1 //===-- Type.cpp - Implement the Type class -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the VMCore library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLVMContextImpl.h"
15 #include "llvm/Module.h"
16 #include <algorithm>
17 #include <cstdarg>
18 #include "llvm/ADT/SmallString.h"
19 using namespace llvm;
20
21 //===----------------------------------------------------------------------===//
22 // Type Class Implementation
23 //===----------------------------------------------------------------------===//
24
getPrimitiveType(LLVMContext & C,TypeID IDNumber)25 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
26 switch (IDNumber) {
27 case VoidTyID : return getVoidTy(C);
28 case FloatTyID : return getFloatTy(C);
29 case DoubleTyID : return getDoubleTy(C);
30 case X86_FP80TyID : return getX86_FP80Ty(C);
31 case FP128TyID : return getFP128Ty(C);
32 case PPC_FP128TyID : return getPPC_FP128Ty(C);
33 case LabelTyID : return getLabelTy(C);
34 case MetadataTyID : return getMetadataTy(C);
35 case X86_MMXTyID : return getX86_MMXTy(C);
36 default:
37 return 0;
38 }
39 }
40
41 /// getScalarType - If this is a vector type, return the element type,
42 /// otherwise return this.
getScalarType()43 Type *Type::getScalarType() {
44 if (VectorType *VTy = dyn_cast<VectorType>(this))
45 return VTy->getElementType();
46 return this;
47 }
48
49 /// isIntegerTy - Return true if this is an IntegerType of the specified width.
isIntegerTy(unsigned Bitwidth) const50 bool Type::isIntegerTy(unsigned Bitwidth) const {
51 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
52 }
53
54 /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
55 /// integer types.
56 ///
isIntOrIntVectorTy() const57 bool Type::isIntOrIntVectorTy() const {
58 if (isIntegerTy())
59 return true;
60 if (ID != Type::VectorTyID) return false;
61
62 return cast<VectorType>(this)->getElementType()->isIntegerTy();
63 }
64
65 /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP types.
66 ///
isFPOrFPVectorTy() const67 bool Type::isFPOrFPVectorTy() const {
68 if (ID == Type::FloatTyID || ID == Type::DoubleTyID ||
69 ID == Type::FP128TyID || ID == Type::X86_FP80TyID ||
70 ID == Type::PPC_FP128TyID)
71 return true;
72 if (ID != Type::VectorTyID) return false;
73
74 return cast<VectorType>(this)->getElementType()->isFloatingPointTy();
75 }
76
77 // canLosslesslyBitCastTo - Return true if this type can be converted to
78 // 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
79 //
canLosslesslyBitCastTo(Type * Ty) const80 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
81 // Identity cast means no change so return true
82 if (this == Ty)
83 return true;
84
85 // They are not convertible unless they are at least first class types
86 if (!this->isFirstClassType() || !Ty->isFirstClassType())
87 return false;
88
89 // Vector -> Vector conversions are always lossless if the two vector types
90 // have the same size, otherwise not. Also, 64-bit vector types can be
91 // converted to x86mmx.
92 if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
93 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
94 return thisPTy->getBitWidth() == thatPTy->getBitWidth();
95 if (Ty->getTypeID() == Type::X86_MMXTyID &&
96 thisPTy->getBitWidth() == 64)
97 return true;
98 }
99
100 if (this->getTypeID() == Type::X86_MMXTyID)
101 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
102 if (thatPTy->getBitWidth() == 64)
103 return true;
104
105 // At this point we have only various mismatches of the first class types
106 // remaining and ptr->ptr. Just select the lossless conversions. Everything
107 // else is not lossless.
