• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references.  It promotes
11 // alloca instructions which only have loads and stores as uses.  An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
15 //
16 // The algorithm used here is based on:
17 //
18 //   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19 //   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20 //   Programming Languages
21 //   POPL '95. ACM, New York, NY, 62-73.
22 //
23 // It has been modified to not explicitly use the DJ graph data structure and to
24 // directly compute pruned SSA using per-variable liveness information.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #define DEBUG_TYPE "mem2reg"
29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
30 #include "llvm/Constants.h"
31 #include "llvm/DerivedTypes.h"
32 #include "llvm/Function.h"
33 #include "llvm/Instructions.h"
34 #include "llvm/IntrinsicInst.h"
35 #include "llvm/Metadata.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/DebugInfo.h"
38 #include "llvm/Analysis/DIBuilder.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/InstructionSimplify.h"
41 #include "llvm/Analysis/ValueTracking.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/ADT/DenseMap.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/Support/CFG.h"
49 #include <algorithm>
50 #include <queue>
51 using namespace llvm;
52 
53 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
54 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
55 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
56 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
57 
58 namespace llvm {
59 template<>
60 struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
61   typedef std::pair<BasicBlock*, unsigned> EltTy;
getEmptyKeyllvm::DenseMapInfo62   static inline EltTy getEmptyKey() {
63     return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
64   }
getTombstoneKeyllvm::DenseMapInfo65   static inline EltTy getTombstoneKey() {
66     return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
67   }
getHashValuellvm::DenseMapInfo68   static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
69     return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
70   }
isEqualllvm::DenseMapInfo71   static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
72     return LHS == RHS;
73   }
74 };
75 }
76 
77 /// isAllocaPromotable - Return true if this alloca is legal for promotion.
78 /// This is true if there are only loads and stores to the alloca.
79 ///
isAllocaPromotable(const AllocaInst * AI)80 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
81   // FIXME: If the memory unit is of pointer or integer type, we can permit
82   // assignments to subsections of the memory unit.
83 
84   // Only allow direct and non-volatile loads and stores...
85   for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
86        UI != UE; ++UI) {   // Loop over all of the uses of the alloca
87     const User *U = *UI;
88     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
89       if (LI->isVolatile())
90         return false;
91     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
92       if (SI->getOperand(0) == AI)
93         return false;   // Don't allow a store OF the AI, only INTO the AI.
94       if (SI->isVolatile())
95         return false;
96     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
97       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
98           II->getIntrinsicID() != Intrinsic::lifetime_end)
99         return false;
100     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
101       if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
102         return false;
103       if (!onlyUsedByLifetimeMarkers(BCI))
104         return false;
105     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
106       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
107         return false;
108       if (!GEPI->hasAllZeroIndices())
109         return false;
110       if (!onlyUsedByLifetimeMarkers(GEPI))
111         return false;
112     } else {
113       return false;
114     }
115   }
116 
117   return true;
118 }
119 
120 namespace {
121   struct AllocaInfo;
122 
123   // Data package used by RenamePass()
124   class RenamePassData {
125   public:
126     typedef std::vector<Value *> ValVector;
127 
RenamePassData()128     RenamePassData() : BB(NULL), Pred(NULL), Values() {}
RenamePassData(BasicBlock * B,BasicBlock * P,const ValVector & V)129     RenamePassData(BasicBlock *B, BasicBlock *P,
130                    const ValVector &V) : BB(B), Pred(P), Values(V) {}
131     BasicBlock *BB;
132     BasicBlock *Pred;
133     ValVector Values;
134 
swap(RenamePassData & RHS)135     void swap(RenamePassData &RHS) {
136       std::swap(BB, RHS.BB);
137       std::swap(Pred, RHS.Pred);
138       Values.swap(RHS.Values);
139     }
140   };
141 
142   /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
143   /// load/store instructions in the block that directly load or store an alloca.
144   ///
145   /// This functionality is important because it avoids scanning large basic
146   /// blocks multiple times when promoting many allocas in the same block.
147   class LargeBlockInfo {
148     /// InstNumbers - For each instruction that we track, keep the index of the
149     /// instruction.  The index starts out as the number of the instruction from
150     /// the start of the block.
151     DenseMap<const Instruction *, unsigned> InstNumbers;
152   public:
153 
154     /// isInterestingInstruction - This code only looks at accesses to allocas.
isInterestingInstruction(const Instruction * I)155     static bool isInterestingInstruction(const Instruction *I) {
156       return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
157              (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
158     }
159 
160     /// getInstructionIndex - Get or calculate the index of the specified
161     /// instruction.
getInstructionIndex(const Instruction * I)162     unsigned getInstructionIndex(const Instruction *I) {
163       assert(isInterestingInstruction(I) &&
164              "Not a load/store to/from an alloca?");
165 
166       // If we already have this instruction number, return it.
