1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the C++ related Decl classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/TypeLoc.h"
21 #include "clang/Basic/IdentifierTable.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 using namespace clang;
25
26 //===----------------------------------------------------------------------===//
27 // Decl Allocation/Deallocation Method Implementations
28 //===----------------------------------------------------------------------===//
29
DefinitionData(CXXRecordDecl * D)30 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
31 : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
32 UserDeclaredMoveConstructor(false), UserDeclaredCopyAssignment(false),
33 UserDeclaredMoveAssignment(false), UserDeclaredDestructor(false),
34 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
35 Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
36 HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
37 HasMutableFields(false), HasTrivialDefaultConstructor(true),
38 HasConstExprNonCopyMoveConstructor(false), HasTrivialCopyConstructor(true),
39 HasTrivialMoveConstructor(true), HasTrivialCopyAssignment(true),
40 HasTrivialMoveAssignment(true), HasTrivialDestructor(true),
41 HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
42 UserProvidedDefaultConstructor(false), DeclaredDefaultConstructor(false),
43 DeclaredCopyConstructor(false), DeclaredMoveConstructor(false),
44 DeclaredCopyAssignment(false), DeclaredMoveAssignment(false),
45 DeclaredDestructor(false), NumBases(0), NumVBases(0), Bases(), VBases(),
46 Definition(D), FirstFriend(0) {
47 }
48
CXXRecordDecl(Kind K,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl)49 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
50 SourceLocation StartLoc, SourceLocation IdLoc,
51 IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
52 : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
53 DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
54 TemplateOrInstantiation() { }
55
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl,bool DelayTypeCreation)56 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
57 DeclContext *DC, SourceLocation StartLoc,
58 SourceLocation IdLoc, IdentifierInfo *Id,
59 CXXRecordDecl* PrevDecl,
60 bool DelayTypeCreation) {
61 CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
62 Id, PrevDecl);
63
64 // FIXME: DelayTypeCreation seems like such a hack
65 if (!DelayTypeCreation)
66 C.getTypeDeclType(R, PrevDecl);
67 return R;
68 }
69
Create(const ASTContext & C,EmptyShell Empty)70 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, EmptyShell Empty) {
71 return new (C) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(),
72 SourceLocation(), 0, 0);
73 }
74
75 void
setBases(CXXBaseSpecifier const * const * Bases,unsigned NumBases)76 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
77 unsigned NumBases) {
78 ASTContext &C = getASTContext();
79
80 // C++ [dcl.init.aggr]p1:
81 // An aggregate is an array or a class (clause 9) with [...]
82 // no base classes [...].
83 data().Aggregate = false;
84
85 if (!data().Bases.isOffset() && data().NumBases > 0)
86 C.Deallocate(data().getBases());
87
88 // The set of seen virtual base types.
89 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
90
91 // The virtual bases of this class.
92 llvm::SmallVector<const CXXBaseSpecifier *, 8> VBases;
93
94 data().Bases = new(C) CXXBaseSpecifier [NumBases];
95 data().NumBases = NumBases;
96 for (unsigned i = 0; i < NumBases; ++i) {
97 data().getBases()[i] = *Bases[i];
98 // Keep track of inherited vbases for this base class.
99 const CXXBaseSpecifier *Base = Bases[i];
100 QualType BaseType = Base->getType();
101 // Skip dependent types; we can't do any checking on them now.
102 if (BaseType->isDependentType())
103 continue;
104 CXXRecordDecl *BaseClassDecl
105 = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
106
107 // C++ [dcl.init.aggr]p1:
108 // An aggregate is [...] a class with [...] no base classes [...].
109 data().Aggregate = false;
110
111 // C++ [class]p4:
112 // A POD-struct is an aggregate class...
113 data().PlainOldData = false;
114
115 // A class with a non-empty base class is not empty.
116 // FIXME: Standard ref?
117 if (!BaseClassDecl->isEmpty()) {
118 if (!data().Empty) {
119 // C++0x [class]p7:
120 // A standard-layout class is a class that:
121 // [...]
122 // -- either has no non-static data members in the most derived
123 // class and at most one base class with non-static data members,
124 // or has no base classes with non-static data members, and
125 // If this is the second non-empty base, then neither of these two
126 // clauses can be true.
127 data().IsStandardLayout = false;
128 }
129
130 data().Empty = false;
131 data().HasNoNonEmptyBases = false;
132 }
133
134 // C++ [class.virtual]p1:
135 // A class that declares or inherits a virtual function is called a
136 // polymorphic class.
137 if (BaseClassDecl->isPolymorphic())
138 data().Polymorphic = true;
139
140 // C++0x [class]p7:
141 // A standard-layout class is a class that: [...]
142 // -- has no non-standard-layout base classes
143 if (!BaseClassDecl->isStandardLayout())
144 data().IsStandardLayout = false;
145
146 // Record if this base is the first non-literal field or base.
147 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType())
148 data().HasNonLiteralTypeFieldsOrBases = true;
149
150 // Now go through all virtual bases of this base and add them.
151 for (CXXRecordDecl::base_class_iterator VBase =
152 BaseClassDecl->vbases_begin(),
153 E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
154 // Add this base if it's not already in the list.
155 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
156 VBases.push_back(VBase);
157 }
158
159 if (Base->isVirtual()) {
160 // Add this base if it's not already in the list.
161 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
162 VBases.push_back(Base);
163
164 // C++0x [meta.unary.prop] is_empty:
165 // T is a class type, but not a union type, with ... no virtual base
166 // classes
167 data().Empty = false;
168
169 // C++ [class.ctor]p5:
170 // A default constructor is trivial [...] if:
171 // -- its class has [...] no virtual bases
172 data().HasTrivialDefaultConstructor = false;
173
174 // C++0x [class.copy]p13:
175 // A copy/move constructor for class X is trivial if it is neither
176 // user-provided nor deleted and if
177 // -- class X has no virtual functions and no virtual base classes, and
178 data().HasTrivialCopyConstructor = false;
179 data().HasTrivialMoveConstructor = false;
180
181 // C++0x [class.copy]p27:
182 // A copy/move assignment operator for class X is trivial if it is
183 // neither user-provided nor deleted and if
184 // -- class X has no virtual functions and no virtual base classes, and
185 data().HasTrivialCopyAssignment = false;
186 data().HasTrivialMoveAssignment = false;
187
188 // C++0x [class]p7:
189 // A standard-layout class is a class that: [...]
190 // -- has [...] no virtual base classes
191 data().IsStandardLayout = false;
192 } else {
193 // C++ [class.ctor]p5:
194 // A default constructor is trivial [...] if:
195 // -- all the direct base classes of its class have trivial default
196 // constructors.
197 if (!BaseClassDecl->hasTrivialDefaultConstructor())
198 data().HasTrivialDefaultConstructor = false;
199
200 // C++0x [class.copy]p13:
201 // A copy/move constructor for class X is trivial if [...]
202 // [...]
203 // -- the constructor selected to copy/move each direct base class
204 // subobject is trivial, and
205 // FIXME: C++0x: We need to only consider the selected constructor
206 // instead of all of them.
207 if (!BaseClassDecl->hasTrivialCopyConstructor())
208 data().HasTrivialCopyConstructor = false;
209 if (!BaseClassDecl->hasTrivialMoveConstructor())
210 data().HasTrivialMoveConstructor = false;
211
212 // C++0x [class.copy]p27:
213 // A copy/move assignment operator for class X is trivial if [...]
214 // [...]
215 // -- the assignment operator selected to copy/move each direct base
216 // class subobject is trivial, and
217 // FIXME: C++0x: We need to only consider the selected operator instead
218 // of all of them.
