• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the NumericLiteralParser, CharLiteralParser, and
11 // StringLiteralParser interfaces.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Lex/LiteralSupport.h"
16 #include "clang/Lex/Preprocessor.h"
17 #include "clang/Lex/LexDiagnostic.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/StringExtras.h"
21 using namespace clang;
22 
23 /// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
24 /// not valid.
HexDigitValue(char C)25 static int HexDigitValue(char C) {
26   if (C >= '0' && C <= '9') return C-'0';
27   if (C >= 'a' && C <= 'f') return C-'a'+10;
28   if (C >= 'A' && C <= 'F') return C-'A'+10;
29   return -1;
30 }
31 
32 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
33 /// either a character or a string literal.
ProcessCharEscape(const char * & ThisTokBuf,const char * ThisTokEnd,bool & HadError,FullSourceLoc Loc,bool IsWide,Diagnostic * Diags,const TargetInfo & Target)34 static unsigned ProcessCharEscape(const char *&ThisTokBuf,
35                                   const char *ThisTokEnd, bool &HadError,
36                                   FullSourceLoc Loc, bool IsWide,
37                                   Diagnostic *Diags, const TargetInfo &Target) {
38   // Skip the '\' char.
39   ++ThisTokBuf;
40 
41   // We know that this character can't be off the end of the buffer, because
42   // that would have been \", which would not have been the end of string.
43   unsigned ResultChar = *ThisTokBuf++;
44   switch (ResultChar) {
45   // These map to themselves.
46   case '\\': case '\'': case '"': case '?': break;
47 
48     // These have fixed mappings.
49   case 'a':
50     // TODO: K&R: the meaning of '\\a' is different in traditional C
51     ResultChar = 7;
52     break;
53   case 'b':
54     ResultChar = 8;
55     break;
56   case 'e':
57     if (Diags)
58       Diags->Report(Loc, diag::ext_nonstandard_escape) << "e";
59     ResultChar = 27;
60     break;
61   case 'E':
62     if (Diags)
63       Diags->Report(Loc, diag::ext_nonstandard_escape) << "E";
64     ResultChar = 27;
65     break;
66   case 'f':
67     ResultChar = 12;
68     break;
69   case 'n':
70     ResultChar = 10;
71     break;
72   case 'r':
73     ResultChar = 13;
74     break;
75   case 't':
76     ResultChar = 9;
77     break;
78   case 'v':
79     ResultChar = 11;
80     break;
81   case 'x': { // Hex escape.
82     ResultChar = 0;
83     if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
84       if (Diags)
85         Diags->Report(Loc, diag::err_hex_escape_no_digits);
86       HadError = 1;
87       break;
88     }
89 
90     // Hex escapes are a maximal series of hex digits.
91     bool Overflow = false;
92     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
93       int CharVal = HexDigitValue(ThisTokBuf[0]);
94       if (CharVal == -1) break;
95       // About to shift out a digit?
96       Overflow |= (ResultChar & 0xF0000000) ? true : false;
97       ResultChar <<= 4;
98       ResultChar |= CharVal;
99     }
100 
101     // See if any bits will be truncated when evaluated as a character.
102     unsigned CharWidth =
103       IsWide ? Target.getWCharWidth() : Target.getCharWidth();
104 
105     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
106       Overflow = true;
107       ResultChar &= ~0U >> (32-CharWidth);
108     }
109 
110     // Check for overflow.
111     if (Overflow && Diags)   // Too many digits to fit in
112       Diags->Report(Loc, diag::warn_hex_escape_too_large);
113     break;
114   }
115   case '0': case '1': case '2': case '3':
116   case '4': case '5': case '6': case '7': {
117     // Octal escapes.
118     --ThisTokBuf;
119     ResultChar = 0;
120 
121     // Octal escapes are a series of octal digits with maximum length 3.
122     // "\0123" is a two digit sequence equal to "\012" "3".
123     unsigned NumDigits = 0;
124     do {
125       ResultChar <<= 3;
126       ResultChar |= *ThisTokBuf++ - '0';
127       ++NumDigits;
128     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
129              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
130 
131     // Check for overflow.  Reject '\777', but not L'\777'.
132     unsigned CharWidth =
133       IsWide ? Target.getWCharWidth() : Target.getCharWidth();
134 
135     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
136       if (Diags)
137         Diags->Report(Loc, diag::warn_octal_escape_too_large);
138       ResultChar &= ~0U >> (32-CharWidth);
139     }
140     break;
141   }
142 
143     // Otherwise, these are not valid escapes.
144   case '(': case '{': case '[': case '%':
145     // GCC accepts these as extensions.  We warn about them as such though.