167       DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
168       if (It != InstNumbers.end()) return It->second;
169 
170       // Scan the whole block to get the instruction.  This accumulates
171       // information for every interesting instruction in the block, in order to
172       // avoid gratuitus rescans.
173       const BasicBlock *BB = I->getParent();
174       unsigned InstNo = 0;
175       for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
176            BBI != E; ++BBI)
177         if (isInterestingInstruction(BBI))
178           InstNumbers[BBI] = InstNo++;
179       It = InstNumbers.find(I);
180 
181       assert(It != InstNumbers.end() && "Didn't insert instruction?");
182       return It->second;
183     }
184 
deleteValue(const Instruction * I)185     void deleteValue(const Instruction *I) {
186       InstNumbers.erase(I);
187     }
188 
clear()189     void clear() {
190       InstNumbers.clear();
191     }
192   };
193 
194   struct PromoteMem2Reg {
195     /// Allocas - The alloca instructions being promoted.
196     ///
197     std::vector<AllocaInst*> Allocas;
198     DominatorTree &DT;
199     DIBuilder *DIB;
200 
201     /// AST - An AliasSetTracker object to update.  If null, don't update it.
202     ///
203     AliasSetTracker *AST;
204 
205     /// AllocaLookup - Reverse mapping of Allocas.
206     ///
207     DenseMap<AllocaInst*, unsigned>  AllocaLookup;
208 
209     /// NewPhiNodes - The PhiNodes we're adding.
210     ///
211     DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
212 
213     /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
214     /// it corresponds to.
215     DenseMap<PHINode*, unsigned> PhiToAllocaMap;
216 
217     /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
218     /// each alloca that is of pointer type, we keep track of what to copyValue
219     /// to the inserted PHI nodes here.
220     ///
221     std::vector<Value*> PointerAllocaValues;
222 
223     /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
224     /// intrinsic that describes it, if any, so that we can convert it to a
225     /// dbg.value intrinsic if the alloca gets promoted.
226     SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
227 
228     /// Visited - The set of basic blocks the renamer has already visited.
229     ///
230     SmallPtrSet<BasicBlock*, 16> Visited;
231 
232     /// BBNumbers - Contains a stable numbering of basic blocks to avoid
233     /// non-determinstic behavior.
234     DenseMap<BasicBlock*, unsigned> BBNumbers;
235 
236     /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
237     DenseMap<DomTreeNode*, unsigned> DomLevels;
238 
239     /// BBNumPreds - Lazily compute the number of predecessors a block has.
240     DenseMap<const BasicBlock*, unsigned> BBNumPreds;
241   public:
PromoteMem2Reg__anon67d3049a0111::PromoteMem2Reg242     PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
243                    AliasSetTracker *ast)
244       : Allocas(A), DT(dt), DIB(0), AST(ast) {}
~PromoteMem2Reg__anon67d3049a0111::PromoteMem2Reg245     ~PromoteMem2Reg() {
246       delete DIB;
247     }
248 
249     void run();
250 
251     /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
252     ///
dominates__anon67d3049a0111::PromoteMem2Reg253     bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
254       return DT.dominates(BB1, BB2);
255     }
256 
257   private:
RemoveFromAllocasList__anon67d3049a0111::PromoteMem2Reg258     void RemoveFromAllocasList(unsigned &AllocaIdx) {
259       Allocas[AllocaIdx] = Allocas.back();
260       Allocas.pop_back();
261       --AllocaIdx;
262     }
263 
getNumPreds__anon67d3049a0111::PromoteMem2Reg264     unsigned getNumPreds(const BasicBlock *BB) {
265       unsigned &NP = BBNumPreds[BB];
266       if (NP == 0)
267         NP = std::distance(pred_begin(BB), pred_end(BB))+1;
268       return NP-1;
269     }
270 
271     void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
272                                  AllocaInfo &Info);
273     void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
274                              const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
275                              SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
276 
277     void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
278                                   LargeBlockInfo &LBI);
279     void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
280                                   LargeBlockInfo &LBI);
281 
282     void RenamePass(BasicBlock *BB, BasicBlock *Pred,
283                     RenamePassData::ValVector &IncVals,
284                     std::vector<RenamePassData> &Worklist);
285     bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
286   };
287 
288   struct AllocaInfo {
289     SmallVector<BasicBlock*, 32> DefiningBlocks;
290     SmallVector<BasicBlock*, 32> UsingBlocks;
291 
292     StoreInst  *OnlyStore;
293     BasicBlock *OnlyBlock;
294     bool OnlyUsedInOneBlock;
295 
296     Value *AllocaPointerVal;
297     DbgDeclareInst *DbgDeclare;
298 
clear__anon67d3049a0111::AllocaInfo299     void clear() {
300       DefiningBlocks.clear();
301       UsingBlocks.clear();
302       OnlyStore = 0;
303       OnlyBlock = 0;
304       OnlyUsedInOneBlock = true;
305       AllocaPointerVal = 0;
306       DbgDeclare = 0;
307     }
308 
309     /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
310     /// ivars.
