• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/CXXFieldCollector.h"
18 #include "clang/Sema/Scope.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "TypeLocBuilder.h"
21 #include "clang/AST/APValue.h"
22 #include "clang/AST/ASTConsumer.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CXXInheritance.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/EvaluatedExprVisitor.h"
29 #include "clang/AST/ExprCXX.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/Sema/DeclSpec.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Parse/ParseDiagnostic.h"
35 #include "clang/Basic/PartialDiagnostic.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39 #include "clang/Lex/Preprocessor.h"
40 #include "clang/Lex/HeaderSearch.h"
41 #include "llvm/ADT/Triple.h"
42 #include <algorithm>
43 #include <cstring>
44 #include <functional>
45 using namespace clang;
46 using namespace sema;
47 
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)48 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
49   if (OwnedType) {
50     Decl *Group[2] = { OwnedType, Ptr };
51     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
52   }
53 
54   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
55 }
56 
57 /// \brief If the identifier refers to a type name within this scope,
58 /// return the declaration of that type.
59 ///
60 /// This routine performs ordinary name lookup of the identifier II
61 /// within the given scope, with optional C++ scope specifier SS, to
62 /// determine whether the name refers to a type. If so, returns an
63 /// opaque pointer (actually a QualType) corresponding to that
64 /// type. Otherwise, returns NULL.
65 ///
66 /// If name lookup results in an ambiguity, this routine will complain
67 /// and then return NULL.
getTypeName(IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool WantNontrivialTypeSourceInfo)68 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                              Scope *S, CXXScopeSpec *SS,
70                              bool isClassName, bool HasTrailingDot,
71                              ParsedType ObjectTypePtr,
72                              bool WantNontrivialTypeSourceInfo) {
73   // Determine where we will perform name lookup.
74   DeclContext *LookupCtx = 0;
75   if (ObjectTypePtr) {
76     QualType ObjectType = ObjectTypePtr.get();
77     if (ObjectType->isRecordType())
78       LookupCtx = computeDeclContext(ObjectType);
79   } else if (SS && SS->isNotEmpty()) {
80     LookupCtx = computeDeclContext(*SS, false);
81 
82     if (!LookupCtx) {
83       if (isDependentScopeSpecifier(*SS)) {
84         // C++ [temp.res]p3:
85         //   A qualified-id that refers to a type and in which the
86         //   nested-name-specifier depends on a template-parameter (14.6.2)
87         //   shall be prefixed by the keyword typename to indicate that the
88         //   qualified-id denotes a type, forming an
89         //   elaborated-type-specifier (7.1.5.3).
90         //
91         // We therefore do not perform any name lookup if the result would
92         // refer to a member of an unknown specialization.
93         if (!isClassName)
94           return ParsedType();
95 
96         // We know from the grammar that this name refers to a type,
97         // so build a dependent node to describe the type.
98         if (WantNontrivialTypeSourceInfo)
99           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
100 
101         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
102         QualType T =
103           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
104                             II, NameLoc);
105 
106           return ParsedType::make(T);
107       }
108 
109       return ParsedType();
110     }
111 
112     if (!LookupCtx->isDependentContext() &&
113         RequireCompleteDeclContext(*SS, LookupCtx))
114       return ParsedType();
115   }
116 
117   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
118   // lookup for class-names.
119   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
120                                       LookupOrdinaryName;
121   LookupResult Result(*this, &II, NameLoc, Kind);
122   if (LookupCtx) {
123     // Perform "qualified" name lookup into the declaration context we
124     // computed, which is either the type of the base of a member access
125     // expression or the declaration context associated with a prior
126     // nested-name-specifier.
127     LookupQualifiedName(Result, LookupCtx);
128 
129     if (ObjectTypePtr && Result.empty()) {
130       // C++ [basic.lookup.classref]p3:
131       //   If the unqualified-id is ~type-name, the type-name is looked up
132       //   in the context of the entire postfix-expression. If the type T of
133       //   the object expression is of a class type C, the type-name is also
134       //   looked up in the scope of class C. At least one of the lookups shall
135       //   find a name that refers to (possibly cv-qualified) T.
136       LookupName(Result, S);
137     }
138   } else {
139     // Perform unqualified name lookup.
140     LookupName(Result, S);
141   }
142 
143   NamedDecl *IIDecl = 0;
144   switch (Result.getResultKind()) {
145   case LookupResult::NotFound:
146   case LookupResult::NotFoundInCurrentInstantiation:
147   case LookupResult::FoundOverloaded:
148   case LookupResult::FoundUnresolvedValue:
149     Result.suppressDiagnostics();
150     return ParsedType();
151 
152   case LookupResult::Ambiguous:
153     // Recover from type-hiding ambiguities by hiding the type.  We'll
154     // do the lookup again when looking for an object, and we can
155     // diagnose the error then.  If we don't do this, then the error
156     // about hiding the type will be immediately followed by an error
157     // that only makes sense if the identifier was treated like a type.
158     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
159       Result.suppressDiagnostics();
160       return ParsedType();
161     }
162 
163     // Look to see if we have a type anywhere in the list of results.
164     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
165          Res != ResEnd; ++Res) {
166       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
167         if (!IIDecl ||
168             (*Res)->getLocation().getRawEncoding() <
169               IIDecl->getLocation().getRawEncoding())
170           IIDecl = *Res;
171       }
172     }
173 
174     if (!IIDecl) {
175       // None of the entities we found is a type, so there is no way
176       // to even assume that the result is a type. In this case, don't
177       // complain about the ambiguity. The parser will either try to
178       // perform this lookup again (e.g., as an object name), which
179       // will produce the ambiguity, or will complain that it expected
180       // a type name.
181       Result.suppressDiagnostics();
182       return ParsedType();
183     }
184 
185     // We found a type within the ambiguous lookup; diagnose the
186     // ambiguity and then return that type. This might be the right
187     // answer, or it might not be, but it suppresses any attempt to
188     // perform the name lookup again.
189     break;
190 
191   case LookupResult::Found:
192     IIDecl = Result.getFoundDecl();
193     break;
194   }
195 
196   assert(IIDecl && "Didn't find decl");
197 
198   QualType T;
199   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
200     DiagnoseUseOfDecl(IIDecl, NameLoc);
201 
202     if (T.isNull())
203       T = Context.getTypeDeclType(TD);
204 
205     if (SS && SS->isNotEmpty()) {
206       if (WantNontrivialTypeSourceInfo) {
207         // Construct a type with type-source information.
208         TypeLocBuilder Builder;
209         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
210 
211         T = getElaboratedType(ETK_None, *SS, T);
212         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
213         ElabTL.setKeywordLoc(SourceLocation());
214         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
215         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
216       } else {
217         T = getElaboratedType(ETK_None, *SS, T);
218       }
219     }
220   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
221     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
222     if (!HasTrailingDot)
223       T = Context.getObjCInterfaceType(IDecl);
224   }
225 
226   if (T.isNull()) {
227     // If it's not plausibly a type, suppress diagnostics.
228     Result.suppressDiagnostics();
229     return ParsedType();
230   }
231   return ParsedType::make(T);
232 }
233 
234 /// isTagName() - This method is called *for error recovery purposes only*
235 /// to determine if the specified name is a valid tag name ("struct foo").  If
236 /// so, this returns the TST for the tag corresponding to it (TST_enum,
237 /// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
238 /// where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)239 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
240   // Do a tag name lookup in this scope.
241   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
242   LookupName(R, S, false);
243   R.suppressDiagnostics();
244   if (R.getResultKind() == LookupResult::Found)
245     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
246       switch (TD->getTagKind()) {
247       default:         return DeclSpec::TST_unspecified;
248       case TTK_Struct: return DeclSpec::TST_struct;
249       case TTK_Union:  return DeclSpec::TST_union;
250       case TTK_Class:  return DeclSpec::TST_class;
251       case TTK_Enum:   return DeclSpec::TST_enum;
252       }
253     }
254 
255   return DeclSpec::TST_unspecified;
256 }
257 
258 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
259 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
260 /// then downgrade the missing typename error to a warning.
261 /// This is needed for MSVC compatibility; Example:
262 /// @code
263 /// template<class T> class A {
264 /// public:
265 ///   typedef int TYPE;
266 /// };
267 /// template<class T> class B : public A<T> {
268 /// public:
269 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
270 /// };
271 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS)272 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
273   if (CurContext->isRecord()) {
274     const Type *Ty = SS->getScopeRep()->getAsType();
275 
276     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
277     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
278           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
279       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
280         return true;
281   }
282   return false;
283 }
284 
DiagnoseUnknownTypeName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType)285 bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
286                                    SourceLocation IILoc,
287                                    Scope *S,
288                                    CXXScopeSpec *SS,
289                                    ParsedType &SuggestedType) {
290   // We don't have anything to suggest (yet).
291   SuggestedType = ParsedType();
292 
293   // There may have been a typo in the name of the type. Look up typo
294   // results, in case we have something that we can suggest.
295   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
296                                              LookupOrdinaryName, S, SS, NULL,
297                                              false, CTC_Type)) {
298     std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
299     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
300 
301     if (Corrected.isKeyword()) {
302       // We corrected to a keyword.
303       // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
304       Diag(IILoc, diag::err_unknown_typename_suggest)
305         << &II << CorrectedQuotedStr;
306       return true;
307     } else {
308       NamedDecl *Result = Corrected.getCorrectionDecl();
309       if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
310           !Result->isInvalidDecl()) {
311         // We found a similarly-named type or interface; suggest that.
312         if (!SS || !SS->isSet())
313           Diag(IILoc, diag::err_unknown_typename_suggest)
314             << &II << CorrectedQuotedStr
315             << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
316         else if (DeclContext *DC = computeDeclContext(*SS, false))
317           Diag(IILoc, diag::err_unknown_nested_typename_suggest)
318             << &II << DC << CorrectedQuotedStr << SS->getRange()
319             << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
320         else
321           llvm_unreachable("could not have corrected a typo here");
322 
323         Diag(Result->getLocation(), diag::note_previous_decl)
324           << CorrectedQuotedStr;
325 
326         SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
327                                     false, false, ParsedType(),
328                                     /*NonTrivialTypeSourceInfo=*/true);
329         return true;
330       }
331     }
332   }
333 
334   if (getLangOptions().CPlusPlus) {
335     // See if II is a class template that the user forgot to pass arguments to.
