• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the set of low-level target independent types which various
11 // values in the code generator are.  This allows the target specific behavior
12 // of instructions to be described to target independent passes.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_CODEGEN_VALUETYPES_H
17 #define LLVM_CODEGEN_VALUETYPES_H
18 
19 #include <cassert>
20 #include <string>
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/MathExtras.h"
23 
24 namespace llvm {
25   class Type;
26   class LLVMContext;
27   struct EVT;
28 
29   /// MVT - Machine Value Type.  Every type that is supported natively by some
30   /// processor targeted by LLVM occurs here.  This means that any legal value
31   /// type can be represented by a MVT.
32   class MVT {
33   public:
34     enum SimpleValueType {
35       // If you change this numbering, you must change the values in
36       // ValueTypes.td as well!
37       Other          =   0,   // This is a non-standard value
38       i1             =   1,   // This is a 1 bit integer value
39       i8             =   2,   // This is an 8 bit integer value
40       i16            =   3,   // This is a 16 bit integer value
41       i32            =   4,   // This is a 32 bit integer value
42       i64            =   5,   // This is a 64 bit integer value
43       i128           =   6,   // This is a 128 bit integer value
44 
45       FIRST_INTEGER_VALUETYPE = i1,
46       LAST_INTEGER_VALUETYPE  = i128,
47 
48       f32            =   7,   // This is a 32 bit floating point value
49       f64            =   8,   // This is a 64 bit floating point value
50       f80            =   9,   // This is a 80 bit floating point value
51       f128           =  10,   // This is a 128 bit floating point value
52       ppcf128        =  11,   // This is a PPC 128-bit floating point value
53 
54       v2i8           =  12,   //  2 x i8
55       v4i8           =  13,   //  4 x i8
56       v8i8           =  14,   //  8 x i8
57       v16i8          =  15,   // 16 x i8
58       v32i8          =  16,   // 32 x i8
59       v2i16          =  17,   //  2 x i16
60       v4i16          =  18,   //  4 x i16
61       v8i16          =  19,   //  8 x i16
62       v16i16         =  20,   // 16 x i16
63       v2i32          =  21,   //  2 x i32
64       v4i32          =  22,   //  4 x i32
65       v8i32          =  23,   //  8 x i32
66       v1i64          =  24,   //  1 x i64
67       v2i64          =  25,   //  2 x i64
68       v4i64          =  26,   //  4 x i64
69       v8i64          =  27,   //  8 x i64
70 
71       v2f32          =  28,   //  2 x f32
72       v4f32          =  29,   //  4 x f32
73       v8f32          =  30,   //  8 x f32
74       v2f64          =  31,   //  2 x f64
75       v4f64          =  32,   //  4 x f64
76 
77       FIRST_VECTOR_VALUETYPE = v2i8,
78       LAST_VECTOR_VALUETYPE  = v4f64,
79 
80       x86mmx         =  33,   // This is an X86 MMX value
81 
82       Glue           =  34,   // This glues nodes together during pre-RA sched
83 
84       isVoid         =  35,   // This has no value
85 
86       untyped        =  36,   // This value takes a register, but has
87                               // unspecified type.  The register class
88                               // will be determined by the opcode.
89 
90       LAST_VALUETYPE =  37,   // This always remains at the end of the list.
91 
92       // This is the current maximum for LAST_VALUETYPE.
93       // MVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors
94       // This value must be a multiple of 32.
95       MAX_ALLOWED_VALUETYPE = 64,
96 
97       // Metadata - This is MDNode or MDString.
98       Metadata       = 250,
99 
100       // iPTRAny - An int value the size of the pointer of the current
101       // target to any address space. This must only be used internal to
102       // tblgen. Other than for overloading, we treat iPTRAny the same as iPTR.
103       iPTRAny        = 251,
104 
105       // vAny - A vector with any length and element size. This is used
106       // for intrinsics that have overloadings based on vector types.