146     if (Diags)
147       Diags->Report(Loc, diag::ext_nonstandard_escape)
148         << std::string()+(char)ResultChar;
149     break;
150   default:
151     if (Diags == 0)
152       break;
153 
154     if (isgraph(ResultChar))
155       Diags->Report(Loc, diag::ext_unknown_escape)
156         << std::string()+(char)ResultChar;
157     else
158       Diags->Report(Loc, diag::ext_unknown_escape)
159         << "x"+llvm::utohexstr(ResultChar);
160     break;
161   }
162 
163   return ResultChar;
164 }
165 
166 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
167 /// return the UTF32.
ProcessUCNEscape(const char * & ThisTokBuf,const char * ThisTokEnd,uint32_t & UcnVal,unsigned short & UcnLen,FullSourceLoc Loc,Diagnostic * Diags,const LangOptions & Features)168 static bool ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
169                              uint32_t &UcnVal, unsigned short &UcnLen,
170                              FullSourceLoc Loc, Diagnostic *Diags,
171                              const LangOptions &Features) {
172   if (!Features.CPlusPlus && !Features.C99 && Diags)
173     Diags->Report(Loc, diag::warn_ucn_not_valid_in_c89);
174 
175   // Save the beginning of the string (for error diagnostics).
176   const char *ThisTokBegin = ThisTokBuf;
177 
178   // Skip the '\u' char's.
179   ThisTokBuf += 2;
180 
181   if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
182     if (Diags)
183       Diags->Report(Loc, diag::err_ucn_escape_no_digits);
184     return false;
185   }
186   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
187   unsigned short UcnLenSave = UcnLen;
188   for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
189     int CharVal = HexDigitValue(ThisTokBuf[0]);
190     if (CharVal == -1) break;
191     UcnVal <<= 4;
192     UcnVal |= CharVal;
193   }
194   // If we didn't consume the proper number of digits, there is a problem.
195   if (UcnLenSave) {
196     if (Diags) {
197       SourceLocation L =
198         Lexer::AdvanceToTokenCharacter(Loc, ThisTokBuf-ThisTokBegin,
199                                        Loc.getManager(), Features);
200       Diags->Report(FullSourceLoc(L, Loc.getManager()),
201                     diag::err_ucn_escape_incomplete);
202     }
203     return false;
204   }
205   // Check UCN constraints (C99 6.4.3p2).
206   if ((UcnVal < 0xa0 &&
207       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60 )) // $, @, `
208       || (UcnVal >= 0xD800 && UcnVal <= 0xDFFF)
209       || (UcnVal > 0x10FFFF)) /* the maximum legal UTF32 value */ {
210     if (Diags)
211       Diags->Report(Loc, diag::err_ucn_escape_invalid);
212     return false;
213   }
214   return true;
215 }
216 
217 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
218 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
219 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
220 /// we will likely rework our support for UCN's.
EncodeUCNEscape(const char * & ThisTokBuf,const char * ThisTokEnd,char * & ResultBuf,bool & HadError,FullSourceLoc Loc,bool wide,Diagnostic * Diags,const LangOptions & Features)221 static void EncodeUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
222                             char *&ResultBuf, bool &HadError,
223                             FullSourceLoc Loc, bool wide, Diagnostic *Diags,
224                             const LangOptions &Features) {
225   typedef uint32_t UTF32;
226   UTF32 UcnVal = 0;
227   unsigned short UcnLen = 0;
228   if (!ProcessUCNEscape(ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, Loc, Diags,
229                         Features)) {
230     HadError = 1;
231     return;
232   }
233 
234   if (wide) {
235     (void)UcnLen;
236     assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
237 
238     if (!Features.ShortWChar) {
239       // Note: our internal rep of wide char tokens is always little-endian.
240       *ResultBuf++ = (UcnVal & 0x000000FF);
241       *ResultBuf++ = (UcnVal & 0x0000FF00) >> 8;
242       *ResultBuf++ = (UcnVal & 0x00FF0000) >> 16;
243       *ResultBuf++ = (UcnVal & 0xFF000000) >> 24;
244       return;
245     }
246 
247     // Convert to UTF16.
248     if (UcnVal < (UTF32)0xFFFF) {
249       *ResultBuf++ = (UcnVal & 0x000000FF);
250       *ResultBuf++ = (UcnVal & 0x0000FF00) >> 8;
251       return;
252     }
253     if (Diags) Diags->Report(Loc, diag::warn_ucn_escape_too_large);
254 
255     typedef uint16_t UTF16;
256     UcnVal -= 0x10000;
257     UTF16 surrogate1 = 0xD800 + (UcnVal >> 10);
258     UTF16 surrogate2 = 0xDC00 + (UcnVal & 0x3FF);
259     *ResultBuf++ = (surrogate1 & 0x000000FF);
260     *ResultBuf++ = (surrogate1 & 0x0000FF00) >> 8;
261     *ResultBuf++ = (surrogate2 & 0x000000FF);
262     *ResultBuf++ = (surrogate2 & 0x0000FF00) >> 8;
263     return;
264   }
265   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
266   // The conversion below was inspired by:
267   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
268   // First, we determine how many bytes the result will require.
