1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef CODEGEN_DAGPATTERNS_H 16 #define CODEGEN_DAGPATTERNS_H 17 18 #include "CodeGenTarget.h" 19 #include "CodeGenIntrinsics.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringMap.h" 22 #include <set> 23 #include <algorithm> 24 #include <vector> 25 #include <map> 26 27 namespace llvm { 28 class Record; 29 class Init; 30 class ListInit; 31 class DagInit; 32 class SDNodeInfo; 33 class TreePattern; 34 class TreePatternNode; 35 class CodeGenDAGPatterns; 36 class ComplexPattern; 37 38 /// EEVT::DAGISelGenValueType - These are some extended forms of 39 /// MVT::SimpleValueType that we use as lattice values during type inference. 40 /// The existing MVT iAny, fAny and vAny types suffice to represent 41 /// arbitrary integer, floating-point, and vector types, so only an unknown 42 /// value is needed. 43 namespace EEVT { 44 /// TypeSet - This is either empty if it's completely unknown, or holds a set 45 /// of types. It is used during type inference because register classes can 46 /// have multiple possible types and we don't know which one they get until 47 /// type inference is complete. 48 /// 49 /// TypeSet can have three states: 50 /// Vector is empty: The type is completely unknown, it can be any valid 51 /// target type. 52 /// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one 53 /// of those types only. 54 /// Vector has one concrete type: The type is completely known. 55 /// 56 class TypeSet { 57 SmallVector<MVT::SimpleValueType, 4> TypeVec; 58 public: TypeSet()59 TypeSet() {} 60 TypeSet(MVT::SimpleValueType VT, TreePattern &TP); 61 TypeSet(const std::vector<MVT::SimpleValueType> &VTList); 62 isCompletelyUnknown()63 bool isCompletelyUnknown() const { return TypeVec.empty(); } 64 isConcrete()65 bool isConcrete() const { 66 if (TypeVec.size() != 1) return false; 67 unsigned char T = TypeVec[0]; (void)T; 68 assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny); 69 return true; 70 } 71 getConcrete()72 MVT::SimpleValueType getConcrete() const { 73 assert(isConcrete() && "Type isn't concrete yet"); 74 return (MVT::SimpleValueType)TypeVec[0]; 75 } 76 isDynamicallyResolved()77 bool isDynamicallyResolved() const { 78 return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny; 79 } 80 getTypeList()81 const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const { 82 assert(!TypeVec.empty() && "Not a type list!"); 83 return TypeVec; 84 } 85 isVoid()86 bool isVoid() const { 87 return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid; 88 } 89 90 /// hasIntegerTypes - Return true if this TypeSet contains any integer value 91 /// types. 92 bool hasIntegerTypes() const; 93 94 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 95 /// a floating point value type. 96 bool hasFloatingPointTypes() const; 97 98 /// hasVectorTypes - Return true if this TypeSet contains a vector value 99 /// type. 100 bool hasVectorTypes() const; 101 102 /// getName() - Return this TypeSet as a string. 103 std::string getName() const; 104 105 /// MergeInTypeInfo - This merges in type information from the specified 106 /// argument. If 'this' changes, it returns true. If the two types are 107 /// contradictory (e.g. merge f32 into i32) then this throws an exception. 108 bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP); 109 MergeInTypeInfo(MVT::SimpleValueType InVT,TreePattern & TP)110 bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) { 111 return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP); 112 } 113 114 /// Force this type list to only contain integer types. 115 bool EnforceInteger(TreePattern &TP); 116 117 /// Force this type list to only contain floating point types. 118 bool EnforceFloatingPoint(TreePattern &TP); 119 120 /// EnforceScalar - Remove all vector types from this type list. 121 bool EnforceScalar(TreePattern &TP); 122 123 /// EnforceVector - Remove all non-vector types from this type list. 124 bool EnforceVector(TreePattern &TP); 125 126 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 127 /// this an other based on this information. 