336     UnqualifiedId Name;
337     Name.setIdentifier(&II, IILoc);
338     CXXScopeSpec EmptySS;
339     TemplateTy TemplateResult;
340     bool MemberOfUnknownSpecialization;
341     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
342                        Name, ParsedType(), true, TemplateResult,
343                        MemberOfUnknownSpecialization) == TNK_Type_template) {
344       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
345       Diag(IILoc, diag::err_template_missing_args) << TplName;
346       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
347         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
348           << TplDecl->getTemplateParameters()->getSourceRange();
349       }
350       return true;
351     }
352   }
353 
354   // FIXME: Should we move the logic that tries to recover from a missing tag
355   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
356 
357   if (!SS || (!SS->isSet() && !SS->isInvalid()))
358     Diag(IILoc, diag::err_unknown_typename) << &II;
359   else if (DeclContext *DC = computeDeclContext(*SS, false))
360     Diag(IILoc, diag::err_typename_nested_not_found)
361       << &II << DC << SS->getRange();
362   else if (isDependentScopeSpecifier(*SS)) {
363     unsigned DiagID = diag::err_typename_missing;
364     if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
365       DiagID = diag::warn_typename_missing;
366 
367     Diag(SS->getRange().getBegin(), DiagID)
368       << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
369       << SourceRange(SS->getRange().getBegin(), IILoc)
370       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
371     SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
372   } else {
373     assert(SS && SS->isInvalid() &&
374            "Invalid scope specifier has already been diagnosed");
375   }
376 
377   return true;
378 }
379 
380 /// \brief Determine whether the given result set contains either a type name
381 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)382 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
383   bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
384                        NextToken.is(tok::less);
385 
386   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
387     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
388       return true;
389 
390     if (CheckTemplate && isa<TemplateDecl>(*I))
391       return true;
392   }
393 
394   return false;
395 }
396 
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken)397 Sema::NameClassification Sema::ClassifyName(Scope *S,
398                                             CXXScopeSpec &SS,
399                                             IdentifierInfo *&Name,
400                                             SourceLocation NameLoc,
401                                             const Token &NextToken) {
402   DeclarationNameInfo NameInfo(Name, NameLoc);
403   ObjCMethodDecl *CurMethod = getCurMethodDecl();
404 
405   if (NextToken.is(tok::coloncolon)) {
406     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
407                                 QualType(), false, SS, 0, false);
408 
409   }
410 
411   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
412   LookupParsedName(Result, S, &SS, !CurMethod);
413 
414   // Perform lookup for Objective-C instance variables (including automatically
415   // synthesized instance variables), if we're in an Objective-C method.
416   // FIXME: This lookup really, really needs to be folded in to the normal
417   // unqualified lookup mechanism.
418   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
419     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
420     if (E.get() || E.isInvalid())
421       return E;
422 
423     // Synthesize ivars lazily.
424     if (getLangOptions().ObjCDefaultSynthProperties &&
425         getLangOptions().ObjCNonFragileABI2) {
426       if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
427         if (const ObjCPropertyDecl *Property =
428                                           canSynthesizeProvisionalIvar(Name)) {
429           Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
430           Diag(Property->getLocation(), diag::note_property_declare);
431         }
432 
433         // FIXME: This is strange. Shouldn't we just take the ivar returned
434         // from SynthesizeProvisionalIvar and continue with that?
435         E = LookupInObjCMethod(Result, S, Name, true);
436         if (E.get() || E.isInvalid())
437           return E;
438       }
439     }
440   }
441 
442   bool SecondTry = false;
443   bool IsFilteredTemplateName = false;
444 
445 Corrected:
446   switch (Result.getResultKind()) {
447   case LookupResult::NotFound:
448     // If an unqualified-id is followed by a '(', then we have a function
449     // call.
450     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
451       // In C++, this is an ADL-only call.
452       // FIXME: Reference?
453       if (getLangOptions().CPlusPlus)
454         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
455 
456       // C90 6.3.2.2:
457       //   If the expression that precedes the parenthesized argument list in a
458       //   function call consists solely of an identifier, and if no
459       //   declaration is visible for this identifier, the identifier is
460       //   implicitly declared exactly as if, in the innermost block containing
461       //   the function call, the declaration
462       //
463       //     extern int identifier ();
464       //
465       //   appeared.
466       //
467       // We also allow this in C99 as an extension.
468       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
469         Result.addDecl(D);
470         Result.resolveKind();
471         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
472       }
473     }
474 
475     // In C, we first see whether there is a tag type by the same name, in
476     // which case it's likely that the user just forget to write "enum",
477     // "struct", or "union".
478     if (!getLangOptions().CPlusPlus && !SecondTry) {
479       Result.clear(LookupTagName);
480       LookupParsedName(Result, S, &SS);
481       if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
482         const char *TagName = 0;
483         const char *FixItTagName = 0;
484         switch (Tag->getTagKind()) {
485           case TTK_Class:
486             TagName = "class";
487             FixItTagName = "class ";
488             break;
489 
490           case TTK_Enum:
491             TagName = "enum";
492             FixItTagName = "enum ";
493             break;
494 
495           case TTK_Struct:
496             TagName = "struct";
497             FixItTagName = "struct ";
498             break;
499 
500           case TTK_Union:
501             TagName = "union";
502             FixItTagName = "union ";
503             break;
504         }
505 
506         Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
507           << Name << TagName << getLangOptions().CPlusPlus
508           << FixItHint::CreateInsertion(NameLoc, FixItTagName);
509         break;
510       }
511 
512       Result.clear(LookupOrdinaryName);
513     }
514 
515     // Perform typo correction to determine if there is another name that is
516     // close to this name.
517     if (!SecondTry) {
518       SecondTry = true;
519       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
520                                                  Result.getLookupKind(), S, &SS)) {
521         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
522         unsigned QualifiedDiag = diag::err_no_member_suggest;
523         std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
524         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
525 
526         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
527         NamedDecl *UnderlyingFirstDecl
528           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
529         if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
530             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
531           UnqualifiedDiag = diag::err_no_template_suggest;
532           QualifiedDiag = diag::err_no_member_template_suggest;
533         } else if (UnderlyingFirstDecl &&
534                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
535                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
536                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
537            UnqualifiedDiag = diag::err_unknown_typename_suggest;
538            QualifiedDiag = diag::err_unknown_nested_typename_suggest;
539          }
540 
541         if (SS.isEmpty())
542           Diag(NameLoc, UnqualifiedDiag)
543             << Name << CorrectedQuotedStr
544             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
545         else
546           Diag(NameLoc, QualifiedDiag)
547             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
548             << SS.getRange()
549             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
550 
551         // Update the name, so that the caller has the new name.
552         Name = Corrected.getCorrectionAsIdentifierInfo();
553 
554         // Also update the LookupResult...
555         // FIXME: This should probably go away at some point
556         Result.clear();
557         Result.setLookupName(Corrected.getCorrection());
558         if (FirstDecl) Result.addDecl(FirstDecl);
559 
560         // Typo correction corrected to a keyword.
561         if (Corrected.isKeyword())
562           return Corrected.getCorrectionAsIdentifierInfo();
563 
564         if (FirstDecl)
565           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
566             << CorrectedQuotedStr;
567 
568         // If we found an Objective-C instance variable, let
569         // LookupInObjCMethod build the appropriate expression to
570         // reference the ivar.
571         // FIXME: This is a gross hack.
572         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
573           Result.clear();
574           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
575           return move(E);
576         }
577 
578         goto Corrected;
579       }
580     }
581 
582     // We failed to correct; just fall through and let the parser deal with it.
583     Result.suppressDiagnostics();
584     return NameClassification::Unknown();
585 
586   case LookupResult::NotFoundInCurrentInstantiation:
587     // We performed name lookup into the current instantiation, and there were
588     // dependent bases, so we treat this result the same way as any other
589     // dependent nested-name-specifier.
590 
591     // C++ [temp.res]p2:
592     //   A name used in a template declaration or definition and that is
593     //   dependent on a template-parameter is assumed not to name a type
594     //   unless the applicable name lookup finds a type name or the name is
595     //   qualified by the keyword typename.
596     //
597     // FIXME: If the next token is '<', we might want to ask the parser to
598     // perform some heroics to see if we actually have a
599     // template-argument-list, which would indicate a missing 'template'
600     // keyword here.
601     return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
602 
603   case LookupResult::Found:
604   case LookupResult::FoundOverloaded:
605   case LookupResult::FoundUnresolvedValue:
606     break;
607 
608   case LookupResult::Ambiguous:
609     if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
610         hasAnyAcceptableTemplateNames(Result)) {
611       // C++ [temp.local]p3:
612       //   A lookup that finds an injected-class-name (10.2) can result in an
613       //   ambiguity in certain cases (for example, if it is found in more than
614       //   one base class). If all of the injected-class-names that are found
615       //   refer to specializations of the same class template, and if the name
616       //   is followed by a template-argument-list, the reference refers to the
617       //   class template itself and not a specialization thereof, and is not
618       //   ambiguous.
619       //
620       // This filtering can make an ambiguous result into an unambiguous one,
621       // so try again after filtering out template names.
622       FilterAcceptableTemplateNames(Result);
623       if (!Result.isAmbiguous()) {
624         IsFilteredTemplateName = true;
625         break;
626       }
627     }
628 
629     // Diagnose the ambiguity and return an error.
630     return NameClassification::Error();
631   }
632 
633   if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
634       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
635     // C++ [temp.names]p3:
636     //   After name lookup (3.4) finds that a name is a template-name or that
637     //   an operator-function-id or a literal- operator-id refers to a set of
638     //   overloaded functions any member of which is a function template if
639     //   this is followed by a <, the < is always taken as the delimiter of a
640     //   template-argument-list and never as the less-than operator.
641     if (!IsFilteredTemplateName)
642       FilterAcceptableTemplateNames(Result);
643 
644     if (!Result.empty()) {
645       bool IsFunctionTemplate;
646       TemplateName Template;
647       if (Result.end() - Result.begin() > 1) {
648         IsFunctionTemplate = true;
649         Template = Context.getOverloadedTemplateName(Result.begin(),
650                                                      Result.end());
651       } else {
652         TemplateDecl *TD
653           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
654         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
655 
656         if (SS.isSet() && !SS.isInvalid())
657           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
658                                                     /*TemplateKeyword=*/false,
659                                                       TD);
660         else
661           Template = TemplateName(TD);
662       }
663 
664       if (IsFunctionTemplate) {
665         // Function templates always go through overload resolution, at which
666         // point we'll perform the various checks (e.g., accessibility) we need
667         // to based on which function we selected.
668         Result.suppressDiagnostics();
669 
670         return NameClassification::FunctionTemplate(Template);
671       }
672 
673       return NameClassification::TypeTemplate(Template);
674     }
675   }
676 
677   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
678   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
679     DiagnoseUseOfDecl(Type, NameLoc);
680     QualType T = Context.getTypeDeclType(Type);
681     return ParsedType::make(T);
682   }
683 
684   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
685   if (!Class) {
686     // FIXME: It's unfortunate that we don't have a Type node for handling this.
687     if (ObjCCompatibleAliasDecl *Alias
688                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
689       Class = Alias->getClassInterface();
690   }
691 
692   if (Class) {
693     DiagnoseUseOfDecl(Class, NameLoc);
694 
695     if (NextToken.is(tok::period)) {
696       // Interface. <something> is parsed as a property reference expression.
697       // Just return "unknown" as a fall-through for now.
698       Result.suppressDiagnostics();
699       return NameClassification::Unknown();
700     }
701 
702     QualType T = Context.getObjCInterfaceType(Class);
703     return ParsedType::make(T);
704   }
705 
706   if (!Result.empty() && (*Result.begin())->isCXXClassMember())
707     return BuildPossibleImplicitMemberExpr(SS, Result, 0);
708 
709   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
710   return BuildDeclarationNameExpr(SS, Result, ADL);
711 }
712 
713 // Determines the context to return to after temporarily entering a
714 // context.  This depends in an unnecessarily complicated way on the
715 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)716 DeclContext *Sema::getContainingDC(DeclContext *DC) {
717 
718   // Functions defined inline within classes aren't parsed until we've
719   // finished parsing the top-level class, so the top-level class is
720   // the context we'll need to return to.