107       // This is only for tblgen's consumption!
108       vAny           = 252,
109 
110       // fAny - Any floating-point or vector floating-point value. This is used
111       // for intrinsics that have overloadings based on floating-point types.
112       // This is only for tblgen's consumption!
113       fAny           = 253,
114 
115       // iAny - An integer or vector integer value of any bit width. This is
116       // used for intrinsics that have overloadings based on integer bit widths.
117       // This is only for tblgen's consumption!
118       iAny           = 254,
119 
120       // iPTR - An int value the size of the pointer of the current
121       // target.  This should only be used internal to tblgen!
122       iPTR           = 255,
123 
124       // LastSimpleValueType - The greatest valid SimpleValueType value.
125       LastSimpleValueType = 255,
126 
127       // INVALID_SIMPLE_VALUE_TYPE - Simple value types greater than or equal
128       // to this are considered extended value types.
129       INVALID_SIMPLE_VALUE_TYPE = LastSimpleValueType + 1
130     };
131 
132     SimpleValueType SimpleTy;
133 
MVT()134     MVT() : SimpleTy((SimpleValueType)(INVALID_SIMPLE_VALUE_TYPE)) {}
MVT(SimpleValueType SVT)135     MVT(SimpleValueType SVT) : SimpleTy(SVT) { }
136 
137     bool operator>(const MVT& S)  const { return SimpleTy >  S.SimpleTy; }
138     bool operator<(const MVT& S)  const { return SimpleTy <  S.SimpleTy; }
139     bool operator==(const MVT& S) const { return SimpleTy == S.SimpleTy; }
140     bool operator!=(const MVT& S) const { return SimpleTy != S.SimpleTy; }
141     bool operator>=(const MVT& S) const { return SimpleTy >= S.SimpleTy; }
142     bool operator<=(const MVT& S) const { return SimpleTy <= S.SimpleTy; }
143 
144     /// isFloatingPoint - Return true if this is a FP, or a vector FP type.
isFloatingPoint()145     bool isFloatingPoint() const {
146       return ((SimpleTy >= MVT::f32 && SimpleTy <= MVT::ppcf128) ||
147         (SimpleTy >= MVT::v2f32 && SimpleTy <= MVT::v4f64));
148     }
149 
150     /// isInteger - Return true if this is an integer, or a vector integer type.
isInteger()151     bool isInteger() const {
152       return ((SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE &&
153                SimpleTy <= MVT::LAST_INTEGER_VALUETYPE) ||
154                (SimpleTy >= MVT::v2i8 && SimpleTy <= MVT::v8i64));
155     }
156 
157     /// isVector - Return true if this is a vector value type.
isVector()158     bool isVector() const {
159       return (SimpleTy >= MVT::FIRST_VECTOR_VALUETYPE &&
160               SimpleTy <= MVT::LAST_VECTOR_VALUETYPE);
161     }
162 
163     /// isPow2VectorType - Returns true if the given vector is a power of 2.
isPow2VectorType()164     bool isPow2VectorType() const {
165       unsigned NElts = getVectorNumElements();
166       return !(NElts & (NElts - 1));
167     }
168 
169     /// getPow2VectorType - Widens the length of the given vector MVT up to
170     /// the nearest power of 2 and returns that type.
getPow2VectorType()171     MVT getPow2VectorType() const {
172       if (isPow2VectorType())
173         return *this;
174 
175       unsigned NElts = getVectorNumElements();
176       unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts);
177       return MVT::getVectorVT(getVectorElementType(), Pow2NElts);
178     }
179 
180     /// getScalarType - If this is a vector type, return the element type,
181     /// otherwise return this.
