• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value.  This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range.  To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators.  When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
16 //
17 //  [F, F) = {}     = Empty set
18 //  [T, F) = {T}
19 //  [F, T) = {F}
20 //  [T, T) = {F, T} = Full set
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Constants.h"
25 #include "llvm/Support/ConstantRange.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Instructions.h"
29 using namespace llvm;
30 
31 /// Initialize a full (the default) or empty set for the specified type.
32 ///
ConstantRange(uint32_t BitWidth,bool Full)33 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
34   if (Full)
35     Lower = Upper = APInt::getMaxValue(BitWidth);
36   else
37     Lower = Upper = APInt::getMinValue(BitWidth);
38 }
39 
40 /// Initialize a range to hold the single specified value.
41 ///
ConstantRange(const APInt & V)42 ConstantRange::ConstantRange(const APInt &V) : Lower(V), Upper(V + 1) {}
43 
ConstantRange(const APInt & L,const APInt & U)44 ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
45   Lower(L), Upper(U) {
46   assert(L.getBitWidth() == U.getBitWidth() &&
47          "ConstantRange with unequal bit widths");
48   assert((L != U || (L.isMaxValue() || L.isMinValue())) &&
49          "Lower == Upper, but they aren't min or max value!");
50 }
51 
makeICmpRegion(unsigned Pred,const ConstantRange & CR)52 ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
53                                             const ConstantRange &CR) {
54   if (CR.isEmptySet())
55     return CR;
56 
57   uint32_t W = CR.getBitWidth();
58   switch (Pred) {
59     default: assert(!"Invalid ICmp predicate to makeICmpRegion()");
60     case ICmpInst::ICMP_EQ:
61       return CR;
62     case ICmpInst::ICMP_NE:
63       if (CR.isSingleElement())
64         return ConstantRange(CR.getUpper(), CR.getLower());
65       return ConstantRange(W);
66     case ICmpInst::ICMP_ULT: {
67       APInt UMax(CR.getUnsignedMax());
68       if (UMax.isMinValue())
69         return ConstantRange(W, /* empty */ false);
70       return ConstantRange(APInt::getMinValue(W), UMax);
71     }
72     case ICmpInst::ICMP_SLT: {
73       APInt SMax(CR.getSignedMax());
74       if (SMax.isMinSignedValue())
75         return ConstantRange(W, /* empty */ false);
76       return ConstantRange(APInt::getSignedMinValue(W), SMax);
77     }
78     case ICmpInst::ICMP_ULE: {
79       APInt UMax(CR.getUnsignedMax());
80       if (UMax.isMaxValue())
81         return ConstantRange(W);
82       return ConstantRange(APInt::getMinValue(W), UMax + 1);
83     }
84     case ICmpInst::ICMP_SLE: {
85       APInt SMax(CR.getSignedMax());
86       if (SMax.isMaxSignedValue())
87         return ConstantRange(W);
88       return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
89     }
90     case ICmpInst::ICMP_UGT: {
91       APInt UMin(CR.getUnsignedMin());
92       if (UMin.isMaxValue())
93         return ConstantRange(W, /* empty */ false);
94       return ConstantRange(UMin + 1, APInt::getNullValue(W));
95     }
96     case ICmpInst::ICMP_SGT: {
97       APInt SMin(CR.getSignedMin());
98       if (SMin.isMaxSignedValue())
99         return ConstantRange(W, /* empty */ false);
100       return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
101     }
102     case ICmpInst::ICMP_UGE: {
103       APInt UMin(CR.getUnsignedMin());
104       if (UMin.isMinValue())
105         return ConstantRange(W);
106       return ConstantRange(UMin, APInt::getNullValue(W));
107     }
108     case ICmpInst::ICMP_SGE: {
109       APInt SMin(CR.getSignedMin());
110       if (SMin.isMinSignedValue())
111         return ConstantRange(W);
112       return ConstantRange(SMin, APInt::getSignedMinValue(W));
113     }
114   }
115 }
116 
117 /// isFullSet - Return true if this set contains all of the elements possible
118 /// for this data-type
isFullSet() const119 bool ConstantRange::isFullSet() const {
120   return Lower == Upper && Lower.isMaxValue();
121 }
122 
123 /// isEmptySet - Return true if this set contains no members.