219 if (!BaseClassDecl->hasTrivialCopyAssignment())
220 data().HasTrivialCopyAssignment = false;
221 if (!BaseClassDecl->hasTrivialMoveAssignment())
222 data().HasTrivialMoveAssignment = false;
223 }
224
225 // C++ [class.ctor]p3:
226 // A destructor is trivial if all the direct base classes of its class
227 // have trivial destructors.
228 if (!BaseClassDecl->hasTrivialDestructor())
229 data().HasTrivialDestructor = false;
230
231 // A class has an Objective-C object member if... or any of its bases
232 // has an Objective-C object member.
233 if (BaseClassDecl->hasObjectMember())
234 setHasObjectMember(true);
235
236 // Keep track of the presence of mutable fields.
237 if (BaseClassDecl->hasMutableFields())
238 data().HasMutableFields = true;
239 }
240
241 if (VBases.empty())
242 return;
243
244 // Create base specifier for any direct or indirect virtual bases.
245 data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
246 data().NumVBases = VBases.size();
247 for (int I = 0, E = VBases.size(); I != E; ++I)
248 data().getVBases()[I] = *VBases[I];
249 }
250
251 /// Callback function for CXXRecordDecl::forallBases that acknowledges
252 /// that it saw a base class.
SawBase(const CXXRecordDecl *,void *)253 static bool SawBase(const CXXRecordDecl *, void *) {
254 return true;
255 }
256
hasAnyDependentBases() const257 bool CXXRecordDecl::hasAnyDependentBases() const {
258 if (!isDependentContext())
259 return false;
260
261 return !forallBases(SawBase, 0);
262 }
263
hasConstCopyConstructor() const264 bool CXXRecordDecl::hasConstCopyConstructor() const {
265 return getCopyConstructor(Qualifiers::Const) != 0;
266 }
267
isTriviallyCopyable() const268 bool CXXRecordDecl::isTriviallyCopyable() const {
269 // C++0x [class]p5:
270 // A trivially copyable class is a class that:
271 // -- has no non-trivial copy constructors,
272 if (!hasTrivialCopyConstructor()) return false;
273 // -- has no non-trivial move constructors,
274 if (!hasTrivialMoveConstructor()) return false;
275 // -- has no non-trivial copy assignment operators,
276 if (!hasTrivialCopyAssignment()) return false;
277 // -- has no non-trivial move assignment operators, and
278 if (!hasTrivialMoveAssignment()) return false;
279 // -- has a trivial destructor.
280 if (!hasTrivialDestructor()) return false;
281
282 return true;
283 }
284
285 /// \brief Perform a simplistic form of overload resolution that only considers
286 /// cv-qualifiers on a single parameter, and return the best overload candidate
287 /// (if there is one).
288 static CXXMethodDecl *
GetBestOverloadCandidateSimple(const llvm::SmallVectorImpl<std::pair<CXXMethodDecl *,Qualifiers>> & Cands)289 GetBestOverloadCandidateSimple(
290 const llvm::SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) {
291 if (Cands.empty())
292 return 0;
293 if (Cands.size() == 1)
294 return Cands[0].first;
295
296 unsigned Best = 0, N = Cands.size();
297 for (unsigned I = 1; I != N; ++I)
298 if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
299 Best = I;
300
301 for (unsigned I = 1; I != N; ++I)
302 if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
303 return 0;
304
305 return Cands[Best].first;
306 }
307
getCopyConstructor(unsigned TypeQuals) const308 CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(unsigned TypeQuals) const{
309 ASTContext &Context = getASTContext();
310 QualType ClassType
311 = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
312 DeclarationName ConstructorName
313 = Context.DeclarationNames.getCXXConstructorName(
314 Context.getCanonicalType(ClassType));
315 unsigned FoundTQs;
316 llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
317 DeclContext::lookup_const_iterator Con, ConEnd;
318 for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
319 Con != ConEnd; ++Con) {
320 // C++ [class.copy]p2:
321 // A non-template constructor for class X is a copy constructor if [...]
322 if (isa<FunctionTemplateDecl>(*Con))
323 continue;
324
325 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
326 if (Constructor->isCopyConstructor(FoundTQs)) {
327 if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
328 (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
329 Found.push_back(std::make_pair(
330 const_cast<CXXConstructorDecl *>(Constructor),
331 Qualifiers::fromCVRMask(FoundTQs)));
332 }
333 }
334
335 return cast_or_null<CXXConstructorDecl>(
336 GetBestOverloadCandidateSimple(Found));
337 }
338
getMoveConstructor() const339 CXXConstructorDecl *CXXRecordDecl::getMoveConstructor() const {
340 for (ctor_iterator I = ctor_begin(), E = ctor_end(); I != E; ++I)
341 if (I->isMoveConstructor())
342 return *I;
343
344 return 0;
345 }
346
getCopyAssignmentOperator(bool ArgIsConst) const347 CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const {
348 ASTContext &Context = getASTContext();
349 QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this));
350 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
351
352 llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
353 DeclContext::lookup_const_iterator Op, OpEnd;
354 for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) {
355 // C++ [class.copy]p9:
356 // A user-declared copy assignment operator is a non-static non-template
357 // member function of class X with exactly one parameter of type X, X&,
358 // const X&, volatile X& or const volatile X&.
359 const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
360 if (!Method || Method->isStatic() || Method->getPrimaryTemplate())
361 continue;
362
363 const FunctionProtoType *FnType
364 = Method->getType()->getAs<FunctionProtoType>();
365 assert(FnType && "Overloaded operator has no prototype.");
366 // Don't assert on this; an invalid decl might have been left in the AST.
367 if (FnType->getNumArgs() != 1 || FnType->isVariadic())
368 continue;
369
370 QualType ArgType = FnType->getArgType(0);
371 Qualifiers Quals;
372 if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
373 ArgType = Ref->getPointeeType();
374 // If we have a const argument and we have a reference to a non-const,
375 // this function does not match.
376 if (ArgIsConst && !ArgType.isConstQualified())
377 continue;
378
379 Quals = ArgType.getQualifiers();
380 } else {
381 // By-value copy-assignment operators are treated like const X&
382 // copy-assignment operators.
383 Quals = Qualifiers::fromCVRMask(Qualifiers::Const);
384 }
385
386 if (!Context.hasSameUnqualifiedType(ArgType, Class))
387 continue;
388
389 // Save this copy-assignment operator. It might be "the one".
390 Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals));
391 }
392
393 // Use a simplistic form of overload resolution to find the candidate.
394 return GetBestOverloadCandidateSimple(Found);
395 }
396
getMoveAssignmentOperator() const397 CXXMethodDecl *CXXRecordDecl::getMoveAssignmentOperator() const {
398 for (method_iterator I = method_begin(), E = method_end(); I != E; ++I)
399 if (I->isMoveAssignmentOperator())
400 return *I;
401
402 return 0;
403 }
404
markedVirtualFunctionPure()405 void CXXRecordDecl::markedVirtualFunctionPure() {
406 // C++ [class.abstract]p2:
407 // A class is abstract if it has at least one pure virtual function.
408 data().Abstract = true;
409 }
410
addedMember(Decl * D)411 void CXXRecordDecl::addedMember(Decl *D) {
412 // Ignore friends and invalid declarations.
413 if (D->getFriendObjectKind() || D->isInvalidDecl())
414 return;
415
416 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
417 if (FunTmpl)
418 D = FunTmpl->getTemplatedDecl();
419
420 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
421 if (Method->isVirtual()) {
422 // C++ [dcl.init.aggr]p1:
423 // An aggregate is an array or a class with [...] no virtual functions.
424 data().Aggregate = false;
425
426 // C++ [class]p4:
427 // A POD-struct is an aggregate class...