getScalarType()182     MVT getScalarType() const {
183       return isVector() ? getVectorElementType() : *this;
184     }
185 
getVectorElementType()186     MVT getVectorElementType() const {
187       switch (SimpleTy) {
188       default:
189         return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
190       case v2i8 :
191       case v4i8 :
192       case v8i8 :
193       case v16i8:
194       case v32i8: return i8;
195       case v2i16:
196       case v4i16:
197       case v8i16:
198       case v16i16: return i16;
199       case v2i32:
200       case v4i32:
201       case v8i32: return i32;
202       case v1i64:
203       case v2i64:
204       case v4i64:
205       case v8i64: return i64;
206       case v2f32:
207       case v4f32:
208       case v8f32: return f32;
209       case v2f64:
210       case v4f64: return f64;
211       }
212     }
213 
getVectorNumElements()214     unsigned getVectorNumElements() const {
215       switch (SimpleTy) {
216       default:
217         return ~0U;
218       case v32i8: return 32;
219       case v16i8:
220       case v16i16: return 16;
221       case v8i8 :
222       case v8i16:
223       case v8i32:
224       case v8i64:
225       case v8f32: return 8;
226       case v4i8:
227       case v4i16:
228       case v4i32:
229       case v4i64:
230       case v4f32:
231       case v4f64: return 4;
232       case v2i8:
233       case v2i16:
234       case v2i32:
235       case v2i64:
236       case v2f32:
237       case v2f64: return 2;
238       case v1i64: return 1;
239       }
240     }
241 
getSizeInBits()242     unsigned getSizeInBits() const {
243       switch (SimpleTy) {
244       case iPTR:
245         assert(0 && "Value type size is target-dependent. Ask TLI.");
246       case iPTRAny:
247       case iAny:
248       case fAny:
249         assert(0 && "Value type is overloaded.");
250       default:
251         assert(0 && "getSizeInBits called on extended MVT.");
252       case i1  :  return 1;
253       case i8  :  return 8;
254       case i16 :
255       case v2i8:  return 16;
256       case f32 :
257       case i32 :
258       case v4i8:
259       case v2i16: return 32;
260       case x86mmx:
261       case f64 :
262       case i64 :
263       case v8i8:
264       case v4i16:
265       case v2i32:
266       case v1i64:
267       case v2f32: return 64;
268       case f80 :  return 80;
269       case f128:
270       case ppcf128:
271       case i128:
272       case v16i8:
273       case v8i16:
274       case v4i32:
275       case v2i64:
276       case v4f32:
277       case v2f64: return 128;
278       case v32i8:
279       case v16i16:
280       case v8i32:
281       case v4i64:
282       case v8f32:
283       case v4f64: return 256;
284       case v8i64: return 512;
285       }
286     }
287 
288     /// getStoreSize - Return the number of bytes overwritten by a store
289     /// of the specified value type.
getStoreSize()290     unsigned getStoreSize() const {
291       return (getSizeInBits() + 7) / 8;
292     }
293 
294     /// getStoreSizeInBits - Return the number of bits overwritten by a store
295     /// of the specified value type.