124 ///
isEmptySet() const125 bool ConstantRange::isEmptySet() const {
126   return Lower == Upper && Lower.isMinValue();
127 }
128 
129 /// isWrappedSet - Return true if this set wraps around the top of the range,
130 /// for example: [100, 8)
131 ///
isWrappedSet() const132 bool ConstantRange::isWrappedSet() const {
133   return Lower.ugt(Upper);
134 }
135 
136 /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
137 /// its bitwidth, for example: i8 [120, 140).
138 ///
isSignWrappedSet() const139 bool ConstantRange::isSignWrappedSet() const {
140   return contains(APInt::getSignedMaxValue(getBitWidth())) &&
141          contains(APInt::getSignedMinValue(getBitWidth()));
142 }
143 
144 /// getSetSize - Return the number of elements in this set.
145 ///
getSetSize() const146 APInt ConstantRange::getSetSize() const {
147   if (isEmptySet())
148     return APInt(getBitWidth(), 0);
149   if (getBitWidth() == 1) {
150     if (Lower != Upper)  // One of T or F in the set...
151       return APInt(2, 1);
152     return APInt(2, 2);      // Must be full set...
153   }
154 
155   // Simply subtract the bounds...
156   return Upper - Lower;
157 }
158 
159 /// getUnsignedMax - Return the largest unsigned value contained in the
160 /// ConstantRange.
161 ///
getUnsignedMax() const162 APInt ConstantRange::getUnsignedMax() const {
163   if (isFullSet() || isWrappedSet())
164     return APInt::getMaxValue(getBitWidth());
165   else
166     return getUpper() - 1;
167 }
168 
169 /// getUnsignedMin - Return the smallest unsigned value contained in the
170 /// ConstantRange.
171 ///
getUnsignedMin() const172 APInt ConstantRange::getUnsignedMin() const {
173   if (isFullSet() || (isWrappedSet() && getUpper() != 0))
174     return APInt::getMinValue(getBitWidth());
175   else
176     return getLower();
177 }
178 
179 /// getSignedMax - Return the largest signed value contained in the
180 /// ConstantRange.
181 ///
getSignedMax() const182 APInt ConstantRange::getSignedMax() const {
183   APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
184   if (!isWrappedSet()) {
185     if (getLower().sle(getUpper() - 1))
186       return getUpper() - 1;
187     else
188       return SignedMax;
189   } else {
190     if (getLower().isNegative() == getUpper().isNegative())
191       return SignedMax;
192     else
193       return getUpper() - 1;
194   }
195 }
196 
197 /// getSignedMin - Return the smallest signed value contained in the
198 /// ConstantRange.
199 ///
getSignedMin() const200 APInt ConstantRange::getSignedMin() const {
201   APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
202   if (!isWrappedSet()) {
203     if (getLower().sle(getUpper() - 1))
204       return getLower();
205     else
206       return SignedMin;
207   } else {
208     if ((getUpper() - 1).slt(getLower())) {
209       if (getUpper() != SignedMin)
210         return SignedMin;
211       else
212         return getLower();
213     } else {
214       return getLower();
215     }
216   }
217 }
218 
219 /// contains - Return true if the specified value is in the set.
220 ///
contains(const APInt & V) const221 bool ConstantRange::contains(const APInt &V) const {
222   if (Lower == Upper)
223     return isFullSet();
224 
225   if (!isWrappedSet())
226     return Lower.ule(V) && V.ult(Upper);
227   else
228     return Lower.ule(V) || V.ult(Upper);
229 }
230 
231 /// contains - Return true if the argument is a subset of this range.