AnalyzeAlloca__anon67d3049a0111::AllocaInfo311     void AnalyzeAlloca(AllocaInst *AI) {
312       clear();
313 
314       // As we scan the uses of the alloca instruction, keep track of stores,
315       // and decide whether all of the loads and stores to the alloca are within
316       // the same basic block.
317       for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
318            UI != E;)  {
319         Instruction *User = cast<Instruction>(*UI++);
320 
321         if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
322           // Remember the basic blocks which define new values for the alloca
323           DefiningBlocks.push_back(SI->getParent());
324           AllocaPointerVal = SI->getOperand(0);
325           OnlyStore = SI;
326         } else {
327           LoadInst *LI = cast<LoadInst>(User);
328           // Otherwise it must be a load instruction, keep track of variable
329           // reads.
330           UsingBlocks.push_back(LI->getParent());
331           AllocaPointerVal = LI;
332         }
333 
334         if (OnlyUsedInOneBlock) {
335           if (OnlyBlock == 0)
336             OnlyBlock = User->getParent();
337           else if (OnlyBlock != User->getParent())
338             OnlyUsedInOneBlock = false;
339         }
340       }
341 
342       DbgDeclare = FindAllocaDbgDeclare(AI);
343     }
344   };
345 
346   typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
347 
348   struct DomTreeNodeCompare {
operator ()__anon67d3049a0111::DomTreeNodeCompare349     bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
350       return LHS.second < RHS.second;
351     }
352   };
353 }  // end of anonymous namespace
354 
removeLifetimeIntrinsicUsers(AllocaInst * AI)355 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
356   // Knowing that this alloca is promotable, we know that it's safe to kill all
357   // instructions except for load and store.
358 
359   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
360        UI != UE;) {
361     Instruction *I = cast<Instruction>(*UI);
362     ++UI;
363     if (isa<LoadInst>(I) || isa<StoreInst>(I))
364       continue;
365 
366     if (!I->getType()->isVoidTy()) {
367       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
368       // Follow the use/def chain to erase them now instead of leaving it for
369       // dead code elimination later.
370       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
371            UI != UE;) {
372         Instruction *Inst = cast<Instruction>(*UI);
373         ++UI;
374         Inst->eraseFromParent();
375       }
376     }
377     I->eraseFromParent();
378   }
379 }
380 
run()381 void PromoteMem2Reg::run() {
382   Function &F = *DT.getRoot()->getParent();
383 
384   if (AST) PointerAllocaValues.resize(Allocas.size());
385   AllocaDbgDeclares.resize(Allocas.size());
386 
387   AllocaInfo Info;
388   LargeBlockInfo LBI;
389 
390   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
391     AllocaInst *AI = Allocas[AllocaNum];
392 
393     assert(isAllocaPromotable(AI) &&
394            "Cannot promote non-promotable alloca!");
395     assert(AI->getParent()->getParent() == &F &&
396            "All allocas should be in the same function, which is same as DF!");
397 
398     removeLifetimeIntrinsicUsers(AI);
399 
400     if (AI->use_empty()) {
401       // If there are no uses of the alloca, just delete it now.
402       if (AST) AST->deleteValue(AI);
403       AI->eraseFromParent();
404 
405       // Remove the alloca from the Allocas list, since it has been processed
406       RemoveFromAllocasList(AllocaNum);
407       ++NumDeadAlloca;
408       continue;
409     }
410 
411     // Calculate the set of read and write-locations for each alloca.  This is
412     // analogous to finding the 'uses' and 'definitions' of each variable.
413     Info.AnalyzeAlloca(AI);
414 
415     // If there is only a single store to this value, replace any loads of
416     // it that are directly dominated by the definition with the value stored.
417     if (Info.DefiningBlocks.size() == 1) {
418       RewriteSingleStoreAlloca(AI, Info, LBI);
419 
420       // Finally, after the scan, check to see if the store is all that is left.
421       if (Info.UsingBlocks.empty()) {
422         // Record debuginfo for the store and remove the declaration's debuginfo.
423         if (DbgDeclareInst *DDI = Info.DbgDeclare) {
424           if (!DIB)
425             DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
426           ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
427           DDI->eraseFromParent();
428         }
429         // Remove the (now dead) store and alloca.
430         Info.OnlyStore->eraseFromParent();
431         LBI.deleteValue(Info.OnlyStore);
432 
433         if (AST) AST->deleteValue(AI);
434         AI->eraseFromParent();
435         LBI.deleteValue(AI);
436 
437         // The alloca has been processed, move on.
438         RemoveFromAllocasList(AllocaNum);
439 
440         ++NumSingleStore;
441         continue;
442       }
443     }
444 
445     // If the alloca is only read and written in one basic block, just perform a
446     // linear sweep over the block to eliminate it.
