1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value. This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range. To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators. When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
16 //
17 // [F, F) = {} = Empty set
18 // [T, F) = {T}
19 // [F, T) = {F}
20 // [T, T) = {F, T} = Full set
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/Constants.h"
25 #include "llvm/Support/ConstantRange.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Instructions.h"
29 using namespace llvm;
30
31 /// Initialize a full (the default) or empty set for the specified type.
32 ///
ConstantRange(uint32_t BitWidth,bool Full)33 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
34 if (Full)
35 Lower = Upper = APInt::getMaxValue(BitWidth);
36 else
37 Lower = Upper = APInt::getMinValue(BitWidth);
38 }
39
40 /// Initialize a range to hold the single specified value.
41 ///
ConstantRange(const APInt & V)42 ConstantRange::ConstantRange(const APInt &V) : Lower(V), Upper(V + 1) {}
43
ConstantRange(const APInt & L,const APInt & U)44 ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
45 Lower(L), Upper(U) {
46 assert(L.getBitWidth() == U.getBitWidth() &&
47 "ConstantRange with unequal bit widths");
48 assert((L != U || (L.isMaxValue() || L.isMinValue())) &&
49 "Lower == Upper, but they aren't min or max value!");
50 }
51
makeICmpRegion(unsigned Pred,const ConstantRange & CR)52 ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
53 const ConstantRange &CR) {
54 if (CR.isEmptySet())
55 return CR;
56
57 uint32_t W = CR.getBitWidth();
58 switch (Pred) {
59 default: assert(!"Invalid ICmp predicate to makeICmpRegion()");
60 case ICmpInst::ICMP_EQ:
61 return CR;
62 case ICmpInst::ICMP_NE:
63 if (CR.isSingleElement())
64 return ConstantRange(CR.getUpper(), CR.getLower());
65 return ConstantRange(W);
66 case ICmpInst::ICMP_ULT: {
67 APInt UMax(CR.getUnsignedMax());
68 if (UMax.isMinValue())
69 return ConstantRange(W, /* empty */ false);
70 return ConstantRange(APInt::getMinValue(W), UMax);
71 }
72 case ICmpInst::ICMP_SLT: {
73 APInt SMax(CR.getSignedMax());
74 if (SMax.isMinSignedValue())
75 return ConstantRange(W, /* empty */ false);
76 return ConstantRange(APInt::getSignedMinValue(W), SMax);
77 }
78 case ICmpInst::ICMP_ULE: {
79 APInt UMax(CR.getUnsignedMax());
80 if (UMax.isMaxValue())
81 return ConstantRange(W);
82 return ConstantRange(APInt::getMinValue(W), UMax + 1);
83 }
84 case ICmpInst::ICMP_SLE: {
85 APInt SMax(CR.getSignedMax());
86 if (SMax.isMaxSignedValue())
87 return ConstantRange(W);
88 return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
89 }
90 case ICmpInst::ICMP_UGT: {
91 APInt UMin(CR.getUnsignedMin());
92 if (UMin.isMaxValue())
93 return ConstantRange(W, /* empty */ false);
94 return ConstantRange(UMin + 1, APInt::getNullValue(W));
95 }
96 case ICmpInst::ICMP_SGT: {
97 APInt SMin(CR.getSignedMin());
98 if (SMin.isMaxSignedValue())
99 return ConstantRange(W, /* empty */ false);
100 return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
101 }
102 case ICmpInst::ICMP_UGE: {
103 APInt UMin(CR.getUnsignedMin());
104 if (UMin.isMinValue())
105 return ConstantRange(W);
106 return ConstantRange(UMin, APInt::getNullValue(W));
107 }
108 case ICmpInst::ICMP_SGE: {
109 APInt SMin(CR.getSignedMin());
110 if (SMin.isMinSignedValue())
111 return ConstantRange(W);
112 return ConstantRange(SMin, APInt::getSignedMinValue(W));
113 }
114 }
115 }
116
117 /// isFullSet - Return true if this set contains all of the elements possible
118 /// for this data-type
isFullSet() const119 bool ConstantRange::isFullSet() const {
120 return Lower == Upper && Lower.isMaxValue();
121 }
122
123 /// isEmptySet - Return true if this set contains no members.
124 ///
isEmptySet() const125 bool ConstantRange::isEmptySet() const {
126 return Lower == Upper && Lower.isMinValue();
127 }
128
129 /// isWrappedSet - Return true if this set wraps around the top of the range,
130 /// for example: [100, 8)
131 ///
isWrappedSet() const132 bool ConstantRange::isWrappedSet() const {
133 return Lower.ugt(Upper);
134 }
135
136 /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
137 /// its bitwidth, for example: i8 [120, 140).
