1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references. It promotes
11 // alloca instructions which only have loads and stores as uses. An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
15 //
16 // The algorithm used here is based on:
17 //
18 // Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19 // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20 // Programming Languages
21 // POPL '95. ACM, New York, NY, 62-73.
22 //
23 // It has been modified to not explicitly use the DJ graph data structure and to
24 // directly compute pruned SSA using per-variable liveness information.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #define DEBUG_TYPE "mem2reg"
29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
30 #include "llvm/Constants.h"
31 #include "llvm/DerivedTypes.h"
32 #include "llvm/Function.h"
33 #include "llvm/Instructions.h"
34 #include "llvm/IntrinsicInst.h"
35 #include "llvm/Metadata.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/DebugInfo.h"
38 #include "llvm/Analysis/DIBuilder.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/InstructionSimplify.h"
41 #include "llvm/Analysis/ValueTracking.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/ADT/DenseMap.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/Support/CFG.h"
49 #include <algorithm>
50 #include <queue>
51 using namespace llvm;
52
53 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
54 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
55 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
56 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
57
58 namespace llvm {
59 template<>
60 struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
61 typedef std::pair<BasicBlock*, unsigned> EltTy;
getEmptyKeyllvm::DenseMapInfo62 static inline EltTy getEmptyKey() {
63 return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
64 }
getTombstoneKeyllvm::DenseMapInfo65 static inline EltTy getTombstoneKey() {
66 return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
67 }
getHashValuellvm::DenseMapInfo68 static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
69 return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
70 }
isEqualllvm::DenseMapInfo71 static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
72 return LHS == RHS;
73 }
74 };
75 }
76
77 /// isAllocaPromotable - Return true if this alloca is legal for promotion.
78 /// This is true if there are only loads and stores to the alloca.
79 ///
isAllocaPromotable(const AllocaInst * AI)80 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
81 // FIXME: If the memory unit is of pointer or integer type, we can permit
82 // assignments to subsections of the memory unit.
83
84 // Only allow direct and non-volatile loads and stores...
85 for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
86 UI != UE; ++UI) { // Loop over all of the uses of the alloca
87 const User *U = *UI;
88 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
89 if (LI->isVolatile())
90 return false;
91 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
92 if (SI->getOperand(0) == AI)
93 return false; // Don't allow a store OF the AI, only INTO the AI.
94 if (SI->isVolatile())
95 return false;
96 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
97 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
98 II->getIntrinsicID() != Intrinsic::lifetime_end)
99 return false;
100 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
101 if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
102 return false;
103 if (!onlyUsedByLifetimeMarkers(BCI))
104 return false;
105 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
106 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
107 return false;
108 if (!GEPI->hasAllZeroIndices())
109 return false;
110 if (!onlyUsedByLifetimeMarkers(GEPI))
111 return false;
112 } else {
113 return false;
114 }
115 }
116
117 return true;
118 }
119
120 namespace {
121 struct AllocaInfo;
122
123 // Data package used by RenamePass()
124 class RenamePassData {
125 public:
126 typedef std::vector<Value *> ValVector;
127
RenamePassData()128 RenamePassData() : BB(NULL), Pred(NULL), Values() {}
RenamePassData(BasicBlock * B,BasicBlock * P,const ValVector & V)129 RenamePassData(BasicBlock *B, BasicBlock *P,
130 const ValVector &V) : BB(B), Pred(P), Values(V) {}
131 BasicBlock *BB;
132 BasicBlock *Pred;
133 ValVector Values;
134
swap(RenamePassData & RHS)135 void swap(RenamePassData &RHS) {
136 std::swap(BB, RHS.BB);
137 std::swap(Pred, RHS.Pred);
138 Values.swap(RHS.Values);
139 }
140 };
141
142 /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
143 /// load/store instructions in the block that directly load or store an alloca.
144 ///
145 /// This functionality is important because it avoids scanning large basic
146 /// blocks multiple times when promoting many allocas in the same block.
147 class LargeBlockInfo {
148 /// InstNumbers - For each instruction that we track, keep the index of the
149 /// instruction. The index starts out as the number of the instruction from
150 /// the start of the block.
151 DenseMap<const Instruction *, unsigned> InstNumbers;
152 public:
153
154 /// isInterestingInstruction - This code only looks at accesses to allocas.
isInterestingInstruction(const Instruction * I)155 static bool isInterestingInstruction(const Instruction *I) {
156 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
157 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
158 }
159
160 /// getInstructionIndex - Get or calculate the index of the specified
161 /// instruction.
getInstructionIndex(const Instruction * I)162 unsigned getInstructionIndex(const Instruction *I) {
163 assert(isInterestingInstruction(I) &&
164 "Not a load/store to/from an alloca?");
165
166 // If we already have this instruction number, return it.