447     if (Info.OnlyUsedInOneBlock) {
448       PromoteSingleBlockAlloca(AI, Info, LBI);
449 
450       // Finally, after the scan, check to see if the stores are all that is
451       // left.
452       if (Info.UsingBlocks.empty()) {
453 
454         // Remove the (now dead) stores and alloca.
455         while (!AI->use_empty()) {
456           StoreInst *SI = cast<StoreInst>(AI->use_back());
457           // Record debuginfo for the store before removing it.
458           if (DbgDeclareInst *DDI = Info.DbgDeclare) {
459             if (!DIB)
460               DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
461             ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
462           }
463           SI->eraseFromParent();
464           LBI.deleteValue(SI);
465         }
466 
467         if (AST) AST->deleteValue(AI);
468         AI->eraseFromParent();
469         LBI.deleteValue(AI);
470 
471         // The alloca has been processed, move on.
472         RemoveFromAllocasList(AllocaNum);
473 
474         // The alloca's debuginfo can be removed as well.
475         if (DbgDeclareInst *DDI = Info.DbgDeclare)
476           DDI->eraseFromParent();
477 
478         ++NumLocalPromoted;
479         continue;
480       }
481     }
482 
483     // If we haven't computed dominator tree levels, do so now.
484     if (DomLevels.empty()) {
485       SmallVector<DomTreeNode*, 32> Worklist;
486 
487       DomTreeNode *Root = DT.getRootNode();
488       DomLevels[Root] = 0;
489       Worklist.push_back(Root);
490 
491       while (!Worklist.empty()) {
492         DomTreeNode *Node = Worklist.pop_back_val();
493         unsigned ChildLevel = DomLevels[Node] + 1;
494         for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
495              CI != CE; ++CI) {
496           DomLevels[*CI] = ChildLevel;
497           Worklist.push_back(*CI);
498         }
499       }
500     }
501 
502     // If we haven't computed a numbering for the BB's in the function, do so
503     // now.
504     if (BBNumbers.empty()) {
505       unsigned ID = 0;
506       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
507         BBNumbers[I] = ID++;
508     }
509 
510     // If we have an AST to keep updated, remember some pointer value that is
511     // stored into the alloca.
512     if (AST)
513       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
514 
515     // Remember the dbg.declare intrinsic describing this alloca, if any.
516     if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
517 
518     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
519     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
520 
521     // At this point, we're committed to promoting the alloca using IDF's, and
522     // the standard SSA construction algorithm.  Determine which blocks need PHI
523     // nodes and see if we can optimize out some work by avoiding insertion of
524     // dead phi nodes.
525     DetermineInsertionPoint(AI, AllocaNum, Info);
526   }
527 
528   if (Allocas.empty())
529     return; // All of the allocas must have been trivial!
530 
531   LBI.clear();
532 
533 
534   // Set the incoming values for the basic block to be null values for all of
535   // the alloca's.  We do this in case there is a load of a value that has not
536   // been stored yet.  In this case, it will get this null value.
537   //
538   RenamePassData::ValVector Values(Allocas.size());
539   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
540     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
541 
542   // Walks all basic blocks in the function performing the SSA rename algorithm
543   // and inserting the phi nodes we marked as necessary
544   //
545   std::vector<RenamePassData> RenamePassWorkList;
546   RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
547   do {
548     RenamePassData RPD;
549     RPD.swap(RenamePassWorkList.back());
550     RenamePassWorkList.pop_back();
551     // RenamePass may add new worklist entries.
552     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
553   } while (!RenamePassWorkList.empty());
554 
555   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
556   Visited.clear();
557 
558   // Remove the allocas themselves from the function.
559   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
560     Instruction *A = Allocas[i];
561 
562     // If there are any uses of the alloca instructions left, they must be in
563     // unreachable basic blocks that were not processed by walking the dominator
564     // tree. Just delete the users now.
565     if (!A->use_empty())
566       A->replaceAllUsesWith(UndefValue::get(A->getType()));
567     if (AST) AST->deleteValue(A);
568     A->eraseFromParent();
569   }
570 
571   // Remove alloca's dbg.declare instrinsics from the function.
572   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
573     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
574       DDI->eraseFromParent();
575 
576   // Loop over all of the PHI nodes and see if there are any that we can get
577   // rid of because they merge all of the same incoming values.  This can
578   // happen due to undef values coming into the PHI nodes.  This process is
579   // iterative, because eliminating one PHI node can cause others to be removed.
580   bool EliminatedAPHI = true;
581   while (EliminatedAPHI) {
582     EliminatedAPHI = false;
583 
584     for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
585            NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
586       PHINode *PN = I->second;
587 
588       // If this PHI node merges one value and/or undefs, get the value.