138 ///
isSignWrappedSet() const139 bool ConstantRange::isSignWrappedSet() const {
140 return contains(APInt::getSignedMaxValue(getBitWidth())) &&
141 contains(APInt::getSignedMinValue(getBitWidth()));
142 }
143
144 /// getSetSize - Return the number of elements in this set.
145 ///
getSetSize() const146 APInt ConstantRange::getSetSize() const {
147 if (isEmptySet())
148 return APInt(getBitWidth(), 0);
149 if (getBitWidth() == 1) {
150 if (Lower != Upper) // One of T or F in the set...
151 return APInt(2, 1);
152 return APInt(2, 2); // Must be full set...
153 }
154
155 // Simply subtract the bounds...
156 return Upper - Lower;
157 }
158
159 /// getUnsignedMax - Return the largest unsigned value contained in the
160 /// ConstantRange.
161 ///
getUnsignedMax() const162 APInt ConstantRange::getUnsignedMax() const {
163 if (isFullSet() || isWrappedSet())
164 return APInt::getMaxValue(getBitWidth());
165 else
166 return getUpper() - 1;
167 }
168
169 /// getUnsignedMin - Return the smallest unsigned value contained in the
170 /// ConstantRange.
171 ///
getUnsignedMin() const172 APInt ConstantRange::getUnsignedMin() const {
173 if (isFullSet() || (isWrappedSet() && getUpper() != 0))
174 return APInt::getMinValue(getBitWidth());
175 else
176 return getLower();
177 }
178
179 /// getSignedMax - Return the largest signed value contained in the
180 /// ConstantRange.
181 ///
getSignedMax() const182 APInt ConstantRange::getSignedMax() const {
183 APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
184 if (!isWrappedSet()) {
185 if (getLower().sle(getUpper() - 1))
186 return getUpper() - 1;
187 else
188 return SignedMax;
189 } else {
190 if (getLower().isNegative() == getUpper().isNegative())
191 return SignedMax;
192 else
193 return getUpper() - 1;
194 }
195 }
196
197 /// getSignedMin - Return the smallest signed value contained in the
198 /// ConstantRange.
199 ///
getSignedMin() const200 APInt ConstantRange::getSignedMin() const {
201 APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
202 if (!isWrappedSet()) {
203 if (getLower().sle(getUpper() - 1))
204 return getLower();
205 else
206 return SignedMin;
207 } else {
208 if ((getUpper() - 1).slt(getLower())) {
209 if (getUpper() != SignedMin)
210 return SignedMin;
211 else
212 return getLower();
213 } else {
214 return getLower();
215 }
216 }
217 }
218
219 /// contains - Return true if the specified value is in the set.
220 ///
contains(const APInt & V) const221 bool ConstantRange::contains(const APInt &V) const {
222 if (Lower == Upper)
223 return isFullSet();
224
225 if (!isWrappedSet())
226 return Lower.ule(V) && V.ult(Upper);
227 else
228 return Lower.ule(V) || V.ult(Upper);
229 }
230
231 /// contains - Return true if the argument is a subset of this range.
232 /// Two equal sets contain each other. The empty set contained by all other
233 /// sets.
234 ///
contains(const ConstantRange & Other) const235 bool ConstantRange::contains(const ConstantRange &Other) const {
236 if (isFullSet() || Other.isEmptySet()) return true;
237 if (isEmptySet() || Other.isFullSet()) return false;
238
239 if (!isWrappedSet()) {
240 if (Other.isWrappedSet())
241 return false;
242
243 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
244 }
245
246 if (!Other.isWrappedSet())
247 return Other.getUpper().ule(Upper) ||
248 Lower.ule(Other.getLower());
249
250 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
251 }
252
253 /// subtract - Subtract the specified constant from the endpoints of this
254 /// constant range.
subtract(const APInt & Val) const255 ConstantRange ConstantRange::subtract(const APInt &Val) const {
256 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
257 // If the set is empty or full, don't modify the endpoints.
258 if (Lower == Upper)
259 return *this;
260 return ConstantRange(Lower - Val, Upper - Val);
261 }
262
263 /// intersectWith - Return the range that results from the intersection of this
264 /// range with another range. The resultant range is guaranteed to include all
265 /// elements contained in both input ranges, and to have the smallest possible
266 /// set size that does so. Because there may be two intersections with the
267 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
intersectWith(const ConstantRange & CR) const268 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
269 assert(getBitWidth() == CR.getBitWidth() &&
270 "ConstantRange types don't agree!");
271
272 // Handle common cases.