getStoreSizeInBits()296     unsigned getStoreSizeInBits() const {
297       return getStoreSize() * 8;
298     }
299 
getFloatingPointVT(unsigned BitWidth)300     static MVT getFloatingPointVT(unsigned BitWidth) {
301       switch (BitWidth) {
302       default:
303         assert(false && "Bad bit width!");
304       case 32:
305         return MVT::f32;
306       case 64:
307         return MVT::f64;
308       case 80:
309         return MVT::f80;
310       case 128:
311         return MVT::f128;
312       }
313     }
314 
getIntegerVT(unsigned BitWidth)315     static MVT getIntegerVT(unsigned BitWidth) {
316       switch (BitWidth) {
317       default:
318         return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
319       case 1:
320         return MVT::i1;
321       case 8:
322         return MVT::i8;
323       case 16:
324         return MVT::i16;
325       case 32:
326         return MVT::i32;
327       case 64:
328         return MVT::i64;
329       case 128:
330         return MVT::i128;
331       }
332     }
333 
getVectorVT(MVT VT,unsigned NumElements)334     static MVT getVectorVT(MVT VT, unsigned NumElements) {
335       switch (VT.SimpleTy) {
336       default:
337         break;
338       case MVT::i8:
339         if (NumElements == 2)  return MVT::v2i8;
340         if (NumElements == 4)  return MVT::v4i8;
341         if (NumElements == 8)  return MVT::v8i8;
342         if (NumElements == 16) return MVT::v16i8;
343         if (NumElements == 32) return MVT::v32i8;
344         break;
345       case MVT::i16:
346         if (NumElements == 2)  return MVT::v2i16;
347         if (NumElements == 4)  return MVT::v4i16;
348         if (NumElements == 8)  return MVT::v8i16;
349         if (NumElements == 16) return MVT::v16i16;
350         break;
351       case MVT::i32:
352         if (NumElements == 2)  return MVT::v2i32;
353         if (NumElements == 4)  return MVT::v4i32;
354         if (NumElements == 8)  return MVT::v8i32;
355         break;
356       case MVT::i64:
357         if (NumElements == 1)  return MVT::v1i64;
358         if (NumElements == 2)  return MVT::v2i64;
359         if (NumElements == 4)  return MVT::v4i64;
360         if (NumElements == 8)  return MVT::v8i64;
361         break;
362       case MVT::f32:
363         if (NumElements == 2)  return MVT::v2f32;
364         if (NumElements == 4)  return MVT::v4f32;
365         if (NumElements == 8)  return MVT::v8f32;
366         break;
367       case MVT::f64:
368         if (NumElements == 2)  return MVT::v2f64;
369         if (NumElements == 4)  return MVT::v4f64;
370         break;
371       }
372       return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
373     }
374   };
375 
376 
377   /// EVT - Extended Value Type.  Capable of holding value types which are not
378   /// native for any processor (such as the i12345 type), as well as the types
379   /// a MVT can represent.
380   struct EVT {
381   private:
382     MVT V;
383     Type *LLVMTy;
384 
385   public:
EVTEVT386     EVT() : V((MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE)),
387             LLVMTy(0) {}
EVTEVT388     EVT(MVT::SimpleValueType SVT) : V(SVT), LLVMTy(0) { }
EVTEVT389     EVT(MVT S) : V(S), LLVMTy(0) {}
390 
391     bool operator==(EVT VT) const {
392       return !(*this != VT);
393     }
394     bool operator!=(EVT VT) const {
395       if (V.SimpleTy != VT.V.SimpleTy)
396         return true;
397       if (V.SimpleTy == MVT::INVALID_SIMPLE_VALUE_TYPE)
398         return LLVMTy != VT.LLVMTy;
399       return false;
400     }
401 
402     /// getFloatingPointVT - Returns the EVT that represents a floating point
403     /// type with the given number of bits.  There are two floating point types
404     /// with 128 bits - this returns f128 rather than ppcf128.
getFloatingPointVTEVT405     static EVT getFloatingPointVT(unsigned BitWidth) {
406       return MVT::getFloatingPointVT(BitWidth);
407     }
408 
409     /// getIntegerVT - Returns the EVT that represents an integer with the given
410     /// number of bits.
getIntegerVTEVT411     static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth) {
412       MVT M = MVT::getIntegerVT(BitWidth);
413       if (M.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE)
414         return M;
415       return getExtendedIntegerVT(Context, BitWidth);
416     }
417 
418     /// getVectorVT - Returns the EVT that represents a vector NumElements in
419     /// length, where each element is of type VT.
getVectorVTEVT420     static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements) {
421       MVT M = MVT::getVectorVT(VT.V, NumElements);
422       if (M.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE)
423         return M;
424       return getExtendedVectorVT(Context, VT, NumElements);
425     }
426 
427     /// getIntVectorWithNumElements - Return any integer vector type that has
428     /// the specified number of elements.