167 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
168 if (It != InstNumbers.end()) return It->second;
169
170 // Scan the whole block to get the instruction. This accumulates
171 // information for every interesting instruction in the block, in order to
172 // avoid gratuitus rescans.
173 const BasicBlock *BB = I->getParent();
174 unsigned InstNo = 0;
175 for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
176 BBI != E; ++BBI)
177 if (isInterestingInstruction(BBI))
178 InstNumbers[BBI] = InstNo++;
179 It = InstNumbers.find(I);
180
181 assert(It != InstNumbers.end() && "Didn't insert instruction?");
182 return It->second;
183 }
184
deleteValue(const Instruction * I)185 void deleteValue(const Instruction *I) {
186 InstNumbers.erase(I);
187 }
188
clear()189 void clear() {
190 InstNumbers.clear();
191 }
192 };
193
194 struct PromoteMem2Reg {
195 /// Allocas - The alloca instructions being promoted.
196 ///
197 std::vector<AllocaInst*> Allocas;
198 DominatorTree &DT;
199 DIBuilder *DIB;
200
201 /// AST - An AliasSetTracker object to update. If null, don't update it.
202 ///
203 AliasSetTracker *AST;
204
205 /// AllocaLookup - Reverse mapping of Allocas.
206 ///
207 DenseMap<AllocaInst*, unsigned> AllocaLookup;
208
209 /// NewPhiNodes - The PhiNodes we're adding.
210 ///
211 DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
212
213 /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
214 /// it corresponds to.
215 DenseMap<PHINode*, unsigned> PhiToAllocaMap;
216
217 /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
218 /// each alloca that is of pointer type, we keep track of what to copyValue
219 /// to the inserted PHI nodes here.
220 ///
221 std::vector<Value*> PointerAllocaValues;
222
223 /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
224 /// intrinsic that describes it, if any, so that we can convert it to a
225 /// dbg.value intrinsic if the alloca gets promoted.
226 SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
227
228 /// Visited - The set of basic blocks the renamer has already visited.
229 ///
230 SmallPtrSet<BasicBlock*, 16> Visited;
231
232 /// BBNumbers - Contains a stable numbering of basic blocks to avoid
233 /// non-determinstic behavior.
234 DenseMap<BasicBlock*, unsigned> BBNumbers;
235
236 /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
237 DenseMap<DomTreeNode*, unsigned> DomLevels;
238
239 /// BBNumPreds - Lazily compute the number of predecessors a block has.
240 DenseMap<const BasicBlock*, unsigned> BBNumPreds;
241 public:
PromoteMem2Reg__anon67d3049a0111::PromoteMem2Reg242 PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
243 AliasSetTracker *ast)
244 : Allocas(A), DT(dt), DIB(0), AST(ast) {}
~PromoteMem2Reg__anon67d3049a0111::PromoteMem2Reg245 ~PromoteMem2Reg() {
246 delete DIB;
247 }
248
249 void run();
250
251 /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
252 ///
dominates__anon67d3049a0111::PromoteMem2Reg253 bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
254 return DT.dominates(BB1, BB2);
255 }
256
257 private:
RemoveFromAllocasList__anon67d3049a0111::PromoteMem2Reg258 void RemoveFromAllocasList(unsigned &AllocaIdx) {
259 Allocas[AllocaIdx] = Allocas.back();
260 Allocas.pop_back();
261 --AllocaIdx;
262 }
263
getNumPreds__anon67d3049a0111::PromoteMem2Reg264 unsigned getNumPreds(const BasicBlock *BB) {
265 unsigned &NP = BBNumPreds[BB];
266 if (NP == 0)
267 NP = std::distance(pred_begin(BB), pred_end(BB))+1;
268 return NP-1;
269 }
270
271 void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
272 AllocaInfo &Info);
273 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
274 const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
275 SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
276
277 void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
278 LargeBlockInfo &LBI);
279 void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
280 LargeBlockInfo &LBI);
281
282 void RenamePass(BasicBlock *BB, BasicBlock *Pred,
283 RenamePassData::ValVector &IncVals,
284 std::vector<RenamePassData> &Worklist);
285 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
286 };
287
288 struct AllocaInfo {
289 SmallVector<BasicBlock*, 32> DefiningBlocks;
290 SmallVector<BasicBlock*, 32> UsingBlocks;
291
292 StoreInst *OnlyStore;
293 BasicBlock *OnlyBlock;
294 bool OnlyUsedInOneBlock;
295
296 Value *AllocaPointerVal;
297 DbgDeclareInst *DbgDeclare;
298
clear__anon67d3049a0111::AllocaInfo299 void clear() {
300 DefiningBlocks.clear();
301 UsingBlocks.clear();
302 OnlyStore = 0;
303 OnlyBlock = 0;
304 OnlyUsedInOneBlock = true;
305 AllocaPointerVal = 0;
306 DbgDeclare = 0;
307 }
308
309 /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
310 /// ivars.