273 if ( isEmptySet() || CR.isFullSet()) return *this;
274 if (CR.isEmptySet() || isFullSet()) return CR;
275
276 if (!isWrappedSet() && CR.isWrappedSet())
277 return CR.intersectWith(*this);
278
279 if (!isWrappedSet() && !CR.isWrappedSet()) {
280 if (Lower.ult(CR.Lower)) {
281 if (Upper.ule(CR.Lower))
282 return ConstantRange(getBitWidth(), false);
283
284 if (Upper.ult(CR.Upper))
285 return ConstantRange(CR.Lower, Upper);
286
287 return CR;
288 } else {
289 if (Upper.ult(CR.Upper))
290 return *this;
291
292 if (Lower.ult(CR.Upper))
293 return ConstantRange(Lower, CR.Upper);
294
295 return ConstantRange(getBitWidth(), false);
296 }
297 }
298
299 if (isWrappedSet() && !CR.isWrappedSet()) {
300 if (CR.Lower.ult(Upper)) {
301 if (CR.Upper.ult(Upper))
302 return CR;
303
304 if (CR.Upper.ult(Lower))
305 return ConstantRange(CR.Lower, Upper);
306
307 if (getSetSize().ult(CR.getSetSize()))
308 return *this;
309 else
310 return CR;
311 } else if (CR.Lower.ult(Lower)) {
312 if (CR.Upper.ule(Lower))
313 return ConstantRange(getBitWidth(), false);
314
315 return ConstantRange(Lower, CR.Upper);
316 }
317 return CR;
318 }
319
320 if (CR.Upper.ult(Upper)) {
321 if (CR.Lower.ult(Upper)) {
322 if (getSetSize().ult(CR.getSetSize()))
323 return *this;
324 else
325 return CR;
326 }
327
328 if (CR.Lower.ult(Lower))
329 return ConstantRange(Lower, CR.Upper);
330
331 return CR;
332 } else if (CR.Upper.ult(Lower)) {
333 if (CR.Lower.ult(Lower))
334 return *this;
335
336 return ConstantRange(CR.Lower, Upper);
337 }
338 if (getSetSize().ult(CR.getSetSize()))
339 return *this;
340 else
341 return CR;
342 }
343
344
345 /// unionWith - Return the range that results from the union of this range with
346 /// another range. The resultant range is guaranteed to include the elements of
347 /// both sets, but may contain more. For example, [3, 9) union [12,15) is
348 /// [3, 15), which includes 9, 10, and 11, which were not included in either
349 /// set before.
350 ///
unionWith(const ConstantRange & CR) const351 ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
352 assert(getBitWidth() == CR.getBitWidth() &&
353 "ConstantRange types don't agree!");
354
355 if ( isFullSet() || CR.isEmptySet()) return *this;
356 if (CR.isFullSet() || isEmptySet()) return CR;
357
358 if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
359
360 if (!isWrappedSet() && !CR.isWrappedSet()) {
361 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
362 // If the two ranges are disjoint, find the smaller gap and bridge it.
363 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
364 if (d1.ult(d2))
365 return ConstantRange(Lower, CR.Upper);
366 else
367 return ConstantRange(CR.Lower, Upper);
368 }
369
370 APInt L = Lower, U = Upper;
371 if (CR.Lower.ult(L))
372 L = CR.Lower;
373 if ((CR.Upper - 1).ugt(U - 1))
374 U = CR.Upper;
375
376 if (L == 0 && U == 0)
377 return ConstantRange(getBitWidth());
378
379 return ConstantRange(L, U);
380 }
381
382 if (!CR.isWrappedSet()) {
383 // ------U L----- and ------U L----- : this
384 // L--U L--U : CR
385 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
386 return *this;
387
388 // ------U L----- : this
389 // L---------U : CR
390 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
391 return ConstantRange(getBitWidth());
392
393 // ----U L---- : this
394 // L---U : CR
395 // <d1> <d2>
396 if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
397 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
398 if (d1.ult(d2))
399 return ConstantRange(Lower, CR.Upper);
400 else
401 return ConstantRange(CR.Lower, Upper);
402 }
403
404 // ----U L----- : this
405 // L----U : CR
406 if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
407 return ConstantRange(CR.Lower, Upper);
408
409 // ------U L---- : this
410 // L-----U : CR
411 if (CR.Lower.ult(Upper) && CR.Upper.ult(Lower))
412 return ConstantRange(Lower, CR.Upper);
413 }
414
415 assert(isWrappedSet() && CR.isWrappedSet() &&
416 "ConstantRange::unionWith missed wrapped union unwrapped case");
417
418 // ------U L---- and ------U L---- : this
419 // -U L----------- and ------------U L : CR
420 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
421 return ConstantRange(getBitWidth());
422
423 APInt L = Lower, U = Upper;
424 if (CR.Upper.ugt(U))
425 U = CR.Upper;
426 if (CR.Lower.ult(L))
427 L = CR.Lower;
428
429 return ConstantRange(L, U);
430 }
431
432 /// zeroExtend - Return a new range in the specified integer type, which must
433 /// be strictly larger than the current type. The returned range will
434 /// correspond to the possible range of values as if the source range had been
435 /// zero extended.