589       if (Value *V = SimplifyInstruction(PN, 0, &DT)) {
590         if (AST && PN->getType()->isPointerTy())
591           AST->deleteValue(PN);
592         PN->replaceAllUsesWith(V);
593         PN->eraseFromParent();
594         NewPhiNodes.erase(I++);
595         EliminatedAPHI = true;
596         continue;
597       }
598       ++I;
599     }
600   }
601 
602   // At this point, the renamer has added entries to PHI nodes for all reachable
603   // code.  Unfortunately, there may be unreachable blocks which the renamer
604   // hasn't traversed.  If this is the case, the PHI nodes may not
605   // have incoming values for all predecessors.  Loop over all PHI nodes we have
606   // created, inserting undef values if they are missing any incoming values.
607   //
608   for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
609          NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
610     // We want to do this once per basic block.  As such, only process a block
611     // when we find the PHI that is the first entry in the block.
612     PHINode *SomePHI = I->second;
613     BasicBlock *BB = SomePHI->getParent();
614     if (&BB->front() != SomePHI)
615       continue;
616 
617     // Only do work here if there the PHI nodes are missing incoming values.  We
618     // know that all PHI nodes that were inserted in a block will have the same
619     // number of incoming values, so we can just check any of them.
620     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
621       continue;
622 
623     // Get the preds for BB.
624     SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
625 
626     // Ok, now we know that all of the PHI nodes are missing entries for some
627     // basic blocks.  Start by sorting the incoming predecessors for efficient
628     // access.
629     std::sort(Preds.begin(), Preds.end());
630 
631     // Now we loop through all BB's which have entries in SomePHI and remove
632     // them from the Preds list.
633     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
634       // Do a log(n) search of the Preds list for the entry we want.
635       SmallVector<BasicBlock*, 16>::iterator EntIt =
636         std::lower_bound(Preds.begin(), Preds.end(),
637                          SomePHI->getIncomingBlock(i));
638       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
639              "PHI node has entry for a block which is not a predecessor!");
640 
641       // Remove the entry
642       Preds.erase(EntIt);
643     }
644 
645     // At this point, the blocks left in the preds list must have dummy
646     // entries inserted into every PHI nodes for the block.  Update all the phi
647     // nodes in this block that we are inserting (there could be phis before
648     // mem2reg runs).
649     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
650     BasicBlock::iterator BBI = BB->begin();
651     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
652            SomePHI->getNumIncomingValues() == NumBadPreds) {
653       Value *UndefVal = UndefValue::get(SomePHI->getType());
654       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
655         SomePHI->addIncoming(UndefVal, Preds[pred]);
656     }
657   }
658 
659   NewPhiNodes.clear();
660 }
661 
662 
663 /// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
664 /// are blocks which lead to uses.  Knowing this allows us to avoid inserting
665 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
666 /// would be dead).
667 void PromoteMem2Reg::
ComputeLiveInBlocks(AllocaInst * AI,AllocaInfo & Info,const SmallPtrSet<BasicBlock *,32> & DefBlocks,SmallPtrSet<BasicBlock *,32> & LiveInBlocks)668 ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
669                     const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
670                     SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
671 
672   // To determine liveness, we must iterate through the predecessors of blocks
673   // where the def is live.  Blocks are added to the worklist if we need to
674   // check their predecessors.  Start with all the using blocks.
675   SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
676                                                    Info.UsingBlocks.end());
677 
678   // If any of the using blocks is also a definition block, check to see if the
679   // definition occurs before or after the use.  If it happens before the use,
680   // the value isn't really live-in.
681   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
682     BasicBlock *BB = LiveInBlockWorklist[i];
683     if (!DefBlocks.count(BB)) continue;
684 
685     // Okay, this is a block that both uses and defines the value.  If the first
686     // reference to the alloca is a def (store), then we know it isn't live-in.
687     for (BasicBlock::iterator I = BB->begin(); ; ++I) {
688       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
689         if (SI->getOperand(1) != AI) continue;
690 
691         // We found a store to the alloca before a load.  The alloca is not
692         // actually live-in here.
693         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
694         LiveInBlockWorklist.pop_back();
695         --i, --e;
696         break;
697       }
698 
699       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
700         if (LI->getOperand(0) != AI) continue;
701 
702         // Okay, we found a load before a store to the alloca.  It is actually
703         // live into this block.
704         break;
705       }
706     }
707   }
708 
709   // Now that we have a set of blocks where the phi is live-in, recursively add
710   // their predecessors until we find the full region the value is live.
711   while (!LiveInBlockWorklist.empty()) {
712     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
713 
714     // The block really is live in here, insert it into the set.  If already in
715     // the set, then it has already been processed.
716     if (!LiveInBlocks.insert(BB))
717       continue;
718 
719     // Since the value is live into BB, it is either defined in a predecessor or
720     // live into it to.  Add the preds to the worklist unless they are a
721     // defining block.
722     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
723       BasicBlock *P = *PI;
724 
725       // The value is not live into a predecessor if it defines the value.
726       if (DefBlocks.count(P))
727         continue;
728 
729       // Otherwise it is, add to the worklist.
