• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Target/TargetData.h - Data size & alignment info ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines target properties related to datatype size/offset/alignment
11 // information.  It uses lazy annotations to cache information about how
12 // structure types are laid out and used.
13 //
14 // This structure should be created once, filled in if the defaults are not
15 // correct and then passed around by const&.  None of the members functions
16 // require modification to the object.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_TARGET_TARGETDATA_H
21 #define LLVM_TARGET_TARGETDATA_H
22 
23 #include "llvm/Pass.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/DataTypes.h"
26 
27 namespace llvm {
28 
29 class Value;
30 class Type;
31 class IntegerType;
32 class StructType;
33 class StructLayout;
34 class GlobalVariable;
35 class LLVMContext;
36 template<typename T>
37 class ArrayRef;
38 
39 /// Enum used to categorize the alignment types stored by TargetAlignElem
40 enum AlignTypeEnum {
41   INTEGER_ALIGN = 'i',               ///< Integer type alignment
42   VECTOR_ALIGN = 'v',                ///< Vector type alignment
43   FLOAT_ALIGN = 'f',                 ///< Floating point type alignment
44   AGGREGATE_ALIGN = 'a',             ///< Aggregate alignment
45   STACK_ALIGN = 's'                  ///< Stack objects alignment
46 };
47 /// Target alignment element.
48 ///
49 /// Stores the alignment data associated with a given alignment type (pointer,
50 /// integer, vector, float) and type bit width.
51 ///
52 /// @note The unusual order of elements in the structure attempts to reduce
53 /// padding and make the structure slightly more cache friendly.
54 struct TargetAlignElem {
55   AlignTypeEnum       AlignType : 8;  //< Alignment type (AlignTypeEnum)
56   unsigned            ABIAlign;       //< ABI alignment for this type/bitw
57   unsigned            PrefAlign;      //< Pref. alignment for this type/bitw
58   uint32_t            TypeBitWidth;   //< Type bit width
59 
60   /// Initializer
61   static TargetAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
62                              unsigned pref_align, uint32_t bit_width);
63   /// Equality predicate
64   bool operator==(const TargetAlignElem &rhs) const;
65 };
66 
67 class TargetData : public ImmutablePass {
68 private:
69   bool          LittleEndian;          ///< Defaults to false
70   unsigned      PointerMemSize;        ///< Pointer size in bytes
71   unsigned      PointerABIAlign;       ///< Pointer ABI alignment
72   unsigned      PointerPrefAlign;      ///< Pointer preferred alignment
73 
74   SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
75 
76   /// Alignments- Where the primitive type alignment data is stored.
77   ///
78   /// @sa init().
79   /// @note Could support multiple size pointer alignments, e.g., 32-bit
80   /// pointers vs. 64-bit pointers by extending TargetAlignment, but for now,
81   /// we don't.
82   SmallVector<TargetAlignElem, 16> Alignments;
83 
84   /// InvalidAlignmentElem - This member is a signal that a requested alignment
85   /// type and bit width were not found in the SmallVector.
86   static const TargetAlignElem InvalidAlignmentElem;
87 
88   // The StructType -> StructLayout map.
89   mutable void *LayoutMap;
90 
91   //! Set/initialize target alignments
92   void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
93                     unsigned pref_align, uint32_t bit_width);
94   unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
95                             bool ABIAlign, Type *Ty) const;
96   //! Internal helper method that returns requested alignment for type.
97   unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
98 
99   /// Valid alignment predicate.
100   ///
101   /// Predicate that tests a TargetAlignElem reference returned by get() against
102   /// InvalidAlignmentElem.
validAlignment(const TargetAlignElem & align)103   bool validAlignment(const TargetAlignElem &align) const {
104     return &align != &InvalidAlignmentElem;
105   }
106 
107 public:
108   /// Default ctor.
109   ///
110   /// @note This has to exist, because this is a pass, but it should never be
111   /// used.
112   TargetData();
113 
114   /// Constructs a TargetData from a specification string. See init().
TargetData(StringRef TargetDescription)115   explicit TargetData(StringRef TargetDescription)
116     : ImmutablePass(ID) {
117     init(TargetDescription);
118   }
119 
120   /// Initialize target data from properties stored in the module.