269   typedef uint8_t UTF8;
270 
271   unsigned short bytesToWrite = 0;
272   if (UcnVal < (UTF32)0x80)
273     bytesToWrite = 1;
274   else if (UcnVal < (UTF32)0x800)
275     bytesToWrite = 2;
276   else if (UcnVal < (UTF32)0x10000)
277     bytesToWrite = 3;
278   else
279     bytesToWrite = 4;
280 
281   const unsigned byteMask = 0xBF;
282   const unsigned byteMark = 0x80;
283 
284   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
285   // into the first byte, depending on how many bytes follow.
286   static const UTF8 firstByteMark[5] = {
287     0x00, 0x00, 0xC0, 0xE0, 0xF0
288   };
289   // Finally, we write the bytes into ResultBuf.
290   ResultBuf += bytesToWrite;
291   switch (bytesToWrite) { // note: everything falls through.
292     case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
293     case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
294     case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
295     case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
296   }
297   // Update the buffer.
298   ResultBuf += bytesToWrite;
299 }
300 
301 
302 ///       integer-constant: [C99 6.4.4.1]
303 ///         decimal-constant integer-suffix
304 ///         octal-constant integer-suffix
305 ///         hexadecimal-constant integer-suffix
306 ///       decimal-constant:
307 ///         nonzero-digit
308 ///         decimal-constant digit
309 ///       octal-constant:
310 ///         0
311 ///         octal-constant octal-digit
312 ///       hexadecimal-constant:
313 ///         hexadecimal-prefix hexadecimal-digit
314 ///         hexadecimal-constant hexadecimal-digit
315 ///       hexadecimal-prefix: one of
316 ///         0x 0X
317 ///       integer-suffix:
318 ///         unsigned-suffix [long-suffix]
319 ///         unsigned-suffix [long-long-suffix]
320 ///         long-suffix [unsigned-suffix]
321 ///         long-long-suffix [unsigned-sufix]
322 ///       nonzero-digit:
323 ///         1 2 3 4 5 6 7 8 9
324 ///       octal-digit:
325 ///         0 1 2 3 4 5 6 7
326 ///       hexadecimal-digit:
327 ///         0 1 2 3 4 5 6 7 8 9
328 ///         a b c d e f
329 ///         A B C D E F
330 ///       unsigned-suffix: one of
331 ///         u U
332 ///       long-suffix: one of
333 ///         l L
334 ///       long-long-suffix: one of
335 ///         ll LL
336 ///
337 ///       floating-constant: [C99 6.4.4.2]
338 ///         TODO: add rules...
339 ///
340 NumericLiteralParser::
NumericLiteralParser(const char * begin,const char * end,SourceLocation TokLoc,Preprocessor & pp)341 NumericLiteralParser(const char *begin, const char *end,
342                      SourceLocation TokLoc, Preprocessor &pp)
343   : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
344 
345   // This routine assumes that the range begin/end matches the regex for integer
346   // and FP constants (specifically, the 'pp-number' regex), and assumes that
347   // the byte at "*end" is both valid and not part of the regex.  Because of
348   // this, it doesn't have to check for 'overscan' in various places.
349   assert(!isalnum(*end) && *end != '.' && *end != '_' &&
350          "Lexer didn't maximally munch?");
351 
352   s = DigitsBegin = begin;
353   saw_exponent = false;
354   saw_period = false;
355   isLong = false;
356   isUnsigned = false;
357   isLongLong = false;
358   isFloat = false;
359   isImaginary = false;
360   isMicrosoftInteger = false;
361   hadError = false;
362 
363   if (*s == '0') { // parse radix
364     ParseNumberStartingWithZero(TokLoc);
365     if (hadError)
366       return;
367   } else { // the first digit is non-zero
368     radix = 10;
369     s = SkipDigits(s);
370     if (s == ThisTokEnd) {
371       // Done.
372     } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
373       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
374               diag::err_invalid_decimal_digit) << llvm::StringRef(s, 1);
375       hadError = true;
376       return;
377     } else if (*s == '.') {
378       s++;
379       saw_period = true;
380       s = SkipDigits(s);
381     }
382     if ((*s == 'e' || *s == 'E')) { // exponent
383       const char *Exponent = s;
384       s++;
385       saw_exponent = true;
386       if (*s == '+' || *s == '-')  s++; // sign
387       const char *first_non_digit = SkipDigits(s);
388       if (first_non_digit != s) {
389         s = first_non_digit;
390       } else {
391         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
392                 diag::err_exponent_has_no_digits);
393         hadError = true;
394         return;
395       }
396     }
397   }
398 
399   SuffixBegin = s;
400 
401   // Parse the suffix.  At this point we can classify whether we have an FP or
402   // integer constant.