721   if (isa<FunctionDecl>(DC)) {
722     DC = DC->getLexicalParent();
723 
724     // A function not defined within a class will always return to its
725     // lexical context.
726     if (!isa<CXXRecordDecl>(DC))
727       return DC;
728 
729     // A C++ inline method/friend is parsed *after* the topmost class
730     // it was declared in is fully parsed ("complete");  the topmost
731     // class is the context we need to return to.
732     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
733       DC = RD;
734 
735     // Return the declaration context of the topmost class the inline method is
736     // declared in.
737     return DC;
738   }
739 
740   // ObjCMethodDecls are parsed (for some reason) outside the context
741   // of the class.
742   if (isa<ObjCMethodDecl>(DC))
743     return DC->getLexicalParent()->getLexicalParent();
744 
745   return DC->getLexicalParent();
746 }
747 
PushDeclContext(Scope * S,DeclContext * DC)748 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
749   assert(getContainingDC(DC) == CurContext &&
750       "The next DeclContext should be lexically contained in the current one.");
751   CurContext = DC;
752   S->setEntity(DC);
753 }
754 
PopDeclContext()755 void Sema::PopDeclContext() {
756   assert(CurContext && "DeclContext imbalance!");
757 
758   CurContext = getContainingDC(CurContext);
759   assert(CurContext && "Popped translation unit!");
760 }
761 
762 /// EnterDeclaratorContext - Used when we must lookup names in the context
763 /// of a declarator's nested name specifier.
764 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)765 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
766   // C++0x [basic.lookup.unqual]p13:
767   //   A name used in the definition of a static data member of class
768   //   X (after the qualified-id of the static member) is looked up as
769   //   if the name was used in a member function of X.
770   // C++0x [basic.lookup.unqual]p14:
771   //   If a variable member of a namespace is defined outside of the
772   //   scope of its namespace then any name used in the definition of
773   //   the variable member (after the declarator-id) is looked up as
774   //   if the definition of the variable member occurred in its
775   //   namespace.
776   // Both of these imply that we should push a scope whose context
777   // is the semantic context of the declaration.  We can't use
778   // PushDeclContext here because that context is not necessarily
779   // lexically contained in the current context.  Fortunately,
780   // the containing scope should have the appropriate information.
781 
782   assert(!S->getEntity() && "scope already has entity");
783 
784 #ifndef NDEBUG
785   Scope *Ancestor = S->getParent();
786   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
787   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
788 #endif
789 
790   CurContext = DC;
791   S->setEntity(DC);
792 }
793 
ExitDeclaratorContext(Scope * S)794 void Sema::ExitDeclaratorContext(Scope *S) {
795   assert(S->getEntity() == CurContext && "Context imbalance!");
796 
797   // Switch back to the lexical context.  The safety of this is
798   // enforced by an assert in EnterDeclaratorContext.
799   Scope *Ancestor = S->getParent();
800   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
801   CurContext = (DeclContext*) Ancestor->getEntity();
802 
803   // We don't need to do anything with the scope, which is going to
804   // disappear.
805 }
806 
807 /// \brief Determine whether we allow overloading of the function
808 /// PrevDecl with another declaration.
809 ///
810 /// This routine determines whether overloading is possible, not
811 /// whether some new function is actually an overload. It will return
812 /// true in C++ (where we can always provide overloads) or, as an
813 /// extension, in C when the previous function is already an
814 /// overloaded function declaration or has the "overloadable"
815 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)816 static bool AllowOverloadingOfFunction(LookupResult &Previous,
817                                        ASTContext &Context) {
818   if (Context.getLangOptions().CPlusPlus)
819     return true;
820 
821   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
822     return true;
823 
824   return (Previous.getResultKind() == LookupResult::Found
825           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
826 }
827 
828 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)829 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
830   // Move up the scope chain until we find the nearest enclosing
831   // non-transparent context. The declaration will be introduced into this
832   // scope.
833   while (S->getEntity() &&
834          ((DeclContext *)S->getEntity())->isTransparentContext())
835     S = S->getParent();
836 
837   // Add scoped declarations into their context, so that they can be
838   // found later. Declarations without a context won't be inserted
839   // into any context.
840   if (AddToContext)
841     CurContext->addDecl(D);
842 
843   // Out-of-line definitions shouldn't be pushed into scope in C++.
844   // Out-of-line variable and function definitions shouldn't even in C.
845   if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
846       D->isOutOfLine())
847     return;
848 
849   // Template instantiations should also not be pushed into scope.
850   if (isa<FunctionDecl>(D) &&
851       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
852     return;
853 
854   // If this replaces anything in the current scope,
855   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
856                                IEnd = IdResolver.end();
857   for (; I != IEnd; ++I) {
858     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
859       S->RemoveDecl(*I);
860       IdResolver.RemoveDecl(*I);
861 
862       // Should only need to replace one decl.
863       break;
864     }
865   }
866 
867   S->AddDecl(D);
868 
869   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
870     // Implicitly-generated labels may end up getting generated in an order that
871     // isn't strictly lexical, which breaks name lookup. Be careful to insert
872     // the label at the appropriate place in the identifier chain.
873     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
874       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
875       if (IDC == CurContext) {
876         if (!S->isDeclScope(*I))
877           continue;
878       } else if (IDC->Encloses(CurContext))
879         break;
880     }
881 
882     IdResolver.InsertDeclAfter(I, D);
883   } else {
884     IdResolver.AddDecl(D);
885   }
886 }
887 
isDeclInScope(NamedDecl * & D,DeclContext * Ctx,Scope * S,bool ExplicitInstantiationOrSpecialization)888 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
889                          bool ExplicitInstantiationOrSpecialization) {
890   return IdResolver.isDeclInScope(D, Ctx, Context, S,
891                                   ExplicitInstantiationOrSpecialization);
892 }
893 
getScopeForDeclContext(Scope * S,DeclContext * DC)894 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
895   DeclContext *TargetDC = DC->getPrimaryContext();
896   do {
897     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
898       if (ScopeDC->getPrimaryContext() == TargetDC)
899         return S;
900   } while ((S = S->getParent()));
901 
902   return 0;
903 }
904 
905 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
906                                             DeclContext*,
907                                             ASTContext&);
908 
909 /// Filters out lookup results that don't fall within the given scope
910 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool ExplicitInstantiationOrSpecialization)911 void Sema::FilterLookupForScope(LookupResult &R,
912                                 DeclContext *Ctx, Scope *S,
913                                 bool ConsiderLinkage,
914                                 bool ExplicitInstantiationOrSpecialization) {
915   LookupResult::Filter F = R.makeFilter();
916   while (F.hasNext()) {
917     NamedDecl *D = F.next();
918 
919     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
920       continue;
921 
922     if (ConsiderLinkage &&
923         isOutOfScopePreviousDeclaration(D, Ctx, Context))
924       continue;
925 
926     F.erase();
927   }
928 
929   F.done();
930 }
931 
isUsingDecl(NamedDecl * D)932 static bool isUsingDecl(NamedDecl *D) {
933   return isa<UsingShadowDecl>(D) ||
934          isa<UnresolvedUsingTypenameDecl>(D) ||
935          isa<UnresolvedUsingValueDecl>(D);
936 }
937 
938 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)939 static void RemoveUsingDecls(LookupResult &R) {
940   LookupResult::Filter F = R.makeFilter();
941   while (F.hasNext())
942     if (isUsingDecl(F.next()))
943       F.erase();
944 
945   F.done();
946 }
947 
948 /// \brief Check for this common pattern:
949 /// @code
950 /// class S {
951 ///   S(const S&); // DO NOT IMPLEMENT
952 ///   void operator=(const S&); // DO NOT IMPLEMENT
953 /// };
954 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)955 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
956   // FIXME: Should check for private access too but access is set after we get
957   // the decl here.
958   if (D->doesThisDeclarationHaveABody())
959     return false;
960 
961   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
962     return CD->isCopyConstructor();
963   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
964     return Method->isCopyAssignmentOperator();
965   return false;
966 }
967 
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const968 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
969   assert(D);
970 
971   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
972     return false;
973 
974   // Ignore class templates.
975   if (D->getDeclContext()->isDependentContext() ||
976       D->getLexicalDeclContext()->isDependentContext())
977     return false;
978 
979   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
980     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
981       return false;
982 
983     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
984       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
985         return false;
986     } else {
987       // 'static inline' functions are used in headers; don't warn.
988       if (FD->getStorageClass() == SC_Static &&
989           FD->isInlineSpecified())
990         return false;
991     }
992 
993     if (FD->doesThisDeclarationHaveABody() &&
994         Context.DeclMustBeEmitted(FD))
995       return false;
996   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
997     if (!VD->isFileVarDecl() ||
998         VD->getType().isConstant(Context) ||
999         Context.DeclMustBeEmitted(VD))
1000       return false;
1001 
1002     if (VD->isStaticDataMember() &&
1003         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1004       return false;
1005 
1006   } else {
1007     return false;
1008   }
1009 
1010   // Only warn for unused decls internal to the translation unit.
1011   if (D->getLinkage() == ExternalLinkage)
1012     return false;
1013 
1014   return true;
1015 }
1016 
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1017 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1018   if (!D)
1019     return;
1020 
1021   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1022     const FunctionDecl *First = FD->getFirstDeclaration();
1023     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1024       return; // First should already be in the vector.
1025   }
1026 
1027   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1028     const VarDecl *First = VD->getFirstDeclaration();
1029     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1030       return; // First should already be in the vector.
1031   }
1032 
1033    if (ShouldWarnIfUnusedFileScopedDecl(D))
1034      UnusedFileScopedDecls.push_back(D);
1035  }
1036 
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1037 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1038   if (D->isInvalidDecl())
1039     return false;
1040 
1041   if (D->isUsed() || D->hasAttr<UnusedAttr>())
1042     return false;
1043 
1044   if (isa<LabelDecl>(D))
1045     return true;
1046 
1047   // White-list anything that isn't a local variable.
1048   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1049       !D->getDeclContext()->isFunctionOrMethod())
1050     return false;
1051 
1052   // Types of valid local variables should be complete, so this should succeed.
1053   if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1054 
1055     // White-list anything with an __attribute__((unused)) type.
1056     QualType Ty = VD->getType();
1057 
1058     // Only look at the outermost level of typedef.
1059     if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1060       if (TT->getDecl()->hasAttr<UnusedAttr>())
1061         return false;
1062     }
1063 
1064     // If we failed to complete the type for some reason, or if the type is
1065     // dependent, don't diagnose the variable.
1066     if (Ty->isIncompleteType() || Ty->isDependentType())
1067       return false;
1068 
1069     if (const TagType *TT = Ty->getAs<TagType>()) {
1070       const TagDecl *Tag = TT->getDecl();
1071       if (Tag->hasAttr<UnusedAttr>())
1072         return false;
1073 
1074       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1075         // FIXME: Checking for the presence of a user-declared constructor
1076         // isn't completely accurate; we'd prefer to check that the initializer
1077         // has no side effects.