232 /// Two equal sets contain each other. The empty set contained by all other
233 /// sets.
234 ///
contains(const ConstantRange & Other) const235 bool ConstantRange::contains(const ConstantRange &Other) const {
236   if (isFullSet() || Other.isEmptySet()) return true;
237   if (isEmptySet() || Other.isFullSet()) return false;
238 
239   if (!isWrappedSet()) {
240     if (Other.isWrappedSet())
241       return false;
242 
243     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
244   }
245 
246   if (!Other.isWrappedSet())
247     return Other.getUpper().ule(Upper) ||
248            Lower.ule(Other.getLower());
249 
250   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
251 }
252 
253 /// subtract - Subtract the specified constant from the endpoints of this
254 /// constant range.
subtract(const APInt & Val) const255 ConstantRange ConstantRange::subtract(const APInt &Val) const {
256   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
257   // If the set is empty or full, don't modify the endpoints.
258   if (Lower == Upper)
259     return *this;
260   return ConstantRange(Lower - Val, Upper - Val);
261 }
262 
263 /// intersectWith - Return the range that results from the intersection of this
264 /// range with another range.  The resultant range is guaranteed to include all
265 /// elements contained in both input ranges, and to have the smallest possible
266 /// set size that does so.  Because there may be two intersections with the
267 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
intersectWith(const ConstantRange & CR) const268 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
269   assert(getBitWidth() == CR.getBitWidth() &&
270          "ConstantRange types don't agree!");
271 
272   // Handle common cases.
273   if (   isEmptySet() || CR.isFullSet()) return *this;
274   if (CR.isEmptySet() ||    isFullSet()) return CR;
275 
276   if (!isWrappedSet() && CR.isWrappedSet())
277     return CR.intersectWith(*this);
278 
279   if (!isWrappedSet() && !CR.isWrappedSet()) {
280     if (Lower.ult(CR.Lower)) {
281       if (Upper.ule(CR.Lower))
282         return ConstantRange(getBitWidth(), false);
283 
284       if (Upper.ult(CR.Upper))
285         return ConstantRange(CR.Lower, Upper);
286 
287       return CR;
288     } else {
289       if (Upper.ult(CR.Upper))
290         return *this;
291 
292       if (Lower.ult(CR.Upper))
293         return ConstantRange(Lower, CR.Upper);
294 
295       return ConstantRange(getBitWidth(), false);
296     }
297   }
298 
299   if (isWrappedSet() && !CR.isWrappedSet()) {
300     if (CR.Lower.ult(Upper)) {
301       if (CR.Upper.ult(Upper))
302         return CR;
303 
304       if (CR.Upper.ult(Lower))
305         return ConstantRange(CR.Lower, Upper);
306 
307       if (getSetSize().ult(CR.getSetSize()))
308         return *this;
309       else
310         return CR;
311     } else if (CR.Lower.ult(Lower)) {
312       if (CR.Upper.ule(Lower))
313         return ConstantRange(getBitWidth(), false);
314 
315       return ConstantRange(Lower, CR.Upper);
316     }
317     return CR;
318   }
319 
320   if (CR.Upper.ult(Upper)) {
321     if (CR.Lower.ult(Upper)) {
322       if (getSetSize().ult(CR.getSetSize()))
323         return *this;
324       else
325         return CR;
326     }
327 
328     if (CR.Lower.ult(Lower))
329       return ConstantRange(Lower, CR.Upper);
330 
331     return CR;
332   } else if (CR.Upper.ult(Lower)) {
333     if (CR.Lower.ult(Lower))
334       return *this;
335 
336     return ConstantRange(CR.Lower, Upper);
337   }
338   if (getSetSize().ult(CR.getSetSize()))
339     return *this;
340   else
341     return CR;
342 }
343 
344 
345 /// unionWith - Return the range that results from the union of this range with
346 /// another range.  The resultant range is guaranteed to include the elements of
347 /// both sets, but may contain more.  For example, [3, 9) union [12,15) is
348 /// [3, 15), which includes 9, 10, and 11, which were not included in either
349 /// set before.