108 if (this->isPointerTy())
109 return Ty->isPointerTy();
110 return false; // Other types have no identity values
111 }
112
isEmptyTy() const113 bool Type::isEmptyTy() const {
114 const ArrayType *ATy = dyn_cast<ArrayType>(this);
115 if (ATy) {
116 unsigned NumElements = ATy->getNumElements();
117 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
118 }
119
120 const StructType *STy = dyn_cast<StructType>(this);
121 if (STy) {
122 unsigned NumElements = STy->getNumElements();
123 for (unsigned i = 0; i < NumElements; ++i)
124 if (!STy->getElementType(i)->isEmptyTy())
125 return false;
126 return true;
127 }
128
129 return false;
130 }
131
getPrimitiveSizeInBits() const132 unsigned Type::getPrimitiveSizeInBits() const {
133 switch (getTypeID()) {
134 case Type::FloatTyID: return 32;
135 case Type::DoubleTyID: return 64;
136 case Type::X86_FP80TyID: return 80;
137 case Type::FP128TyID: return 128;
138 case Type::PPC_FP128TyID: return 128;
139 case Type::X86_MMXTyID: return 64;
140 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
141 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
142 default: return 0;
143 }
144 }
145
146 /// getScalarSizeInBits - If this is a vector type, return the
147 /// getPrimitiveSizeInBits value for the element type. Otherwise return the
148 /// getPrimitiveSizeInBits value for this type.
getScalarSizeInBits()149 unsigned Type::getScalarSizeInBits() {
150 return getScalarType()->getPrimitiveSizeInBits();
151 }
152
153 /// getFPMantissaWidth - Return the width of the mantissa of this type. This
154 /// is only valid on floating point types. If the FP type does not
155 /// have a stable mantissa (e.g. ppc long double), this method returns -1.
getFPMantissaWidth() const156 int Type::getFPMantissaWidth() const {
157 if (const VectorType *VTy = dyn_cast<VectorType>(this))
158 return VTy->getElementType()->getFPMantissaWidth();
159 assert(isFloatingPointTy() && "Not a floating point type!");
160 if (ID == FloatTyID) return 24;
161 if (ID == DoubleTyID) return 53;
162 if (ID == X86_FP80TyID) return 64;
163 if (ID == FP128TyID) return 113;
164 assert(ID == PPC_FP128TyID && "unknown fp type");
165 return -1;
166 }
167
168 /// isSizedDerivedType - Derived types like structures and arrays are sized
169 /// iff all of the members of the type are sized as well. Since asking for
170 /// their size is relatively uncommon, move this operation out of line.
isSizedDerivedType() const171 bool Type::isSizedDerivedType() const {
172 if (this->isIntegerTy())
173 return true;
174
175 if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
176 return ATy->getElementType()->isSized();
177
178 if (const VectorType *VTy = dyn_cast<VectorType>(this))
179 return VTy->getElementType()->isSized();
180
181 if (!this->isStructTy())
182 return false;
183
184 // Opaque structs have no size.
185 if (cast<StructType>(this)->isOpaque())
186 return false;
187
188 // Okay, our struct is sized if all of the elements are.
189 for (subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I)
190 if (!(*I)->isSized())
191 return false;
192
193 return true;
194 }
195
196 //===----------------------------------------------------------------------===//
197 // Primitive 'Type' data
198 //===----------------------------------------------------------------------===//
199
getVoidTy(LLVMContext & C)200 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
getLabelTy(LLVMContext & C)201 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
getFloatTy(LLVMContext & C)202 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
getDoubleTy(LLVMContext & C)203 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
getMetadataTy(LLVMContext & C)204 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
getX86_FP80Ty(LLVMContext & C)205 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
getFP128Ty(LLVMContext & C)206 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
getPPC_FP128Ty(LLVMContext & C)207 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
getX86_MMXTy(LLVMContext & C)208 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
209
getInt1Ty(LLVMContext & C)210 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
getInt8Ty(LLVMContext & C)211 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
getInt16Ty(LLVMContext & C)212 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
getInt32Ty(LLVMContext & C)213 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
getInt64Ty(LLVMContext & C)214 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