128 bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP); 129 130 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 131 /// whose element is VT. 132 bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP); 133 134 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to 135 /// be a vector type VT. 136 bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP); 137 138 bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; } 139 bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; } 140 141 private: 142 /// FillWithPossibleTypes - Set to all legal types and return true, only 143 /// valid on completely unknown type sets. If Pred is non-null, only MVTs 144 /// that pass the predicate are added. 145 bool FillWithPossibleTypes(TreePattern &TP, 146 bool (*Pred)(MVT::SimpleValueType) = 0, 147 const char *PredicateName = 0); 148 }; 149 } 150 151 /// Set type used to track multiply used variables in patterns 152 typedef std::set<std::string> MultipleUseVarSet; 153 154 /// SDTypeConstraint - This is a discriminated union of constraints, 155 /// corresponding to the SDTypeConstraint tablegen class in Target.td. 156 struct SDTypeConstraint { 157 SDTypeConstraint(Record *R); 158 159 unsigned OperandNo; // The operand # this constraint applies to. 160 enum { 161 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, 162 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, 163 SDTCisSubVecOfVec 164 } ConstraintType; 165 166 union { // The discriminated union. 167 struct { 168 MVT::SimpleValueType VT; 169 } SDTCisVT_Info; 170 struct { 171 unsigned OtherOperandNum; 172 } SDTCisSameAs_Info; 173 struct { 174 unsigned OtherOperandNum; 175 } SDTCisVTSmallerThanOp_Info; 176 struct { 177 unsigned BigOperandNum; 178 } SDTCisOpSmallerThanOp_Info; 179 struct { 180 unsigned OtherOperandNum; 181 } SDTCisEltOfVec_Info; 182 struct { 183 unsigned OtherOperandNum; 184 } SDTCisSubVecOfVec_Info; 185 } x; 186 187 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 188 /// constraint to the nodes operands. This returns true if it makes a 189 /// change, false otherwise. If a type contradiction is found, throw an 190 /// exception. 191 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, 192 TreePattern &TP) const; 193 }; 194 195 /// SDNodeInfo - One of these records is created for each SDNode instance in 196 /// the target .td file. This represents the various dag nodes we will be 197 /// processing. 198 class SDNodeInfo { 199 Record *Def; 200 std::string EnumName; 201 std::string SDClassName; 202 unsigned Properties; 203 unsigned NumResults; 204 int NumOperands; 205 std::vector<SDTypeConstraint> TypeConstraints; 206 public: 207 SDNodeInfo(Record *R); // Parse the specified record. 208 getNumResults()209 unsigned getNumResults() const { return NumResults; } 210 211 /// getNumOperands - This is the number of operands required or -1 if 212 /// variadic. getNumOperands()213 int getNumOperands() const { return NumOperands; } getRecord()214 Record *getRecord() const { return Def; } getEnumName()215 const std::string &getEnumName() const { return EnumName; } getSDClassName()216 const std::string &getSDClassName() const { return SDClassName; } 217 getTypeConstraints()218 const std::vector<SDTypeConstraint> &getTypeConstraints() const { 219 return TypeConstraints; 220 } 221 222 /// getKnownType - If the type constraints on this node imply a fixed type 223 /// (e.g. all stores return void, etc), then return it as an 224 /// MVT::SimpleValueType. Otherwise, return MVT::Other. 225 MVT::SimpleValueType getKnownType(unsigned ResNo) const; 226 227 /// hasProperty - Return true if this node has the specified property. 