1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_VALUE_H
15 #define LLVM_VALUE_H
16
17 #include "llvm/Use.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Support/Casting.h"
20 #include <string>
21
22 namespace llvm {
23
24 class Constant;
25 class Argument;
26 class Instruction;
27 class BasicBlock;
28 class GlobalValue;
29 class Function;
30 class GlobalVariable;
31 class GlobalAlias;
32 class InlineAsm;
33 class ValueSymbolTable;
34 template<typename ValueTy> class StringMapEntry;
35 template <typename ValueTy = Value>
36 class AssertingVH;
37 typedef StringMapEntry<Value*> ValueName;
38 class raw_ostream;
39 class AssemblyAnnotationWriter;
40 class ValueHandleBase;
41 class LLVMContext;
42 class Twine;
43 class MDNode;
44 class Type;
45
46 //===----------------------------------------------------------------------===//
47 // Value Class
48 //===----------------------------------------------------------------------===//
49
50 /// This is a very important LLVM class. It is the base class of all values
51 /// computed by a program that may be used as operands to other values. Value is
52 /// the super class of other important classes such as Instruction and Function.
53 /// All Values have a Type. Type is not a subclass of Value. Some values can
54 /// have a name and they belong to some Module. Setting the name on the Value
55 /// automatically updates the module's symbol table.
56 ///
57 /// Every value has a "use list" that keeps track of which other Values are
58 /// using this Value. A Value can also have an arbitrary number of ValueHandle
59 /// objects that watch it and listen to RAUW and Destroy events. See
60 /// llvm/Support/ValueHandle.h for details.
61 ///
62 /// @brief LLVM Value Representation
63 class Value {
64 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
65 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
66 protected:
67 /// SubclassOptionalData - This member is similar to SubclassData, however it
68 /// is for holding information which may be used to aid optimization, but
69 /// which may be cleared to zero without affecting conservative
70 /// interpretation.
71 unsigned char SubclassOptionalData : 7;
72
73 private:
74 /// SubclassData - This member is defined by this class, but is not used for
75 /// anything. Subclasses can use it to hold whatever state they find useful.
76 /// This field is initialized to zero by the ctor.
77 unsigned short SubclassData;
78
79 Type *VTy;
80 Use *UseList;
81
82 friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
83 friend class ValueHandleBase;
84 ValueName *Name;
85
86 void operator=(const Value &); // Do not implement
87 Value(const Value &); // Do not implement
88
89 protected:
90 /// printCustom - Value subclasses can override this to implement custom
91 /// printing behavior.
92 virtual void printCustom(raw_ostream &O) const;
93
94 Value(Type *Ty, unsigned scid);
95 public:
96 virtual ~Value();
97
98 /// dump - Support for debugging, callable in GDB: V->dump()
99 //
100 void dump() const;
101
102 /// print - Implement operator<< on Value.
103 ///
104 void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
105
106 /// All values are typed, get the type of this value.
107 ///
getType()108 Type *getType() const { return VTy; }
109
110 /// All values hold a context through their type.
111 LLVMContext &getContext() const;
112
113 // All values can potentially be named...
hasName()114 bool hasName() const { return Name != 0; }
getValueName()115 ValueName *getValueName() const { return Name; }
116
117 /// getName() - Return a constant reference to the value's name. This is cheap
118 /// and guaranteed to return the same reference as long as the value is not
119 /// modified.
120 ///
121 /// This is currently guaranteed to return a StringRef for which data() points
122 /// to a valid null terminated string. The use of StringRef.data() is
123 /// deprecated here, however, and clients should not rely on it. If such
124 /// behavior is needed, clients should use expensive getNameStr(), or switch
125 /// to an interface that does not depend on null termination.
126 StringRef getName() const;
127
128 /// getNameStr() - Return the name of the specified value, *constructing a
129 /// string* to hold it. This is guaranteed to construct a string and is very
130 /// expensive, clients should use getName() unless necessary.
131 std::string getNameStr() const;
132
133 /// setName() - Change the name of the value, choosing a new unique name if
134 /// the provided name is taken.
135 ///
136 /// \arg Name - The new name; or "" if the value's name should be removed.
137 void setName(const Twine &Name);
138
139
140 /// takeName - transfer the name from V to this value, setting V's name to
141 /// empty. It is an error to call V->takeName(V).
142 void takeName(Value *V);
143
144 /// replaceAllUsesWith - Go through the uses list for this definition and make
145 /// each use point to "V" instead of "this". After this completes, 'this's
146 /// use list is guaranteed to be empty.
147 ///
148 void replaceAllUsesWith(Value *V);
149
150 //----------------------------------------------------------------------
151 // Methods for handling the chain of uses of this Value.