1078         if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1079           return false;
1080       }
1081     }
1082 
1083     // TODO: __attribute__((unused)) templates?
1084   }
1085 
1086   return true;
1087 }
1088 
1089 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1090 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1091 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1092   if (!ShouldDiagnoseUnusedDecl(D))
1093     return;
1094 
1095   unsigned DiagID;
1096   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1097     DiagID = diag::warn_unused_exception_param;
1098   else if (isa<LabelDecl>(D))
1099     DiagID = diag::warn_unused_label;
1100   else
1101     DiagID = diag::warn_unused_variable;
1102 
1103   Diag(D->getLocation(), DiagID) << D->getDeclName();
1104 }
1105 
CheckPoppedLabel(LabelDecl * L,Sema & S)1106 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1107   // Verify that we have no forward references left.  If so, there was a goto
1108   // or address of a label taken, but no definition of it.  Label fwd
1109   // definitions are indicated with a null substmt.
1110   if (L->getStmt() == 0)
1111     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1112 }
1113 
ActOnPopScope(SourceLocation Loc,Scope * S)1114 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1115   if (S->decl_empty()) return;
1116   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1117          "Scope shouldn't contain decls!");
1118 
1119   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1120        I != E; ++I) {
1121     Decl *TmpD = (*I);
1122     assert(TmpD && "This decl didn't get pushed??");
1123 
1124     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1125     NamedDecl *D = cast<NamedDecl>(TmpD);
1126 
1127     if (!D->getDeclName()) continue;
1128 
1129     // Diagnose unused variables in this scope.
1130     if (!S->hasErrorOccurred())
1131       DiagnoseUnusedDecl(D);
1132 
1133     // If this was a forward reference to a label, verify it was defined.
1134     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1135       CheckPoppedLabel(LD, *this);
1136 
1137     // Remove this name from our lexical scope.
1138     IdResolver.RemoveDecl(D);
1139   }
1140 }
1141 
1142 /// \brief Look for an Objective-C class in the translation unit.
1143 ///
1144 /// \param Id The name of the Objective-C class we're looking for. If
1145 /// typo-correction fixes this name, the Id will be updated
1146 /// to the fixed name.
1147 ///
1148 /// \param IdLoc The location of the name in the translation unit.
1149 ///
1150 /// \param TypoCorrection If true, this routine will attempt typo correction
1151 /// if there is no class with the given name.
1152 ///
1153 /// \returns The declaration of the named Objective-C class, or NULL if the
1154 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1155 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1156                                               SourceLocation IdLoc,
1157                                               bool DoTypoCorrection) {
1158   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1159   // creation from this context.
1160   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1161 
1162   if (!IDecl && DoTypoCorrection) {
1163     // Perform typo correction at the given location, but only if we
1164     // find an Objective-C class name.
1165     TypoCorrection C;
1166     if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1167                          TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1168         (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1169       Diag(IdLoc, diag::err_undef_interface_suggest)
1170         << Id << IDecl->getDeclName()
1171         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1172       Diag(IDecl->getLocation(), diag::note_previous_decl)
1173         << IDecl->getDeclName();
1174 
1175       Id = IDecl->getIdentifier();
1176     }
1177   }
1178 
1179   return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1180 }
1181 
1182 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1183 /// from S, where a non-field would be declared. This routine copes
1184 /// with the difference between C and C++ scoping rules in structs and
1185 /// unions. For example, the following code is well-formed in C but
1186 /// ill-formed in C++:
1187 /// @code
1188 /// struct S6 {
1189 ///   enum { BAR } e;
1190 /// };
1191 ///
1192 /// void test_S6() {
1193 ///   struct S6 a;
1194 ///   a.e = BAR;
1195 /// }
1196 /// @endcode
1197 /// For the declaration of BAR, this routine will return a different
1198 /// scope. The scope S will be the scope of the unnamed enumeration
1199 /// within S6. In C++, this routine will return the scope associated
1200 /// with S6, because the enumeration's scope is a transparent
1201 /// context but structures can contain non-field names. In C, this
1202 /// routine will return the translation unit scope, since the
1203 /// enumeration's scope is a transparent context and structures cannot
1204 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1205 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1206   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1207          (S->getEntity() &&
1208           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1209          (S->isClassScope() && !getLangOptions().CPlusPlus))
1210     S = S->getParent();
1211   return S;
1212 }
1213 
1214 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1215 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1216 /// if we're creating this built-in in anticipation of redeclaring the
1217 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned bid,Scope * S,bool ForRedeclaration,SourceLocation Loc)1218 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1219                                      Scope *S, bool ForRedeclaration,
1220                                      SourceLocation Loc) {
1221   Builtin::ID BID = (Builtin::ID)bid;
1222 
1223   ASTContext::GetBuiltinTypeError Error;
1224   QualType R = Context.GetBuiltinType(BID, Error);
1225   switch (Error) {
1226   case ASTContext::GE_None:
1227     // Okay
1228     break;
1229 
1230   case ASTContext::GE_Missing_stdio:
1231     if (ForRedeclaration)
1232       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1233         << Context.BuiltinInfo.GetName(BID);
1234     return 0;
1235 
1236   case ASTContext::GE_Missing_setjmp:
1237     if (ForRedeclaration)
1238       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1239         << Context.BuiltinInfo.GetName(BID);
1240     return 0;
1241   }
1242 
1243   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1244     Diag(Loc, diag::ext_implicit_lib_function_decl)
1245       << Context.BuiltinInfo.GetName(BID)
1246       << R;
1247     if (Context.BuiltinInfo.getHeaderName(BID) &&
1248         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1249           != Diagnostic::Ignored)
1250       Diag(Loc, diag::note_please_include_header)
1251         << Context.BuiltinInfo.getHeaderName(BID)
1252         << Context.BuiltinInfo.GetName(BID);
1253   }
1254 
1255   FunctionDecl *New = FunctionDecl::Create(Context,
1256                                            Context.getTranslationUnitDecl(),
1257                                            Loc, Loc, II, R, /*TInfo=*/0,
1258                                            SC_Extern,
1259                                            SC_None, false,
1260                                            /*hasPrototype=*/true);
1261   New->setImplicit();
1262 
1263   // Create Decl objects for each parameter, adding them to the
1264   // FunctionDecl.
1265   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1266     llvm::SmallVector<ParmVarDecl*, 16> Params;
1267     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1268       ParmVarDecl *parm =
1269         ParmVarDecl::Create(Context, New, SourceLocation(),
1270                             SourceLocation(), 0,
1271                             FT->getArgType(i), /*TInfo=*/0,
1272                             SC_None, SC_None, 0);
1273       parm->setScopeInfo(0, i);
1274       Params.push_back(parm);
1275     }
1276     New->setParams(Params.data(), Params.size());
1277   }
1278 
1279   AddKnownFunctionAttributes(New);
1280 
1281   // TUScope is the translation-unit scope to insert this function into.
1282   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1283   // relate Scopes to DeclContexts, and probably eliminate CurContext
1284   // entirely, but we're not there yet.
1285   DeclContext *SavedContext = CurContext;
1286   CurContext = Context.getTranslationUnitDecl();
1287   PushOnScopeChains(New, TUScope);
1288   CurContext = SavedContext;
1289   return New;
1290 }
1291 
1292 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1293 /// same name and scope as a previous declaration 'Old'.  Figure out
1294 /// how to resolve this situation, merging decls or emitting
1295 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1296 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1297 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1298   // If the new decl is known invalid already, don't bother doing any
1299   // merging checks.
1300   if (New->isInvalidDecl()) return;
1301 
1302   // Allow multiple definitions for ObjC built-in typedefs.
1303   // FIXME: Verify the underlying types are equivalent!
1304   if (getLangOptions().ObjC1) {
1305     const IdentifierInfo *TypeID = New->getIdentifier();
1306     switch (TypeID->getLength()) {
1307     default: break;
1308     case 2:
1309       if (!TypeID->isStr("id"))
1310         break;
1311       Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1312       // Install the built-in type for 'id', ignoring the current definition.
1313       New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1314       return;
1315     case 5:
1316       if (!TypeID->isStr("Class"))
1317         break;
1318       Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1319       // Install the built-in type for 'Class', ignoring the current definition.
1320       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1321       return;
1322     case 3:
1323       if (!TypeID->isStr("SEL"))
1324         break;
1325       Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1326       // Install the built-in type for 'SEL', ignoring the current definition.
1327       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1328       return;
1329     case 8:
1330       if (!TypeID->isStr("Protocol"))
1331         break;
1332       Context.setObjCProtoType(New->getUnderlyingType());
1333       return;
1334     }
1335     // Fall through - the typedef name was not a builtin type.
1336   }
1337 
1338   // Verify the old decl was also a type.
1339   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1340   if (!Old) {
1341     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1342       << New->getDeclName();
1343 
1344     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1345     if (OldD->getLocation().isValid())
1346       Diag(OldD->getLocation(), diag::note_previous_definition);
1347 
1348     return New->setInvalidDecl();
1349   }
1350 
1351   // If the old declaration is invalid, just give up here.
1352   if (Old->isInvalidDecl())
1353     return New->setInvalidDecl();
1354 
1355   // Determine the "old" type we'll use for checking and diagnostics.
1356   QualType OldType;
1357   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1358     OldType = OldTypedef->getUnderlyingType();
1359   else
1360     OldType = Context.getTypeDeclType(Old);
1361 
1362   // If the typedef types are not identical, reject them in all languages and
1363   // with any extensions enabled.
1364 
1365   if (OldType != New->getUnderlyingType() &&
1366       Context.getCanonicalType(OldType) !=
1367       Context.getCanonicalType(New->getUnderlyingType())) {
1368     int Kind = 0;
1369     if (isa<TypeAliasDecl>(Old))
1370       Kind = 1;
1371     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1372       << Kind << New->getUnderlyingType() << OldType;
1373     if (Old->getLocation().isValid())
1374       Diag(Old->getLocation(), diag::note_previous_definition);
1375     return New->setInvalidDecl();
1376   }
1377 
1378   // The types match.  Link up the redeclaration chain if the old
1379   // declaration was a typedef.
1380   // FIXME: this is a potential source of weirdness if the type
1381   // spellings don't match exactly.
1382   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1383     New->setPreviousDeclaration(Typedef);
1384 
1385   if (getLangOptions().Microsoft)
1386     return;
1387 
1388   if (getLangOptions().CPlusPlus) {
1389     // C++ [dcl.typedef]p2:
1390     //   In a given non-class scope, a typedef specifier can be used to
1391     //   redefine the name of any type declared in that scope to refer
1392     //   to the type to which it already refers.
1393     if (!isa<CXXRecordDecl>(CurContext))
1394       return;
1395 
1396     // C++0x [dcl.typedef]p4:
1397     //   In a given class scope, a typedef specifier can be used to redefine
1398     //   any class-name declared in that scope that is not also a typedef-name
1399     //   to refer to the type to which it already refers.