228 /// hasProperty(enum SDNP Prop)229 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } 230 231 /// ApplyTypeConstraints - Given a node in a pattern, apply the type 232 /// constraints for this node to the operands of the node. This returns 233 /// true if it makes a change, false otherwise. If a type contradiction is 234 /// found, throw an exception. ApplyTypeConstraints(TreePatternNode * N,TreePattern & TP)235 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const { 236 bool MadeChange = false; 237 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) 238 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); 239 return MadeChange; 240 } 241 }; 242 243 /// TreePredicateFn - This is an abstraction that represents the predicates on 244 /// a PatFrag node. This is a simple one-word wrapper around a pointer to 245 /// provide nice accessors. 246 class TreePredicateFn { 247 /// PatFragRec - This is the TreePattern for the PatFrag that we 248 /// originally came from. 249 TreePattern *PatFragRec; 250 public: 251 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 252 TreePredicateFn(TreePattern *N); 253 254 getOrigPatFragRecord()255 TreePattern *getOrigPatFragRecord() const { return PatFragRec; } 256 257 /// isAlwaysTrue - Return true if this is a noop predicate. 258 bool isAlwaysTrue() const; 259 isImmediatePattern()260 bool isImmediatePattern() const { return !getImmCode().empty(); } 261 262 /// getImmediatePredicateCode - Return the code that evaluates this pattern if 263 /// this is an immediate predicate. It is an error to call this on a 264 /// non-immediate pattern. getImmediatePredicateCode()265 std::string getImmediatePredicateCode() const { 266 std::string Result = getImmCode(); 267 assert(!Result.empty() && "Isn't an immediate pattern!"); 268 return Result; 269 } 270 271 272 bool operator==(const TreePredicateFn &RHS) const { 273 return PatFragRec == RHS.PatFragRec; 274 } 275 276 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } 277 278 /// Return the name to use in the generated code to reference this, this is 279 /// "Predicate_foo" if from a pattern fragment "foo". 280 std::string getFnName() const; 281 282 /// getCodeToRunOnSDNode - Return the code for the function body that 283 /// evaluates this predicate. The argument is expected to be in "Node", 284 /// not N. This handles casting and conversion to a concrete node type as 285 /// appropriate. 286 std::string getCodeToRunOnSDNode() const; 287 288 private: 289 std::string getPredCode() const; 290 std::string getImmCode() const; 291 }; 292 293 294 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped 295 /// patterns), and as such should be ref counted. We currently just leak all 296 /// TreePatternNode objects! 297 class TreePatternNode { 298 /// The type of each node result. Before and during type inference, each 299 /// result may be a set of possible types. After (successful) type inference, 300 /// each is a single concrete type. 301 SmallVector<EEVT::TypeSet, 1> Types; 302 303 /// Operator - The Record for the operator if this is an interior node (not 304 /// a leaf). 305 Record *Operator; 306 307 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. 308 /// 309 Init *Val; 310 311 /// Name - The name given to this node with the :$foo notation. 312 /// 313 std::string Name; 314 315 /// PredicateFns - The predicate functions to execute on this node to check 316 /// for a match. If this list is empty, no predicate is involved. 317 std::vector<TreePredicateFn> PredicateFns; 318 319 /// TransformFn - The transformation function to execute on this node before 320 /// it can be substituted into the resulting instruction on a pattern match. 