215
getIntNTy(LLVMContext & C,unsigned N)216 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
217 return IntegerType::get(C, N);
218 }
219
getFloatPtrTy(LLVMContext & C,unsigned AS)220 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
221 return getFloatTy(C)->getPointerTo(AS);
222 }
223
getDoublePtrTy(LLVMContext & C,unsigned AS)224 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
225 return getDoubleTy(C)->getPointerTo(AS);
226 }
227
getX86_FP80PtrTy(LLVMContext & C,unsigned AS)228 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
229 return getX86_FP80Ty(C)->getPointerTo(AS);
230 }
231
getFP128PtrTy(LLVMContext & C,unsigned AS)232 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
233 return getFP128Ty(C)->getPointerTo(AS);
234 }
235
getPPC_FP128PtrTy(LLVMContext & C,unsigned AS)236 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
237 return getPPC_FP128Ty(C)->getPointerTo(AS);
238 }
239
getX86_MMXPtrTy(LLVMContext & C,unsigned AS)240 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
241 return getX86_MMXTy(C)->getPointerTo(AS);
242 }
243
getIntNPtrTy(LLVMContext & C,unsigned N,unsigned AS)244 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
245 return getIntNTy(C, N)->getPointerTo(AS);
246 }
247
getInt1PtrTy(LLVMContext & C,unsigned AS)248 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
249 return getInt1Ty(C)->getPointerTo(AS);
250 }
251
getInt8PtrTy(LLVMContext & C,unsigned AS)252 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
253 return getInt8Ty(C)->getPointerTo(AS);
254 }
255
getInt16PtrTy(LLVMContext & C,unsigned AS)256 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
257 return getInt16Ty(C)->getPointerTo(AS);
258 }
259
getInt32PtrTy(LLVMContext & C,unsigned AS)260 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
261 return getInt32Ty(C)->getPointerTo(AS);
262 }
263
getInt64PtrTy(LLVMContext & C,unsigned AS)264 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
265 return getInt64Ty(C)->getPointerTo(AS);
266 }
267
268
269 //===----------------------------------------------------------------------===//
270 // IntegerType Implementation
271 //===----------------------------------------------------------------------===//
272
get(LLVMContext & C,unsigned NumBits)273 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
274 assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
275 assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
276
277 // Check for the built-in integer types
278 switch (NumBits) {
279 case 1: return cast<IntegerType>(Type::getInt1Ty(C));
280 case 8: return cast<IntegerType>(Type::getInt8Ty(C));
281 case 16: return cast<IntegerType>(Type::getInt16Ty(C));
282 case 32: return cast<IntegerType>(Type::getInt32Ty(C));
283 case 64: return cast<IntegerType>(Type::getInt64Ty(C));
284 default:
285 break;
286 }
287
288 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
289
290 if (Entry == 0)
291 Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
292
293 return Entry;
294 }
295
isPowerOf2ByteWidth() const296 bool IntegerType::isPowerOf2ByteWidth() const {
297 unsigned BitWidth = getBitWidth();
298 return (BitWidth > 7) && isPowerOf2_32(BitWidth);
299 }
300
getMask() const301 APInt IntegerType::getMask() const {
302 return APInt::getAllOnesValue(getBitWidth());
303 }
304
305 //===----------------------------------------------------------------------===//
306 // FunctionType Implementation
307 //===----------------------------------------------------------------------===//
308
FunctionType(Type * Result,ArrayRef<Type * > Params,bool IsVarArgs)309 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
310 bool IsVarArgs)
311 : Type(Result->getContext(), FunctionTyID) {
312 Type **SubTys = reinterpret_cast<Type**>(this+1);
313 assert(isValidReturnType(Result) && "invalid return type for function");
314 setSubclassData(IsVarArgs);
315
316 SubTys[0] = const_cast<Type*>(Result);
317
318 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
319 assert(isValidArgumentType(Params[i]) &&
320 "Not a valid type for function argument!");
321 SubTys[i+1] = Params[i];
322 }
323
324 ContainedTys = SubTys;
325 NumContainedTys = Params.size() + 1; // + 1 for result type
326 }
327
328 // FunctionType::get - The factory function for the FunctionType class.
get(Type * ReturnType,ArrayRef<Type * > Params,bool isVarArg)329 FunctionType *FunctionType::get(Type *ReturnType,
330 ArrayRef<Type*> Params, bool isVarArg) {
331 // TODO: This is brutally slow.