121   explicit TargetData(const Module *M);
122 
TargetData(const TargetData & TD)123   TargetData(const TargetData &TD) :
124     ImmutablePass(ID),
125     LittleEndian(TD.isLittleEndian()),
126     PointerMemSize(TD.PointerMemSize),
127     PointerABIAlign(TD.PointerABIAlign),
128     PointerPrefAlign(TD.PointerPrefAlign),
129     LegalIntWidths(TD.LegalIntWidths),
130     Alignments(TD.Alignments),
131     LayoutMap(0)
132   { }
133 
134   ~TargetData();  // Not virtual, do not subclass this class
135 
136   //! Parse a target data layout string and initialize TargetData alignments.
137   void init(StringRef TargetDescription);
138 
139   /// Target endianness...
isLittleEndian()140   bool isLittleEndian() const { return LittleEndian; }
isBigEndian()141   bool isBigEndian() const { return !LittleEndian; }
142 
143   /// getStringRepresentation - Return the string representation of the
144   /// TargetData.  This representation is in the same format accepted by the
145   /// string constructor above.
146   std::string getStringRepresentation() const;
147 
148   /// isLegalInteger - This function returns true if the specified type is
149   /// known to be a native integer type supported by the CPU.  For example,
150   /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
151   /// one.  This returns false if the integer width is not legal.
152   ///
153   /// The width is specified in bits.
154   ///
isLegalInteger(unsigned Width)155   bool isLegalInteger(unsigned Width) const {
156     for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
157       if (LegalIntWidths[i] == Width)
158         return true;
159     return false;
160   }
161 
isIllegalInteger(unsigned Width)162   bool isIllegalInteger(unsigned Width) const {
163     return !isLegalInteger(Width);
164   }
165 
166   /// fitsInLegalInteger - This function returns true if the specified type fits
167   /// in a native integer type supported by the CPU.  For example, if the CPU
168   /// only supports i32 as a native integer type, then i27 fits in a legal
169   // integer type but i45 does not.
fitsInLegalInteger(unsigned Width)170   bool fitsInLegalInteger(unsigned Width) const {
171     for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
172       if (Width <= LegalIntWidths[i])
173         return true;
174     return false;
175   }
176 
177   /// Target pointer alignment
getPointerABIAlignment()178   unsigned getPointerABIAlignment() const { return PointerABIAlign; }
179   /// Return target's alignment for stack-based pointers
getPointerPrefAlignment()180   unsigned getPointerPrefAlignment() const { return PointerPrefAlign; }
181   /// Target pointer size
getPointerSize()182   unsigned getPointerSize()         const { return PointerMemSize; }
183   /// Target pointer size, in bits
getPointerSizeInBits()184   unsigned getPointerSizeInBits()   const { return 8*PointerMemSize; }
185 
186   /// Size examples:
187   ///
188   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
189   /// ----        ----------  ---------------  ---------------
190   ///  i1            1           8                8
191   ///  i8            8           8                8
192   ///  i19          19          24               32
193   ///  i32          32          32               32
194   ///  i100        100         104              128
195   ///  i128        128         128              128
196   ///  Float        32          32               32
197   ///  Double       64          64               64
198   ///  X86_FP80     80          80               96
199   ///
200   /// [*] The alloc size depends on the alignment, and thus on the target.
201   ///     These values are for x86-32 linux.
202 
203   /// getTypeSizeInBits - Return the number of bits necessary to hold the
204   /// specified type.  For example, returns 36 for i36 and 80 for x86_fp80.
205   uint64_t getTypeSizeInBits(Type* Ty) const;
206 
207   /// getTypeStoreSize - Return the maximum number of bytes that may be
208   /// overwritten by storing the specified type.  For example, returns 5
209   /// for i36 and 10 for x86_fp80.
getTypeStoreSize(Type * Ty)210   uint64_t getTypeStoreSize(Type *Ty) const {
211     return (getTypeSizeInBits(Ty)+7)/8;
212   }
213 
214   /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
215   /// overwritten by storing the specified type; always a multiple of 8.  For
216   /// example, returns 40 for i36 and 80 for x86_fp80.
getTypeStoreSizeInBits(Type * Ty)217   uint64_t getTypeStoreSizeInBits(Type *Ty) const {
218     return 8*getTypeStoreSize(Ty);
219   }
220 
221   /// getTypeAllocSize - Return the offset in bytes between successive objects
222   /// of the specified type, including alignment padding.  This is the amount
223   /// that alloca reserves for this type.  For example, returns 12 or 16 for
224   /// x86_fp80, depending on alignment.
getTypeAllocSize(Type * Ty)225   uint64_t getTypeAllocSize(Type* Ty) const {
226     // Round up to the next alignment boundary.