zeroExtend(uint32_t DstTySize) const436 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
437 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
438
439 unsigned SrcTySize = getBitWidth();
440 assert(SrcTySize < DstTySize && "Not a value extension");
441 if (isFullSet() || isWrappedSet())
442 // Change into [0, 1 << src bit width)
443 return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize));
444
445 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
446 }
447
448 /// signExtend - Return a new range in the specified integer type, which must
449 /// be strictly larger than the current type. The returned range will
450 /// correspond to the possible range of values as if the source range had been
451 /// sign extended.
signExtend(uint32_t DstTySize) const452 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
453 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
454
455 unsigned SrcTySize = getBitWidth();
456 assert(SrcTySize < DstTySize && "Not a value extension");
457 if (isFullSet() || isSignWrappedSet()) {
458 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
459 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
460 }
461
462 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
463 }
464
465 /// truncate - Return a new range in the specified integer type, which must be
466 /// strictly smaller than the current type. The returned range will
467 /// correspond to the possible range of values as if the source range had been
468 /// truncated to the specified type.
truncate(uint32_t DstTySize) const469 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
470 unsigned SrcTySize = getBitWidth();
471 assert(SrcTySize > DstTySize && "Not a value truncation");
472 APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize));
473 if (isFullSet() || getSetSize().ugt(Size))
474 return ConstantRange(DstTySize, /*isFullSet=*/true);
475
476 return ConstantRange(Lower.trunc(DstTySize), Upper.trunc(DstTySize));
477 }
478
479 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
480 /// value is zero extended, truncated, or left alone to make it that width.
zextOrTrunc(uint32_t DstTySize) const481 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
482 unsigned SrcTySize = getBitWidth();
483 if (SrcTySize > DstTySize)
484 return truncate(DstTySize);
485 else if (SrcTySize < DstTySize)
486 return zeroExtend(DstTySize);
487 else
488 return *this;
489 }
490
491 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
492 /// value is sign extended, truncated, or left alone to make it that width.
sextOrTrunc(uint32_t DstTySize) const493 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
494 unsigned SrcTySize = getBitWidth();
495 if (SrcTySize > DstTySize)
496 return truncate(DstTySize);
497 else if (SrcTySize < DstTySize)
498 return signExtend(DstTySize);
499 else
500 return *this;
501 }
502
503 ConstantRange
add(const ConstantRange & Other) const504 ConstantRange::add(const ConstantRange &Other) const {
505 if (isEmptySet() || Other.isEmptySet())
506 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
507 if (isFullSet() || Other.isFullSet())
508 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
509
510 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
511 APInt NewLower = getLower() + Other.getLower();
512 APInt NewUpper = getUpper() + Other.getUpper() - 1;
513 if (NewLower == NewUpper)
514 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
515
516 ConstantRange X = ConstantRange(NewLower, NewUpper);
517 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
518 // We've wrapped, therefore, full set.
519 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
520
521 return X;
522 }
523
524 ConstantRange
sub(const ConstantRange & Other) const525 ConstantRange::sub(const ConstantRange &Other) const {
526 if (isEmptySet() || Other.isEmptySet())
527 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
528 if (isFullSet() || Other.isFullSet())
529 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
530
531 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
532 APInt NewLower = getLower() - Other.getUpper() + 1;
533 APInt NewUpper = getUpper() - Other.getLower();
534 if (NewLower == NewUpper)
535 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
536
537 ConstantRange X = ConstantRange(NewLower, NewUpper);
538 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
539 // We've wrapped, therefore, full set.
540 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
541
542 return X;
543 }
544
545 ConstantRange
multiply(const ConstantRange & Other) const546 ConstantRange::multiply(const ConstantRange &Other) const {
547 // TODO: If either operand is a single element and the multiply is known to
548 // be non-wrapping, round the result min and max value to the appropriate
549 // multiple of that element. If wrapping is possible, at least adjust the
550 // range according to the greatest power-of-two factor of the single element.