321 Record *TransformFn; 322 323 std::vector<TreePatternNode*> Children; 324 public: TreePatternNode(Record * Op,const std::vector<TreePatternNode * > & Ch,unsigned NumResults)325 TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch, 326 unsigned NumResults) 327 : Operator(Op), Val(0), TransformFn(0), Children(Ch) { 328 Types.resize(NumResults); 329 } TreePatternNode(Init * val,unsigned NumResults)330 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor 331 : Operator(0), Val(val), TransformFn(0) { 332 Types.resize(NumResults); 333 } 334 ~TreePatternNode(); 335 getName()336 const std::string &getName() const { return Name; } setName(StringRef N)337 void setName(StringRef N) { Name.assign(N.begin(), N.end()); } 338 isLeaf()339 bool isLeaf() const { return Val != 0; } 340 341 // Type accessors. getNumTypes()342 unsigned getNumTypes() const { return Types.size(); } getType(unsigned ResNo)343 MVT::SimpleValueType getType(unsigned ResNo) const { 344 return Types[ResNo].getConcrete(); 345 } getExtTypes()346 const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; } getExtType(unsigned ResNo)347 const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; } getExtType(unsigned ResNo)348 EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; } setType(unsigned ResNo,const EEVT::TypeSet & T)349 void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; } 350 hasTypeSet(unsigned ResNo)351 bool hasTypeSet(unsigned ResNo) const { 352 return Types[ResNo].isConcrete(); 353 } isTypeCompletelyUnknown(unsigned ResNo)354 bool isTypeCompletelyUnknown(unsigned ResNo) const { 355 return Types[ResNo].isCompletelyUnknown(); 356 } isTypeDynamicallyResolved(unsigned ResNo)357 bool isTypeDynamicallyResolved(unsigned ResNo) const { 358 return Types[ResNo].isDynamicallyResolved(); 359 } 360 getLeafValue()361 Init *getLeafValue() const { assert(isLeaf()); return Val; } getOperator()362 Record *getOperator() const { assert(!isLeaf()); return Operator; } 363 getNumChildren()364 unsigned getNumChildren() const { return Children.size(); } getChild(unsigned N)365 TreePatternNode *getChild(unsigned N) const { return Children[N]; } setChild(unsigned i,TreePatternNode * N)366 void setChild(unsigned i, TreePatternNode *N) { 367 Children[i] = N; 368 } 369 370 /// hasChild - Return true if N is any of our children. hasChild(const TreePatternNode * N)371 bool hasChild(const TreePatternNode *N) const { 372 for (unsigned i = 0, e = Children.size(); i != e; ++i) 373 if (Children[i] == N) return true; 374 return false; 375 } 376 hasAnyPredicate()377 bool hasAnyPredicate() const { return !PredicateFns.empty(); } 378 getPredicateFns()379 const std::vector<TreePredicateFn> &getPredicateFns() const { 380 return PredicateFns; 381 } clearPredicateFns()382 void clearPredicateFns() { PredicateFns.clear(); } setPredicateFns(const std::vector<TreePredicateFn> & Fns)383 void setPredicateFns(const std::vector<TreePredicateFn> &Fns) { 384 assert(PredicateFns.empty() && "Overwriting non-empty predicate list!"); 385 PredicateFns = Fns; 386 } addPredicateFn(const TreePredicateFn & Fn)387 void addPredicateFn(const TreePredicateFn &Fn) { 388 assert(!Fn.isAlwaysTrue() && "Empty predicate string!"); 389 if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) == 390 PredicateFns.end()) 391 PredicateFns.push_back(Fn); 392 } 393 getTransformFn()394 Record *getTransformFn() const { return TransformFn; } setTransformFn(Record * Fn)395 void setTransformFn(Record *Fn) { TransformFn = Fn; } 396 397 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 398 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 399 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; 400 401 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 402 /// return the ComplexPattern information, otherwise return null. 403 const ComplexPattern * 404 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; 405 406 /// NodeHasProperty - Return true if this node has the specified property. 407 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 408 409 /// TreeHasProperty - Return true if any node in this tree has the specified 410 /// property. 411 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 412 413 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is 414 /// marked isCommutative. 415 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; 416 417 void print(raw_ostream &OS) const; 418 void dump() const; 419 420 public: // Higher level manipulation routines. 