428 data().PlainOldData = false;
429
430 // Virtual functions make the class non-empty.
431 // FIXME: Standard ref?
432 data().Empty = false;
433
434 // C++ [class.virtual]p1:
435 // A class that declares or inherits a virtual function is called a
436 // polymorphic class.
437 data().Polymorphic = true;
438
439 // C++0x [class.ctor]p5
440 // A default constructor is trivial [...] if:
441 // -- its class has no virtual functions [...]
442 data().HasTrivialDefaultConstructor = false;
443
444 // C++0x [class.copy]p13:
445 // A copy/move constructor for class X is trivial if [...]
446 // -- class X has no virtual functions [...]
447 data().HasTrivialCopyConstructor = false;
448 data().HasTrivialMoveConstructor = false;
449
450 // C++0x [class.copy]p27:
451 // A copy/move assignment operator for class X is trivial if [...]
452 // -- class X has no virtual functions [...]
453 data().HasTrivialCopyAssignment = false;
454 data().HasTrivialMoveAssignment = false;
455 // FIXME: Destructor?
456
457 // C++0x [class]p7:
458 // A standard-layout class is a class that: [...]
459 // -- has no virtual functions
460 data().IsStandardLayout = false;
461 }
462 }
463
464 if (D->isImplicit()) {
465 // Notify that an implicit member was added after the definition
466 // was completed.
467 if (!isBeingDefined())
468 if (ASTMutationListener *L = getASTMutationListener())
469 L->AddedCXXImplicitMember(data().Definition, D);
470
471 // If this is a special member function, note that it was added and then
472 // return early.
473 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
474 if (Constructor->isDefaultConstructor())
475 data().DeclaredDefaultConstructor = true;
476 else if (Constructor->isCopyConstructor())
477 data().DeclaredCopyConstructor = true;
478 else if (Constructor->isMoveConstructor())
479 data().DeclaredMoveConstructor = true;
480 else
481 goto NotASpecialMember;
482 return;
483 } else if (isa<CXXDestructorDecl>(D)) {
484 data().DeclaredDestructor = true;
485 return;
486 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
487 if (Method->isCopyAssignmentOperator())
488 data().DeclaredCopyAssignment = true;
489 else if (Method->isMoveAssignmentOperator())
490 data().DeclaredMoveAssignment = true;
491 else
492 goto NotASpecialMember;
493 return;
494 }
495
496 NotASpecialMember:;
497 // Any other implicit declarations are handled like normal declarations.
498 }
499
500 // Handle (user-declared) constructors.
501 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
502 // Note that we have a user-declared constructor.
503 data().UserDeclaredConstructor = true;
504
505 // FIXME: Under C++0x, /only/ special member functions may be user-provided.
506 // This is probably a defect.
507 bool UserProvided = false;
508
509 // C++0x [class.ctor]p5:
510 // A default constructor is trivial if it is not user-provided [...]
511 if (Constructor->isDefaultConstructor()) {
512 data().DeclaredDefaultConstructor = true;
513 if (Constructor->isUserProvided()) {
514 data().HasTrivialDefaultConstructor = false;
515 data().UserProvidedDefaultConstructor = true;
516 UserProvided = true;
517 }
518 }
519
520 // Note when we have a user-declared copy or move constructor, which will
521 // suppress the implicit declaration of those constructors.
522 if (!FunTmpl) {
523 if (Constructor->isCopyConstructor()) {
524 data().UserDeclaredCopyConstructor = true;
525 data().DeclaredCopyConstructor = true;
526
527 // C++0x [class.copy]p13:
528 // A copy/move constructor for class X is trivial if it is not
529 // user-provided [...]
530 if (Constructor->isUserProvided()) {
531 data().HasTrivialCopyConstructor = false;
532 UserProvided = true;
533 }
534 } else if (Constructor->isMoveConstructor()) {
535 data().UserDeclaredMoveConstructor = true;
536 data().DeclaredMoveConstructor = true;
537
538 // C++0x [class.copy]p13:
539 // A copy/move constructor for class X is trivial if it is not
540 // user-provided [...]
541 if (Constructor->isUserProvided()) {
542 data().HasTrivialMoveConstructor = false;
543 UserProvided = true;
544 }
545 }
546 }
547 if (Constructor->isConstExpr() &&
548 !Constructor->isCopyOrMoveConstructor()) {
549 // Record if we see any constexpr constructors which are niether copy
550 // nor move constructors.
551 data().HasConstExprNonCopyMoveConstructor = true;
552 }
553
554 // C++ [dcl.init.aggr]p1:
555 // An aggregate is an array or a class with no user-declared
556 // constructors [...].
557 // C++0x [dcl.init.aggr]p1:
558 // An aggregate is an array or a class with no user-provided
559 // constructors [...].
560 if (!getASTContext().getLangOptions().CPlusPlus0x || UserProvided)
561 data().Aggregate = false;
562
563 // C++ [class]p4:
564 // A POD-struct is an aggregate class [...]
565 // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
566 // type is technically an aggregate in C++0x since it wouldn't be in 03.
567 data().PlainOldData = false;
568
569 return;
570 }
571
572 // Handle (user-declared) destructors.
573 if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
574 data().DeclaredDestructor = true;
575 data().UserDeclaredDestructor = true;
576
577 // C++ [class]p4:
578 // A POD-struct is an aggregate class that has [...] no user-defined
579 // destructor.
580 // This bit is the C++03 POD bit, not the 0x one.
581 data().PlainOldData = false;
582
583 // C++0x [class.dtor]p5:
584 // A destructor is trivial if it is not user-provided and [...]
585 if (DD->isUserProvided())
586 data().HasTrivialDestructor = false;
587
588 return;
589 }
590
591 // Handle (user-declared) member functions.
592 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
593 if (Method->isCopyAssignmentOperator()) {
594 // C++ [class]p4:
595 // A POD-struct is an aggregate class that [...] has no user-defined
596 // copy assignment operator [...].
597 // This is the C++03 bit only.
598 data().PlainOldData = false;
599
600 // This is a copy assignment operator.
601
602 // Suppress the implicit declaration of a copy constructor.
603 data().UserDeclaredCopyAssignment = true;
604 data().DeclaredCopyAssignment = true;
605
606 // C++0x [class.copy]p27:
607 // A copy/move assignment operator for class X is trivial if it is
608 // neither user-provided nor deleted [...]
609 if (Method->isUserProvided())
610 data().HasTrivialCopyAssignment = false;
611
612 return;
613 }
614
615 if (Method->isMoveAssignmentOperator()) {
616 // This is an extension in C++03 mode, but we'll keep consistency by
617 // taking a move assignment operator to induce non-POD-ness
618 data().PlainOldData = false;
619
620 // This is a move assignment operator.
621 data().UserDeclaredMoveAssignment = true;
622 data().DeclaredMoveAssignment = true;
623
624 // C++0x [class.copy]p27:
625 // A copy/move assignment operator for class X is trivial if it is
626 // neither user-provided nor deleted [...]
627 if (Method->isUserProvided())
628 data().HasTrivialMoveAssignment = false;
629 }
630
631 // Keep the list of conversion functions up-to-date.
632 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
633 // We don't record specializations.
634 if (Conversion->getPrimaryTemplate())
635 return;
636
637 // FIXME: We intentionally don't use the decl's access here because it
638 // hasn't been set yet. That's really just a misdesign in Sema.
639
640 if (FunTmpl) {
641 if (FunTmpl->getPreviousDeclaration())
642 data().Conversions.replace(FunTmpl->getPreviousDeclaration(),
643 FunTmpl);
644 else
645 data().Conversions.addDecl(FunTmpl);
646 } else {
647 if (Conversion->getPreviousDeclaration())
648 data().Conversions.replace(Conversion->getPreviousDeclaration(),
649 Conversion);
650 else
651 data().Conversions.addDecl(Conversion);
652 }
653 }
654
655 return;
656 }
657
658 // Handle non-static data members.