403   bool isFPConstant = isFloatingLiteral();
404 
405   // Loop over all of the characters of the suffix.  If we see something bad,
406   // we break out of the loop.
407   for (; s != ThisTokEnd; ++s) {
408     switch (*s) {
409     case 'f':      // FP Suffix for "float"
410     case 'F':
411       if (!isFPConstant) break;  // Error for integer constant.
412       if (isFloat || isLong) break; // FF, LF invalid.
413       isFloat = true;
414       continue;  // Success.
415     case 'u':
416     case 'U':
417       if (isFPConstant) break;  // Error for floating constant.
418       if (isUnsigned) break;    // Cannot be repeated.
419       isUnsigned = true;
420       continue;  // Success.
421     case 'l':
422     case 'L':
423       if (isLong || isLongLong) break;  // Cannot be repeated.
424       if (isFloat) break;               // LF invalid.
425 
426       // Check for long long.  The L's need to be adjacent and the same case.
427       if (s+1 != ThisTokEnd && s[1] == s[0]) {
428         if (isFPConstant) break;        // long long invalid for floats.
429         isLongLong = true;
430         ++s;  // Eat both of them.
431       } else {
432         isLong = true;
433       }
434       continue;  // Success.
435     case 'i':
436     case 'I':
437       if (PP.getLangOptions().Microsoft) {
438         if (isFPConstant || isLong || isLongLong) break;
439 
440         // Allow i8, i16, i32, i64, and i128.
441         if (s + 1 != ThisTokEnd) {
442           switch (s[1]) {
443             case '8':
444               s += 2; // i8 suffix
445               isMicrosoftInteger = true;
446               break;
447             case '1':
448               if (s + 2 == ThisTokEnd) break;
449               if (s[2] == '6') {
450                 s += 3; // i16 suffix
451                 isMicrosoftInteger = true;
452               }
453               else if (s[2] == '2') {
454                 if (s + 3 == ThisTokEnd) break;
455                 if (s[3] == '8') {
456                   s += 4; // i128 suffix
457                   isMicrosoftInteger = true;
458                 }
459               }
460               break;
461             case '3':
462               if (s + 2 == ThisTokEnd) break;
463               if (s[2] == '2') {
464                 s += 3; // i32 suffix
465                 isLong = true;
466                 isMicrosoftInteger = true;
467               }
468               break;
469             case '6':
470               if (s + 2 == ThisTokEnd) break;
471               if (s[2] == '4') {
472                 s += 3; // i64 suffix
473                 isLongLong = true;
474                 isMicrosoftInteger = true;
475               }
476               break;
477             default:
478               break;
479           }
480           break;
481         }
482       }
483       // fall through.
484     case 'j':
485     case 'J':
486       if (isImaginary) break;   // Cannot be repeated.
487       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
488               diag::ext_imaginary_constant);
489       isImaginary = true;
490       continue;  // Success.
491     }
492     // If we reached here, there was an error.
493     break;
494   }
495 
496   // Report an error if there are any.
497   if (s != ThisTokEnd) {
498     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
499             isFPConstant ? diag::err_invalid_suffix_float_constant :
500                            diag::err_invalid_suffix_integer_constant)
501       << llvm::StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
502     hadError = true;
503     return;
504   }
505 }
506 
507 /// ParseNumberStartingWithZero - This method is called when the first character
508 /// of the number is found to be a zero.  This means it is either an octal
509 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
510 /// a floating point number (01239.123e4).  Eat the prefix, determining the
511 /// radix etc.
ParseNumberStartingWithZero(SourceLocation TokLoc)512 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
513   assert(s[0] == '0' && "Invalid method call");
514   s++;
515 
516   // Handle a hex number like 0x1234.
517   if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
518     s++;
519     radix = 16;
520     DigitsBegin = s;
521     s = SkipHexDigits(s);
522     if (s == ThisTokEnd) {
523       // Done.
524     } else if (*s == '.') {
525       s++;
526       saw_period = true;
527       s = SkipHexDigits(s);
528     }
529     // A binary exponent can appear with or with a '.'. If dotted, the
530     // binary exponent is required.
531     if ((*s == 'p' || *s == 'P') && !PP.getLangOptions().CPlusPlus0x) {
532       const char *Exponent = s;
533       s++;
534       saw_exponent = true;
535       if (*s == '+' || *s == '-')  s++; // sign
536       const char *first_non_digit = SkipDigits(s);
537       if (first_non_digit == s) {
538         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
539                 diag::err_exponent_has_no_digits);
540         hadError = true;
541         return;
542       }
543       s = first_non_digit;
544 
545       // In C++0x, we cannot support hexadecmial floating literals because
546       // they conflict with user-defined literals, so we warn in previous
547       // versions of C++ by default.