152 //
153 typedef value_use_iterator<User> use_iterator;
154 typedef value_use_iterator<const User> const_use_iterator;
155
use_empty()156 bool use_empty() const { return UseList == 0; }
use_begin()157 use_iterator use_begin() { return use_iterator(UseList); }
use_begin()158 const_use_iterator use_begin() const { return const_use_iterator(UseList); }
use_end()159 use_iterator use_end() { return use_iterator(0); }
use_end()160 const_use_iterator use_end() const { return const_use_iterator(0); }
use_back()161 User *use_back() { return *use_begin(); }
use_back()162 const User *use_back() const { return *use_begin(); }
163
164 /// hasOneUse - Return true if there is exactly one user of this value. This
165 /// is specialized because it is a common request and does not require
166 /// traversing the whole use list.
167 ///
hasOneUse()168 bool hasOneUse() const {
169 const_use_iterator I = use_begin(), E = use_end();
170 if (I == E) return false;
171 return ++I == E;
172 }
173
174 /// hasNUses - Return true if this Value has exactly N users.
175 ///
176 bool hasNUses(unsigned N) const;
177
178 /// hasNUsesOrMore - Return true if this value has N users or more. This is
179 /// logically equivalent to getNumUses() >= N.
180 ///
181 bool hasNUsesOrMore(unsigned N) const;
182
183 bool isUsedInBasicBlock(const BasicBlock *BB) const;
184
185 /// getNumUses - This method computes the number of uses of this Value. This
186 /// is a linear time operation. Use hasOneUse, hasNUses, or hasMoreThanNUses
187 /// to check for specific values.
188 unsigned getNumUses() const;
189
190 /// addUse - This method should only be used by the Use class.
191 ///
addUse(Use & U)192 void addUse(Use &U) { U.addToList(&UseList); }
193
194 /// An enumeration for keeping track of the concrete subclass of Value that
195 /// is actually instantiated. Values of this enumeration are kept in the
196 /// Value classes SubclassID field. They are used for concrete type
197 /// identification.
198 enum ValueTy {
199 ArgumentVal, // This is an instance of Argument
200 BasicBlockVal, // This is an instance of BasicBlock
201 FunctionVal, // This is an instance of Function
202 GlobalAliasVal, // This is an instance of GlobalAlias
203 GlobalVariableVal, // This is an instance of GlobalVariable
204 UndefValueVal, // This is an instance of UndefValue
205 BlockAddressVal, // This is an instance of BlockAddress
206 ConstantExprVal, // This is an instance of ConstantExpr
207 ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
208 ConstantIntVal, // This is an instance of ConstantInt
209 ConstantFPVal, // This is an instance of ConstantFP
210 ConstantArrayVal, // This is an instance of ConstantArray
211 ConstantStructVal, // This is an instance of ConstantStruct
212 ConstantVectorVal, // This is an instance of ConstantVector
213 ConstantPointerNullVal, // This is an instance of ConstantPointerNull
214 MDNodeVal, // This is an instance of MDNode
215 MDStringVal, // This is an instance of MDString
216 InlineAsmVal, // This is an instance of InlineAsm
217 PseudoSourceValueVal, // This is an instance of PseudoSourceValue
218 FixedStackPseudoSourceValueVal, // This is an instance of
219 // FixedStackPseudoSourceValue
220 InstructionVal, // This is an instance of Instruction
221 // Enum values starting at InstructionVal are used for Instructions;
222 // don't add new values here!
223
224 // Markers:
225 ConstantFirstVal = FunctionVal,
226 ConstantLastVal = ConstantPointerNullVal
227 };
228
229 /// getValueID - Return an ID for the concrete type of this object. This is
230 /// used to implement the classof checks. This should not be used for any
231 /// other purpose, as the values may change as LLVM evolves. Also, note that
232 /// for instructions, the Instruction's opcode is added to InstructionVal. So
233 /// this means three things:
234 /// # there is no value with code InstructionVal (no opcode==0).
235 /// # there are more possible values for the value type than in ValueTy enum.
236 /// # the InstructionVal enumerator must be the highest valued enumerator in
237 /// the ValueTy enum.
getValueID()238 unsigned getValueID() const {
239 return SubclassID;
240 }
241
242 /// getRawSubclassOptionalData - Return the raw optional flags value
243 /// contained in this value. This should only be used when testing two
244 /// Values for equivalence.
getRawSubclassOptionalData()245 unsigned getRawSubclassOptionalData() const {
246 return SubclassOptionalData;
247 }
248
249 /// clearSubclassOptionalData - Clear the optional flags contained in
250 /// this value.
clearSubclassOptionalData()251 void clearSubclassOptionalData() {
252 SubclassOptionalData = 0;
253 }
254
255 /// hasSameSubclassOptionalData - Test whether the optional flags contained
256 /// in this value are equal to the optional flags in the given value.
hasSameSubclassOptionalData(const Value * V)257 bool hasSameSubclassOptionalData(const Value *V) const {
258 return SubclassOptionalData == V->SubclassOptionalData;
259 }
260
261 /// intersectOptionalDataWith - Clear any optional flags in this value
262 /// that are not also set in the given value.
intersectOptionalDataWith(const Value * V)263 void intersectOptionalDataWith(const Value *V) {
264 SubclassOptionalData &= V->SubclassOptionalData;
265 }
266
267 /// hasValueHandle - Return true if there is a value handle associated with
268 /// this value.
hasValueHandle()269 bool hasValueHandle() const { return HasValueHandle; }
270
271 // Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value *)272 static inline bool classof(const Value *) {
273 return true; // Values are always values.