659 if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
660 // C++ [dcl.init.aggr]p1:
661 // An aggregate is an array or a class (clause 9) with [...] no
662 // private or protected non-static data members (clause 11).
663 //
664 // A POD must be an aggregate.
665 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
666 data().Aggregate = false;
667 data().PlainOldData = false;
668 }
669
670 // C++0x [class]p7:
671 // A standard-layout class is a class that:
672 // [...]
673 // -- has the same access control for all non-static data members,
674 switch (D->getAccess()) {
675 case AS_private: data().HasPrivateFields = true; break;
676 case AS_protected: data().HasProtectedFields = true; break;
677 case AS_public: data().HasPublicFields = true; break;
678 case AS_none: assert(0 && "Invalid access specifier");
679 };
680 if ((data().HasPrivateFields + data().HasProtectedFields +
681 data().HasPublicFields) > 1)
682 data().IsStandardLayout = false;
683
684 // Keep track of the presence of mutable fields.
685 if (Field->isMutable())
686 data().HasMutableFields = true;
687
688 // C++0x [class]p9:
689 // A POD struct is a class that is both a trivial class and a
690 // standard-layout class, and has no non-static data members of type
691 // non-POD struct, non-POD union (or array of such types).
692 //
693 // Automatic Reference Counting: the presence of a member of Objective-C pointer type
694 // that does not explicitly have no lifetime makes the class a non-POD.
695 // However, we delay setting PlainOldData to false in this case so that
696 // Sema has a chance to diagnostic causes where the same class will be
697 // non-POD with Automatic Reference Counting but a POD without Instant Objects.
698 // In this case, the class will become a non-POD class when we complete
699 // the definition.
700 ASTContext &Context = getASTContext();
701 QualType T = Context.getBaseElementType(Field->getType());
702 if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
703 if (!Context.getLangOptions().ObjCAutoRefCount ||
704 T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
705 setHasObjectMember(true);
706 } else if (!T.isPODType(Context))
707 data().PlainOldData = false;
708
709 if (T->isReferenceType()) {
710 data().HasTrivialDefaultConstructor = false;
711
712 // C++0x [class]p7:
713 // A standard-layout class is a class that:
714 // -- has no non-static data members of type [...] reference,
715 data().IsStandardLayout = false;
716 }
717
718 // Record if this field is the first non-literal field or base.
719 if (!hasNonLiteralTypeFieldsOrBases() && !T->isLiteralType())
720 data().HasNonLiteralTypeFieldsOrBases = true;
721
722 if (Field->hasInClassInitializer()) {
723 // C++0x [class]p5:
724 // A default constructor is trivial if [...] no non-static data member
725 // of its class has a brace-or-equal-initializer.
726 data().HasTrivialDefaultConstructor = false;
727
728 // C++0x [dcl.init.aggr]p1:
729 // An aggregate is a [...] class with [...] no
730 // brace-or-equal-initializers for non-static data members.
731 data().Aggregate = false;
732
733 // C++0x [class]p10:
734 // A POD struct is [...] a trivial class.
735 data().PlainOldData = false;
736 }
737
738 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
739 CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
740 if (FieldRec->getDefinition()) {
741 // C++0x [class.ctor]p5:
742 // A defulat constructor is trivial [...] if:
743 // -- for all the non-static data members of its class that are of
744 // class type (or array thereof), each such class has a trivial
745 // default constructor.
746 if (!FieldRec->hasTrivialDefaultConstructor())
747 data().HasTrivialDefaultConstructor = false;
748
749 // C++0x [class.copy]p13:
750 // A copy/move constructor for class X is trivial if [...]
751 // [...]
752 // -- for each non-static data member of X that is of class type (or
753 // an array thereof), the constructor selected to copy/move that
754 // member is trivial;
755 // FIXME: C++0x: We don't correctly model 'selected' constructors.
756 if (!FieldRec->hasTrivialCopyConstructor())
757 data().HasTrivialCopyConstructor = false;
758 if (!FieldRec->hasTrivialMoveConstructor())
759 data().HasTrivialMoveConstructor = false;
760
761 // C++0x [class.copy]p27:
762 // A copy/move assignment operator for class X is trivial if [...]
763 // [...]
764 // -- for each non-static data member of X that is of class type (or
765 // an array thereof), the assignment operator selected to
766 // copy/move that member is trivial;
767 // FIXME: C++0x: We don't correctly model 'selected' operators.
768 if (!FieldRec->hasTrivialCopyAssignment())
769 data().HasTrivialCopyAssignment = false;
770 if (!FieldRec->hasTrivialMoveAssignment())
771 data().HasTrivialMoveAssignment = false;
772
773 if (!FieldRec->hasTrivialDestructor())
774 data().HasTrivialDestructor = false;
775 if (FieldRec->hasObjectMember())
776 setHasObjectMember(true);
777
778 // C++0x [class]p7:
779 // A standard-layout class is a class that:
780 // -- has no non-static data members of type non-standard-layout
781 // class (or array of such types) [...]
782 if (!FieldRec->isStandardLayout())
783 data().IsStandardLayout = false;
784
785 // C++0x [class]p7:
786 // A standard-layout class is a class that:
787 // [...]
788 // -- has no base classes of the same type as the first non-static
789 // data member.
790 // We don't want to expend bits in the state of the record decl
791 // tracking whether this is the first non-static data member so we
792 // cheat a bit and use some of the existing state: the empty bit.
793 // Virtual bases and virtual methods make a class non-empty, but they
794 // also make it non-standard-layout so we needn't check here.
795 // A non-empty base class may leave the class standard-layout, but not
796 // if we have arrived here, and have at least on non-static data
797 // member. If IsStandardLayout remains true, then the first non-static
798 // data member must come through here with Empty still true, and Empty
799 // will subsequently be set to false below.
800 if (data().IsStandardLayout && data().Empty) {
801 for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
802 BE = bases_end();
803 BI != BE; ++BI) {
804 if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
805 data().IsStandardLayout = false;
806 break;
807 }
808 }
809 }
810
811 // Keep track of the presence of mutable fields.
812 if (FieldRec->hasMutableFields())
813 data().HasMutableFields = true;
814 }
815 }
816
817 // C++0x [class]p7:
818 // A standard-layout class is a class that:
819 // [...]
820 // -- either has no non-static data members in the most derived
821 // class and at most one base class with non-static data members,
822 // or has no base classes with non-static data members, and
823 // At this point we know that we have a non-static data member, so the last
824 // clause holds.
825 if (!data().HasNoNonEmptyBases)
826 data().IsStandardLayout = false;
827
828 // If this is not a zero-length bit-field, then the class is not empty.
829 if (data().Empty) {
830 if (!Field->getBitWidth())
831 data().Empty = false;
832 else if (!Field->getBitWidth()->isTypeDependent() &&
833 !Field->getBitWidth()->isValueDependent()) {
834 llvm::APSInt Bits;
835 if (Field->getBitWidth()->isIntegerConstantExpr(Bits, Context))
836 if (!!Bits)
837 data().Empty = false;
838 }
839 }
840 }
841
842 // Handle using declarations of conversion functions.
843 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
844 if (Shadow->getDeclName().getNameKind()
845 == DeclarationName::CXXConversionFunctionName)
846 data().Conversions.addDecl(Shadow, Shadow->getAccess());
847 }
848
GetConversionType(ASTContext & Context,NamedDecl * Conv)849 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
850 QualType T;
851 if (isa<UsingShadowDecl>(Conv))
852 Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
853 if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
854 T = ConvTemp->getTemplatedDecl()->getResultType();
855 else
856 T = cast<CXXConversionDecl>(Conv)->getConversionType();
857 return Context.getCanonicalType(T);
858 }
859
860 /// Collect the visible conversions of a base class.