548       if (PP.getLangOptions().CPlusPlus)
549         PP.Diag(TokLoc, diag::ext_hexconstant_cplusplus);
550       else if (!PP.getLangOptions().HexFloats)
551         PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
552     } else if (saw_period) {
553       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
554               diag::err_hexconstant_requires_exponent);
555       hadError = true;
556     }
557     return;
558   }
559 
560   // Handle simple binary numbers 0b01010
561   if (*s == 'b' || *s == 'B') {
562     // 0b101010 is a GCC extension.
563     PP.Diag(TokLoc, diag::ext_binary_literal);
564     ++s;
565     radix = 2;
566     DigitsBegin = s;
567     s = SkipBinaryDigits(s);
568     if (s == ThisTokEnd) {
569       // Done.
570     } else if (isxdigit(*s)) {
571       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
572               diag::err_invalid_binary_digit) << llvm::StringRef(s, 1);
573       hadError = true;
574     }
575     // Other suffixes will be diagnosed by the caller.
576     return;
577   }
578 
579   // For now, the radix is set to 8. If we discover that we have a
580   // floating point constant, the radix will change to 10. Octal floating
581   // point constants are not permitted (only decimal and hexadecimal).
582   radix = 8;
583   DigitsBegin = s;
584   s = SkipOctalDigits(s);
585   if (s == ThisTokEnd)
586     return; // Done, simple octal number like 01234
587 
588   // If we have some other non-octal digit that *is* a decimal digit, see if
589   // this is part of a floating point number like 094.123 or 09e1.
590   if (isdigit(*s)) {
591     const char *EndDecimal = SkipDigits(s);
592     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
593       s = EndDecimal;
594       radix = 10;
595     }
596   }
597 
598   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
599   // the code is using an incorrect base.
600   if (isxdigit(*s) && *s != 'e' && *s != 'E') {
601     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
602             diag::err_invalid_octal_digit) << llvm::StringRef(s, 1);
603     hadError = true;
604     return;
605   }
606 
607   if (*s == '.') {
608     s++;
609     radix = 10;
610     saw_period = true;
611     s = SkipDigits(s); // Skip suffix.
612   }
613   if (*s == 'e' || *s == 'E') { // exponent
614     const char *Exponent = s;
615     s++;
616     radix = 10;
617     saw_exponent = true;
618     if (*s == '+' || *s == '-')  s++; // sign
619     const char *first_non_digit = SkipDigits(s);
620     if (first_non_digit != s) {
621       s = first_non_digit;
622     } else {
623       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
624               diag::err_exponent_has_no_digits);
625       hadError = true;
626       return;
627     }
628   }
629 }
630 
631 
632 /// GetIntegerValue - Convert this numeric literal value to an APInt that
633 /// matches Val's input width.  If there is an overflow, set Val to the low bits
634 /// of the result and return true.  Otherwise, return false.
GetIntegerValue(llvm::APInt & Val)635 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
636   // Fast path: Compute a conservative bound on the maximum number of
637   // bits per digit in this radix. If we can't possibly overflow a
638   // uint64 based on that bound then do the simple conversion to
639   // integer. This avoids the expensive overflow checking below, and
640   // handles the common cases that matter (small decimal integers and
641   // hex/octal values which don't overflow).
642   unsigned MaxBitsPerDigit = 1;
643   while ((1U << MaxBitsPerDigit) < radix)
644     MaxBitsPerDigit += 1;
645   if ((SuffixBegin - DigitsBegin) * MaxBitsPerDigit <= 64) {
646     uint64_t N = 0;
647     for (s = DigitsBegin; s != SuffixBegin; ++s)
648       N = N*radix + HexDigitValue(*s);
649 
650     // This will truncate the value to Val's input width. Simply check
651     // for overflow by comparing.
652     Val = N;
653     return Val.getZExtValue() != N;
654   }
655 
656   Val = 0;
657   s = DigitsBegin;
658 
659   llvm::APInt RadixVal(Val.getBitWidth(), radix);
660   llvm::APInt CharVal(Val.getBitWidth(), 0);
661   llvm::APInt OldVal = Val;
662 
663   bool OverflowOccurred = false;
664   while (s < SuffixBegin) {
665     unsigned C = HexDigitValue(*s++);
666 
667     // If this letter is out of bound for this radix, reject it.
668     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
669 
670     CharVal = C;
671 
672     // Add the digit to the value in the appropriate radix.  If adding in digits
673     // made the value smaller, then this overflowed.
674     OldVal = Val;
675 
676     // Multiply by radix, did overflow occur on the multiply?
677     Val *= RadixVal;
678     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
679 
680     // Add value, did overflow occur on the value?