332 std::vector<Type*> Key;
333 Key.reserve(Params.size()+2);
334 Key.push_back(const_cast<Type*>(ReturnType));
335 for (unsigned i = 0, e = Params.size(); i != e; ++i)
336 Key.push_back(const_cast<Type*>(Params[i]));
337 if (isVarArg)
338 Key.push_back(0);
339
340 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
341 FunctionType *&FT = pImpl->FunctionTypes[Key];
342
343 if (FT == 0) {
344 FT = (FunctionType*) pImpl->TypeAllocator.
345 Allocate(sizeof(FunctionType) + sizeof(Type*)*(Params.size()+1),
346 AlignOf<FunctionType>::Alignment);
347 new (FT) FunctionType(ReturnType, Params, isVarArg);
348 }
349
350 return FT;
351 }
352
353
get(Type * Result,bool isVarArg)354 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
355 return get(Result, ArrayRef<Type *>(), isVarArg);
356 }
357
358
359 /// isValidReturnType - Return true if the specified type is valid as a return
360 /// type.
isValidReturnType(Type * RetTy)361 bool FunctionType::isValidReturnType(Type *RetTy) {
362 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
363 !RetTy->isMetadataTy();
364 }
365
366 /// isValidArgumentType - Return true if the specified type is valid as an
367 /// argument type.
isValidArgumentType(Type * ArgTy)368 bool FunctionType::isValidArgumentType(Type *ArgTy) {
369 return ArgTy->isFirstClassType();
370 }
371
372 //===----------------------------------------------------------------------===//
373 // StructType Implementation
374 //===----------------------------------------------------------------------===//
375
376 // Primitive Constructors.
377
get(LLVMContext & Context,ArrayRef<Type * > ETypes,bool isPacked)378 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
379 bool isPacked) {
380 // FIXME: std::vector is horribly inefficient for this probe.
381 std::vector<Type*> Key;
382 for (unsigned i = 0, e = ETypes.size(); i != e; ++i) {
383 assert(isValidElementType(ETypes[i]) &&
384 "Invalid type for structure element!");
385 Key.push_back(ETypes[i]);
386 }
387 if (isPacked)
388 Key.push_back(0);
389
390 StructType *&ST = Context.pImpl->AnonStructTypes[Key];
391 if (ST) return ST;
392
393 // Value not found. Create a new type!
394 ST = new (Context.pImpl->TypeAllocator) StructType(Context);
395 ST->setSubclassData(SCDB_IsAnonymous); // Anonymous struct.
396 ST->setBody(ETypes, isPacked);
397 return ST;
398 }
399
setBody(ArrayRef<Type * > Elements,bool isPacked)400 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
401 assert(isOpaque() && "Struct body already set!");
402
403 setSubclassData(getSubclassData() | SCDB_HasBody);
404 if (isPacked)
405 setSubclassData(getSubclassData() | SCDB_Packed);
406
407 Type **Elts = getContext().pImpl->
408 TypeAllocator.Allocate<Type*>(Elements.size());
409 memcpy(Elts, Elements.data(), sizeof(Elements[0])*Elements.size());
410
411 ContainedTys = Elts;
412 NumContainedTys = Elements.size();
413 }
414
createNamed(LLVMContext & Context,StringRef Name)415 StructType *StructType::createNamed(LLVMContext &Context, StringRef Name) {
416 StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
417 if (!Name.empty())
418 ST->setName(Name);
419 return ST;
420 }
421
setName(StringRef Name)422 void StructType::setName(StringRef Name) {
423 if (Name == getName()) return;
424
425 // If this struct already had a name, remove its symbol table entry.
426 if (SymbolTableEntry) {
427 getContext().pImpl->NamedStructTypes.erase(getName());
428 SymbolTableEntry = 0;
429 }
430
431 // If this is just removing the name, we're done.
432 if (Name.empty())
433 return;
434
435 // Look up the entry for the name.
436 StringMapEntry<StructType*> *Entry =
437 &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
438
439 // While we have a name collision, try a random rename.
440 if (Entry->getValue()) {
441 SmallString<64> TempStr(Name);
442 TempStr.push_back('.');
443 raw_svector_ostream TmpStream(TempStr);
444
445 do {
446 TempStr.resize(Name.size()+1);
447 TmpStream.resync();
448 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
449
450 Entry = &getContext().pImpl->
451 NamedStructTypes.GetOrCreateValue(TmpStream.str());
452 } while (Entry->getValue());
453 }
454
455 // Okay, we found an entry that isn't used. It's us!