AnalyzeAlloca__anon67d3049a0111::AllocaInfo311 void AnalyzeAlloca(AllocaInst *AI) {
312 clear();
313
314 // As we scan the uses of the alloca instruction, keep track of stores,
315 // and decide whether all of the loads and stores to the alloca are within
316 // the same basic block.
317 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
318 UI != E;) {
319 Instruction *User = cast<Instruction>(*UI++);
320
321 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
322 // Remember the basic blocks which define new values for the alloca
323 DefiningBlocks.push_back(SI->getParent());
324 AllocaPointerVal = SI->getOperand(0);
325 OnlyStore = SI;
326 } else {
327 LoadInst *LI = cast<LoadInst>(User);
328 // Otherwise it must be a load instruction, keep track of variable
329 // reads.
330 UsingBlocks.push_back(LI->getParent());
331 AllocaPointerVal = LI;
332 }
333
334 if (OnlyUsedInOneBlock) {
335 if (OnlyBlock == 0)
336 OnlyBlock = User->getParent();
337 else if (OnlyBlock != User->getParent())
338 OnlyUsedInOneBlock = false;
339 }
340 }
341
342 DbgDeclare = FindAllocaDbgDeclare(AI);
343 }
344 };
345
346 typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
347
348 struct DomTreeNodeCompare {
operator ()__anon67d3049a0111::DomTreeNodeCompare349 bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
350 return LHS.second < RHS.second;
351 }
352 };
353 } // end of anonymous namespace
354
removeLifetimeIntrinsicUsers(AllocaInst * AI)355 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
356 // Knowing that this alloca is promotable, we know that it's safe to kill all
357 // instructions except for load and store.
358
359 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
360 UI != UE;) {
361 Instruction *I = cast<Instruction>(*UI);
362 ++UI;
363 if (isa<LoadInst>(I) || isa<StoreInst>(I))
364 continue;
365
366 if (!I->getType()->isVoidTy()) {
367 // The only users of this bitcast/GEP instruction are lifetime intrinsics.
368 // Follow the use/def chain to erase them now instead of leaving it for
369 // dead code elimination later.
370 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
371 UI != UE;) {
372 Instruction *Inst = cast<Instruction>(*UI);
373 ++UI;
374 Inst->eraseFromParent();
375 }
376 }
377 I->eraseFromParent();
378 }
379 }
380
run()381 void PromoteMem2Reg::run() {
382 Function &F = *DT.getRoot()->getParent();
383
384 if (AST) PointerAllocaValues.resize(Allocas.size());
385 AllocaDbgDeclares.resize(Allocas.size());
386
387 AllocaInfo Info;
388 LargeBlockInfo LBI;
389
390 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
391 AllocaInst *AI = Allocas[AllocaNum];
392
393 assert(isAllocaPromotable(AI) &&
394 "Cannot promote non-promotable alloca!");
395 assert(AI->getParent()->getParent() == &F &&
396 "All allocas should be in the same function, which is same as DF!");
397
398 removeLifetimeIntrinsicUsers(AI);
399
400 if (AI->use_empty()) {
401 // If there are no uses of the alloca, just delete it now.
402 if (AST) AST->deleteValue(AI);
403 AI->eraseFromParent();
404
405 // Remove the alloca from the Allocas list, since it has been processed
406 RemoveFromAllocasList(AllocaNum);
407 ++NumDeadAlloca;
408 continue;
409 }
410
411 // Calculate the set of read and write-locations for each alloca. This is
412 // analogous to finding the 'uses' and 'definitions' of each variable.
413 Info.AnalyzeAlloca(AI);
414
415 // If there is only a single store to this value, replace any loads of
416 // it that are directly dominated by the definition with the value stored.
417 if (Info.DefiningBlocks.size() == 1) {
418 RewriteSingleStoreAlloca(AI, Info, LBI);
419
420 // Finally, after the scan, check to see if the store is all that is left.
421 if (Info.UsingBlocks.empty()) {
422 // Record debuginfo for the store and remove the declaration's debuginfo.
423 if (DbgDeclareInst *DDI = Info.DbgDeclare) {
424 if (!DIB)
425 DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
426 ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
427 DDI->eraseFromParent();
428 }
429 // Remove the (now dead) store and alloca.
430 Info.OnlyStore->eraseFromParent();
431 LBI.deleteValue(Info.OnlyStore);
432
433 if (AST) AST->deleteValue(AI);
434 AI->eraseFromParent();
435 LBI.deleteValue(AI);
436
437 // The alloca has been processed, move on.
438 RemoveFromAllocasList(AllocaNum);
439
440 ++NumSingleStore;
441 continue;
442 }
443 }
444
445 // If the alloca is only read and written in one basic block, just perform a
446 // linear sweep over the block to eliminate it.
447 if (Info.OnlyUsedInOneBlock) {
448 PromoteSingleBlockAlloca(AI, Info, LBI);
449
450 // Finally, after the scan, check to see if the stores are all that is
451 // left.