getIntVectorWithNumElementsEVT429     static EVT getIntVectorWithNumElements(LLVMContext &C, unsigned NumElts) {
430       switch (NumElts) {
431       default: return getVectorVT(C, MVT::i8, NumElts);
432       case  1: return MVT::v1i64;
433       case  2: return MVT::v2i32;
434       case  4: return MVT::v4i16;
435       case  8: return MVT::v8i8;
436       case 16: return MVT::v16i8;
437       }
438       return MVT::INVALID_SIMPLE_VALUE_TYPE;
439     }
440 
441     /// isSimple - Test if the given EVT is simple (as opposed to being
442     /// extended).
isSimpleEVT443     bool isSimple() const {
444       return V.SimpleTy <= MVT::LastSimpleValueType;
445     }
446 
447     /// isExtended - Test if the given EVT is extended (as opposed to
448     /// being simple).
isExtendedEVT449     bool isExtended() const {
450       return !isSimple();
451     }
452 
453     /// isFloatingPoint - Return true if this is a FP, or a vector FP type.
isFloatingPointEVT454     bool isFloatingPoint() const {
455       return isSimple() ? V.isFloatingPoint() : isExtendedFloatingPoint();
456     }
457 
458     /// isInteger - Return true if this is an integer, or a vector integer type.
isIntegerEVT459     bool isInteger() const {
460       return isSimple() ? V.isInteger() : isExtendedInteger();
461     }
462 
463     /// isVector - Return true if this is a vector value type.
isVectorEVT464     bool isVector() const {
465       return isSimple() ? V.isVector() : isExtendedVector();
466     }
467 
468     /// is64BitVector - Return true if this is a 64-bit vector type.
is64BitVectorEVT469     bool is64BitVector() const {
470       if (!isSimple())
471         return isExtended64BitVector();
472 
473       return (V == MVT::v8i8  || V==MVT::v4i16 || V==MVT::v2i32 ||
474               V == MVT::v1i64 || V==MVT::v2f32);
475     }
476 
477     /// is128BitVector - Return true if this is a 128-bit vector type.
is128BitVectorEVT478     bool is128BitVector() const {
479       if (!isSimple())
480         return isExtended128BitVector();
481       return (V==MVT::v16i8 || V==MVT::v8i16 || V==MVT::v4i32 ||
482               V==MVT::v2i64 || V==MVT::v4f32 || V==MVT::v2f64);
483     }
484 
485     /// is256BitVector - Return true if this is a 256-bit vector type.
is256BitVectorEVT486     inline bool is256BitVector() const {
487       if (!isSimple())
488         return isExtended256BitVector();
489       return (V == MVT::v8f32  || V == MVT::v4f64 || V == MVT::v32i8 ||
490               V == MVT::v16i16 || V == MVT::v8i32 || V == MVT::v4i64);
491     }
492 
493     /// is512BitVector - Return true if this is a 512-bit vector type.
is512BitVectorEVT494     inline bool is512BitVector() const {
495       return isSimple() ? (V == MVT::v8i64) : isExtended512BitVector();
496     }
497 
498     /// isOverloaded - Return true if this is an overloaded type for TableGen.
isOverloadedEVT499     bool isOverloaded() const {
500       return (V==MVT::iAny || V==MVT::fAny || V==MVT::vAny || V==MVT::iPTRAny);
501     }
502 
503     /// isByteSized - Return true if the bit size is a multiple of 8.
isByteSizedEVT504     bool isByteSized() const {
505       return (getSizeInBits() & 7) == 0;
506     }
507 
508     /// isRound - Return true if the size is a power-of-two number of bytes.
isRoundEVT509     bool isRound() const {
510       unsigned BitSize = getSizeInBits();
511       return BitSize >= 8 && !(BitSize & (BitSize - 1));
512     }
513 
514     /// bitsEq - Return true if this has the same number of bits as VT.