681     //   (a + b) ult b  <=> overflow
682     Val += CharVal;
683     OverflowOccurred |= Val.ult(CharVal);
684   }
685   return OverflowOccurred;
686 }
687 
688 llvm::APFloat::opStatus
GetFloatValue(llvm::APFloat & Result)689 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
690   using llvm::APFloat;
691   using llvm::StringRef;
692 
693   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
694   return Result.convertFromString(StringRef(ThisTokBegin, n),
695                                   APFloat::rmNearestTiesToEven);
696 }
697 
698 
CharLiteralParser(const char * begin,const char * end,SourceLocation Loc,Preprocessor & PP)699 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
700                                      SourceLocation Loc, Preprocessor &PP) {
701   // At this point we know that the character matches the regex "L?'.*'".
702   HadError = false;
703 
704   // Determine if this is a wide character.
705   IsWide = begin[0] == 'L';
706   if (IsWide) ++begin;
707 
708   // Skip over the entry quote.
709   assert(begin[0] == '\'' && "Invalid token lexed");
710   ++begin;
711 
712   // FIXME: The "Value" is an uint64_t so we can handle char literals of
713   // up to 64-bits.
714   // FIXME: This extensively assumes that 'char' is 8-bits.
715   assert(PP.getTargetInfo().getCharWidth() == 8 &&
716          "Assumes char is 8 bits");
717   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
718          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
719          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
720   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
721          "Assumes sizeof(wchar) on target is <= 64");
722 
723   // This is what we will use for overflow detection
724   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
725 
726   unsigned NumCharsSoFar = 0;
727   bool Warned = false;
728   while (begin[0] != '\'') {
729     uint64_t ResultChar;
730 
731       // Is this a Universal Character Name escape?
732     if (begin[0] != '\\')     // If this is a normal character, consume it.
733       ResultChar = *begin++;
734     else {                    // Otherwise, this is an escape character.
735       // Check for UCN.
736       if (begin[1] == 'u' || begin[1] == 'U') {
737         uint32_t utf32 = 0;
738         unsigned short UcnLen = 0;
739         if (!ProcessUCNEscape(begin, end, utf32, UcnLen,
740                               FullSourceLoc(Loc, PP.getSourceManager()),
741                               &PP.getDiagnostics(), PP.getLangOptions())) {
742           HadError = 1;
743         }
744         ResultChar = utf32;
745       } else {
746         // Otherwise, this is a non-UCN escape character.  Process it.
747         ResultChar = ProcessCharEscape(begin, end, HadError,
748                                        FullSourceLoc(Loc,PP.getSourceManager()),
749                                        IsWide,
750                                        &PP.getDiagnostics(), PP.getTargetInfo());
751       }
752     }
753 
754     // If this is a multi-character constant (e.g. 'abc'), handle it.  These are
755     // implementation defined (C99 6.4.4.4p10).
756     if (NumCharsSoFar) {
757       if (IsWide) {
758         // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
759         LitVal = 0;
760       } else {
761         // Narrow character literals act as though their value is concatenated
762         // in this implementation, but warn on overflow.
763         if (LitVal.countLeadingZeros() < 8 && !Warned) {
764           PP.Diag(Loc, diag::warn_char_constant_too_large);
765           Warned = true;
766         }
767         LitVal <<= 8;
768       }
769     }
770 
771     LitVal = LitVal + ResultChar;
772     ++NumCharsSoFar;
773   }
774 
775   // If this is the second character being processed, do special handling.
776   if (NumCharsSoFar > 1) {
777     // Warn about discarding the top bits for multi-char wide-character
778     // constants (L'abcd').
779     if (IsWide)
780       PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
781     else if (NumCharsSoFar != 4)
782       PP.Diag(Loc, diag::ext_multichar_character_literal);
783     else
784       PP.Diag(Loc, diag::ext_four_char_character_literal);
785     IsMultiChar = true;
786   } else
787     IsMultiChar = false;
788 
789   // Transfer the value from APInt to uint64_t
790   Value = LitVal.getZExtValue();
791 
792   if (IsWide && PP.getLangOptions().ShortWChar && Value > 0xFFFF)
793     PP.Diag(Loc, diag::warn_ucn_escape_too_large);
794 
795   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
796   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
797   // character constants are not sign extended in the this implementation:
798   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
799   if (!IsWide && NumCharsSoFar == 1 && (Value & 128) &&
800       PP.getLangOptions().CharIsSigned)
801     Value = (signed char)Value;
802 }
803 
804 
805 ///       string-literal: [C99 6.4.5]
806 ///          " [s-char-sequence] "
807 ///         L" [s-char-sequence] "
808 ///       s-char-sequence:
809 ///         s-char
810 ///         s-char-sequence s-char
811 ///       s-char:
812 ///         any source character except the double quote ",
813 ///           backslash \, or newline character
814 ///         escape-character
815 ///         universal-character-name
816 ///       escape-character: [C99 6.4.4.4]
817 ///         \ escape-code
818 ///         universal-character-name
819 ///       escape-code:
820 ///         character-escape-code
821 ///         octal-escape-code
822 ///         hex-escape-code
823 ///       character-escape-code: one of
824 ///         n t b r f v a
825 ///         \ ' " ?