452 if (Info.UsingBlocks.empty()) {
453
454 // Remove the (now dead) stores and alloca.
455 while (!AI->use_empty()) {
456 StoreInst *SI = cast<StoreInst>(AI->use_back());
457 // Record debuginfo for the store before removing it.
458 if (DbgDeclareInst *DDI = Info.DbgDeclare) {
459 if (!DIB)
460 DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
461 ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
462 }
463 SI->eraseFromParent();
464 LBI.deleteValue(SI);
465 }
466
467 if (AST) AST->deleteValue(AI);
468 AI->eraseFromParent();
469 LBI.deleteValue(AI);
470
471 // The alloca has been processed, move on.
472 RemoveFromAllocasList(AllocaNum);
473
474 // The alloca's debuginfo can be removed as well.
475 if (DbgDeclareInst *DDI = Info.DbgDeclare)
476 DDI->eraseFromParent();
477
478 ++NumLocalPromoted;
479 continue;
480 }
481 }
482
483 // If we haven't computed dominator tree levels, do so now.
484 if (DomLevels.empty()) {
485 SmallVector<DomTreeNode*, 32> Worklist;
486
487 DomTreeNode *Root = DT.getRootNode();
488 DomLevels[Root] = 0;
489 Worklist.push_back(Root);
490
491 while (!Worklist.empty()) {
492 DomTreeNode *Node = Worklist.pop_back_val();
493 unsigned ChildLevel = DomLevels[Node] + 1;
494 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
495 CI != CE; ++CI) {
496 DomLevels[*CI] = ChildLevel;
497 Worklist.push_back(*CI);
498 }
499 }
500 }
501
502 // If we haven't computed a numbering for the BB's in the function, do so
503 // now.
504 if (BBNumbers.empty()) {
505 unsigned ID = 0;
506 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
507 BBNumbers[I] = ID++;
508 }
509
510 // If we have an AST to keep updated, remember some pointer value that is
511 // stored into the alloca.
512 if (AST)
513 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
514
515 // Remember the dbg.declare intrinsic describing this alloca, if any.
516 if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
517
518 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
519 AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
520
521 // At this point, we're committed to promoting the alloca using IDF's, and
522 // the standard SSA construction algorithm. Determine which blocks need PHI
523 // nodes and see if we can optimize out some work by avoiding insertion of
524 // dead phi nodes.
525 DetermineInsertionPoint(AI, AllocaNum, Info);
526 }
527
528 if (Allocas.empty())
529 return; // All of the allocas must have been trivial!
530
531 LBI.clear();
532
533
534 // Set the incoming values for the basic block to be null values for all of
535 // the alloca's. We do this in case there is a load of a value that has not
536 // been stored yet. In this case, it will get this null value.
537 //
538 RenamePassData::ValVector Values(Allocas.size());
539 for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
540 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
541
542 // Walks all basic blocks in the function performing the SSA rename algorithm
543 // and inserting the phi nodes we marked as necessary
544 //
545 std::vector<RenamePassData> RenamePassWorkList;
546 RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
547 do {
548 RenamePassData RPD;
549 RPD.swap(RenamePassWorkList.back());
550 RenamePassWorkList.pop_back();
551 // RenamePass may add new worklist entries.
552 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
553 } while (!RenamePassWorkList.empty());
554
555 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
556 Visited.clear();
557
558 // Remove the allocas themselves from the function.
559 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
560 Instruction *A = Allocas[i];
561
562 // If there are any uses of the alloca instructions left, they must be in
563 // unreachable basic blocks that were not processed by walking the dominator
564 // tree. Just delete the users now.
565 if (!A->use_empty())
566 A->replaceAllUsesWith(UndefValue::get(A->getType()));
567 if (AST) AST->deleteValue(A);
568 A->eraseFromParent();
569 }
570
571 // Remove alloca's dbg.declare instrinsics from the function.
572 for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
573 if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
574 DDI->eraseFromParent();
575
576 // Loop over all of the PHI nodes and see if there are any that we can get
577 // rid of because they merge all of the same incoming values. This can
578 // happen due to undef values coming into the PHI nodes. This process is
579 // iterative, because eliminating one PHI node can cause others to be removed.
580 bool EliminatedAPHI = true;
581 while (EliminatedAPHI) {
582 EliminatedAPHI = false;
583
584 for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
585 NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
586 PHINode *PN = I->second;
587
588 // If this PHI node merges one value and/or undefs, get the value.
589 if (Value *V = SimplifyInstruction(PN, 0, &DT)) {
590 if (AST && PN->getType()->isPointerTy())
591 AST->deleteValue(PN);
592 PN->replaceAllUsesWith(V);
593 PN->eraseFromParent();
594 NewPhiNodes.erase(I++);
595 EliminatedAPHI = true;
596 continue;
597 }
598 ++I;
599 }
600 }
601
602 // At this point, the renamer has added entries to PHI nodes for all reachable
603 // code. Unfortunately, there may be unreachable blocks which the renamer
604 // hasn't traversed. If this is the case, the PHI nodes may not
605 // have incoming values for all predecessors. Loop over all PHI nodes we have
606 // created, inserting undef values if they are missing any incoming values.