1400     //
1401     // This wording came in via DR424, which was a correction to the
1402     // wording in DR56, which accidentally banned code like:
1403     //
1404     //   struct S {
1405     //     typedef struct A { } A;
1406     //   };
1407     //
1408     // in the C++03 standard. We implement the C++0x semantics, which
1409     // allow the above but disallow
1410     //
1411     //   struct S {
1412     //     typedef int I;
1413     //     typedef int I;
1414     //   };
1415     //
1416     // since that was the intent of DR56.
1417     if (!isa<TypedefNameDecl>(Old))
1418       return;
1419 
1420     Diag(New->getLocation(), diag::err_redefinition)
1421       << New->getDeclName();
1422     Diag(Old->getLocation(), diag::note_previous_definition);
1423     return New->setInvalidDecl();
1424   }
1425 
1426   // If we have a redefinition of a typedef in C, emit a warning.  This warning
1427   // is normally mapped to an error, but can be controlled with
1428   // -Wtypedef-redefinition.  If either the original or the redefinition is
1429   // in a system header, don't emit this for compatibility with GCC.
1430   if (getDiagnostics().getSuppressSystemWarnings() &&
1431       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1432        Context.getSourceManager().isInSystemHeader(New->getLocation())))
1433     return;
1434 
1435   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1436     << New->getDeclName();
1437   Diag(Old->getLocation(), diag::note_previous_definition);
1438   return;
1439 }
1440 
1441 /// DeclhasAttr - returns true if decl Declaration already has the target
1442 /// attribute.
1443 static bool
DeclHasAttr(const Decl * D,const Attr * A)1444 DeclHasAttr(const Decl *D, const Attr *A) {
1445   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1446   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1447     if ((*i)->getKind() == A->getKind()) {
1448       // FIXME: Don't hardcode this check
1449       if (OA && isa<OwnershipAttr>(*i))
1450         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1451       return true;
1452     }
1453 
1454   return false;
1455 }
1456 
1457 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(Decl * newDecl,const Decl * oldDecl,ASTContext & C)1458 static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1459                                 ASTContext &C) {
1460   if (!oldDecl->hasAttrs())
1461     return;
1462 
1463   bool foundAny = newDecl->hasAttrs();
1464 
1465   // Ensure that any moving of objects within the allocated map is done before
1466   // we process them.
1467   if (!foundAny) newDecl->setAttrs(AttrVec());
1468 
1469   for (specific_attr_iterator<InheritableAttr>
1470        i = oldDecl->specific_attr_begin<InheritableAttr>(),
1471        e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1472     if (!DeclHasAttr(newDecl, *i)) {
1473       InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1474       newAttr->setInherited(true);
1475       newDecl->addAttr(newAttr);
1476       foundAny = true;
1477     }
1478   }
1479 
1480   if (!foundAny) newDecl->dropAttrs();
1481 }
1482 
1483 /// mergeParamDeclAttributes - Copy attributes from the old parameter
1484 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,ASTContext & C)1485 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1486                                      const ParmVarDecl *oldDecl,
1487                                      ASTContext &C) {
1488   if (!oldDecl->hasAttrs())
1489     return;
1490 
1491   bool foundAny = newDecl->hasAttrs();
1492 
1493   // Ensure that any moving of objects within the allocated map is
1494   // done before we process them.
1495   if (!foundAny) newDecl->setAttrs(AttrVec());
1496 
1497   for (specific_attr_iterator<InheritableParamAttr>
1498        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1499        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1500     if (!DeclHasAttr(newDecl, *i)) {
1501       InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1502       newAttr->setInherited(true);
1503       newDecl->addAttr(newAttr);
1504       foundAny = true;
1505     }
1506   }
1507 
1508   if (!foundAny) newDecl->dropAttrs();
1509 }
1510 
1511 namespace {
1512 
1513 /// Used in MergeFunctionDecl to keep track of function parameters in
1514 /// C.
1515 struct GNUCompatibleParamWarning {
1516   ParmVarDecl *OldParm;
1517   ParmVarDecl *NewParm;
1518   QualType PromotedType;
1519 };
1520 
1521 }
1522 
1523 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)1524 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1525   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1526     if (Ctor->isDefaultConstructor())
1527       return Sema::CXXDefaultConstructor;
1528 
1529     if (Ctor->isCopyConstructor())
1530       return Sema::CXXCopyConstructor;
1531 
1532     if (Ctor->isMoveConstructor())
1533       return Sema::CXXMoveConstructor;
1534   } else if (isa<CXXDestructorDecl>(MD)) {
1535     return Sema::CXXDestructor;
1536   } else if (MD->isCopyAssignmentOperator()) {
1537     return Sema::CXXCopyAssignment;
1538   }
1539 
1540   return Sema::CXXInvalid;
1541 }
1542 
1543 /// canRedefineFunction - checks if a function can be redefined. Currently,
1544 /// only extern inline functions can be redefined, and even then only in
1545 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)1546 static bool canRedefineFunction(const FunctionDecl *FD,
1547                                 const LangOptions& LangOpts) {
1548   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1549           !LangOpts.CPlusPlus &&
1550           FD->isInlineSpecified() &&
1551           FD->getStorageClass() == SC_Extern);
1552 }
1553 
1554 /// MergeFunctionDecl - We just parsed a function 'New' from
1555 /// declarator D which has the same name and scope as a previous
1556 /// declaration 'Old'.  Figure out how to resolve this situation,
1557 /// merging decls or emitting diagnostics as appropriate.
1558 ///
1559 /// In C++, New and Old must be declarations that are not
1560 /// overloaded. Use IsOverload to determine whether New and Old are
1561 /// overloaded, and to select the Old declaration that New should be
1562 /// merged with.
1563 ///
1564 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,Decl * OldD)1565 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1566   // Verify the old decl was also a function.
1567   FunctionDecl *Old = 0;
1568   if (FunctionTemplateDecl *OldFunctionTemplate
1569         = dyn_cast<FunctionTemplateDecl>(OldD))
1570     Old = OldFunctionTemplate->getTemplatedDecl();
1571   else
1572     Old = dyn_cast<FunctionDecl>(OldD);
1573   if (!Old) {
1574     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1575       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1576       Diag(Shadow->getTargetDecl()->getLocation(),
1577            diag::note_using_decl_target);
1578       Diag(Shadow->getUsingDecl()->getLocation(),
1579            diag::note_using_decl) << 0;
1580       return true;
1581     }
1582 
1583     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1584       << New->getDeclName();
1585     Diag(OldD->getLocation(), diag::note_previous_definition);
1586     return true;
1587   }
1588 
1589   // Determine whether the previous declaration was a definition,
1590   // implicit declaration, or a declaration.
1591   diag::kind PrevDiag;
1592   if (Old->isThisDeclarationADefinition())
1593     PrevDiag = diag::note_previous_definition;
1594   else if (Old->isImplicit())
1595     PrevDiag = diag::note_previous_implicit_declaration;
1596   else
1597     PrevDiag = diag::note_previous_declaration;
1598 
1599   QualType OldQType = Context.getCanonicalType(Old->getType());
1600   QualType NewQType = Context.getCanonicalType(New->getType());
1601 
1602   // Don't complain about this if we're in GNU89 mode and the old function
1603   // is an extern inline function.
1604   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1605       New->getStorageClass() == SC_Static &&
1606       Old->getStorageClass() != SC_Static &&
1607       !canRedefineFunction(Old, getLangOptions())) {
1608     if (getLangOptions().Microsoft) {
1609       Diag(New->getLocation(), diag::warn_static_non_static) << New;
1610       Diag(Old->getLocation(), PrevDiag);
1611     } else {
1612       Diag(New->getLocation(), diag::err_static_non_static) << New;
1613       Diag(Old->getLocation(), PrevDiag);
1614       return true;
1615     }
1616   }
1617 
1618   // If a function is first declared with a calling convention, but is
1619   // later declared or defined without one, the second decl assumes the
1620   // calling convention of the first.
1621   //
1622   // For the new decl, we have to look at the NON-canonical type to tell the
1623   // difference between a function that really doesn't have a calling
1624   // convention and one that is declared cdecl. That's because in
1625   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1626   // because it is the default calling convention.
1627   //
1628   // Note also that we DO NOT return at this point, because we still have
1629   // other tests to run.
1630   const FunctionType *OldType = cast<FunctionType>(OldQType);
1631   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1632   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1633   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1634   bool RequiresAdjustment = false;
1635   if (OldTypeInfo.getCC() != CC_Default &&
1636       NewTypeInfo.getCC() == CC_Default) {
1637     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1638     RequiresAdjustment = true;
1639   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1640                                      NewTypeInfo.getCC())) {
1641     // Calling conventions really aren't compatible, so complain.
1642     Diag(New->getLocation(), diag::err_cconv_change)
1643       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1644       << (OldTypeInfo.getCC() == CC_Default)
1645       << (OldTypeInfo.getCC() == CC_Default ? "" :
1646           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1647     Diag(Old->getLocation(), diag::note_previous_declaration);
1648     return true;
1649   }
1650 
1651   // FIXME: diagnose the other way around?
1652   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1653     NewTypeInfo = NewTypeInfo.withNoReturn(true);
1654     RequiresAdjustment = true;
1655   }
1656 
1657   // Merge regparm attribute.
1658   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1659       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1660     if (NewTypeInfo.getHasRegParm()) {
1661       Diag(New->getLocation(), diag::err_regparm_mismatch)
1662         << NewType->getRegParmType()
1663         << OldType->getRegParmType();
1664       Diag(Old->getLocation(), diag::note_previous_declaration);
1665       return true;
1666     }
1667 
1668     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1669     RequiresAdjustment = true;
1670   }
1671 
1672   if (RequiresAdjustment) {
1673     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1674     New->setType(QualType(NewType, 0));
1675     NewQType = Context.getCanonicalType(New->getType());
1676   }
1677 
1678   if (getLangOptions().CPlusPlus) {
1679     // (C++98 13.1p2):
1680     //   Certain function declarations cannot be overloaded:
1681     //     -- Function declarations that differ only in the return type
1682     //        cannot be overloaded.
1683     QualType OldReturnType = OldType->getResultType();
1684     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1685     QualType ResQT;
1686     if (OldReturnType != NewReturnType) {
1687       if (NewReturnType->isObjCObjectPointerType()
1688           && OldReturnType->isObjCObjectPointerType())
1689         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1690       if (ResQT.isNull()) {
1691         if (New->isCXXClassMember() && New->isOutOfLine())
1692           Diag(New->getLocation(),
1693                diag::err_member_def_does_not_match_ret_type) << New;
1694         else
1695           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1696         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1697         return true;
1698       }
1699       else
1700         NewQType = ResQT;
1701     }
1702 
1703     const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1704     CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1705     if (OldMethod && NewMethod) {
1706       // Preserve triviality.
1707       NewMethod->setTrivial(OldMethod->isTrivial());
1708 
1709       bool isFriend = NewMethod->getFriendObjectKind();
1710 
1711       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1712         //    -- Member function declarations with the same name and the
1713         //       same parameter types cannot be overloaded if any of them
1714         //       is a static member function declaration.