456 Entry->setValue(this);
457
458 SymbolTableEntry = Entry;
459 }
460
461 //===----------------------------------------------------------------------===//
462 // StructType Helper functions.
463
get(LLVMContext & Context,bool isPacked)464 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
465 return get(Context, llvm::ArrayRef<Type*>(), isPacked);
466 }
467
get(Type * type,...)468 StructType *StructType::get(Type *type, ...) {
469 assert(type != 0 && "Cannot create a struct type with no elements with this");
470 LLVMContext &Ctx = type->getContext();
471 va_list ap;
472 SmallVector<llvm::Type*, 8> StructFields;
473 va_start(ap, type);
474 while (type) {
475 StructFields.push_back(type);
476 type = va_arg(ap, llvm::Type*);
477 }
478 return llvm::StructType::get(Ctx, StructFields);
479 }
480
createNamed(LLVMContext & Context,StringRef Name,ArrayRef<Type * > Elements,bool isPacked)481 StructType *StructType::createNamed(LLVMContext &Context, StringRef Name,
482 ArrayRef<Type*> Elements, bool isPacked) {
483 StructType *ST = createNamed(Context, Name);
484 ST->setBody(Elements, isPacked);
485 return ST;
486 }
487
createNamed(StringRef Name,ArrayRef<Type * > Elements,bool isPacked)488 StructType *StructType::createNamed(StringRef Name, ArrayRef<Type*> Elements,
489 bool isPacked) {
490 assert(!Elements.empty() &&
491 "This method may not be invoked with an empty list");
492 return createNamed(Elements[0]->getContext(), Name, Elements, isPacked);
493 }
494
createNamed(StringRef Name,Type * type,...)495 StructType *StructType::createNamed(StringRef Name, Type *type, ...) {
496 assert(type != 0 && "Cannot create a struct type with no elements with this");
497 LLVMContext &Ctx = type->getContext();
498 va_list ap;
499 SmallVector<llvm::Type*, 8> StructFields;
500 va_start(ap, type);
501 while (type) {
502 StructFields.push_back(type);
503 type = va_arg(ap, llvm::Type*);
504 }
505 return llvm::StructType::createNamed(Ctx, Name, StructFields);
506 }
507
getName() const508 StringRef StructType::getName() const {
509 assert(!isAnonymous() && "Anonymous structs never have names");
510 if (SymbolTableEntry == 0) return StringRef();
511
512 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
513 }
514
setBody(Type * type,...)515 void StructType::setBody(Type *type, ...) {
516 assert(type != 0 && "Cannot create a struct type with no elements with this");
517 va_list ap;
518 SmallVector<llvm::Type*, 8> StructFields;
519 va_start(ap, type);
520 while (type) {
521 StructFields.push_back(type);
522 type = va_arg(ap, llvm::Type*);
523 }
524 setBody(StructFields);
525 }
526
isValidElementType(Type * ElemTy)527 bool StructType::isValidElementType(Type *ElemTy) {
528 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
529 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
530 }
531
532 /// isLayoutIdentical - Return true if this is layout identical to the
533 /// specified struct.
isLayoutIdentical(StructType * Other) const534 bool StructType::isLayoutIdentical(StructType *Other) const {
535 if (this == Other) return true;
536
537 if (isPacked() != Other->isPacked() ||
538 getNumElements() != Other->getNumElements())
539 return false;
540
541 return std::equal(element_begin(), element_end(), Other->element_begin());
542 }
543
544
545 /// getTypeByName - Return the type with the specified name, or null if there
546 /// is none by that name.