826 ///       octal-escape-code:
827 ///         octal-digit
828 ///         octal-digit octal-digit
829 ///         octal-digit octal-digit octal-digit
830 ///       hex-escape-code:
831 ///         x hex-digit
832 ///         hex-escape-code hex-digit
833 ///       universal-character-name:
834 ///         \u hex-quad
835 ///         \U hex-quad hex-quad
836 ///       hex-quad:
837 ///         hex-digit hex-digit hex-digit hex-digit
838 ///
839 StringLiteralParser::
StringLiteralParser(const Token * StringToks,unsigned NumStringToks,Preprocessor & PP,bool Complain)840 StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
841                     Preprocessor &PP, bool Complain)
842   : SM(PP.getSourceManager()), Features(PP.getLangOptions()),
843     Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() : 0),
844     MaxTokenLength(0), SizeBound(0), wchar_tByteWidth(0),
845     ResultPtr(ResultBuf.data()), hadError(false), AnyWide(false), Pascal(false) {
846   init(StringToks, NumStringToks);
847 }
848 
init(const Token * StringToks,unsigned NumStringToks)849 void StringLiteralParser::init(const Token *StringToks, unsigned NumStringToks){
850   // The literal token may have come from an invalid source location (e.g. due
851   // to a PCH error), in which case the token length will be 0.
852   if (NumStringToks == 0 || StringToks[0].getLength() < 2) {
853     hadError = true;
854     return;
855   }
856 
857   // Scan all of the string portions, remember the max individual token length,
858   // computing a bound on the concatenated string length, and see whether any
859   // piece is a wide-string.  If any of the string portions is a wide-string
860   // literal, the result is a wide-string literal [C99 6.4.5p4].
861   assert(NumStringToks && "expected at least one token");
862   MaxTokenLength = StringToks[0].getLength();
863   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
864   SizeBound = StringToks[0].getLength()-2;  // -2 for "".
865   AnyWide = StringToks[0].is(tok::wide_string_literal);
866 
867   hadError = false;
868 
869   // Implement Translation Phase #6: concatenation of string literals
870   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
871   for (unsigned i = 1; i != NumStringToks; ++i) {
872     if (StringToks[i].getLength() < 2) {
873       hadError = true;
874       return;
875     }
876 
877     // The string could be shorter than this if it needs cleaning, but this is a
878     // reasonable bound, which is all we need.
879     assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
880     SizeBound += StringToks[i].getLength()-2;  // -2 for "".
881 
882     // Remember maximum string piece length.
883     if (StringToks[i].getLength() > MaxTokenLength)
884       MaxTokenLength = StringToks[i].getLength();
885 
886     // Remember if we see any wide strings.
887     AnyWide |= StringToks[i].is(tok::wide_string_literal);
888   }
889 
890   // Include space for the null terminator.
891   ++SizeBound;
892 
893   // TODO: K&R warning: "traditional C rejects string constant concatenation"
894 
895   // Get the width in bytes of wchar_t.  If no wchar_t strings are used, do not
896   // query the target.  As such, wchar_tByteWidth is only valid if AnyWide=true.
897   wchar_tByteWidth = ~0U;
898   if (AnyWide) {
899     wchar_tByteWidth = Target.getWCharWidth();
900     assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
901     wchar_tByteWidth /= 8;
902   }
903 
904   // The output buffer size needs to be large enough to hold wide characters.
905   // This is a worst-case assumption which basically corresponds to L"" "long".
906   if (AnyWide)
907     SizeBound *= wchar_tByteWidth;
908 
909   // Size the temporary buffer to hold the result string data.
910   ResultBuf.resize(SizeBound);
911 
912   // Likewise, but for each string piece.
913   llvm::SmallString<512> TokenBuf;
914   TokenBuf.resize(MaxTokenLength);
915 
916   // Loop over all the strings, getting their spelling, and expanding them to
917   // wide strings as appropriate.
918   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
919 
920   Pascal = false;
921 
922   for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
923     const char *ThisTokBuf = &TokenBuf[0];
924     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
925     // that ThisTokBuf points to a buffer that is big enough for the whole token
926     // and 'spelled' tokens can only shrink.
927     bool StringInvalid = false;
928     unsigned ThisTokLen =
929       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
930                          &StringInvalid);
931     if (StringInvalid) {
932       hadError = 1;
933       continue;
934     }
935 
936     const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1;  // Skip end quote.
937     bool wide = false;
938     // TODO: Input character set mapping support.
939 
940     // Skip L marker for wide strings.