bitsEqEVT515     bool bitsEq(EVT VT) const {
516       if (EVT::operator==(VT)) return true;
517       return getSizeInBits() == VT.getSizeInBits();
518     }
519 
520     /// bitsGT - Return true if this has more bits than VT.
bitsGTEVT521     bool bitsGT(EVT VT) const {
522       if (EVT::operator==(VT)) return false;
523       return getSizeInBits() > VT.getSizeInBits();
524     }
525 
526     /// bitsGE - Return true if this has no less bits than VT.
bitsGEEVT527     bool bitsGE(EVT VT) const {
528       if (EVT::operator==(VT)) return true;
529       return getSizeInBits() >= VT.getSizeInBits();
530     }
531 
532     /// bitsLT - Return true if this has less bits than VT.
bitsLTEVT533     bool bitsLT(EVT VT) const {
534       if (EVT::operator==(VT)) return false;
535       return getSizeInBits() < VT.getSizeInBits();
536     }
537 
538     /// bitsLE - Return true if this has no more bits than VT.
bitsLEEVT539     bool bitsLE(EVT VT) const {
540       if (EVT::operator==(VT)) return true;
541       return getSizeInBits() <= VT.getSizeInBits();
542     }
543 
544 
545     /// getSimpleVT - Return the SimpleValueType held in the specified
546     /// simple EVT.
getSimpleVTEVT547     MVT getSimpleVT() const {
548       assert(isSimple() && "Expected a SimpleValueType!");
549       return V;
550     }
551 
552     /// getScalarType - If this is a vector type, return the element type,
553     /// otherwise return this.
getScalarTypeEVT554     EVT getScalarType() const {
555       return isVector() ? getVectorElementType() : *this;
556     }
557 
558     /// getVectorElementType - Given a vector type, return the type of
559     /// each element.
getVectorElementTypeEVT560     EVT getVectorElementType() const {
561       assert(isVector() && "Invalid vector type!");
562       if (isSimple())
563         return V.getVectorElementType();
564       return getExtendedVectorElementType();
565     }
566 
567     /// getVectorNumElements - Given a vector type, return the number of
568     /// elements it contains.
getVectorNumElementsEVT569     unsigned getVectorNumElements() const {
570       assert(isVector() && "Invalid vector type!");
571       if (isSimple())
572         return V.getVectorNumElements();
573       return getExtendedVectorNumElements();
574     }
575 
576     /// getSizeInBits - Return the size of the specified value type in bits.
getSizeInBitsEVT577     unsigned getSizeInBits() const {
578       if (isSimple())
579         return V.getSizeInBits();
580       return getExtendedSizeInBits();
581     }
582 
583     /// getStoreSize - Return the number of bytes overwritten by a store
584     /// of the specified value type.
getStoreSizeEVT585     unsigned getStoreSize() const {
586       return (getSizeInBits() + 7) / 8;
587     }
588 
589     /// getStoreSizeInBits - Return the number of bits overwritten by a store
590     /// of the specified value type.
getStoreSizeInBitsEVT591     unsigned getStoreSizeInBits() const {
592       return getStoreSize() * 8;
593     }
594 
595     /// getRoundIntegerType - Rounds the bit-width of the given integer EVT up
596     /// to the nearest power of two (and at least to eight), and returns the
597     /// integer EVT with that number of bits.
getRoundIntegerTypeEVT598     EVT getRoundIntegerType(LLVMContext &Context) const {
599       assert(isInteger() && !isVector() && "Invalid integer type!");
600       unsigned BitWidth = getSizeInBits();
601       if (BitWidth <= 8)
602         return EVT(MVT::i8);
603       return getIntegerVT(Context, 1 << Log2_32_Ceil(BitWidth));
604     }
605 
606     /// getHalfSizedIntegerVT - Finds the smallest simple value type that is
607     /// greater than or equal to half the width of this EVT. If no simple
608     /// value type can be found, an extended integer value type of half the
609     /// size (rounded up) is returned.