607 //
608 for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
609 NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
610 // We want to do this once per basic block. As such, only process a block
611 // when we find the PHI that is the first entry in the block.
612 PHINode *SomePHI = I->second;
613 BasicBlock *BB = SomePHI->getParent();
614 if (&BB->front() != SomePHI)
615 continue;
616
617 // Only do work here if there the PHI nodes are missing incoming values. We
618 // know that all PHI nodes that were inserted in a block will have the same
619 // number of incoming values, so we can just check any of them.
620 if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
621 continue;
622
623 // Get the preds for BB.
624 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
625
626 // Ok, now we know that all of the PHI nodes are missing entries for some
627 // basic blocks. Start by sorting the incoming predecessors for efficient
628 // access.
629 std::sort(Preds.begin(), Preds.end());
630
631 // Now we loop through all BB's which have entries in SomePHI and remove
632 // them from the Preds list.
633 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
634 // Do a log(n) search of the Preds list for the entry we want.
635 SmallVector<BasicBlock*, 16>::iterator EntIt =
636 std::lower_bound(Preds.begin(), Preds.end(),
637 SomePHI->getIncomingBlock(i));
638 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
639 "PHI node has entry for a block which is not a predecessor!");
640
641 // Remove the entry
642 Preds.erase(EntIt);
643 }
644
645 // At this point, the blocks left in the preds list must have dummy
646 // entries inserted into every PHI nodes for the block. Update all the phi
647 // nodes in this block that we are inserting (there could be phis before
648 // mem2reg runs).
649 unsigned NumBadPreds = SomePHI->getNumIncomingValues();
650 BasicBlock::iterator BBI = BB->begin();
651 while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
652 SomePHI->getNumIncomingValues() == NumBadPreds) {
653 Value *UndefVal = UndefValue::get(SomePHI->getType());
654 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
655 SomePHI->addIncoming(UndefVal, Preds[pred]);
656 }
657 }
658
659 NewPhiNodes.clear();
660 }
661
662
663 /// ComputeLiveInBlocks - Determine which blocks the value is live in. These
664 /// are blocks which lead to uses. Knowing this allows us to avoid inserting
665 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
666 /// would be dead).
667 void PromoteMem2Reg::
ComputeLiveInBlocks(AllocaInst * AI,AllocaInfo & Info,const SmallPtrSet<BasicBlock *,32> & DefBlocks,SmallPtrSet<BasicBlock *,32> & LiveInBlocks)668 ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
669 const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
670 SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
671
672 // To determine liveness, we must iterate through the predecessors of blocks
673 // where the def is live. Blocks are added to the worklist if we need to
674 // check their predecessors. Start with all the using blocks.
675 SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
676 Info.UsingBlocks.end());
677
678 // If any of the using blocks is also a definition block, check to see if the
679 // definition occurs before or after the use. If it happens before the use,
680 // the value isn't really live-in.
681 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
682 BasicBlock *BB = LiveInBlockWorklist[i];
683 if (!DefBlocks.count(BB)) continue;
684
685 // Okay, this is a block that both uses and defines the value. If the first
686 // reference to the alloca is a def (store), then we know it isn't live-in.
687 for (BasicBlock::iterator I = BB->begin(); ; ++I) {
688 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
689 if (SI->getOperand(1) != AI) continue;
690
691 // We found a store to the alloca before a load. The alloca is not
692 // actually live-in here.
693 LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
694 LiveInBlockWorklist.pop_back();
695 --i, --e;
696 break;
697 }
698
699 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
700 if (LI->getOperand(0) != AI) continue;
701
702 // Okay, we found a load before a store to the alloca. It is actually
703 // live into this block.
704 break;
705 }
706 }
707 }
708
709 // Now that we have a set of blocks where the phi is live-in, recursively add
710 // their predecessors until we find the full region the value is live.
711 while (!LiveInBlockWorklist.empty()) {
712 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
713
714 // The block really is live in here, insert it into the set. If already in
715 // the set, then it has already been processed.
716 if (!LiveInBlocks.insert(BB))
717 continue;
718
719 // Since the value is live into BB, it is either defined in a predecessor or
720 // live into it to. Add the preds to the worklist unless they are a
721 // defining block.
722 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
723 BasicBlock *P = *PI;
724
725 // The value is not live into a predecessor if it defines the value.
726 if (DefBlocks.count(P))
727 continue;
728
729 // Otherwise it is, add to the worklist.