941     if (ThisTokBuf[0] == 'L') {
942       wide = true;
943       ++ThisTokBuf;
944     }
945 
946     assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
947     ++ThisTokBuf;
948 
949     // Check if this is a pascal string
950     if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
951         ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
952 
953       // If the \p sequence is found in the first token, we have a pascal string
954       // Otherwise, if we already have a pascal string, ignore the first \p
955       if (i == 0) {
956         ++ThisTokBuf;
957         Pascal = true;
958       } else if (Pascal)
959         ThisTokBuf += 2;
960     }
961 
962     while (ThisTokBuf != ThisTokEnd) {
963       // Is this a span of non-escape characters?
964       if (ThisTokBuf[0] != '\\') {
965         const char *InStart = ThisTokBuf;
966         do {
967           ++ThisTokBuf;
968         } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
969 
970         // Copy the character span over.
971         unsigned Len = ThisTokBuf-InStart;
972         if (!AnyWide) {
973           memcpy(ResultPtr, InStart, Len);
974           ResultPtr += Len;
975         } else {
976           // Note: our internal rep of wide char tokens is always little-endian.
977           for (; Len; --Len, ++InStart) {
978             *ResultPtr++ = InStart[0];
979             // Add zeros at the end.
980             for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
981               *ResultPtr++ = 0;
982           }
983         }
984         continue;
985       }
986       // Is this a Universal Character Name escape?
987       if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
988         EncodeUCNEscape(ThisTokBuf, ThisTokEnd, ResultPtr,
989                         hadError, FullSourceLoc(StringToks[i].getLocation(),SM),
990                         wide, Diags, Features);
991         continue;
992       }
993       // Otherwise, this is a non-UCN escape character.  Process it.
994       unsigned ResultChar =
995         ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
996                           FullSourceLoc(StringToks[i].getLocation(), SM),
997                           AnyWide, Diags, Target);
998 
999       // Note: our internal rep of wide char tokens is always little-endian.
1000       *ResultPtr++ = ResultChar & 0xFF;
1001 
1002       if (AnyWide) {
1003         for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
1004           *ResultPtr++ = ResultChar >> i*8;
1005       }
1006     }
1007   }
1008 
1009   if (Pascal) {
1010     ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
1011     if (AnyWide)
1012       ResultBuf[0] /= wchar_tByteWidth;
1013 
1014     // Verify that pascal strings aren't too large.
1015     if (GetStringLength() > 256) {
1016       if (Diags)
1017         Diags->Report(FullSourceLoc(StringToks[0].getLocation(), SM),
1018                       diag::err_pascal_string_too_long)
1019           << SourceRange(StringToks[0].getLocation(),
1020                          StringToks[NumStringToks-1].getLocation());
1021       hadError = 1;
1022       return;
1023     }
1024   } else if (Diags) {
1025     // Complain if this string literal has too many characters.
1026     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1027 
1028     if (GetNumStringChars() > MaxChars)
1029       Diags->Report(FullSourceLoc(StringToks[0].getLocation(), SM),
1030                     diag::ext_string_too_long)
1031         << GetNumStringChars() << MaxChars
1032         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1033         << SourceRange(StringToks[0].getLocation(),
1034                        StringToks[NumStringToks-1].getLocation());
1035   }
1036 }
1037 
1038 
1039 /// getOffsetOfStringByte - This function returns the offset of the
1040 /// specified byte of the string data represented by Token.  This handles
1041 /// advancing over escape sequences in the string.
getOffsetOfStringByte(const Token & Tok,unsigned ByteNo) const1042 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
1043                                                     unsigned ByteNo) const {
1044   // Get the spelling of the token.
1045   llvm::SmallString<32> SpellingBuffer;
1046   SpellingBuffer.resize(Tok.getLength());
1047 
1048   bool StringInvalid = false;
1049   const char *SpellingPtr = &SpellingBuffer[0];
1050   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
1051                                        &StringInvalid);
1052   if (StringInvalid)
1053     return 0;
1054 
1055   assert(SpellingPtr[0] != 'L' && "Doesn't handle wide strings yet");
1056 
1057 
1058   const char *SpellingStart = SpellingPtr;
1059   const char *SpellingEnd = SpellingPtr+TokLen;
1060 
1061   // Skip over the leading quote.
1062   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
1063   ++SpellingPtr;
1064 
1065   // Skip over bytes until we find the offset we're looking for.
1066   while (ByteNo) {
1067     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
1068 
1069     // Step over non-escapes simply.
1070     if (*SpellingPtr != '\\') {
1071       ++SpellingPtr;
1072       --ByteNo;
1073       continue;
1074     }
1075 
1076     // Otherwise, this is an escape character.  Advance over it.
1077     bool HadError = false;
1078     ProcessCharEscape(SpellingPtr, SpellingEnd, HadError,
1079                       FullSourceLoc(Tok.getLocation(), SM),
1080                       false, Diags, Target);
1081     assert(!HadError && "This method isn't valid on erroneous strings");
1082     --ByteNo;
1083   }
1084 
1085   return SpellingPtr-SpellingStart;
1086 }
1087