861 ///
862 /// \param Base a base class of the class we're considering
863 /// \param InVirtual whether this base class is a virtual base (or a base
864 /// of a virtual base)
865 /// \param Access the access along the inheritance path to this base
866 /// \param ParentHiddenTypes the conversions provided by the inheritors
867 /// of this base
868 /// \param Output the set to which to add conversions from non-virtual bases
869 /// \param VOutput the set to which to add conversions from virtual bases
870 /// \param HiddenVBaseCs the set of conversions which were hidden in a
871 /// virtual base along some inheritance path
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,bool InVirtual,AccessSpecifier Access,const llvm::SmallPtrSet<CanQualType,8> & ParentHiddenTypes,UnresolvedSetImpl & Output,UnresolvedSetImpl & VOutput,llvm::SmallPtrSet<NamedDecl *,8> & HiddenVBaseCs)872 static void CollectVisibleConversions(ASTContext &Context,
873 CXXRecordDecl *Record,
874 bool InVirtual,
875 AccessSpecifier Access,
876 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
877 UnresolvedSetImpl &Output,
878 UnresolvedSetImpl &VOutput,
879 llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
880 // The set of types which have conversions in this class or its
881 // subclasses. As an optimization, we don't copy the derived set
882 // unless it might change.
883 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
884 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
885
886 // Collect the direct conversions and figure out which conversions
887 // will be hidden in the subclasses.
888 UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
889 if (!Cs.empty()) {
890 HiddenTypesBuffer = ParentHiddenTypes;
891 HiddenTypes = &HiddenTypesBuffer;
892
893 for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
894 bool Hidden =
895 !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
896
897 // If this conversion is hidden and we're in a virtual base,
898 // remember that it's hidden along some inheritance path.
899 if (Hidden && InVirtual)
900 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
901
902 // If this conversion isn't hidden, add it to the appropriate output.
903 else if (!Hidden) {
904 AccessSpecifier IAccess
905 = CXXRecordDecl::MergeAccess(Access, I.getAccess());
906
907 if (InVirtual)
908 VOutput.addDecl(I.getDecl(), IAccess);
909 else
910 Output.addDecl(I.getDecl(), IAccess);
911 }
912 }
913 }
914
915 // Collect information recursively from any base classes.
916 for (CXXRecordDecl::base_class_iterator
917 I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
918 const RecordType *RT = I->getType()->getAs<RecordType>();
919 if (!RT) continue;
920
921 AccessSpecifier BaseAccess
922 = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
923 bool BaseInVirtual = InVirtual || I->isVirtual();
924
925 CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
926 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
927 *HiddenTypes, Output, VOutput, HiddenVBaseCs);
928 }
929 }
930
931 /// Collect the visible conversions of a class.
932 ///
933 /// This would be extremely straightforward if it weren't for virtual
934 /// bases. It might be worth special-casing that, really.
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,UnresolvedSetImpl & Output)935 static void CollectVisibleConversions(ASTContext &Context,
936 CXXRecordDecl *Record,
937 UnresolvedSetImpl &Output) {
938 // The collection of all conversions in virtual bases that we've
939 // found. These will be added to the output as long as they don't
940 // appear in the hidden-conversions set.
941 UnresolvedSet<8> VBaseCs;
942
943 // The set of conversions in virtual bases that we've determined to
944 // be hidden.
945 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
946
947 // The set of types hidden by classes derived from this one.
948 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
949
950 // Go ahead and collect the direct conversions and add them to the
951 // hidden-types set.
952 UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
953 Output.append(Cs.begin(), Cs.end());
954 for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
955 HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
956
957 // Recursively collect conversions from base classes.
958 for (CXXRecordDecl::base_class_iterator
959 I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
960 const RecordType *RT = I->getType()->getAs<RecordType>();
961 if (!RT) continue;
962
963 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
964 I->isVirtual(), I->getAccessSpecifier(),
965 HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
966 }
967
968 // Add any unhidden conversions provided by virtual bases.
969 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
970 I != E; ++I) {
971 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
972 Output.addDecl(I.getDecl(), I.getAccess());
973 }
974 }
975
976 /// getVisibleConversionFunctions - get all conversion functions visible
977 /// in current class; including conversion function templates.
getVisibleConversionFunctions()978 const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
979 // If root class, all conversions are visible.
980 if (bases_begin() == bases_end())
981 return &data().Conversions;
982 // If visible conversion list is already evaluated, return it.
983 if (data().ComputedVisibleConversions)
984 return &data().VisibleConversions;
985 CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
986 data().ComputedVisibleConversions = true;
987 return &data().VisibleConversions;
988 }
989
removeConversion(const NamedDecl * ConvDecl)990 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
991 // This operation is O(N) but extremely rare. Sema only uses it to
992 // remove UsingShadowDecls in a class that were followed by a direct
993 // declaration, e.g.:
994 // class A : B {
995 // using B::operator int;
996 // operator int();
997 // };
998 // This is uncommon by itself and even more uncommon in conjunction
999 // with sufficiently large numbers of directly-declared conversions
1000 // that asymptotic behavior matters.
1001
1002 UnresolvedSetImpl &Convs = *getConversionFunctions();
1003 for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1004 if (Convs[I].getDecl() == ConvDecl) {
1005 Convs.erase(I);
1006 assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1007 && "conversion was found multiple times in unresolved set");
1008 return;
1009 }
1010 }
1011
1012 llvm_unreachable("conversion not found in set!");
1013 }
1014
getInstantiatedFromMemberClass() const1015 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1016 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1017 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1018
1019 return 0;
1020 }
1021
getMemberSpecializationInfo() const1022 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1023 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1024 }
1025
1026 void
setInstantiationOfMemberClass(CXXRecordDecl * RD,TemplateSpecializationKind TSK)1027 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1028 TemplateSpecializationKind TSK) {
1029 assert(TemplateOrInstantiation.isNull() &&
1030 "Previous template or instantiation?");
1031 assert(!isa<ClassTemplateSpecializationDecl>(this));
1032 TemplateOrInstantiation
1033 = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1034 }
1035
getTemplateSpecializationKind() const1036 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1037 if (const ClassTemplateSpecializationDecl *Spec
1038 = dyn_cast<ClassTemplateSpecializationDecl>(this))
1039 return Spec->getSpecializationKind();
1040
1041 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1042 return MSInfo->getTemplateSpecializationKind();
1043
1044 return TSK_Undeclared;
1045 }
1046
1047 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK)1048 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1049 if (ClassTemplateSpecializationDecl *Spec
1050 = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1051 Spec->setSpecializationKind(TSK);
1052 return;
1053 }
1054
1055 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1056 MSInfo->setTemplateSpecializationKind(TSK);
1057 return;
1058 }
1059
1060 assert(false && "Not a class template or member class specialization");
1061 }
1062
getDestructor() const1063 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1064 ASTContext &Context = getASTContext();
1065 QualType ClassType = Context.getTypeDeclType(this);
1066
1067 DeclarationName Name
1068 = Context.DeclarationNames.getCXXDestructorName(
1069 Context.getCanonicalType(ClassType));
1070
1071 DeclContext::lookup_const_iterator I, E;
1072 llvm::tie(I, E) = lookup(Name);
1073 if (I == E)
1074 return 0;
1075
1076 CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
1077 return Dtor;
1078 }
1079
completeDefinition()1080 void CXXRecordDecl::completeDefinition() {
1081 completeDefinition(0);
1082 }
1083
completeDefinition(CXXFinalOverriderMap * FinalOverriders)1084 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1085 RecordDecl::completeDefinition();
1086
1087 if (hasObjectMember() && getASTContext().getLangOptions().ObjCAutoRefCount) {
1088 // Objective-C Automatic Reference Counting:
1089 // If a class has a non-static data member of Objective-C pointer
1090 // type (or array thereof), it is a non-POD type and its
1091 // default constructor (if any), copy constructor, copy assignment
1092 // operator, and destructor are non-trivial.