730       LiveInBlockWorklist.push_back(P);
731     }
732   }
733 }
734 
735 /// DetermineInsertionPoint - At this point, we're committed to promoting the
736 /// alloca using IDF's, and the standard SSA construction algorithm.  Determine
737 /// which blocks need phi nodes and see if we can optimize out some work by
738 /// avoiding insertion of dead phi nodes.
DetermineInsertionPoint(AllocaInst * AI,unsigned AllocaNum,AllocaInfo & Info)739 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
740                                              AllocaInfo &Info) {
741   // Unique the set of defining blocks for efficient lookup.
742   SmallPtrSet<BasicBlock*, 32> DefBlocks;
743   DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
744 
745   // Determine which blocks the value is live in.  These are blocks which lead
746   // to uses.
747   SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
748   ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
749 
750   // Use a priority queue keyed on dominator tree level so that inserted nodes
751   // are handled from the bottom of the dominator tree upwards.
752   typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
753                               DomTreeNodeCompare> IDFPriorityQueue;
754   IDFPriorityQueue PQ;
755 
756   for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
757        E = DefBlocks.end(); I != E; ++I) {
758     if (DomTreeNode *Node = DT.getNode(*I))
759       PQ.push(std::make_pair(Node, DomLevels[Node]));
760   }
761 
762   SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
763   SmallPtrSet<DomTreeNode*, 32> Visited;
764   SmallVector<DomTreeNode*, 32> Worklist;
765   while (!PQ.empty()) {
766     DomTreeNodePair RootPair = PQ.top();
767     PQ.pop();
768     DomTreeNode *Root = RootPair.first;
769     unsigned RootLevel = RootPair.second;
770 
771     // Walk all dominator tree children of Root, inspecting their CFG edges with
772     // targets elsewhere on the dominator tree. Only targets whose level is at
773     // most Root's level are added to the iterated dominance frontier of the
774     // definition set.
775 
776     Worklist.clear();
777     Worklist.push_back(Root);
778 
779     while (!Worklist.empty()) {
780       DomTreeNode *Node = Worklist.pop_back_val();
781       BasicBlock *BB = Node->getBlock();
782 
783       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
784            ++SI) {
785         DomTreeNode *SuccNode = DT.getNode(*SI);
786 
787         // Quickly skip all CFG edges that are also dominator tree edges instead
788         // of catching them below.
789         if (SuccNode->getIDom() == Node)
790           continue;
791 
792         unsigned SuccLevel = DomLevels[SuccNode];
793         if (SuccLevel > RootLevel)
794           continue;
795 
796         if (!Visited.insert(SuccNode))
797           continue;
798 
799         BasicBlock *SuccBB = SuccNode->getBlock();
800         if (!LiveInBlocks.count(SuccBB))
801           continue;
802 
803         DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
804         if (!DefBlocks.count(SuccBB))
805           PQ.push(std::make_pair(SuccNode, SuccLevel));
806       }
807 
808       for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
809            ++CI) {
810         if (!Visited.count(*CI))
811           Worklist.push_back(*CI);
812       }
813     }
814   }
815 
816   if (DFBlocks.size() > 1)
817     std::sort(DFBlocks.begin(), DFBlocks.end());
818 
819   unsigned CurrentVersion = 0;
820   for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
821     QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
822 }
823 
824 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
825 /// replace any loads of it that are directly dominated by the definition with
826 /// the value stored.
RewriteSingleStoreAlloca(AllocaInst * AI,AllocaInfo & Info,LargeBlockInfo & LBI)827 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
828                                               AllocaInfo &Info,
829                                               LargeBlockInfo &LBI) {
830   StoreInst *OnlyStore = Info.OnlyStore;
831   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
832   BasicBlock *StoreBB = OnlyStore->getParent();
833   int StoreIndex = -1;
834 
835   // Clear out UsingBlocks.  We will reconstruct it here if needed.
836   Info.UsingBlocks.clear();
837 
838   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
839     Instruction *UserInst = cast<Instruction>(*UI++);
840     if (!isa<LoadInst>(UserInst)) {
841       assert(UserInst == OnlyStore && "Should only have load/stores");
842       continue;
843     }
844     LoadInst *LI = cast<LoadInst>(UserInst);
845 
846     // Okay, if we have a load from the alloca, we want to replace it with the
847     // only value stored to the alloca.  We can do this if the value is
848     // dominated by the store.  If not, we use the rest of the mem2reg machinery
849     // to insert the phi nodes as needed.
850     if (!StoringGlobalVal) {  // Non-instructions are always dominated.
851       if (LI->getParent() == StoreBB) {
852         // If we have a use that is in the same block as the store, compare the
853         // indices of the two instructions to see which one came first.  If the
854         // load came before the store, we can't handle it.
855         if (StoreIndex == -1)
856           StoreIndex = LBI.getInstructionIndex(OnlyStore);
857 
858         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
859           // Can't handle this load, bail out.