551
552 if (isEmptySet() || Other.isEmptySet())
553 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
554 if (isFullSet() || Other.isFullSet())
555 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
556
557 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
558 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
559 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
560 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
561
562 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
563 this_max * Other_max + 1);
564 return Result_zext.truncate(getBitWidth());
565 }
566
567 ConstantRange
smax(const ConstantRange & Other) const568 ConstantRange::smax(const ConstantRange &Other) const {
569 // X smax Y is: range(smax(X_smin, Y_smin),
570 // smax(X_smax, Y_smax))
571 if (isEmptySet() || Other.isEmptySet())
572 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
573 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
574 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
575 if (NewU == NewL)
576 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
577 return ConstantRange(NewL, NewU);
578 }
579
580 ConstantRange
umax(const ConstantRange & Other) const581 ConstantRange::umax(const ConstantRange &Other) const {
582 // X umax Y is: range(umax(X_umin, Y_umin),
583 // umax(X_umax, Y_umax))
584 if (isEmptySet() || Other.isEmptySet())
585 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
586 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
587 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
588 if (NewU == NewL)
589 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
590 return ConstantRange(NewL, NewU);
591 }
592
593 ConstantRange
udiv(const ConstantRange & RHS) const594 ConstantRange::udiv(const ConstantRange &RHS) const {
595 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
596 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
597 if (RHS.isFullSet())
598 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
599
600 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
601
602 APInt RHS_umin = RHS.getUnsignedMin();
603 if (RHS_umin == 0) {
604 // We want the lowest value in RHS excluding zero. Usually that would be 1
605 // except for a range in the form of [X, 1) in which case it would be X.
606 if (RHS.getUpper() == 1)
607 RHS_umin = RHS.getLower();
608 else
609 RHS_umin = APInt(getBitWidth(), 1);
610 }
611
612 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
613
614 // If the LHS is Full and the RHS is a wrapped interval containing 1 then
615 // this could occur.
616 if (Lower == Upper)
617 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
618
619 return ConstantRange(Lower, Upper);
620 }
621
622 ConstantRange
binaryAnd(const ConstantRange & Other) const623 ConstantRange::binaryAnd(const ConstantRange &Other) const {
624 if (isEmptySet() || Other.isEmptySet())
625 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
626
627 // TODO: replace this with something less conservative
628
629 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
630 if (umin.isAllOnesValue())
631 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
632 return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
633 }
634
635 ConstantRange
binaryOr(const ConstantRange & Other) const636 ConstantRange::binaryOr(const ConstantRange &Other) const {
637 if (isEmptySet() || Other.isEmptySet())
638 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
639
640 // TODO: replace this with something less conservative
641
642 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
643 if (umax.isMinValue())
644 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
645 return ConstantRange(umax, APInt::getNullValue(getBitWidth()));
646 }
647
648 ConstantRange
shl(const ConstantRange & Other) const649 ConstantRange::shl(const ConstantRange &Other) const {
650 if (isEmptySet() || Other.isEmptySet())
651 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
652
653 APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
654 APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
655
656 // there's no overflow!
657 APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
658 if (Zeros.ugt(Other.getUnsignedMax()))
659 return ConstantRange(min, max + 1);
660
661 // FIXME: implement the other tricky cases
662 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
663 }
664
665 ConstantRange
lshr(const ConstantRange & Other) const666 ConstantRange::lshr(const ConstantRange &Other) const {
667 if (isEmptySet() || Other.isEmptySet())
668 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
669
670 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
671 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
672 if (min == max + 1)
673 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
674
675 return ConstantRange(min, max + 1);
676 }
677
inverse() const678 ConstantRange ConstantRange::inverse() const {
679 if (isFullSet()) {
680 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
681 } else if (isEmptySet()) {
682 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
683 }
684 return ConstantRange(Upper, Lower);
685 }
686
687 /// print - Print out the bounds to a stream...
688 ///
print(raw_ostream & OS) const689 void ConstantRange::print(raw_ostream &OS) const {
690 if (isFullSet())
691 OS << "full-set";
692 else if (isEmptySet())
693 OS << "empty-set";
694 else
695 OS << "[" << Lower << "," << Upper << ")";
696 }
697
698 /// dump - Allow printing from a debugger easily...
699 ///
dump() const700 void ConstantRange::dump() const {
701 print(dbgs());
702 }
703