421 422 /// clone - Return a new copy of this tree. 423 /// 424 TreePatternNode *clone() const; 425 426 /// RemoveAllTypes - Recursively strip all the types of this tree. 427 void RemoveAllTypes(); 428 429 /// isIsomorphicTo - Return true if this node is recursively isomorphic to 430 /// the specified node. For this comparison, all of the state of the node 431 /// is considered, except for the assigned name. Nodes with differing names 432 /// that are otherwise identical are considered isomorphic. 433 bool isIsomorphicTo(const TreePatternNode *N, 434 const MultipleUseVarSet &DepVars) const; 435 436 /// SubstituteFormalArguments - Replace the formal arguments in this tree 437 /// with actual values specified by ArgMap. 438 void SubstituteFormalArguments(std::map<std::string, 439 TreePatternNode*> &ArgMap); 440 441 /// InlinePatternFragments - If this pattern refers to any pattern 442 /// fragments, inline them into place, giving us a pattern without any 443 /// PatFrag references. 444 TreePatternNode *InlinePatternFragments(TreePattern &TP); 445 446 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 447 /// this node and its children in the tree. This returns true if it makes a 448 /// change, false otherwise. If a type contradiction is found, throw an 449 /// exception. 450 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); 451 452 /// UpdateNodeType - Set the node type of N to VT if VT contains 453 /// information. If N already contains a conflicting type, then throw an 454 /// exception. This returns true if any information was updated. 455 /// UpdateNodeType(unsigned ResNo,const EEVT::TypeSet & InTy,TreePattern & TP)456 bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy, 457 TreePattern &TP) { 458 return Types[ResNo].MergeInTypeInfo(InTy, TP); 459 } 460 UpdateNodeType(unsigned ResNo,MVT::SimpleValueType InTy,TreePattern & TP)461 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, 462 TreePattern &TP) { 463 return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP); 464 } 465 466 /// ContainsUnresolvedType - Return true if this tree contains any 467 /// unresolved types. ContainsUnresolvedType()468 bool ContainsUnresolvedType() const { 469 for (unsigned i = 0, e = Types.size(); i != e; ++i) 470 if (!Types[i].isConcrete()) return true; 471 472 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 473 if (getChild(i)->ContainsUnresolvedType()) return true; 474 return false; 475 } 476 477 /// canPatternMatch - If it is impossible for this pattern to match on this 478 /// target, fill in Reason and return false. Otherwise, return true. 479 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); 480 }; 481 482 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { 483 TPN.print(OS); 484 return OS; 485 } 486 487 488 /// TreePattern - Represent a pattern, used for instructions, pattern 489 /// fragments, etc. 490 /// 491 class TreePattern { 492 /// Trees - The list of pattern trees which corresponds to this pattern. 493 /// Note that PatFrag's only have a single tree. 494 /// 495 std::vector<TreePatternNode*> Trees; 496 497 /// NamedNodes - This is all of the nodes that have names in the trees in this 498 /// pattern. 499 StringMap<SmallVector<TreePatternNode*,1> > NamedNodes; 500 501 /// TheRecord - The actual TableGen record corresponding to this pattern. 502 /// 503 Record *TheRecord; 504 505 /// Args - This is a list of all of the arguments to this pattern (for 506 /// PatFrag patterns), which are the 'node' markers in this pattern. 507 std::vector<std::string> Args; 508 509 /// CDP - the top-level object coordinating this madness. 510 /// 511 CodeGenDAGPatterns &CDP; 512 513 /// isInputPattern - True if this is an input pattern, something to match. 514 /// False if this is an output pattern, something to emit. 515 bool isInputPattern; 516 public: 517 518 /// TreePattern constructor - Parse the specified DagInits into the 519 /// current record. 