getTypeByName(StringRef Name) const547 StructType *Module::getTypeByName(StringRef Name) const {
548 StringMap<StructType*>::iterator I =
549 getContext().pImpl->NamedStructTypes.find(Name);
550 if (I != getContext().pImpl->NamedStructTypes.end())
551 return I->second;
552 return 0;
553 }
554
555
556 //===----------------------------------------------------------------------===//
557 // CompositeType Implementation
558 //===----------------------------------------------------------------------===//
559
getTypeAtIndex(const Value * V)560 Type *CompositeType::getTypeAtIndex(const Value *V) {
561 if (StructType *STy = dyn_cast<StructType>(this)) {
562 unsigned Idx = (unsigned)cast<ConstantInt>(V)->getZExtValue();
563 assert(indexValid(Idx) && "Invalid structure index!");
564 return STy->getElementType(Idx);
565 }
566
567 return cast<SequentialType>(this)->getElementType();
568 }
getTypeAtIndex(unsigned Idx)569 Type *CompositeType::getTypeAtIndex(unsigned Idx) {
570 if (StructType *STy = dyn_cast<StructType>(this)) {
571 assert(indexValid(Idx) && "Invalid structure index!");
572 return STy->getElementType(Idx);
573 }
574
575 return cast<SequentialType>(this)->getElementType();
576 }
indexValid(const Value * V) const577 bool CompositeType::indexValid(const Value *V) const {
578 if (const StructType *STy = dyn_cast<StructType>(this)) {
579 // Structure indexes require 32-bit integer constants.
580 if (V->getType()->isIntegerTy(32))
581 if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
582 return CU->getZExtValue() < STy->getNumElements();
583 return false;
584 }
585
586 // Sequential types can be indexed by any integer.
587 return V->getType()->isIntegerTy();
588 }
589
indexValid(unsigned Idx) const590 bool CompositeType::indexValid(unsigned Idx) const {
591 if (const StructType *STy = dyn_cast<StructType>(this))
592 return Idx < STy->getNumElements();
593 // Sequential types can be indexed by any integer.
594 return true;
595 }
596
597
598 //===----------------------------------------------------------------------===//
599 // ArrayType Implementation
600 //===----------------------------------------------------------------------===//
601
ArrayType(Type * ElType,uint64_t NumEl)602 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
603 : SequentialType(ArrayTyID, ElType) {
604 NumElements = NumEl;
605 }
606
607
get(Type * elementType,uint64_t NumElements)608 ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
609 Type *ElementType = const_cast<Type*>(elementType);
610 assert(isValidElementType(ElementType) && "Invalid type for array element!");
611
612 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
613 ArrayType *&Entry =
614 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
615
616 if (Entry == 0)
617 Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
618 return Entry;
619 }
620
isValidElementType(Type * ElemTy)621 bool ArrayType::isValidElementType(Type *ElemTy) {
622 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
623 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
624 }
625
626 //===----------------------------------------------------------------------===//
627 // VectorType Implementation
628 //===----------------------------------------------------------------------===//
629
VectorType(Type * ElType,unsigned NumEl)630 VectorType::VectorType(Type *ElType, unsigned NumEl)
631 : SequentialType(VectorTyID, ElType) {
632 NumElements = NumEl;
633 }
634
get(Type * elementType,unsigned NumElements)635 VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
636 Type *ElementType = const_cast<Type*>(elementType);
637 assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
638 assert(isValidElementType(ElementType) &&
639 "Elements of a VectorType must be a primitive type");
640
641 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
642 VectorType *&Entry = ElementType->getContext().pImpl
643 ->VectorTypes[std::make_pair(ElementType, NumElements)];
644
645 if (Entry == 0)
646 Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
647 return Entry;
648 }
649
isValidElementType(Type * ElemTy)650 bool VectorType::isValidElementType(Type *ElemTy) {
651 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy();
652 }
653
654 //===----------------------------------------------------------------------===//
655 // PointerType Implementation
656 //===----------------------------------------------------------------------===//
657
get(Type * EltTy,unsigned AddressSpace)658 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
659 assert(EltTy && "Can't get a pointer to <null> type!");
660 assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
661
662 LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
663
664 // Since AddressSpace #0 is the common case, we special case it.
665 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
666 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
667
668 if (Entry == 0)
669 Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
670 return Entry;
671 }
672
673
PointerType(Type * E,unsigned AddrSpace)674 PointerType::PointerType(Type *E, unsigned AddrSpace)
675 : SequentialType(PointerTyID, E) {
676 setSubclassData(AddrSpace);
677 }
678
getPointerTo(unsigned addrs)679 PointerType *Type::getPointerTo(unsigned addrs) {
680 return PointerType::get(this, addrs);
681 }
682
isValidElementType(Type * ElemTy)683 bool PointerType::isValidElementType(Type *ElemTy) {
684 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
685 !ElemTy->isMetadataTy();
686 }
687