1093 struct DefinitionData &Data = data();
1094 Data.PlainOldData = false;
1095 Data.HasTrivialDefaultConstructor = false;
1096 Data.HasTrivialCopyConstructor = false;
1097 Data.HasTrivialCopyAssignment = false;
1098 Data.HasTrivialDestructor = false;
1099 }
1100
1101 // If the class may be abstract (but hasn't been marked as such), check for
1102 // any pure final overriders.
1103 if (mayBeAbstract()) {
1104 CXXFinalOverriderMap MyFinalOverriders;
1105 if (!FinalOverriders) {
1106 getFinalOverriders(MyFinalOverriders);
1107 FinalOverriders = &MyFinalOverriders;
1108 }
1109
1110 bool Done = false;
1111 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1112 MEnd = FinalOverriders->end();
1113 M != MEnd && !Done; ++M) {
1114 for (OverridingMethods::iterator SO = M->second.begin(),
1115 SOEnd = M->second.end();
1116 SO != SOEnd && !Done; ++SO) {
1117 assert(SO->second.size() > 0 &&
1118 "All virtual functions have overridding virtual functions");
1119
1120 // C++ [class.abstract]p4:
1121 // A class is abstract if it contains or inherits at least one
1122 // pure virtual function for which the final overrider is pure
1123 // virtual.
1124 if (SO->second.front().Method->isPure()) {
1125 data().Abstract = true;
1126 Done = true;
1127 break;
1128 }
1129 }
1130 }
1131 }
1132
1133 // Set access bits correctly on the directly-declared conversions.
1134 for (UnresolvedSetIterator I = data().Conversions.begin(),
1135 E = data().Conversions.end();
1136 I != E; ++I)
1137 data().Conversions.setAccess(I, (*I)->getAccess());
1138 }
1139
mayBeAbstract() const1140 bool CXXRecordDecl::mayBeAbstract() const {
1141 if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1142 isDependentContext())
1143 return false;
1144
1145 for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
1146 BEnd = bases_end();
1147 B != BEnd; ++B) {
1148 CXXRecordDecl *BaseDecl
1149 = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
1150 if (BaseDecl->isAbstract())
1151 return true;
1152 }
1153
1154 return false;
1155 }
1156
1157 CXXMethodDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isStatic,StorageClass SCAsWritten,bool isInline,SourceLocation EndLocation)1158 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1159 SourceLocation StartLoc,
1160 const DeclarationNameInfo &NameInfo,
1161 QualType T, TypeSourceInfo *TInfo,
1162 bool isStatic, StorageClass SCAsWritten, bool isInline,
1163 SourceLocation EndLocation) {
1164 return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
1165 isStatic, SCAsWritten, isInline, EndLocation);
1166 }
1167
isUsualDeallocationFunction() const1168 bool CXXMethodDecl::isUsualDeallocationFunction() const {
1169 if (getOverloadedOperator() != OO_Delete &&
1170 getOverloadedOperator() != OO_Array_Delete)
1171 return false;
1172
1173 // C++ [basic.stc.dynamic.deallocation]p2:
1174 // A template instance is never a usual deallocation function,
1175 // regardless of its signature.
1176 if (getPrimaryTemplate())
1177 return false;
1178
1179 // C++ [basic.stc.dynamic.deallocation]p2:
1180 // If a class T has a member deallocation function named operator delete
1181 // with exactly one parameter, then that function is a usual (non-placement)
1182 // deallocation function. [...]
1183 if (getNumParams() == 1)
1184 return true;
1185
1186 // C++ [basic.stc.dynamic.deallocation]p2:
1187 // [...] If class T does not declare such an operator delete but does
1188 // declare a member deallocation function named operator delete with
1189 // exactly two parameters, the second of which has type std::size_t (18.1),
1190 // then this function is a usual deallocation function.
1191 ASTContext &Context = getASTContext();
1192 if (getNumParams() != 2 ||
1193 !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1194 Context.getSizeType()))
1195 return false;
1196
1197 // This function is a usual deallocation function if there are no
1198 // single-parameter deallocation functions of the same kind.
1199 for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
1200 R.first != R.second; ++R.first) {
1201 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
1202 if (FD->getNumParams() == 1)
1203 return false;
1204 }
1205
1206 return true;
1207 }
1208
isCopyAssignmentOperator() const1209 bool CXXMethodDecl::isCopyAssignmentOperator() const {
1210 // C++0x [class.copy]p17:
1211 // A user-declared copy assignment operator X::operator= is a non-static
1212 // non-template member function of class X with exactly one parameter of
1213 // type X, X&, const X&, volatile X& or const volatile X&.
1214 if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1215 /*non-static*/ isStatic() ||
1216 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate())
1217 return false;
1218
1219 QualType ParamType = getParamDecl(0)->getType();
1220 if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1221 ParamType = Ref->getPointeeType();
1222
1223 ASTContext &Context = getASTContext();
1224 QualType ClassType
1225 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1226 return Context.hasSameUnqualifiedType(ClassType, ParamType);
1227 }
1228
isMoveAssignmentOperator() const1229 bool CXXMethodDecl::isMoveAssignmentOperator() const {
1230 // C++0x [class.copy]p19:
1231 // A user-declared move assignment operator X::operator= is a non-static
1232 // non-template member function of class X with exactly one parameter of type
1233 // X&&, const X&&, volatile X&&, or const volatile X&&.
1234 if (getOverloadedOperator() != OO_Equal || isStatic() ||
1235 getPrimaryTemplate() || getDescribedFunctionTemplate())
1236 return false;
1237
1238 QualType ParamType = getParamDecl(0)->getType();
1239 if (!isa<RValueReferenceType>(ParamType))
1240 return false;
1241 ParamType = ParamType->getPointeeType();
1242
1243 ASTContext &Context = getASTContext();
1244 QualType ClassType
1245 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1246 return Context.hasSameUnqualifiedType(ClassType, ParamType);
1247 }
1248
addOverriddenMethod(const CXXMethodDecl * MD)1249 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1250 assert(MD->isCanonicalDecl() && "Method is not canonical!");
1251 assert(!MD->getParent()->isDependentContext() &&
1252 "Can't add an overridden method to a class template!");
1253
1254 getASTContext().addOverriddenMethod(this, MD);
1255 }
1256
begin_overridden_methods() const1257 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1258 return getASTContext().overridden_methods_begin(this);
1259 }
1260
end_overridden_methods() const1261 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1262 return getASTContext().overridden_methods_end(this);
1263 }
1264
size_overridden_methods() const1265 unsigned CXXMethodDecl::size_overridden_methods() const {
1266 return getASTContext().overridden_methods_size(this);
1267 }
1268
getThisType(ASTContext & C) const1269 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1270 // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1271 // If the member function is declared const, the type of this is const X*,
1272 // if the member function is declared volatile, the type of this is
1273 // volatile X*, and if the member function is declared const volatile,
1274 // the type of this is const volatile X*.
1275
1276 assert(isInstance() && "No 'this' for static methods!");
1277
1278 QualType ClassTy = C.getTypeDeclType(getParent());
1279 ClassTy = C.getQualifiedType(ClassTy,
1280 Qualifiers::fromCVRMask(getTypeQualifiers()));
1281 return C.getPointerType(ClassTy);
1282 }
1283
hasInlineBody() const1284 bool CXXMethodDecl::hasInlineBody() const {
1285 // If this function is a template instantiation, look at the template from
1286 // which it was instantiated.