730 LiveInBlockWorklist.push_back(P);
731 }
732 }
733 }
734
735 /// DetermineInsertionPoint - At this point, we're committed to promoting the
736 /// alloca using IDF's, and the standard SSA construction algorithm. Determine
737 /// which blocks need phi nodes and see if we can optimize out some work by
738 /// avoiding insertion of dead phi nodes.
DetermineInsertionPoint(AllocaInst * AI,unsigned AllocaNum,AllocaInfo & Info)739 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
740 AllocaInfo &Info) {
741 // Unique the set of defining blocks for efficient lookup.
742 SmallPtrSet<BasicBlock*, 32> DefBlocks;
743 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
744
745 // Determine which blocks the value is live in. These are blocks which lead
746 // to uses.
747 SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
748 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
749
750 // Use a priority queue keyed on dominator tree level so that inserted nodes
751 // are handled from the bottom of the dominator tree upwards.
752 typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
753 DomTreeNodeCompare> IDFPriorityQueue;
754 IDFPriorityQueue PQ;
755
756 for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
757 E = DefBlocks.end(); I != E; ++I) {
758 if (DomTreeNode *Node = DT.getNode(*I))
759 PQ.push(std::make_pair(Node, DomLevels[Node]));
760 }
761
762 SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
763 SmallPtrSet<DomTreeNode*, 32> Visited;
764 SmallVector<DomTreeNode*, 32> Worklist;
765 while (!PQ.empty()) {
766 DomTreeNodePair RootPair = PQ.top();
767 PQ.pop();
768 DomTreeNode *Root = RootPair.first;
769 unsigned RootLevel = RootPair.second;
770
771 // Walk all dominator tree children of Root, inspecting their CFG edges with
772 // targets elsewhere on the dominator tree. Only targets whose level is at
773 // most Root's level are added to the iterated dominance frontier of the
774 // definition set.
775
776 Worklist.clear();
777 Worklist.push_back(Root);
778
779 while (!Worklist.empty()) {
780 DomTreeNode *Node = Worklist.pop_back_val();
781 BasicBlock *BB = Node->getBlock();
782
783 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
784 ++SI) {
785 DomTreeNode *SuccNode = DT.getNode(*SI);
786
787 // Quickly skip all CFG edges that are also dominator tree edges instead
788 // of catching them below.
789 if (SuccNode->getIDom() == Node)
790 continue;
791
792 unsigned SuccLevel = DomLevels[SuccNode];
793 if (SuccLevel > RootLevel)
794 continue;
795
796 if (!Visited.insert(SuccNode))
797 continue;
798
799 BasicBlock *SuccBB = SuccNode->getBlock();
800 if (!LiveInBlocks.count(SuccBB))
801 continue;
802
803 DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
804 if (!DefBlocks.count(SuccBB))
805 PQ.push(std::make_pair(SuccNode, SuccLevel));
806 }
807
808 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
809 ++CI) {
810 if (!Visited.count(*CI))
811 Worklist.push_back(*CI);
812 }
813 }
814 }
815
816 if (DFBlocks.size() > 1)
817 std::sort(DFBlocks.begin(), DFBlocks.end());
818
819 unsigned CurrentVersion = 0;
820 for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
821 QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
822 }
823
824 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
825 /// replace any loads of it that are directly dominated by the definition with
826 /// the value stored.
RewriteSingleStoreAlloca(AllocaInst * AI,AllocaInfo & Info,LargeBlockInfo & LBI)827 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
828 AllocaInfo &Info,
829 LargeBlockInfo &LBI) {
830 StoreInst *OnlyStore = Info.OnlyStore;
831 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
832 BasicBlock *StoreBB = OnlyStore->getParent();
833 int StoreIndex = -1;
834
835 // Clear out UsingBlocks. We will reconstruct it here if needed.
836 Info.UsingBlocks.clear();
837
838 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
839 Instruction *UserInst = cast<Instruction>(*UI++);
840 if (!isa<LoadInst>(UserInst)) {
841 assert(UserInst == OnlyStore && "Should only have load/stores");
842 continue;
843 }
844 LoadInst *LI = cast<LoadInst>(UserInst);
845
846 // Okay, if we have a load from the alloca, we want to replace it with the
847 // only value stored to the alloca. We can do this if the value is
848 // dominated by the store. If not, we use the rest of the mem2reg machinery
849 // to insert the phi nodes as needed.
850 if (!StoringGlobalVal) { // Non-instructions are always dominated.
851 if (LI->getParent() == StoreBB) {
852 // If we have a use that is in the same block as the store, compare the
853 // indices of the two instructions to see which one came first. If the
854 // load came before the store, we can't handle it.
855 if (StoreIndex == -1)
856 StoreIndex = LBI.getInstructionIndex(OnlyStore);
857
858 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
859 // Can't handle this load, bail out.