350 ///
unionWith(const ConstantRange & CR) const351 ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
352   assert(getBitWidth() == CR.getBitWidth() &&
353          "ConstantRange types don't agree!");
354 
355   if (   isFullSet() || CR.isEmptySet()) return *this;
356   if (CR.isFullSet() ||    isEmptySet()) return CR;
357 
358   if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
359 
360   if (!isWrappedSet() && !CR.isWrappedSet()) {
361     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
362       // If the two ranges are disjoint, find the smaller gap and bridge it.
363       APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
364       if (d1.ult(d2))
365         return ConstantRange(Lower, CR.Upper);
366       else
367         return ConstantRange(CR.Lower, Upper);
368     }
369 
370     APInt L = Lower, U = Upper;
371     if (CR.Lower.ult(L))
372       L = CR.Lower;
373     if ((CR.Upper - 1).ugt(U - 1))
374       U = CR.Upper;
375 
376     if (L == 0 && U == 0)
377       return ConstantRange(getBitWidth());
378 
379     return ConstantRange(L, U);
380   }
381 
382   if (!CR.isWrappedSet()) {
383     // ------U   L-----  and  ------U   L----- : this
384     //   L--U                            L--U  : CR
385     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
386       return *this;
387 
388     // ------U   L----- : this
389     //    L---------U   : CR
390     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
391       return ConstantRange(getBitWidth());
392 
393     // ----U       L---- : this
394     //       L---U       : CR
395     //    <d1>  <d2>
396     if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
397       APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
398       if (d1.ult(d2))
399         return ConstantRange(Lower, CR.Upper);
400       else
401         return ConstantRange(CR.Lower, Upper);
402     }
403 
404     // ----U     L----- : this
405     //        L----U    : CR
406     if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
407       return ConstantRange(CR.Lower, Upper);
408 
409     // ------U    L---- : this
410     //    L-----U       : CR
411     if (CR.Lower.ult(Upper) && CR.Upper.ult(Lower))
412       return ConstantRange(Lower, CR.Upper);
413   }
414 
415   assert(isWrappedSet() && CR.isWrappedSet() &&
416          "ConstantRange::unionWith missed wrapped union unwrapped case");
417 
418   // ------U    L----  and  ------U    L---- : this
419   // -U  L-----------  and  ------------U  L : CR
420   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
421     return ConstantRange(getBitWidth());
422 
423   APInt L = Lower, U = Upper;
424   if (CR.Upper.ugt(U))
425     U = CR.Upper;
426   if (CR.Lower.ult(L))
427     L = CR.Lower;
428 
429   return ConstantRange(L, U);
430 }
431 
432 /// zeroExtend - Return a new range in the specified integer type, which must
433 /// be strictly larger than the current type.  The returned range will
434 /// correspond to the possible range of values as if the source range had been
435 /// zero extended.
zeroExtend(uint32_t DstTySize) const436 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
437   if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
438 
439   unsigned SrcTySize = getBitWidth();
440   assert(SrcTySize < DstTySize && "Not a value extension");
441   if (isFullSet() || isWrappedSet())
442     // Change into [0, 1 << src bit width)
443     return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize));
444 
445   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
446 }
447 
448 /// signExtend - Return a new range in the specified integer type, which must
449 /// be strictly larger than the current type.  The returned range will
450 /// correspond to the possible range of values as if the source range had been
451 /// sign extended.