1287 const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1288 if (!CheckFn)
1289 CheckFn = this;
1290
1291 const FunctionDecl *fn;
1292 return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1293 }
1294
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,bool IsVirtual,SourceLocation L,Expr * Init,SourceLocation R,SourceLocation EllipsisLoc)1295 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1296 TypeSourceInfo *TInfo, bool IsVirtual,
1297 SourceLocation L, Expr *Init,
1298 SourceLocation R,
1299 SourceLocation EllipsisLoc)
1300 : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1301 LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false),
1302 SourceOrderOrNumArrayIndices(0)
1303 {
1304 }
1305
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1306 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1307 FieldDecl *Member,
1308 SourceLocation MemberLoc,
1309 SourceLocation L, Expr *Init,
1310 SourceLocation R)
1311 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1312 LParenLoc(L), RParenLoc(R), IsVirtual(false),
1313 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1314 {
1315 }
1316
CXXCtorInitializer(ASTContext & Context,IndirectFieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1317 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1318 IndirectFieldDecl *Member,
1319 SourceLocation MemberLoc,
1320 SourceLocation L, Expr *Init,
1321 SourceLocation R)
1322 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1323 LParenLoc(L), RParenLoc(R), IsVirtual(false),
1324 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1325 {
1326 }
1327
CXXCtorInitializer(ASTContext & Context,SourceLocation D,SourceLocation L,CXXConstructorDecl * Target,Expr * Init,SourceLocation R)1328 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1329 SourceLocation D, SourceLocation L,
1330 CXXConstructorDecl *Target, Expr *Init,
1331 SourceLocation R)
1332 : Initializee(Target), MemberOrEllipsisLocation(D), Init(Init),
1333 LParenLoc(L), RParenLoc(R), IsVirtual(false),
1334 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1335 {
1336 }
1337
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1338 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1339 FieldDecl *Member,
1340 SourceLocation MemberLoc,
1341 SourceLocation L, Expr *Init,
1342 SourceLocation R,
1343 VarDecl **Indices,
1344 unsigned NumIndices)
1345 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1346 LParenLoc(L), RParenLoc(R), IsVirtual(false),
1347 IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1348 {
1349 VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1350 memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1351 }
1352
Create(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1353 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1354 FieldDecl *Member,
1355 SourceLocation MemberLoc,
1356 SourceLocation L, Expr *Init,
1357 SourceLocation R,
1358 VarDecl **Indices,
1359 unsigned NumIndices) {
1360 void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1361 sizeof(VarDecl *) * NumIndices,
1362 llvm::alignOf<CXXCtorInitializer>());
1363 return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1364 Indices, NumIndices);
1365 }
1366
getBaseClassLoc() const1367 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1368 if (isBaseInitializer())
1369 return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1370 else
1371 return TypeLoc();
1372 }
1373
getBaseClass() const1374 const Type *CXXCtorInitializer::getBaseClass() const {
1375 if (isBaseInitializer())
1376 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1377 else
1378 return 0;
1379 }
1380
getSourceLocation() const1381 SourceLocation CXXCtorInitializer::getSourceLocation() const {
1382 if (isAnyMemberInitializer() || isDelegatingInitializer())
1383 return getMemberLocation();
1384
1385 if (isInClassMemberInitializer())
1386 return getAnyMember()->getLocation();
1387
1388 return getBaseClassLoc().getLocalSourceRange().getBegin();
1389 }
1390
getSourceRange() const1391 SourceRange CXXCtorInitializer::getSourceRange() const {
1392 if (isInClassMemberInitializer()) {
1393 FieldDecl *D = getAnyMember();
1394 if (Expr *I = D->getInClassInitializer())
1395 return I->getSourceRange();
1396 return SourceRange();
1397 }
1398
1399 return SourceRange(getSourceLocation(), getRParenLoc());
1400 }
1401
1402 CXXConstructorDecl *
Create(ASTContext & C,EmptyShell Empty)1403 CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) {
1404 return new (C) CXXConstructorDecl(0, SourceLocation(), DeclarationNameInfo(),
1405 QualType(), 0, false, false, false);
1406 }
1407
1408 CXXConstructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isExplicit,bool isInline,bool isImplicitlyDeclared)1409 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1410 SourceLocation StartLoc,
1411 const DeclarationNameInfo &NameInfo,
1412 QualType T, TypeSourceInfo *TInfo,
1413 bool isExplicit,
1414 bool isInline,
1415 bool isImplicitlyDeclared) {
1416 assert(NameInfo.getName().getNameKind()
1417 == DeclarationName::CXXConstructorName &&
1418 "Name must refer to a constructor");
1419 return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
1420 isExplicit, isInline, isImplicitlyDeclared);
1421 }
1422
isDefaultConstructor() const1423 bool CXXConstructorDecl::isDefaultConstructor() const {
1424 // C++ [class.ctor]p5:
1425 // A default constructor for a class X is a constructor of class
1426 // X that can be called without an argument.
1427 return (getNumParams() == 0) ||
1428 (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1429 }
1430
1431 bool
isCopyConstructor(unsigned & TypeQuals) const1432 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1433 return isCopyOrMoveConstructor(TypeQuals) &&
1434 getParamDecl(0)->getType()->isLValueReferenceType();
1435 }
1436
isMoveConstructor(unsigned & TypeQuals) const1437 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1438 return isCopyOrMoveConstructor(TypeQuals) &&
1439 getParamDecl(0)->getType()->isRValueReferenceType();
1440 }
1441
1442 /// \brief Determine whether this is a copy or move constructor.
isCopyOrMoveConstructor(unsigned & TypeQuals) const1443 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1444 // C++ [class.copy]p2:
1445 // A non-template constructor for class X is a copy constructor
1446 // if its first parameter is of type X&, const X&, volatile X& or
1447 // const volatile X&, and either there are no other parameters
1448 // or else all other parameters have default arguments (8.3.6).
1449 // C++0x [class.copy]p3:
1450 // A non-template constructor for class X is a move constructor if its
1451 // first parameter is of type X&&, const X&&, volatile X&&, or
1452 // const volatile X&&, and either there are no other parameters or else
1453 // all other parameters have default arguments.
1454 if ((getNumParams() < 1) ||
1455 (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1456 (getPrimaryTemplate() != 0) ||
1457 (getDescribedFunctionTemplate() != 0))
1458 return false;
1459
1460 const ParmVarDecl *Param = getParamDecl(0);
1461
1462 // Do we have a reference type?
1463 const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1464 if (!ParamRefType)
1465 return false;
1466
1467 // Is it a reference to our class type?
1468 ASTContext &Context = getASTContext();
1469
1470 CanQualType PointeeType
1471 = Context.getCanonicalType(ParamRefType->getPointeeType());
1472 CanQualType ClassTy
1473 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1474 if (PointeeType.getUnqualifiedType() != ClassTy)
1475 return false;
1476
1477 // FIXME: other qualifiers?
1478
1479 // We have a copy or move constructor.
1480 TypeQuals = PointeeType.getCVRQualifiers();
1481 return true;
1482 }
1483
isConvertingConstructor(bool AllowExplicit) const1484 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1485 // C++ [class.conv.ctor]p1:
1486 // A constructor declared without the function-specifier explicit
1487 // that can be called with a single parameter specifies a
1488 // conversion from the type of its first parameter to the type of
1489 // its class. Such a constructor is called a converting
1490 // constructor.