860 Info.UsingBlocks.push_back(StoreBB);
861 continue;
862 }
863
864 } else if (LI->getParent() != StoreBB &&
865 !dominates(StoreBB, LI->getParent())) {
866 // If the load and store are in different blocks, use BB dominance to
867 // check their relationships. If the store doesn't dom the use, bail
868 // out.
869 Info.UsingBlocks.push_back(LI->getParent());
870 continue;
871 }
872 }
873
874 // Otherwise, we *can* safely rewrite this load.
875 Value *ReplVal = OnlyStore->getOperand(0);
876 // If the replacement value is the load, this must occur in unreachable
877 // code.
878 if (ReplVal == LI)
879 ReplVal = UndefValue::get(LI->getType());
880 LI->replaceAllUsesWith(ReplVal);
881 if (AST && LI->getType()->isPointerTy())
882 AST->deleteValue(LI);
883 LI->eraseFromParent();
884 LBI.deleteValue(LI);
885 }
886 }
887
888 namespace {
889
890 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
891 /// first element of a pair.
892 struct StoreIndexSearchPredicate {
operator ()__anon67d3049a0211::StoreIndexSearchPredicate893 bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
894 const std::pair<unsigned, StoreInst*> &RHS) {
895 return LHS.first < RHS.first;
896 }
897 };
898
899 }
900
901 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
902 /// block. If this is the case, avoid traversing the CFG and inserting a lot of
903 /// potentially useless PHI nodes by just performing a single linear pass over
904 /// the basic block using the Alloca.
905 ///
906 /// If we cannot promote this alloca (because it is read before it is written),
907 /// return true. This is necessary in cases where, due to control flow, the
908 /// alloca is potentially undefined on some control flow paths. e.g. code like
909 /// this is potentially correct:
910 ///
911 /// for (...) { if (c) { A = undef; undef = B; } }
912 ///
913 /// ... so long as A is not used before undef is set.
914 ///
PromoteSingleBlockAlloca(AllocaInst * AI,AllocaInfo & Info,LargeBlockInfo & LBI)915 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
916 LargeBlockInfo &LBI) {
917 // The trickiest case to handle is when we have large blocks. Because of this,
918 // this code is optimized assuming that large blocks happen. This does not
919 // significantly pessimize the small block case. This uses LargeBlockInfo to
920 // make it efficient to get the index of various operations in the block.
921
922 // Clear out UsingBlocks. We will reconstruct it here if needed.
923 Info.UsingBlocks.clear();
924
925 // Walk the use-def list of the alloca, getting the locations of all stores.
926 typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
927 StoresByIndexTy StoresByIndex;
928
929 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
930 UI != E; ++UI)
931 if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
932 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
933
934 // If there are no stores to the alloca, just replace any loads with undef.
935 if (StoresByIndex.empty()) {
936 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
937 if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
938 LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
939 if (AST && LI->getType()->isPointerTy())
940 AST->deleteValue(LI);
941 LBI.deleteValue(LI);
942 LI->eraseFromParent();
943 }
944 return;
945 }
946
947 // Sort the stores by their index, making it efficient to do a lookup with a
948 // binary search.
949 std::sort(StoresByIndex.begin(), StoresByIndex.end());
950
951 // Walk all of the loads from this alloca, replacing them with the nearest
952 // store above them, if any.
953 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
954 LoadInst *LI = dyn_cast<LoadInst>(*UI++);
955 if (!LI) continue;
956
957 unsigned LoadIdx = LBI.getInstructionIndex(LI);
958
959 // Find the nearest store that has a lower than this load.
960 StoresByIndexTy::iterator I =
961 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
962 std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
963 StoreIndexSearchPredicate());
964
965 // If there is no store before this load, then we can't promote this load.
966 if (I == StoresByIndex.begin()) {
967 // Can't handle this load, bail out.
968 Info.UsingBlocks.push_back(LI->getParent());
969 continue;
970 }
971
972 // Otherwise, there was a store before this load, the load takes its value.
973 --I;
974 LI->replaceAllUsesWith(I->second->getOperand(0));
975 if (AST && LI->getType()->isPointerTy())
976 AST->deleteValue(LI);
977 LI->eraseFromParent();
978 LBI.deleteValue(LI);
979 }
980 }
981
982 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
983 // Alloca returns true if there wasn't already a phi-node for that variable
984 //
QueuePhiNode(BasicBlock * BB,unsigned AllocaNo,unsigned & Version)985 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
986 unsigned &Version) {
987 // Look up the basic-block in question.
988 PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
989
990 // If the BB already has a phi node added for the i'th alloca then we're done!
991 if (PN) return false;
992
993 // Create a PhiNode using the dereferenced type... and add the phi-node to the
994 // BasicBlock.
995 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
996 Allocas[AllocaNo]->getName() + "." + Twine(Version++),
997 BB->begin());
998 ++NumPHIInsert;
999 PhiToAllocaMap[PN] = AllocaNo;
1000
1001 if (AST && PN->getType()->isPointerTy())
1002 AST->copyValue(PointerAllocaValues[AllocaNo], PN);
1003
1004 return true;
1005 }
1006
1007 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
1008 // stores to the allocas which we are promoting. IncomingVals indicates what
1009 // value each Alloca contains on exit from the predecessor block Pred.