860           Info.UsingBlocks.push_back(StoreBB);
861           continue;
862         }
863 
864       } else if (LI->getParent() != StoreBB &&
865                  !dominates(StoreBB, LI->getParent())) {
866         // If the load and store are in different blocks, use BB dominance to
867         // check their relationships.  If the store doesn't dom the use, bail
868         // out.
869         Info.UsingBlocks.push_back(LI->getParent());
870         continue;
871       }
872     }
873 
874     // Otherwise, we *can* safely rewrite this load.
875     Value *ReplVal = OnlyStore->getOperand(0);
876     // If the replacement value is the load, this must occur in unreachable
877     // code.
878     if (ReplVal == LI)
879       ReplVal = UndefValue::get(LI->getType());
880     LI->replaceAllUsesWith(ReplVal);
881     if (AST && LI->getType()->isPointerTy())
882       AST->deleteValue(LI);
883     LI->eraseFromParent();
884     LBI.deleteValue(LI);
885   }
886 }
887 
888 namespace {
889 
890 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
891 /// first element of a pair.
892 struct StoreIndexSearchPredicate {
operator ()__anon67d3049a0211::StoreIndexSearchPredicate893   bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
894                   const std::pair<unsigned, StoreInst*> &RHS) {
895     return LHS.first < RHS.first;
896   }
897 };
898 
899 }
900 
901 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
902 /// block.  If this is the case, avoid traversing the CFG and inserting a lot of
903 /// potentially useless PHI nodes by just performing a single linear pass over
904 /// the basic block using the Alloca.
905 ///
906 /// If we cannot promote this alloca (because it is read before it is written),
907 /// return true.  This is necessary in cases where, due to control flow, the
908 /// alloca is potentially undefined on some control flow paths.  e.g. code like
909 /// this is potentially correct:
910 ///
911 ///   for (...) { if (c) { A = undef; undef = B; } }
912 ///
913 /// ... so long as A is not used before undef is set.
914 ///
PromoteSingleBlockAlloca(AllocaInst * AI,AllocaInfo & Info,LargeBlockInfo & LBI)915 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
916                                               LargeBlockInfo &LBI) {
917   // The trickiest case to handle is when we have large blocks. Because of this,
918   // this code is optimized assuming that large blocks happen.  This does not
919   // significantly pessimize the small block case.  This uses LargeBlockInfo to
920   // make it efficient to get the index of various operations in the block.
921 
922   // Clear out UsingBlocks.  We will reconstruct it here if needed.
923   Info.UsingBlocks.clear();
924 
925   // Walk the use-def list of the alloca, getting the locations of all stores.
926   typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
927   StoresByIndexTy StoresByIndex;
928 
929   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
930        UI != E; ++UI)
931     if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
932       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
933 
934   // If there are no stores to the alloca, just replace any loads with undef.
935   if (StoresByIndex.empty()) {
936     for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
937       if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
938         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
939         if (AST && LI->getType()->isPointerTy())
940           AST->deleteValue(LI);
941         LBI.deleteValue(LI);
942         LI->eraseFromParent();
943       }
944     return;
945   }
946 
947   // Sort the stores by their index, making it efficient to do a lookup with a
948   // binary search.
949   std::sort(StoresByIndex.begin(), StoresByIndex.end());
950 
951   // Walk all of the loads from this alloca, replacing them with the nearest
952   // store above them, if any.
953   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
954     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
955     if (!LI) continue;
956 
957     unsigned LoadIdx = LBI.getInstructionIndex(LI);
958 
959     // Find the nearest store that has a lower than this load.
960     StoresByIndexTy::iterator I =
961       std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
962                        std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
963                        StoreIndexSearchPredicate());
964 
965     // If there is no store before this load, then we can't promote this load.
966     if (I == StoresByIndex.begin()) {
967       // Can't handle this load, bail out.
968       Info.UsingBlocks.push_back(LI->getParent());
969       continue;
970     }
971 
972     // Otherwise, there was a store before this load, the load takes its value.
973     --I;
974     LI->replaceAllUsesWith(I->second->getOperand(0));
975     if (AST && LI->getType()->isPointerTy())
976       AST->deleteValue(LI);
977     LI->eraseFromParent();
978     LBI.deleteValue(LI);
979   }
980 }
981 
982 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
983 // Alloca returns true if there wasn't already a phi-node for that variable
984 //
QueuePhiNode(BasicBlock * BB,unsigned AllocaNo,unsigned & Version)985 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
986                                   unsigned &Version) {
987   // Look up the basic-block in question.
988   PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
989 
990   // If the BB already has a phi node added for the i'th alloca then we're done!
991   if (PN) return false;
992 
993   // Create a PhiNode using the dereferenced type... and add the phi-node to the
994   // BasicBlock.
995   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
996                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
997                        BB->begin());
998   ++NumPHIInsert;
999   PhiToAllocaMap[PN] = AllocaNo;
1000 
1001   if (AST && PN->getType()->isPointerTy())
1002     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
1003 
1004   return true;
1005 }
1006 
1007 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
1008 // stores to the allocas which we are promoting.  IncomingVals indicates what
1009 // value each Alloca contains on exit from the predecessor block Pred.