1715         if (OldMethod->isStatic() || NewMethod->isStatic()) {
1716           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1717           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1718           return true;
1719         }
1720 
1721         // C++ [class.mem]p1:
1722         //   [...] A member shall not be declared twice in the
1723         //   member-specification, except that a nested class or member
1724         //   class template can be declared and then later defined.
1725         unsigned NewDiag;
1726         if (isa<CXXConstructorDecl>(OldMethod))
1727           NewDiag = diag::err_constructor_redeclared;
1728         else if (isa<CXXDestructorDecl>(NewMethod))
1729           NewDiag = diag::err_destructor_redeclared;
1730         else if (isa<CXXConversionDecl>(NewMethod))
1731           NewDiag = diag::err_conv_function_redeclared;
1732         else
1733           NewDiag = diag::err_member_redeclared;
1734 
1735         Diag(New->getLocation(), NewDiag);
1736         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1737 
1738       // Complain if this is an explicit declaration of a special
1739       // member that was initially declared implicitly.
1740       //
1741       // As an exception, it's okay to befriend such methods in order
1742       // to permit the implicit constructor/destructor/operator calls.
1743       } else if (OldMethod->isImplicit()) {
1744         if (isFriend) {
1745           NewMethod->setImplicit();
1746         } else {
1747           Diag(NewMethod->getLocation(),
1748                diag::err_definition_of_implicitly_declared_member)
1749             << New << getSpecialMember(OldMethod);
1750           return true;
1751         }
1752       } else if (OldMethod->isExplicitlyDefaulted()) {
1753         Diag(NewMethod->getLocation(),
1754              diag::err_definition_of_explicitly_defaulted_member)
1755           << getSpecialMember(OldMethod);
1756         return true;
1757       }
1758     }
1759 
1760     // (C++98 8.3.5p3):
1761     //   All declarations for a function shall agree exactly in both the
1762     //   return type and the parameter-type-list.
1763     // We also want to respect all the extended bits except noreturn.
1764 
1765     // noreturn should now match unless the old type info didn't have it.
1766     QualType OldQTypeForComparison = OldQType;
1767     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1768       assert(OldQType == QualType(OldType, 0));
1769       const FunctionType *OldTypeForComparison
1770         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1771       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1772       assert(OldQTypeForComparison.isCanonical());
1773     }
1774 
1775     if (OldQTypeForComparison == NewQType)
1776       return MergeCompatibleFunctionDecls(New, Old);
1777 
1778     // Fall through for conflicting redeclarations and redefinitions.
1779   }
1780 
1781   // C: Function types need to be compatible, not identical. This handles
1782   // duplicate function decls like "void f(int); void f(enum X);" properly.
1783   if (!getLangOptions().CPlusPlus &&
1784       Context.typesAreCompatible(OldQType, NewQType)) {
1785     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1786     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1787     const FunctionProtoType *OldProto = 0;
1788     if (isa<FunctionNoProtoType>(NewFuncType) &&
1789         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1790       // The old declaration provided a function prototype, but the
1791       // new declaration does not. Merge in the prototype.
1792       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1793       llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1794                                                  OldProto->arg_type_end());
1795       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1796                                          ParamTypes.data(), ParamTypes.size(),
1797                                          OldProto->getExtProtoInfo());
1798       New->setType(NewQType);
1799       New->setHasInheritedPrototype();
1800 
1801       // Synthesize a parameter for each argument type.
1802       llvm::SmallVector<ParmVarDecl*, 16> Params;
1803       for (FunctionProtoType::arg_type_iterator
1804              ParamType = OldProto->arg_type_begin(),
1805              ParamEnd = OldProto->arg_type_end();
1806            ParamType != ParamEnd; ++ParamType) {
1807         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1808                                                  SourceLocation(),
1809                                                  SourceLocation(), 0,
1810                                                  *ParamType, /*TInfo=*/0,
1811                                                  SC_None, SC_None,
1812                                                  0);
1813         Param->setScopeInfo(0, Params.size());
1814         Param->setImplicit();
1815         Params.push_back(Param);
1816       }
1817 
1818       New->setParams(Params.data(), Params.size());
1819     }
1820 
1821     return MergeCompatibleFunctionDecls(New, Old);
1822   }
1823 
1824   // GNU C permits a K&R definition to follow a prototype declaration
1825   // if the declared types of the parameters in the K&R definition
1826   // match the types in the prototype declaration, even when the
1827   // promoted types of the parameters from the K&R definition differ
1828   // from the types in the prototype. GCC then keeps the types from
1829   // the prototype.
1830   //
1831   // If a variadic prototype is followed by a non-variadic K&R definition,
1832   // the K&R definition becomes variadic.  This is sort of an edge case, but
1833   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1834   // C99 6.9.1p8.
1835   if (!getLangOptions().CPlusPlus &&
1836       Old->hasPrototype() && !New->hasPrototype() &&
1837       New->getType()->getAs<FunctionProtoType>() &&
1838       Old->getNumParams() == New->getNumParams()) {
1839     llvm::SmallVector<QualType, 16> ArgTypes;
1840     llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1841     const FunctionProtoType *OldProto
1842       = Old->getType()->getAs<FunctionProtoType>();
1843     const FunctionProtoType *NewProto
1844       = New->getType()->getAs<FunctionProtoType>();
1845 
1846     // Determine whether this is the GNU C extension.
1847     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1848                                                NewProto->getResultType());
1849     bool LooseCompatible = !MergedReturn.isNull();
1850     for (unsigned Idx = 0, End = Old->getNumParams();
1851          LooseCompatible && Idx != End; ++Idx) {
1852       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1853       ParmVarDecl *NewParm = New->getParamDecl(Idx);
1854       if (Context.typesAreCompatible(OldParm->getType(),
1855                                      NewProto->getArgType(Idx))) {
1856         ArgTypes.push_back(NewParm->getType());
1857       } else if (Context.typesAreCompatible(OldParm->getType(),
1858                                             NewParm->getType(),
1859                                             /*CompareUnqualified=*/true)) {
1860         GNUCompatibleParamWarning Warn
1861           = { OldParm, NewParm, NewProto->getArgType(Idx) };
1862         Warnings.push_back(Warn);
1863         ArgTypes.push_back(NewParm->getType());
1864       } else
1865         LooseCompatible = false;
1866     }
1867 
1868     if (LooseCompatible) {
1869       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1870         Diag(Warnings[Warn].NewParm->getLocation(),
1871              diag::ext_param_promoted_not_compatible_with_prototype)
1872           << Warnings[Warn].PromotedType
1873           << Warnings[Warn].OldParm->getType();
1874         if (Warnings[Warn].OldParm->getLocation().isValid())
1875           Diag(Warnings[Warn].OldParm->getLocation(),
1876                diag::note_previous_declaration);
1877       }
1878 
1879       New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1880                                            ArgTypes.size(),
1881                                            OldProto->getExtProtoInfo()));
1882       return MergeCompatibleFunctionDecls(New, Old);
1883     }
1884 
1885     // Fall through to diagnose conflicting types.
1886   }
1887 
1888   // A function that has already been declared has been redeclared or defined
1889   // with a different type- show appropriate diagnostic
1890   if (unsigned BuiltinID = Old->getBuiltinID()) {
1891     // The user has declared a builtin function with an incompatible
1892     // signature.
1893     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1894       // The function the user is redeclaring is a library-defined
1895       // function like 'malloc' or 'printf'. Warn about the
1896       // redeclaration, then pretend that we don't know about this
1897       // library built-in.
1898       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1899       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1900         << Old << Old->getType();
1901       New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1902       Old->setInvalidDecl();
1903       return false;
1904     }
1905 
1906     PrevDiag = diag::note_previous_builtin_declaration;
1907   }
1908 
1909   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1910   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1911   return true;
1912 }
1913 
1914 /// \brief Completes the merge of two function declarations that are
1915 /// known to be compatible.
1916 ///
1917 /// This routine handles the merging of attributes and other
1918 /// properties of function declarations form the old declaration to
1919 /// the new declaration, once we know that New is in fact a
1920 /// redeclaration of Old.
1921 ///
1922 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old)1923 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1924   // Merge the attributes
1925   mergeDeclAttributes(New, Old, Context);
1926 
1927   // Merge the storage class.
1928   if (Old->getStorageClass() != SC_Extern &&
1929       Old->getStorageClass() != SC_None)
1930     New->setStorageClass(Old->getStorageClass());
1931 
1932   // Merge "pure" flag.
1933   if (Old->isPure())
1934     New->setPure();
1935 
1936   // Merge attributes from the parameters.  These can mismatch with K&R
1937   // declarations.
1938   if (New->getNumParams() == Old->getNumParams())
1939     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1940       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1941                                Context);
1942 
1943   if (getLangOptions().CPlusPlus)
1944     return MergeCXXFunctionDecl(New, Old);
1945 
1946   return false;
1947 }
1948 
1949 
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,const ObjCMethodDecl * oldMethod)1950 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1951                                 const ObjCMethodDecl *oldMethod) {
1952   // Merge the attributes.
1953   mergeDeclAttributes(newMethod, oldMethod, Context);
1954 
1955   // Merge attributes from the parameters.
1956   for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1957          ni = newMethod->param_begin(), ne = newMethod->param_end();
1958        ni != ne; ++ni, ++oi)
1959     mergeParamDeclAttributes(*ni, *oi, Context);
1960 
1961   CheckObjCMethodOverride(newMethod, oldMethod, true);
1962 }
1963 
1964 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1965 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1966 /// emitting diagnostics as appropriate.
1967 ///
1968 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1969 /// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1970 /// check them before the initializer is attached.
1971 ///
MergeVarDeclTypes(VarDecl * New,VarDecl * Old)1972 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1973   if (New->isInvalidDecl() || Old->isInvalidDecl())
1974     return;
1975 
1976   QualType MergedT;
1977   if (getLangOptions().CPlusPlus) {
1978     AutoType *AT = New->getType()->getContainedAutoType();
1979     if (AT && !AT->isDeduced()) {
1980       // We don't know what the new type is until the initializer is attached.
1981       return;
1982     } else if (Context.hasSameType(New->getType(), Old->getType())) {
1983       // These could still be something that needs exception specs checked.
1984       return MergeVarDeclExceptionSpecs(New, Old);
1985     }
1986     // C++ [basic.link]p10:
1987     //   [...] the types specified by all declarations referring to a given
1988     //   object or function shall be identical, except that declarations for an
1989     //   array object can specify array types that differ by the presence or
1990     //   absence of a major array bound (8.3.4).
1991     else if (Old->getType()->isIncompleteArrayType() &&
1992              New->getType()->isArrayType()) {
1993       CanQual<ArrayType> OldArray
1994         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1995       CanQual<ArrayType> NewArray
1996         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1997       if (OldArray->getElementType() == NewArray->getElementType())
1998         MergedT = New->getType();
1999     } else if (Old->getType()->isArrayType() &&
2000              New->getType()->isIncompleteArrayType()) {
2001       CanQual<ArrayType> OldArray
2002         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2003       CanQual<ArrayType> NewArray
2004         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2005       if (OldArray->getElementType() == NewArray->getElementType())
2006         MergedT = Old->getType();
2007     } else if (New->getType()->isObjCObjectPointerType()
2008                && Old->getType()->isObjCObjectPointerType()) {
2009         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2010                                                         Old->getType());
2011     }
2012   } else {
2013     MergedT = Context.mergeTypes(New->getType(), Old->getType());
2014   }
2015   if (MergedT.isNull()) {
2016     Diag(New->getLocation(), diag::err_redefinition_different_type)
2017       << New->getDeclName();
2018     Diag(Old->getLocation(), diag::note_previous_definition);
2019     return New->setInvalidDecl();
2020   }
2021   New->setType(MergedT);
2022 }
2023 
2024 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
2025 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2026 /// situation, merging decls or emitting diagnostics as appropriate.