signExtend(uint32_t DstTySize) const452 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
453   if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
454 
455   unsigned SrcTySize = getBitWidth();
456   assert(SrcTySize < DstTySize && "Not a value extension");
457   if (isFullSet() || isSignWrappedSet()) {
458     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
459                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
460   }
461 
462   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
463 }
464 
465 /// truncate - Return a new range in the specified integer type, which must be
466 /// strictly smaller than the current type.  The returned range will
467 /// correspond to the possible range of values as if the source range had been
468 /// truncated to the specified type.
truncate(uint32_t DstTySize) const469 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
470   unsigned SrcTySize = getBitWidth();
471   assert(SrcTySize > DstTySize && "Not a value truncation");
472   APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize));
473   if (isFullSet() || getSetSize().ugt(Size))
474     return ConstantRange(DstTySize, /*isFullSet=*/true);
475 
476   return ConstantRange(Lower.trunc(DstTySize), Upper.trunc(DstTySize));
477 }
478 
479 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
480 /// value is zero extended, truncated, or left alone to make it that width.
zextOrTrunc(uint32_t DstTySize) const481 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
482   unsigned SrcTySize = getBitWidth();
483   if (SrcTySize > DstTySize)
484     return truncate(DstTySize);
485   else if (SrcTySize < DstTySize)
486     return zeroExtend(DstTySize);
487   else
488     return *this;
489 }
490 
491 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
492 /// value is sign extended, truncated, or left alone to make it that width.
sextOrTrunc(uint32_t DstTySize) const493 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
494   unsigned SrcTySize = getBitWidth();
495   if (SrcTySize > DstTySize)
496     return truncate(DstTySize);
497   else if (SrcTySize < DstTySize)
498     return signExtend(DstTySize);
499   else
500     return *this;
501 }
502 
503 ConstantRange
add(const ConstantRange & Other) const504 ConstantRange::add(const ConstantRange &Other) const {
505   if (isEmptySet() || Other.isEmptySet())
506     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
507   if (isFullSet() || Other.isFullSet())
508     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
509 
510   APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
511   APInt NewLower = getLower() + Other.getLower();
512   APInt NewUpper = getUpper() + Other.getUpper() - 1;
513   if (NewLower == NewUpper)
514     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
515 
516   ConstantRange X = ConstantRange(NewLower, NewUpper);
517   if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
518     // We've wrapped, therefore, full set.
519     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
520 
521   return X;
522 }
523 
524 ConstantRange
sub(const ConstantRange & Other) const525 ConstantRange::sub(const ConstantRange &Other) const {
526   if (isEmptySet() || Other.isEmptySet())
527     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
528   if (isFullSet() || Other.isFullSet())
529     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
530 
531   APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
532   APInt NewLower = getLower() - Other.getUpper() + 1;
533   APInt NewUpper = getUpper() - Other.getLower();
534   if (NewLower == NewUpper)
535     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
536 
537   ConstantRange X = ConstantRange(NewLower, NewUpper);
538   if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
539     // We've wrapped, therefore, full set.
540     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
541 
542   return X;
543 }
544 
545 ConstantRange
multiply(const ConstantRange & Other) const546 ConstantRange::multiply(const ConstantRange &Other) const {
547   // TODO: If either operand is a single element and the multiply is known to
548   // be non-wrapping, round the result min and max value to the appropriate
549   // multiple of that element. If wrapping is possible, at least adjust the
550   // range according to the greatest power-of-two factor of the single element.