1010 //
RenamePass(BasicBlock * BB,BasicBlock * Pred,RenamePassData::ValVector & IncomingVals,std::vector<RenamePassData> & Worklist)1011 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
1012                                 RenamePassData::ValVector &IncomingVals,
1013                                 std::vector<RenamePassData> &Worklist) {
1014 NextIteration:
1015   // If we are inserting any phi nodes into this BB, they will already be in the
1016   // block.
1017   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1018     // If we have PHI nodes to update, compute the number of edges from Pred to
1019     // BB.
1020     if (PhiToAllocaMap.count(APN)) {
1021       // We want to be able to distinguish between PHI nodes being inserted by
1022       // this invocation of mem2reg from those phi nodes that already existed in
1023       // the IR before mem2reg was run.  We determine that APN is being inserted
1024       // because it is missing incoming edges.  All other PHI nodes being
1025       // inserted by this pass of mem2reg will have the same number of incoming
1026       // operands so far.  Remember this count.
1027       unsigned NewPHINumOperands = APN->getNumOperands();
1028 
1029       unsigned NumEdges = 0;
1030       for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
1031         if (*I == BB)
1032           ++NumEdges;
1033       assert(NumEdges && "Must be at least one edge from Pred to BB!");
1034 
1035       // Add entries for all the phis.
1036       BasicBlock::iterator PNI = BB->begin();
1037       do {
1038         unsigned AllocaNo = PhiToAllocaMap[APN];
1039 
1040         // Add N incoming values to the PHI node.
1041         for (unsigned i = 0; i != NumEdges; ++i)
1042           APN->addIncoming(IncomingVals[AllocaNo], Pred);
1043 
1044         // The currently active variable for this block is now the PHI.
1045         IncomingVals[AllocaNo] = APN;
1046 
1047         // Get the next phi node.
1048         ++PNI;
1049         APN = dyn_cast<PHINode>(PNI);
1050         if (APN == 0) break;
1051 
1052         // Verify that it is missing entries.  If not, it is not being inserted
1053         // by this mem2reg invocation so we want to ignore it.
1054       } while (APN->getNumOperands() == NewPHINumOperands);
1055     }
1056   }
1057 
1058   // Don't revisit blocks.
1059   if (!Visited.insert(BB)) return;
1060 
1061   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
1062     Instruction *I = II++; // get the instruction, increment iterator
1063 
1064     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1065       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1066       if (!Src) continue;
1067 
1068       DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
1069       if (AI == AllocaLookup.end()) continue;
1070 
1071       Value *V = IncomingVals[AI->second];
1072 
1073       // Anything using the load now uses the current value.
1074       LI->replaceAllUsesWith(V);
1075       if (AST && LI->getType()->isPointerTy())
1076         AST->deleteValue(LI);
1077       BB->getInstList().erase(LI);
1078     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1079       // Delete this instruction and mark the name as the current holder of the
1080       // value
1081       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1082       if (!Dest) continue;
1083 
1084       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1085       if (ai == AllocaLookup.end())
1086         continue;
1087 
1088       // what value were we writing?
1089       IncomingVals[ai->second] = SI->getOperand(0);
1090       // Record debuginfo for the store before removing it.
1091       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
1092         if (!DIB)
1093           DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
1094         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1095       }
1096       BB->getInstList().erase(SI);
1097     }
1098   }
1099 
1100   // 'Recurse' to our successors.
1101   succ_iterator I = succ_begin(BB), E = succ_end(BB);
1102   if (I == E) return;
1103 
1104   // Keep track of the successors so we don't visit the same successor twice
1105   SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
1106 
1107   // Handle the first successor without using the worklist.
1108   VisitedSuccs.insert(*I);
1109   Pred = BB;
1110   BB = *I;
1111   ++I;
1112 
1113   for (; I != E; ++I)
1114     if (VisitedSuccs.insert(*I))
1115       Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1116 
1117   goto NextIteration;
1118 }
1119 
1120 /// PromoteMemToReg - Promote the specified list of alloca instructions into
1121 /// scalar registers, inserting PHI nodes as appropriate.  This function does
1122 /// not modify the CFG of the function at all.  All allocas must be from the
1123 /// same function.
1124 ///
1125 /// If AST is specified, the specified tracker is updated to reflect changes
1126 /// made to the IR.
1127 ///
PromoteMemToReg(const std::vector<AllocaInst * > & Allocas,DominatorTree & DT,AliasSetTracker * AST)1128 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
1129                            DominatorTree &DT, AliasSetTracker *AST) {
1130   // If there is nothing to do, bail out...
1131   if (Allocas.empty()) return;
1132 
1133   PromoteMem2Reg(Allocas, DT, AST).run();
1134 }
1135