520 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 521 CodeGenDAGPatterns &ise); 522 TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 523 CodeGenDAGPatterns &ise); 524 TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 525 CodeGenDAGPatterns &ise); 526 527 /// getTrees - Return the tree patterns which corresponds to this pattern. 528 /// getTrees()529 const std::vector<TreePatternNode*> &getTrees() const { return Trees; } getNumTrees()530 unsigned getNumTrees() const { return Trees.size(); } getTree(unsigned i)531 TreePatternNode *getTree(unsigned i) const { return Trees[i]; } getOnlyTree()532 TreePatternNode *getOnlyTree() const { 533 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); 534 return Trees[0]; 535 } 536 getNamedNodesMap()537 const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() { 538 if (NamedNodes.empty()) 539 ComputeNamedNodes(); 540 return NamedNodes; 541 } 542 543 /// getRecord - Return the actual TableGen record corresponding to this 544 /// pattern. 545 /// getRecord()546 Record *getRecord() const { return TheRecord; } 547 getNumArgs()548 unsigned getNumArgs() const { return Args.size(); } getArgName(unsigned i)549 const std::string &getArgName(unsigned i) const { 550 assert(i < Args.size() && "Argument reference out of range!"); 551 return Args[i]; 552 } getArgList()553 std::vector<std::string> &getArgList() { return Args; } 554 getDAGPatterns()555 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } 556 557 /// InlinePatternFragments - If this pattern refers to any pattern 558 /// fragments, inline them into place, giving us a pattern without any 559 /// PatFrag references. InlinePatternFragments()560 void InlinePatternFragments() { 561 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 562 Trees[i] = Trees[i]->InlinePatternFragments(*this); 563 } 564 565 /// InferAllTypes - Infer/propagate as many types throughout the expression 566 /// patterns as possible. Return true if all types are inferred, false 567 /// otherwise. Throw an exception if a type contradiction is found. 568 bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > 569 *NamedTypes=0); 570 571 /// error - Throw an exception, prefixing it with information about this 572 /// pattern. 573 void error(const std::string &Msg) const; 574 575 void print(raw_ostream &OS) const; 576 void dump() const; 577 578 private: 579 TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName); 580 void ComputeNamedNodes(); 581 void ComputeNamedNodes(TreePatternNode *N); 582 }; 583 584 /// DAGDefaultOperand - One of these is created for each PredicateOperand 585 /// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field. 586 struct DAGDefaultOperand { 587 std::vector<TreePatternNode*> DefaultOps; 588 }; 589 590 class DAGInstruction { 591 TreePattern *Pattern; 592 std::vector<Record*> Results; 593 std::vector<Record*> Operands; 594 std::vector<Record*> ImpResults; 595 TreePatternNode *ResultPattern; 596 public: DAGInstruction(TreePattern * TP,const std::vector<Record * > & results,const std::vector<Record * > & operands,const std::vector<Record * > & impresults)597 DAGInstruction(TreePattern *TP, 598 const std::vector<Record*> &results, 599 const std::vector<Record*> &operands, 600 const std::vector<Record*> &impresults) 601 : Pattern(TP), Results(results), Operands(operands), 602 ImpResults(impresults), ResultPattern(0) {} 603 getPattern()604 const TreePattern *getPattern() const { return Pattern; } getNumResults()605 unsigned getNumResults() const { return Results.size(); } getNumOperands()606 unsigned getNumOperands() const { return Operands.size(); } getNumImpResults()607 unsigned getNumImpResults() const { return ImpResults.size(); } getImpResults()608 const std::vector<Record*>& getImpResults() const { return ImpResults; } 609 setResultPattern(TreePatternNode * R)610 void setResultPattern(TreePatternNode *R) { ResultPattern = R; } 611 getResult(unsigned RN)612 Record *getResult(unsigned RN) const { 613 assert(RN < Results.size()); 614 return Results[RN]; 615 } 616 getOperand(unsigned ON)617 Record *getOperand(unsigned ON) const { 618 assert(ON < Operands.size()); 619 return Operands[ON]; 620 } 621 getImpResult(unsigned RN)622 Record *getImpResult(unsigned RN) const { 623 assert(RN < ImpResults.size()); 624 return ImpResults[RN]; 625 } 626 getResultPattern()627 TreePatternNode *getResultPattern() const { return ResultPattern; } 628 }; 629 630 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns 631 /// processed to produce isel. 632 class PatternToMatch { 633 public: PatternToMatch(Record * srcrecord,ListInit * preds,TreePatternNode * src,TreePatternNode * dst,const std::vector<Record * > & dstregs,unsigned complexity,unsigned uid)634 PatternToMatch(Record *srcrecord, ListInit *preds, 635 TreePatternNode *src, TreePatternNode *dst, 636 const std::vector<Record*> &dstregs, 637 unsigned complexity, unsigned uid) 638 : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst), 639 Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {} 640 641 Record *SrcRecord; // Originating Record for the pattern. 642 ListInit *Predicates; // Top level predicate conditions to match. 643 TreePatternNode *SrcPattern; // Source pattern to match. 644 TreePatternNode *DstPattern; // Resulting pattern. 645 std::vector<Record*> Dstregs; // Physical register defs being matched. 646 unsigned AddedComplexity; // Add to matching pattern complexity. 647 unsigned ID; // Unique ID for the record. 648 getSrcRecord()649 Record *getSrcRecord() const { return SrcRecord; } getPredicates()650 ListInit *getPredicates() const { return Predicates; } getSrcPattern()651 TreePatternNode *getSrcPattern() const { return SrcPattern; } getDstPattern()652 TreePatternNode *getDstPattern() const { return DstPattern; } getDstRegs()653 const std::vector<Record*> &getDstRegs() const { return Dstregs; } getAddedComplexity()654 unsigned getAddedComplexity() const { return AddedComplexity; } 655 656 std::string getPredicateCheck() const; 657 658 /// Compute the complexity metric for the input pattern. This roughly 659 /// corresponds to the number of nodes that are covered. 660 unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const; 661 }; 662 663 // Deterministic comparison of Record*. 664 struct RecordPtrCmp { 665 bool operator()(const Record *LHS, const Record *RHS) const; 666 }; 667 668 class CodeGenDAGPatterns { 669 RecordKeeper &Records; 670 CodeGenTarget Target; 671 std::vector<CodeGenIntrinsic> Intrinsics; 672 std::vector<CodeGenIntrinsic> TgtIntrinsics; 673 674 std::map<Record*, SDNodeInfo, RecordPtrCmp> SDNodes; 675 std::map<Record*, std::pair<Record*, std::string>, RecordPtrCmp> SDNodeXForms; 676 std::map<Record*, ComplexPattern, RecordPtrCmp> ComplexPatterns; 677 std::map<Record*, TreePattern*, RecordPtrCmp> PatternFragments; 678 std::map<Record*, DAGDefaultOperand, RecordPtrCmp> DefaultOperands; 679 std::map<Record*, DAGInstruction, RecordPtrCmp> Instructions; 680 681 // Specific SDNode definitions: 682 Record *intrinsic_void_sdnode; 683 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; 684 685 /// PatternsToMatch - All of the things we are matching on the DAG. The first 686 /// value is the pattern to match, the second pattern is the result to 687 /// emit. 688 std::vector<PatternToMatch> PatternsToMatch; 689 public: 690 CodeGenDAGPatterns(RecordKeeper &R); 691 ~CodeGenDAGPatterns(); 692 getTargetInfo()693 CodeGenTarget &getTargetInfo() { return Target; } getTargetInfo()694 const CodeGenTarget &getTargetInfo() const { return Target; } 695 696 Record *getSDNodeNamed(const std::string &Name) const; 697 getSDNodeInfo(Record * R)698 const SDNodeInfo &getSDNodeInfo(Record *R) const { 699 assert(SDNodes.count(R) && "Unknown node!"); 700 return SDNodes.find(R)->second; 701 } 702 703 // Node transformation lookups. 