2027 ///
2028 /// Tentative definition rules (C99 6.9.2p2) are checked by
2029 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2030 /// definitions here, since the initializer hasn't been attached.
2031 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)2032 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2033   // If the new decl is already invalid, don't do any other checking.
2034   if (New->isInvalidDecl())
2035     return;
2036 
2037   // Verify the old decl was also a variable.
2038   VarDecl *Old = 0;
2039   if (!Previous.isSingleResult() ||
2040       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2041     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2042       << New->getDeclName();
2043     Diag(Previous.getRepresentativeDecl()->getLocation(),
2044          diag::note_previous_definition);
2045     return New->setInvalidDecl();
2046   }
2047 
2048   // C++ [class.mem]p1:
2049   //   A member shall not be declared twice in the member-specification [...]
2050   //
2051   // Here, we need only consider static data members.
2052   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2053     Diag(New->getLocation(), diag::err_duplicate_member)
2054       << New->getIdentifier();
2055     Diag(Old->getLocation(), diag::note_previous_declaration);
2056     New->setInvalidDecl();
2057   }
2058 
2059   mergeDeclAttributes(New, Old, Context);
2060   // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2061   if (New->getAttr<WeakImportAttr>() &&
2062       Old->getStorageClass() == SC_None &&
2063       !Old->getAttr<WeakImportAttr>()) {
2064     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2065     Diag(Old->getLocation(), diag::note_previous_definition);
2066     // Remove weak_import attribute on new declaration.
2067     New->dropAttr<WeakImportAttr>();
2068   }
2069 
2070   // Merge the types.
2071   MergeVarDeclTypes(New, Old);
2072   if (New->isInvalidDecl())
2073     return;
2074 
2075   // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2076   if (New->getStorageClass() == SC_Static &&
2077       (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2078     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2079     Diag(Old->getLocation(), diag::note_previous_definition);
2080     return New->setInvalidDecl();
2081   }
2082   // C99 6.2.2p4:
2083   //   For an identifier declared with the storage-class specifier
2084   //   extern in a scope in which a prior declaration of that
2085   //   identifier is visible,23) if the prior declaration specifies
2086   //   internal or external linkage, the linkage of the identifier at
2087   //   the later declaration is the same as the linkage specified at
2088   //   the prior declaration. If no prior declaration is visible, or
2089   //   if the prior declaration specifies no linkage, then the
2090   //   identifier has external linkage.
2091   if (New->hasExternalStorage() && Old->hasLinkage())
2092     /* Okay */;
2093   else if (New->getStorageClass() != SC_Static &&
2094            Old->getStorageClass() == SC_Static) {
2095     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2096     Diag(Old->getLocation(), diag::note_previous_definition);
2097     return New->setInvalidDecl();
2098   }
2099 
2100   // Check if extern is followed by non-extern and vice-versa.
2101   if (New->hasExternalStorage() &&
2102       !Old->hasLinkage() && Old->isLocalVarDecl()) {
2103     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2104     Diag(Old->getLocation(), diag::note_previous_definition);
2105     return New->setInvalidDecl();
2106   }
2107   if (Old->hasExternalStorage() &&
2108       !New->hasLinkage() && New->isLocalVarDecl()) {
2109     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2110     Diag(Old->getLocation(), diag::note_previous_definition);
2111     return New->setInvalidDecl();
2112   }
2113 
2114   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2115 
2116   // FIXME: The test for external storage here seems wrong? We still
2117   // need to check for mismatches.
2118   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2119       // Don't complain about out-of-line definitions of static members.
2120       !(Old->getLexicalDeclContext()->isRecord() &&
2121         !New->getLexicalDeclContext()->isRecord())) {
2122     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2123     Diag(Old->getLocation(), diag::note_previous_definition);
2124     return New->setInvalidDecl();
2125   }
2126 
2127   if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2128     Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2129     Diag(Old->getLocation(), diag::note_previous_definition);
2130   } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2131     Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2132     Diag(Old->getLocation(), diag::note_previous_definition);
2133   }
2134 
2135   // C++ doesn't have tentative definitions, so go right ahead and check here.
2136   const VarDecl *Def;
2137   if (getLangOptions().CPlusPlus &&
2138       New->isThisDeclarationADefinition() == VarDecl::Definition &&
2139       (Def = Old->getDefinition())) {
2140     Diag(New->getLocation(), diag::err_redefinition)
2141       << New->getDeclName();
2142     Diag(Def->getLocation(), diag::note_previous_definition);
2143     New->setInvalidDecl();
2144     return;
2145   }
2146   // c99 6.2.2 P4.
2147   // For an identifier declared with the storage-class specifier extern in a
2148   // scope in which a prior declaration of that identifier is visible, if
2149   // the prior declaration specifies internal or external linkage, the linkage
2150   // of the identifier at the later declaration is the same as the linkage
2151   // specified at the prior declaration.
2152   // FIXME. revisit this code.
2153   if (New->hasExternalStorage() &&
2154       Old->getLinkage() == InternalLinkage &&
2155       New->getDeclContext() == Old->getDeclContext())
2156     New->setStorageClass(Old->getStorageClass());
2157 
2158   // Keep a chain of previous declarations.
2159   New->setPreviousDeclaration(Old);
2160 
2161   // Inherit access appropriately.
2162   New->setAccess(Old->getAccess());
2163 }
2164 
2165 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2166 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)2167 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2168                                        DeclSpec &DS) {
2169   return ParsedFreeStandingDeclSpec(S, AS, DS,
2170                                     MultiTemplateParamsArg(*this, 0, 0));
2171 }
2172 
2173 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2174 /// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2175 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams)2176 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2177                                        DeclSpec &DS,
2178                                        MultiTemplateParamsArg TemplateParams) {
2179   Decl *TagD = 0;
2180   TagDecl *Tag = 0;
2181   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2182       DS.getTypeSpecType() == DeclSpec::TST_struct ||
2183       DS.getTypeSpecType() == DeclSpec::TST_union ||
2184       DS.getTypeSpecType() == DeclSpec::TST_enum) {
2185     TagD = DS.getRepAsDecl();
2186 
2187     if (!TagD) // We probably had an error
2188       return 0;
2189 
2190     // Note that the above type specs guarantee that the
2191     // type rep is a Decl, whereas in many of the others
2192     // it's a Type.
2193     Tag = dyn_cast<TagDecl>(TagD);
2194   }
2195 
2196   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2197     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2198     // or incomplete types shall not be restrict-qualified."
2199     if (TypeQuals & DeclSpec::TQ_restrict)
2200       Diag(DS.getRestrictSpecLoc(),
2201            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2202            << DS.getSourceRange();
2203   }
2204 
2205   if (DS.isFriendSpecified()) {
2206     // If we're dealing with a decl but not a TagDecl, assume that
2207     // whatever routines created it handled the friendship aspect.
2208     if (TagD && !Tag)
2209       return 0;
2210     return ActOnFriendTypeDecl(S, DS, TemplateParams);
2211   }
2212 
2213   // Track whether we warned about the fact that there aren't any
2214   // declarators.
2215   bool emittedWarning = false;
2216 
2217   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2218     ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2219 
2220     if (!Record->getDeclName() && Record->isDefinition() &&
2221         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2222       if (getLangOptions().CPlusPlus ||
2223           Record->getDeclContext()->isRecord())
2224         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2225 
2226       Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2227         << DS.getSourceRange();
2228       emittedWarning = true;
2229     }
2230   }
2231 
2232   // Check for Microsoft C extension: anonymous struct.
2233   if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2234       CurContext->isRecord() &&
2235       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2236     // Handle 2 kinds of anonymous struct:
2237     //   struct STRUCT;
2238     // and
2239     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2240     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2241     if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2242         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2243          DS.getRepAsType().get()->isStructureType())) {
2244       Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2245         << DS.getSourceRange();
2246       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2247     }
2248   }
2249 
2250   if (getLangOptions().CPlusPlus &&
2251       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2252     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2253       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2254           !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2255         Diag(Enum->getLocation(), diag::ext_no_declarators)
2256           << DS.getSourceRange();
2257         emittedWarning = true;
2258       }
2259 
2260   // Skip all the checks below if we have a type error.
2261   if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2262 
2263   if (!DS.isMissingDeclaratorOk()) {
2264     // Warn about typedefs of enums without names, since this is an
2265     // extension in both Microsoft and GNU.
2266     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2267         Tag && isa<EnumDecl>(Tag)) {
2268       Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2269         << DS.getSourceRange();
2270       return Tag;
2271     }
2272 
2273     Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2274       << DS.getSourceRange();
2275     emittedWarning = true;
2276   }
2277 
2278   // We're going to complain about a bunch of spurious specifiers;
2279   // only do this if we're declaring a tag, because otherwise we
2280   // should be getting diag::ext_no_declarators.
2281   if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2282     return TagD;
2283 
2284   // Note that a linkage-specification sets a storage class, but
2285   // 'extern "C" struct foo;' is actually valid and not theoretically
2286   // useless.
2287   if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2288     if (!DS.isExternInLinkageSpec())
2289       Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2290         << DeclSpec::getSpecifierName(scs);
2291 
2292   if (DS.isThreadSpecified())
2293     Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2294   if (DS.getTypeQualifiers()) {
2295     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2296       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2297     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2298       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2299     // Restrict is covered above.
2300   }
2301   if (DS.isInlineSpecified())
2302     Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2303   if (DS.isVirtualSpecified())
2304     Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2305   if (DS.isExplicitSpecified())
2306     Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2307 
2308   // FIXME: Warn on useless attributes
2309 
2310   return TagD;
2311 }
2312 
2313 /// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2314 /// builds a statement for it and returns it so it is evaluated.
ActOnVlaStmt(const DeclSpec & DS)2315 StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2316   StmtResult R;
2317   if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2318     Expr *Exp = DS.getRepAsExpr();
2319     QualType Ty = Exp->getType();
2320     if (Ty->isPointerType()) {
2321       do
2322         Ty = Ty->getAs<PointerType>()->getPointeeType();
2323       while (Ty->isPointerType());
2324     }
2325     if (Ty->isVariableArrayType()) {
2326       R = ActOnExprStmt(MakeFullExpr(Exp));
2327     }
2328   }
2329   return R;
2330 }
2331 
2332 /// We are trying to inject an anonymous member into the given scope;
2333 /// check if there's an existing declaration that can't be overloaded.