227     return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
228   }
229 
230   /// getTypeAllocSizeInBits - Return the offset in bits between successive
231   /// objects of the specified type, including alignment padding; always a
232   /// multiple of 8.  This is the amount that alloca reserves for this type.
233   /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
getTypeAllocSizeInBits(Type * Ty)234   uint64_t getTypeAllocSizeInBits(Type* Ty) const {
235     return 8*getTypeAllocSize(Ty);
236   }
237 
238   /// getABITypeAlignment - Return the minimum ABI-required alignment for the
239   /// specified type.
240   unsigned getABITypeAlignment(Type *Ty) const;
241 
242   /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
243   /// an integer type of the specified bitwidth.
244   unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
245 
246 
247   /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
248   /// for the specified type when it is part of a call frame.
249   unsigned getCallFrameTypeAlignment(Type *Ty) const;
250 
251 
252   /// getPrefTypeAlignment - Return the preferred stack/global alignment for
253   /// the specified type.  This is always at least as good as the ABI alignment.
254   unsigned getPrefTypeAlignment(Type *Ty) const;
255 
256   /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
257   /// specified type, returned as log2 of the value (a shift amount).
258   ///
259   unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
260 
261   /// getIntPtrType - Return an unsigned integer type that is the same size or
262   /// greater to the host pointer size.
263   ///
264   IntegerType *getIntPtrType(LLVMContext &C) const;
265 
266   /// getIndexedOffset - return the offset from the beginning of the type for
267   /// the specified indices.  This is used to implement getelementptr.
268   ///
269   uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
270 
271   /// getStructLayout - Return a StructLayout object, indicating the alignment
272   /// of the struct, its size, and the offsets of its fields.  Note that this
273   /// information is lazily cached.
274   const StructLayout *getStructLayout(StructType *Ty) const;
275 
276   /// getPreferredAlignment - Return the preferred alignment of the specified
277   /// global.  This includes an explicitly requested alignment (if the global
278   /// has one).
279   unsigned getPreferredAlignment(const GlobalVariable *GV) const;
280 
281   /// getPreferredAlignmentLog - Return the preferred alignment of the
282   /// specified global, returned in log form.  This includes an explicitly
283   /// requested alignment (if the global has one).
284   unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
285 
286   /// RoundUpAlignment - Round the specified value up to the next alignment
287   /// boundary specified by Alignment.  For example, 7 rounded up to an
288   /// alignment boundary of 4 is 8.  8 rounded up to the alignment boundary of 4
289   /// is 8 because it is already aligned.
290   template <typename UIntTy>
RoundUpAlignment(UIntTy Val,unsigned Alignment)291   static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
292     assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
293     return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
294   }
295 
296   static char ID; // Pass identification, replacement for typeid
297 };
298 
299 /// StructLayout - used to lazily calculate structure layout information for a
300 /// target machine, based on the TargetData structure.
301 ///
302 class StructLayout {
303   uint64_t StructSize;
304   unsigned StructAlignment;
305   unsigned NumElements;
306   uint64_t MemberOffsets[1];  // variable sized array!
307 public:
308 
getSizeInBytes()309   uint64_t getSizeInBytes() const {
310     return StructSize;
311   }
312 
getSizeInBits()313   uint64_t getSizeInBits() const {
314     return 8*StructSize;
315   }
316 
getAlignment()317   unsigned getAlignment() const {
318     return StructAlignment;
319   }
320 
321   /// getElementContainingOffset - Given a valid byte offset into the structure,
322   /// return the structure index that contains it.
323   ///
324   unsigned getElementContainingOffset(uint64_t Offset) const;
325 
getElementOffset(unsigned Idx)326   uint64_t getElementOffset(unsigned Idx) const {
327     assert(Idx < NumElements && "Invalid element idx!");
328     return MemberOffsets[Idx];
329   }
330 
getElementOffsetInBits(unsigned Idx)331   uint64_t getElementOffsetInBits(unsigned Idx) const {
332     return getElementOffset(Idx)*8;
333   }
334 
335 private:
336   friend class TargetData;   // Only TargetData can create this class
337   StructLayout(StructType *ST, const TargetData &TD);
338 };
339 
340 } // End llvm namespace
341 
342 #endif
343