704 typedef std::pair<Record*, std::string> NodeXForm; getSDNodeTransform(Record * R)705 const NodeXForm &getSDNodeTransform(Record *R) const { 706 assert(SDNodeXForms.count(R) && "Invalid transform!"); 707 return SDNodeXForms.find(R)->second; 708 } 709 710 typedef std::map<Record*, NodeXForm, RecordPtrCmp>::const_iterator 711 nx_iterator; nx_begin()712 nx_iterator nx_begin() const { return SDNodeXForms.begin(); } nx_end()713 nx_iterator nx_end() const { return SDNodeXForms.end(); } 714 715 getComplexPattern(Record * R)716 const ComplexPattern &getComplexPattern(Record *R) const { 717 assert(ComplexPatterns.count(R) && "Unknown addressing mode!"); 718 return ComplexPatterns.find(R)->second; 719 } 720 getIntrinsic(Record * R)721 const CodeGenIntrinsic &getIntrinsic(Record *R) const { 722 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 723 if (Intrinsics[i].TheDef == R) return Intrinsics[i]; 724 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 725 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; 726 assert(0 && "Unknown intrinsic!"); 727 abort(); 728 } 729 getIntrinsicInfo(unsigned IID)730 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { 731 if (IID-1 < Intrinsics.size()) 732 return Intrinsics[IID-1]; 733 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) 734 return TgtIntrinsics[IID-Intrinsics.size()-1]; 735 assert(0 && "Bad intrinsic ID!"); 736 abort(); 737 } 738 getIntrinsicID(Record * R)739 unsigned getIntrinsicID(Record *R) const { 740 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 741 if (Intrinsics[i].TheDef == R) return i; 742 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 743 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); 744 assert(0 && "Unknown intrinsic!"); 745 abort(); 746 } 747 getDefaultOperand(Record * R)748 const DAGDefaultOperand &getDefaultOperand(Record *R) const { 749 assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!"); 750 return DefaultOperands.find(R)->second; 751 } 752 753 // Pattern Fragment information. getPatternFragment(Record * R)754 TreePattern *getPatternFragment(Record *R) const { 755 assert(PatternFragments.count(R) && "Invalid pattern fragment request!"); 756 return PatternFragments.find(R)->second; 757 } getPatternFragmentIfRead(Record * R)758 TreePattern *getPatternFragmentIfRead(Record *R) const { 759 if (!PatternFragments.count(R)) return 0; 760 return PatternFragments.find(R)->second; 761 } 762 763 typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator 764 pf_iterator; pf_begin()765 pf_iterator pf_begin() const { return PatternFragments.begin(); } pf_end()766 pf_iterator pf_end() const { return PatternFragments.end(); } 767 768 // Patterns to match information. 769 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; ptm_begin()770 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } ptm_end()771 ptm_iterator ptm_end() const { return PatternsToMatch.end(); } 772 773 774 getInstruction(Record * R)775 const DAGInstruction &getInstruction(Record *R) const { 776 assert(Instructions.count(R) && "Unknown instruction!"); 777 return Instructions.find(R)->second; 778 } 779 get_intrinsic_void_sdnode()780 Record *get_intrinsic_void_sdnode() const { 781 return intrinsic_void_sdnode; 782 } get_intrinsic_w_chain_sdnode()783 Record *get_intrinsic_w_chain_sdnode() const { 784 return intrinsic_w_chain_sdnode; 785 } get_intrinsic_wo_chain_sdnode()786 Record *get_intrinsic_wo_chain_sdnode() const { 787 return intrinsic_wo_chain_sdnode; 788 } 789 hasTargetIntrinsics()790 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } 791 792 private: 793 void ParseNodeInfo(); 794 void ParseNodeTransforms(); 795 void ParseComplexPatterns(); 796 void ParsePatternFragments(); 797 void ParseDefaultOperands(); 798 void ParseInstructions(); 799 void ParsePatterns(); 800 void InferInstructionFlags(); 801 void GenerateVariants(); 802 803 void AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM); 804 void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 805 std::map<std::string, 806 TreePatternNode*> &InstInputs, 807 std::map<std::string, 808 TreePatternNode*> &InstResults, 809 std::vector<Record*> &InstImpResults); 810 }; 811 } // end namespace llvm 812 813 #endif 814