274 }
275
276 /// stripPointerCasts - This method strips off any unneeded pointer
277 /// casts from the specified value, returning the original uncasted value.
278 /// Note that the returned value has pointer type if the specified value does.
279 Value *stripPointerCasts();
stripPointerCasts()280 const Value *stripPointerCasts() const {
281 return const_cast<Value*>(this)->stripPointerCasts();
282 }
283
284 /// isDereferenceablePointer - Test if this value is always a pointer to
285 /// allocated and suitably aligned memory for a simple load or store.
286 bool isDereferenceablePointer() const;
287
288 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
289 /// return the value in the PHI node corresponding to PredBB. If not, return
290 /// ourself. This is useful if you want to know the value something has in a
291 /// predecessor block.
292 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
293
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)294 const Value *DoPHITranslation(const BasicBlock *CurBB,
295 const BasicBlock *PredBB) const{
296 return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
297 }
298
299 /// MaximumAlignment - This is the greatest alignment value supported by
300 /// load, store, and alloca instructions, and global values.
301 static const unsigned MaximumAlignment = 1u << 29;
302
303 /// mutateType - Mutate the type of this Value to be of the specified type.
304 /// Note that this is an extremely dangerous operation which can create
305 /// completely invalid IR very easily. It is strongly recommended that you
306 /// recreate IR objects with the right types instead of mutating them in
307 /// place.
mutateType(Type * Ty)308 void mutateType(Type *Ty) {
309 VTy = Ty;
310 }
311
312 protected:
getSubclassDataFromValue()313 unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)314 void setValueSubclassData(unsigned short D) { SubclassData = D; }
315 };
316
317 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
318 V.print(OS);
319 return OS;
320 }
321
set(Value * V)322 void Use::set(Value *V) {
323 if (Val) removeFromList();
324 Val = V;
325 if (V) V->addUse(*this);
326 }
327
328
329 // isa - Provide some specializations of isa so that we don't have to include
330 // the subtype header files to test to see if the value is a subclass...
331 //
332 template <> struct isa_impl<Constant, Value> {
333 static inline bool doit(const Value &Val) {
334 return Val.getValueID() >= Value::ConstantFirstVal &&
335 Val.getValueID() <= Value::ConstantLastVal;
336 }
337 };
338
339 template <> struct isa_impl<Argument, Value> {
340 static inline bool doit (const Value &Val) {
341 return Val.getValueID() == Value::ArgumentVal;
342 }
343 };
344
345 template <> struct isa_impl<InlineAsm, Value> {
346 static inline bool doit(const Value &Val) {
347 return Val.getValueID() == Value::InlineAsmVal;
348 }
349 };
350
351 template <> struct isa_impl<Instruction, Value> {
352 static inline bool doit(const Value &Val) {
353 return Val.getValueID() >= Value::InstructionVal;
354 }
355 };
356
357 template <> struct isa_impl<BasicBlock, Value> {
358 static inline bool doit(const Value &Val) {
359 return Val.getValueID() == Value::BasicBlockVal;
360 }
361 };
362
363 template <> struct isa_impl<Function, Value> {
364 static inline bool doit(const Value &Val) {
365 return Val.getValueID() == Value::FunctionVal;
366 }
367 };
368
369 template <> struct isa_impl<GlobalVariable, Value> {
370 static inline bool doit(const Value &Val) {
371 return Val.getValueID() == Value::GlobalVariableVal;
372 }
373 };
374
375 template <> struct isa_impl<GlobalAlias, Value> {
376 static inline bool doit(const Value &Val) {
377 return Val.getValueID() == Value::GlobalAliasVal;
378 }
379 };
380
381 template <> struct isa_impl<GlobalValue, Value> {
382 static inline bool doit(const Value &Val) {
383 return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
384 isa<GlobalAlias>(Val);
385 }
386 };
387
388 template <> struct isa_impl<MDNode, Value> {
389 static inline bool doit(const Value &Val) {
390 return Val.getValueID() == Value::MDNodeVal;
391 }
392 };
393
394 // Value* is only 4-byte aligned.
395 template<>
396 class PointerLikeTypeTraits<Value*> {
397 typedef Value* PT;
398 public:
399 static inline void *getAsVoidPointer(PT P) { return P; }
400 static inline PT getFromVoidPointer(void *P) {
401 return static_cast<PT>(P);
402 }
403 enum { NumLowBitsAvailable = 2 };
404 };
405
406 } // End llvm namespace
407
408 #endif
409