getHalfSizedIntegerVTEVT610     EVT getHalfSizedIntegerVT(LLVMContext &Context) const {
611       assert(isInteger() && !isVector() && "Invalid integer type!");
612       unsigned EVTSize = getSizeInBits();
613       for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
614           IntVT <= MVT::LAST_INTEGER_VALUETYPE; ++IntVT) {
615         EVT HalfVT = EVT((MVT::SimpleValueType)IntVT);
616         if (HalfVT.getSizeInBits() * 2 >= EVTSize)
617           return HalfVT;
618       }
619       return getIntegerVT(Context, (EVTSize + 1) / 2);
620     }
621 
622     /// isPow2VectorType - Returns true if the given vector is a power of 2.
isPow2VectorTypeEVT623     bool isPow2VectorType() const {
624       unsigned NElts = getVectorNumElements();
625       return !(NElts & (NElts - 1));
626     }
627 
628     /// getPow2VectorType - Widens the length of the given vector EVT up to
629     /// the nearest power of 2 and returns that type.
getPow2VectorTypeEVT630     EVT getPow2VectorType(LLVMContext &Context) const {
631       if (!isPow2VectorType()) {
632         unsigned NElts = getVectorNumElements();
633         unsigned Pow2NElts = 1 <<  Log2_32_Ceil(NElts);
634         return EVT::getVectorVT(Context, getVectorElementType(), Pow2NElts);
635       }
636       else {
637         return *this;
638       }
639     }
640 
641     /// getEVTString - This function returns value type as a string,
642     /// e.g. "i32".
643     std::string getEVTString() const;
644 
645     /// getTypeForEVT - This method returns an LLVM type corresponding to the
646     /// specified EVT.  For integer types, this returns an unsigned type.  Note
647     /// that this will abort for types that cannot be represented.
648     Type *getTypeForEVT(LLVMContext &Context) const;
649 
650     /// getEVT - Return the value type corresponding to the specified type.
651     /// This returns all pointers as iPTR.  If HandleUnknown is true, unknown
652     /// types are returned as Other, otherwise they are invalid.
653     static EVT getEVT(Type *Ty, bool HandleUnknown = false);
654 
getRawBitsEVT655     intptr_t getRawBits() {
656       if (isSimple())
657         return V.SimpleTy;
658       else
659         return (intptr_t)(LLVMTy);
660     }
661 
662     /// compareRawBits - A meaningless but well-behaved order, useful for
663     /// constructing containers.
664     struct compareRawBits {
operatorEVT::compareRawBits665       bool operator()(EVT L, EVT R) const {
666         if (L.V.SimpleTy == R.V.SimpleTy)
667           return L.LLVMTy < R.LLVMTy;
668         else
669           return L.V.SimpleTy < R.V.SimpleTy;
670       }
671     };
672 
673   private:
674     // Methods for handling the Extended-type case in functions above.
675     // These are all out-of-line to prevent users of this header file
676     // from having a dependency on Type.h.
677     static EVT getExtendedIntegerVT(LLVMContext &C, unsigned BitWidth);
678     static EVT getExtendedVectorVT(LLVMContext &C, EVT VT,
679                                    unsigned NumElements);
680     bool isExtendedFloatingPoint() const;
681     bool isExtendedInteger() const;
682     bool isExtendedVector() const;
683     bool isExtended64BitVector() const;
684     bool isExtended128BitVector() const;
685     bool isExtended256BitVector() const;
686     bool isExtended512BitVector() const;
687     EVT getExtendedVectorElementType() const;
688     unsigned getExtendedVectorNumElements() const;
689     unsigned getExtendedSizeInBits() const;
690   };
691 
692 } // End llvm namespace
693 
694 #endif
695