551 
552   if (isEmptySet() || Other.isEmptySet())
553     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
554   if (isFullSet() || Other.isFullSet())
555     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
556 
557   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
558   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
559   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
560   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
561 
562   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
563                                             this_max * Other_max + 1);
564   return Result_zext.truncate(getBitWidth());
565 }
566 
567 ConstantRange
smax(const ConstantRange & Other) const568 ConstantRange::smax(const ConstantRange &Other) const {
569   // X smax Y is: range(smax(X_smin, Y_smin),
570   //                    smax(X_smax, Y_smax))
571   if (isEmptySet() || Other.isEmptySet())
572     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
573   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
574   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
575   if (NewU == NewL)
576     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
577   return ConstantRange(NewL, NewU);
578 }
579 
580 ConstantRange
umax(const ConstantRange & Other) const581 ConstantRange::umax(const ConstantRange &Other) const {
582   // X umax Y is: range(umax(X_umin, Y_umin),
583   //                    umax(X_umax, Y_umax))
584   if (isEmptySet() || Other.isEmptySet())
585     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
586   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
587   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
588   if (NewU == NewL)
589     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
590   return ConstantRange(NewL, NewU);
591 }
592 
593 ConstantRange
udiv(const ConstantRange & RHS) const594 ConstantRange::udiv(const ConstantRange &RHS) const {
595   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
596     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
597   if (RHS.isFullSet())
598     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
599 
600   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
601 
602   APInt RHS_umin = RHS.getUnsignedMin();
603   if (RHS_umin == 0) {
604     // We want the lowest value in RHS excluding zero. Usually that would be 1
605     // except for a range in the form of [X, 1) in which case it would be X.
606     if (RHS.getUpper() == 1)
607       RHS_umin = RHS.getLower();
608     else
609       RHS_umin = APInt(getBitWidth(), 1);
610   }
611 
612   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
613 
614   // If the LHS is Full and the RHS is a wrapped interval containing 1 then
615   // this could occur.
616   if (Lower == Upper)
617     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
618 
619   return ConstantRange(Lower, Upper);
620 }
621 
622 ConstantRange
binaryAnd(const ConstantRange & Other) const623 ConstantRange::binaryAnd(const ConstantRange &Other) const {
624   if (isEmptySet() || Other.isEmptySet())
625     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
626 
627   // TODO: replace this with something less conservative
628 
629   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
630   if (umin.isAllOnesValue())
631     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
632   return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
633 }
634 
635 ConstantRange
binaryOr(const ConstantRange & Other) const636 ConstantRange::binaryOr(const ConstantRange &Other) const {
637   if (isEmptySet() || Other.isEmptySet())
638     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
639 
640   // TODO: replace this with something less conservative
641 
642   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
643   if (umax.isMinValue())
644     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
645   return ConstantRange(umax, APInt::getNullValue(getBitWidth()));
646 }
647 
648 ConstantRange
shl(const ConstantRange & Other) const649 ConstantRange::shl(const ConstantRange &Other) const {
650   if (isEmptySet() || Other.isEmptySet())
651     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
652 
653   APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
654   APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
655 
656   // there's no overflow!
657   APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
658   if (Zeros.ugt(Other.getUnsignedMax()))
659     return ConstantRange(min, max + 1);
660 
661   // FIXME: implement the other tricky cases
662   return ConstantRange(getBitWidth(), /*isFullSet=*/true);
663 }
664 
665 ConstantRange
lshr(const ConstantRange & Other) const666 ConstantRange::lshr(const ConstantRange &Other) const {
667   if (isEmptySet() || Other.isEmptySet())
668     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
669 
670   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
671   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
672   if (min == max + 1)
673     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
674 
675   return ConstantRange(min, max + 1);
676 }
677 
inverse() const678 ConstantRange ConstantRange::inverse() const {
679   if (isFullSet()) {
680     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
681   } else if (isEmptySet()) {
682     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
683   }
684   return ConstantRange(Upper, Lower);
685 }
686 
687 /// print - Print out the bounds to a stream...
688 ///
print(raw_ostream & OS) const689 void ConstantRange::print(raw_ostream &OS) const {
690   if (isFullSet())
691     OS << "full-set";
692   else if (isEmptySet())
693     OS << "empty-set";
694   else
695     OS << "[" << Lower << "," << Upper << ")";
696 }
697 
698 /// dump - Allow printing from a debugger easily...
699 ///
dump() const700 void ConstantRange::dump() const {
701   print(dbgs());
702 }
703