1010 //
RenamePass(BasicBlock * BB,BasicBlock * Pred,RenamePassData::ValVector & IncomingVals,std::vector<RenamePassData> & Worklist)1011 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
1012 RenamePassData::ValVector &IncomingVals,
1013 std::vector<RenamePassData> &Worklist) {
1014 NextIteration:
1015 // If we are inserting any phi nodes into this BB, they will already be in the
1016 // block.
1017 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1018 // If we have PHI nodes to update, compute the number of edges from Pred to
1019 // BB.
1020 if (PhiToAllocaMap.count(APN)) {
1021 // We want to be able to distinguish between PHI nodes being inserted by
1022 // this invocation of mem2reg from those phi nodes that already existed in
1023 // the IR before mem2reg was run. We determine that APN is being inserted
1024 // because it is missing incoming edges. All other PHI nodes being
1025 // inserted by this pass of mem2reg will have the same number of incoming
1026 // operands so far. Remember this count.
1027 unsigned NewPHINumOperands = APN->getNumOperands();
1028
1029 unsigned NumEdges = 0;
1030 for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
1031 if (*I == BB)
1032 ++NumEdges;
1033 assert(NumEdges && "Must be at least one edge from Pred to BB!");
1034
1035 // Add entries for all the phis.
1036 BasicBlock::iterator PNI = BB->begin();
1037 do {
1038 unsigned AllocaNo = PhiToAllocaMap[APN];
1039
1040 // Add N incoming values to the PHI node.
1041 for (unsigned i = 0; i != NumEdges; ++i)
1042 APN->addIncoming(IncomingVals[AllocaNo], Pred);
1043
1044 // The currently active variable for this block is now the PHI.
1045 IncomingVals[AllocaNo] = APN;
1046
1047 // Get the next phi node.
1048 ++PNI;
1049 APN = dyn_cast<PHINode>(PNI);
1050 if (APN == 0) break;
1051
1052 // Verify that it is missing entries. If not, it is not being inserted
1053 // by this mem2reg invocation so we want to ignore it.
1054 } while (APN->getNumOperands() == NewPHINumOperands);
1055 }
1056 }
1057
1058 // Don't revisit blocks.
1059 if (!Visited.insert(BB)) return;
1060
1061 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
1062 Instruction *I = II++; // get the instruction, increment iterator
1063
1064 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1065 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1066 if (!Src) continue;
1067
1068 DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
1069 if (AI == AllocaLookup.end()) continue;
1070
1071 Value *V = IncomingVals[AI->second];
1072
1073 // Anything using the load now uses the current value.
1074 LI->replaceAllUsesWith(V);
1075 if (AST && LI->getType()->isPointerTy())
1076 AST->deleteValue(LI);
1077 BB->getInstList().erase(LI);
1078 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1079 // Delete this instruction and mark the name as the current holder of the
1080 // value
1081 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1082 if (!Dest) continue;
1083
1084 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1085 if (ai == AllocaLookup.end())
1086 continue;
1087
1088 // what value were we writing?
1089 IncomingVals[ai->second] = SI->getOperand(0);
1090 // Record debuginfo for the store before removing it.
1091 if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
1092 if (!DIB)
1093 DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
1094 ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1095 }
1096 BB->getInstList().erase(SI);
1097 }
1098 }
1099
1100 // 'Recurse' to our successors.
1101 succ_iterator I = succ_begin(BB), E = succ_end(BB);
1102 if (I == E) return;
1103
1104 // Keep track of the successors so we don't visit the same successor twice
1105 SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
1106
1107 // Handle the first successor without using the worklist.
1108 VisitedSuccs.insert(*I);
1109 Pred = BB;
1110 BB = *I;
1111 ++I;
1112
1113 for (; I != E; ++I)
1114 if (VisitedSuccs.insert(*I))
1115 Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1116
1117 goto NextIteration;
1118 }
1119
1120 /// PromoteMemToReg - Promote the specified list of alloca instructions into
1121 /// scalar registers, inserting PHI nodes as appropriate. This function does
1122 /// not modify the CFG of the function at all. All allocas must be from the
1123 /// same function.
1124 ///
1125 /// If AST is specified, the specified tracker is updated to reflect changes
1126 /// made to the IR.
1127 ///
PromoteMemToReg(const std::vector<AllocaInst * > & Allocas,DominatorTree & DT,AliasSetTracker * AST)1128 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
1129 DominatorTree &DT, AliasSetTracker *AST) {
1130 // If there is nothing to do, bail out...
1131 if (Allocas.empty()) return;
1132
1133 PromoteMem2Reg(Allocas, DT, AST).run();
1134 }
1135