
6387 return GVA_StrongExternal;
6388 }
6389
DeclMustBeEmitted(const Decl * D)6390 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6391 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6392 if (!VD->isFileVarDecl())
6393 return false;
6394 } else if (!isa<FunctionDecl>(D))
6395 return false;
6396
6397 // Weak references don't produce any output by themselves.
6398 if (D->hasAttr<WeakRefAttr>())
6399 return false;
6400
6401 // Aliases and used decls are required.
6402 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6403 return true;
6404
6405 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6406 // Forward declarations aren't required.
6407 if (!FD->doesThisDeclarationHaveABody())
6408 return FD->doesDeclarationForceExternallyVisibleDefinition();
6409
6410 // Constructors and destructors are required.
6411 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6412 return true;
6413
6414 // The key function for a class is required.
6415 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6416 const CXXRecordDecl *RD = MD->getParent();
6417 if (MD->isOutOfLine() && RD->isDynamicClass()) {
6418 const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6419 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6420 return true;
6421 }
6422 }
6423
6424 GVALinkage Linkage = GetGVALinkageForFunction(FD);
6425
6426 // static, static inline, always_inline, and extern inline functions can
6427 // always be deferred. Normal inline functions can be deferred in C99/C++.
6428 // Implicit template instantiations can also be deferred in C++.
6429 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
6430 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6431 return false;
6432 return true;
6433 }
6434
6435 const VarDecl *VD = cast<VarDecl>(D);
6436 assert(VD->isFileVarDecl() && "Expected file scoped var");
6437
6438 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6439 return false;
6440
6441 // Structs that have non-trivial constructors or destructors are required.
6442
6443 // FIXME: Handle references.
6444 // FIXME: Be more selective about which constructors we care about.
6445 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6446 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6447 if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6448 RD->hasTrivialCopyConstructor() &&
6449 RD->hasTrivialMoveConstructor() &&
6450 RD->hasTrivialDestructor()))
6451 return true;
6452 }
6453 }
6454
6455 GVALinkage L = GetGVALinkageForVariable(VD);
6456 if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6457 if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6458 return false;
6459 }
6460
6461 return true;
6462 }
6463
getDefaultMethodCallConv()6464 CallingConv ASTContext::getDefaultMethodCallConv() {
6465 // Pass through to the C++ ABI object
6466 return ABI->getDefaultMethodCallConv();
6467 }
6468
isNearlyEmpty(const CXXRecordDecl * RD) const6469 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6470 // Pass through to the C++ ABI object
6471 return ABI->isNearlyEmpty(RD);
6472 }
6473
createMangleContext()6474 MangleContext *ASTContext::createMangleContext() {
6475 switch (Target.getCXXABI()) {
6476 case CXXABI_ARM:
6477 case CXXABI_Itanium:
6478 return createItaniumMangleContext(*this, getDiagnostics());
6479 case CXXABI_Microsoft:
6480 return createMicrosoftMangleContext(*this, getDiagnostics());
6481 }
6482 assert(0 && "Unsupported ABI");
6483 return 0;
6484 }
6485
~CXXABI()6486 CXXABI::~CXXABI() {}
6487
getSideTableAllocatedMemory() const6488 size_t ASTContext::getSideTableAllocatedMemory() const {
6489 size_t bytes = 0;
6490 bytes += ASTRecordLayouts.getMemorySize();
6491 bytes += ObjCLayouts.getMemorySize();
6492 bytes += KeyFunctions.getMemorySize();
6493 bytes += ObjCImpls.getMemorySize();
6494 bytes += BlockVarCopyInits.getMemorySize();
6495 bytes += DeclAttrs.getMemorySize();
6496 bytes += InstantiatedFromStaticDataMember.getMemorySize();
6497 bytes += InstantiatedFromUsingDecl.getMemorySize();
6498 bytes += InstantiatedFromUsingShadowDecl.getMemorySize();
6499 bytes += InstantiatedFromUnnamedFieldDecl.getMemorySize();
6500 return bytes;
6501 }
6502