1491 if (isExplicit() && !AllowExplicit)
1492 return false;
1493
1494 return (getNumParams() == 0 &&
1495 getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1496 (getNumParams() == 1) ||
1497 (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
1498 }
1499
isSpecializationCopyingObject() const1500 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1501 if ((getNumParams() < 1) ||
1502 (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1503 (getPrimaryTemplate() == 0) ||
1504 (getDescribedFunctionTemplate() != 0))
1505 return false;
1506
1507 const ParmVarDecl *Param = getParamDecl(0);
1508
1509 ASTContext &Context = getASTContext();
1510 CanQualType ParamType = Context.getCanonicalType(Param->getType());
1511
1512 // Is it the same as our our class type?
1513 CanQualType ClassTy
1514 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1515 if (ParamType.getUnqualifiedType() != ClassTy)
1516 return false;
1517
1518 return true;
1519 }
1520
getInheritedConstructor() const1521 const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1522 // Hack: we store the inherited constructor in the overridden method table
1523 method_iterator It = begin_overridden_methods();
1524 if (It == end_overridden_methods())
1525 return 0;
1526
1527 return cast<CXXConstructorDecl>(*It);
1528 }
1529
1530 void
setInheritedConstructor(const CXXConstructorDecl * BaseCtor)1531 CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1532 // Hack: we store the inherited constructor in the overridden method table
1533 assert(size_overridden_methods() == 0 && "Base ctor already set.");
1534 addOverriddenMethod(BaseCtor);
1535 }
1536
1537 CXXDestructorDecl *
Create(ASTContext & C,EmptyShell Empty)1538 CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) {
1539 return new (C) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
1540 QualType(), 0, false, false);
1541 }
1542
1543 CXXDestructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isImplicitlyDeclared)1544 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1545 SourceLocation StartLoc,
1546 const DeclarationNameInfo &NameInfo,
1547 QualType T, TypeSourceInfo *TInfo,
1548 bool isInline,
1549 bool isImplicitlyDeclared) {
1550 assert(NameInfo.getName().getNameKind()
1551 == DeclarationName::CXXDestructorName &&
1552 "Name must refer to a destructor");
1553 return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
1554 isImplicitlyDeclared);
1555 }
1556
1557 CXXConversionDecl *
Create(ASTContext & C,EmptyShell Empty)1558 CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) {
1559 return new (C) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
1560 QualType(), 0, false, false,
1561 SourceLocation());
1562 }
1563
1564 CXXConversionDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isExplicit,SourceLocation EndLocation)1565 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1566 SourceLocation StartLoc,
1567 const DeclarationNameInfo &NameInfo,
1568 QualType T, TypeSourceInfo *TInfo,
1569 bool isInline, bool isExplicit,
1570 SourceLocation EndLocation) {
1571 assert(NameInfo.getName().getNameKind()
1572 == DeclarationName::CXXConversionFunctionName &&
1573 "Name must refer to a conversion function");
1574 return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
1575 isInline, isExplicit, EndLocation);
1576 }
1577
Create(ASTContext & C,DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs Lang,SourceLocation RBraceLoc)1578 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1579 DeclContext *DC,
1580 SourceLocation ExternLoc,
1581 SourceLocation LangLoc,
1582 LanguageIDs Lang,
1583 SourceLocation RBraceLoc) {
1584 return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc);
1585 }
1586
Create(ASTContext & C,DeclContext * DC,SourceLocation L,SourceLocation NamespaceLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Used,DeclContext * CommonAncestor)1587 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1588 SourceLocation L,
1589 SourceLocation NamespaceLoc,
1590 NestedNameSpecifierLoc QualifierLoc,
1591 SourceLocation IdentLoc,
1592 NamedDecl *Used,
1593 DeclContext *CommonAncestor) {
1594 if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1595 Used = NS->getOriginalNamespace();
1596 return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1597 IdentLoc, Used, CommonAncestor);
1598 }
1599
getNominatedNamespace()1600 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1601 if (NamespaceAliasDecl *NA =
1602 dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1603 return NA->getNamespace();
1604 return cast_or_null<NamespaceDecl>(NominatedNamespace);
1605 }
1606
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)1607 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
1608 SourceLocation UsingLoc,
1609 SourceLocation AliasLoc,
1610 IdentifierInfo *Alias,
1611 NestedNameSpecifierLoc QualifierLoc,
1612 SourceLocation IdentLoc,
1613 NamedDecl *Namespace) {
1614 if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
1615 Namespace = NS->getOriginalNamespace();
1616 return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
1617 QualifierLoc, IdentLoc, Namespace);
1618 }
1619
getUsingDecl() const1620 UsingDecl *UsingShadowDecl::getUsingDecl() const {
1621 const UsingShadowDecl *Shadow = this;
1622 while (const UsingShadowDecl *NextShadow =
1623 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
1624 Shadow = NextShadow;
1625 return cast<UsingDecl>(Shadow->UsingOrNextShadow);
1626 }
1627
addShadowDecl(UsingShadowDecl * S)1628 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
1629 assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
1630 "declaration already in set");
1631 assert(S->getUsingDecl() == this);
1632
1633 if (FirstUsingShadow)
1634 S->UsingOrNextShadow = FirstUsingShadow;
1635 FirstUsingShadow = S;
1636 }
1637
removeShadowDecl(UsingShadowDecl * S)1638 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
1639 assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
1640 "declaration not in set");
1641 assert(S->getUsingDecl() == this);
1642
1643 // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
1644
1645 if (FirstUsingShadow == S) {
1646 FirstUsingShadow = dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow);
1647 S->UsingOrNextShadow = this;
1648 return;
1649 }
1650
1651 UsingShadowDecl *Prev = FirstUsingShadow;
1652 while (Prev->UsingOrNextShadow != S)
1653 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
1654 Prev->UsingOrNextShadow = S->UsingOrNextShadow;
1655 S->UsingOrNextShadow = this;
1656 }
1657
Create(ASTContext & C,DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool IsTypeNameArg)1658 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
1659 NestedNameSpecifierLoc QualifierLoc,
1660 const DeclarationNameInfo &NameInfo,
1661 bool IsTypeNameArg) {
1662 return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg);
1663 }
1664
1665 UnresolvedUsingValueDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo)1666 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
1667 SourceLocation UsingLoc,
1668 NestedNameSpecifierLoc QualifierLoc,
1669 const DeclarationNameInfo &NameInfo) {
1670 return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
1671 QualifierLoc, NameInfo);
1672 }
1673
1674 UnresolvedUsingTypenameDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,DeclarationName TargetName)1675 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
1676 SourceLocation UsingLoc,
1677 SourceLocation TypenameLoc,
1678 NestedNameSpecifierLoc QualifierLoc,
1679 SourceLocation TargetNameLoc,
1680 DeclarationName TargetName) {
1681 return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
1682 QualifierLoc, TargetNameLoc,
1683 TargetName.getAsIdentifierInfo());
1684 }
1685
Create(ASTContext & C,DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc)1686 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
1687 SourceLocation StaticAssertLoc,
1688 Expr *AssertExpr,
1689 StringLiteral *Message,
1690 SourceLocation RParenLoc) {
1691 return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
1692 RParenLoc);
1693 }
1694
getAccessName(AccessSpecifier AS)1695 static const char *getAccessName(AccessSpecifier AS) {
1696 switch (AS) {
1697 default:
1698 case AS_none:
1699 assert("Invalid access specifier!");
1700 return 0;
1701 case AS_public:
1702 return "public";
1703 case AS_private:
1704 return "private";
1705 case AS_protected:
1706 return "protected";
1707 }
1708 }
1709
operator <<(const DiagnosticBuilder & DB,AccessSpecifier AS)1710 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
1711 AccessSpecifier AS) {
1712 return DB << getAccessName(AS);
1713 }
1714