2334 ///
2335 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)2336 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2337                                          Scope *S,
2338                                          DeclContext *Owner,
2339                                          DeclarationName Name,
2340                                          SourceLocation NameLoc,
2341                                          unsigned diagnostic) {
2342   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2343                  Sema::ForRedeclaration);
2344   if (!SemaRef.LookupName(R, S)) return false;
2345 
2346   if (R.getAsSingle<TagDecl>())
2347     return false;
2348 
2349   // Pick a representative declaration.
2350   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2351   assert(PrevDecl && "Expected a non-null Decl");
2352 
2353   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2354     return false;
2355 
2356   SemaRef.Diag(NameLoc, diagnostic) << Name;
2357   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2358 
2359   return true;
2360 }
2361 
2362 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
2363 /// anonymous struct or union AnonRecord into the owning context Owner
2364 /// and scope S. This routine will be invoked just after we realize
2365 /// that an unnamed union or struct is actually an anonymous union or
2366 /// struct, e.g.,
2367 ///
2368 /// @code
2369 /// union {
2370 ///   int i;
2371 ///   float f;
2372 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2373 ///    // f into the surrounding scope.x
2374 /// @endcode
2375 ///
2376 /// This routine is recursive, injecting the names of nested anonymous
2377 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,llvm::SmallVector<NamedDecl *,2> & Chaining,bool MSAnonStruct)2378 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2379                                                 DeclContext *Owner,
2380                                                 RecordDecl *AnonRecord,
2381                                                 AccessSpecifier AS,
2382                               llvm::SmallVector<NamedDecl*, 2> &Chaining,
2383                                                       bool MSAnonStruct) {
2384   unsigned diagKind
2385     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2386                             : diag::err_anonymous_struct_member_redecl;
2387 
2388   bool Invalid = false;
2389 
2390   // Look every FieldDecl and IndirectFieldDecl with a name.
2391   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2392                                DEnd = AnonRecord->decls_end();
2393        D != DEnd; ++D) {
2394     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2395         cast<NamedDecl>(*D)->getDeclName()) {
2396       ValueDecl *VD = cast<ValueDecl>(*D);
2397       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2398                                        VD->getLocation(), diagKind)) {
2399         // C++ [class.union]p2:
2400         //   The names of the members of an anonymous union shall be
2401         //   distinct from the names of any other entity in the
2402         //   scope in which the anonymous union is declared.
2403         Invalid = true;
2404       } else {
2405         // C++ [class.union]p2:
2406         //   For the purpose of name lookup, after the anonymous union
2407         //   definition, the members of the anonymous union are
2408         //   considered to have been defined in the scope in which the
2409         //   anonymous union is declared.
2410         unsigned OldChainingSize = Chaining.size();
2411         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2412           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2413                PE = IF->chain_end(); PI != PE; ++PI)
2414             Chaining.push_back(*PI);
2415         else
2416           Chaining.push_back(VD);
2417 
2418         assert(Chaining.size() >= 2);
2419         NamedDecl **NamedChain =
2420           new (SemaRef.Context)NamedDecl*[Chaining.size()];
2421         for (unsigned i = 0; i < Chaining.size(); i++)
2422           NamedChain[i] = Chaining[i];
2423 
2424         IndirectFieldDecl* IndirectField =
2425           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2426                                     VD->getIdentifier(), VD->getType(),
2427                                     NamedChain, Chaining.size());
2428 
2429         IndirectField->setAccess(AS);
2430         IndirectField->setImplicit();
2431         SemaRef.PushOnScopeChains(IndirectField, S);
2432 
2433         // That includes picking up the appropriate access specifier.
2434         if (AS != AS_none) IndirectField->setAccess(AS);
2435 
2436         Chaining.resize(OldChainingSize);
2437       }
2438     }
2439   }
2440 
2441   return Invalid;
2442 }
2443 
2444 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2445 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
2446 /// illegal input values are mapped to SC_None.
2447 static StorageClass
StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec)2448 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2449   switch (StorageClassSpec) {
2450   case DeclSpec::SCS_unspecified:    return SC_None;
2451   case DeclSpec::SCS_extern:         return SC_Extern;
2452   case DeclSpec::SCS_static:         return SC_Static;
2453   case DeclSpec::SCS_auto:           return SC_Auto;
2454   case DeclSpec::SCS_register:       return SC_Register;
2455   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2456     // Illegal SCSs map to None: error reporting is up to the caller.
2457   case DeclSpec::SCS_mutable:        // Fall through.
2458   case DeclSpec::SCS_typedef:        return SC_None;
2459   }
2460   llvm_unreachable("unknown storage class specifier");
2461 }
2462 
2463 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2464 /// a StorageClass. Any error reporting is up to the caller:
2465 /// illegal input values are mapped to SC_None.
2466 static StorageClass
StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec)2467 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2468   switch (StorageClassSpec) {
2469   case DeclSpec::SCS_unspecified:    return SC_None;
2470   case DeclSpec::SCS_extern:         return SC_Extern;
2471   case DeclSpec::SCS_static:         return SC_Static;
2472   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2473     // Illegal SCSs map to None: error reporting is up to the caller.
2474   case DeclSpec::SCS_auto:           // Fall through.
2475   case DeclSpec::SCS_mutable:        // Fall through.
2476   case DeclSpec::SCS_register:       // Fall through.
2477   case DeclSpec::SCS_typedef:        return SC_None;
2478   }
2479   llvm_unreachable("unknown storage class specifier");
2480 }
2481 
2482 /// BuildAnonymousStructOrUnion - Handle the declaration of an
2483 /// anonymous structure or union. Anonymous unions are a C++ feature
2484 /// (C++ [class.union]) and a GNU C extension; anonymous structures
2485 /// are a GNU C and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record)2486 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2487                                              AccessSpecifier AS,
2488                                              RecordDecl *Record) {
2489   DeclContext *Owner = Record->getDeclContext();
2490 
2491   // Diagnose whether this anonymous struct/union is an extension.
2492   if (Record->isUnion() && !getLangOptions().CPlusPlus)
2493     Diag(Record->getLocation(), diag::ext_anonymous_union);
2494   else if (!Record->isUnion())
2495     Diag(Record->getLocation(), diag::ext_anonymous_struct);
2496 
2497   // C and C++ require different kinds of checks for anonymous
2498   // structs/unions.
2499   bool Invalid = false;
2500   if (getLangOptions().CPlusPlus) {
2501     const char* PrevSpec = 0;
2502     unsigned DiagID;
2503     // C++ [class.union]p3:
2504     //   Anonymous unions declared in a named namespace or in the
2505     //   global namespace shall be declared static.
2506     if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2507         (isa<TranslationUnitDecl>(Owner) ||
2508          (isa<NamespaceDecl>(Owner) &&
2509           cast<NamespaceDecl>(Owner)->getDeclName()))) {
2510       Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2511       Invalid = true;
2512 
2513       // Recover by adding 'static'.
2514       DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2515                              PrevSpec, DiagID, getLangOptions());
2516     }
2517     // C++ [class.union]p3:
2518     //   A storage class is not allowed in a declaration of an
2519     //   anonymous union in a class scope.
2520     else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2521              isa<RecordDecl>(Owner)) {
2522       Diag(DS.getStorageClassSpecLoc(),
2523            diag::err_anonymous_union_with_storage_spec);
2524       Invalid = true;
2525 
2526       // Recover by removing the storage specifier.
2527       DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2528                              PrevSpec, DiagID, getLangOptions());
2529     }
2530 
2531     // Ignore const/volatile/restrict qualifiers.
2532     if (DS.getTypeQualifiers()) {
2533       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2534         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2535           << Record->isUnion() << 0
2536           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2537       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2538         Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2539           << Record->isUnion() << 1
2540           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2541       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2542         Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2543           << Record->isUnion() << 2
2544           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2545 
2546       DS.ClearTypeQualifiers();
2547     }
2548 
2549     // C++ [class.union]p2:
2550     //   The member-specification of an anonymous union shall only
2551     //   define non-static data members. [Note: nested types and
2552     //   functions cannot be declared within an anonymous union. ]
2553     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2554                                  MemEnd = Record->decls_end();
2555          Mem != MemEnd; ++Mem) {
2556       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2557         // C++ [class.union]p3:
2558         //   An anonymous union shall not have private or protected
2559         //   members (clause 11).
2560         assert(FD->getAccess() != AS_none);
2561         if (FD->getAccess() != AS_public) {
2562           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2563             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2564           Invalid = true;
2565         }
2566 
2567         // C++ [class.union]p1
2568         //   An object of a class with a non-trivial constructor, a non-trivial
2569         //   copy constructor, a non-trivial destructor, or a non-trivial copy
2570         //   assignment operator cannot be a member of a union, nor can an
2571         //   array of such objects.
2572         if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2573           Invalid = true;
2574       } else if ((*Mem)->isImplicit()) {
2575         // Any implicit members are fine.
2576       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2577         // This is a type that showed up in an
2578         // elaborated-type-specifier inside the anonymous struct or
2579         // union, but which actually declares a type outside of the
2580         // anonymous struct or union. It's okay.
2581       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2582         if (!MemRecord->isAnonymousStructOrUnion() &&
2583             MemRecord->getDeclName()) {
2584           // Visual C++ allows type definition in anonymous struct or union.
2585           if (getLangOptions().Microsoft)
2586             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2587               << (int)Record->isUnion();
2588           else {
2589             // This is a nested type declaration.
2590             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2591               << (int)Record->isUnion();
2592             Invalid = true;
2593           }
2594         }
2595       } else if (isa<AccessSpecDecl>(*Mem)) {
2596         // Any access specifier is fine.
2597       } else {
2598         // We have something that isn't a non-static data
2599         // member. Complain about it.
2600         unsigned DK = diag::err_anonymous_record_bad_member;
2601         if (isa<TypeDecl>(*Mem))
2602           DK = diag::err_anonymous_record_with_type;
2603         else if (isa<FunctionDecl>(*Mem))
2604           DK = diag::err_anonymous_record_with_function;
2605         else if (isa<VarDecl>(*Mem))
2606           DK = diag::err_anonymous_record_with_static;
2607 
2608         // Visual C++ allows type definition in anonymous struct or union.
2609         if (getLangOptions().Microsoft &&
2610             DK == diag::err_anonymous_record_with_type)
2611           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2612             << (int)Record->isUnion();
2613         else {
2614           Diag((*Mem)->getLocation(), DK)
2615               << (int)Record->isUnion();
2616           Invalid = true;
2617         }
2618       }
2619     }
2620   }
2621 
2622   if (!Record->isUnion() && !Owner->isRecord()) {
2623     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2624       << (int)getLangOptions().CPlusPlus;
2625     Invalid = true;
2626   }
2627 
2628   // Mock up a declarator.
2629   Declarator Dc(DS, Declarator::MemberContext);
2630   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2631   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2632 
2633   // Create a declaration for this anonymous struct/union.
2634   NamedDecl *Anon = 0;
2635   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2636     Anon = FieldDecl::Create(Context, OwningClass,
2637                              DS.getSourceRange().getBegin(),
2638                              Record->getLocation(),
2639                              /*IdentifierInfo=*/0,
2640                              Context.getTypeDeclType(Record),
2641                              TInfo,
2642                              /*BitWidth=*/0, /*Mutable=*/false,
2643                              /*HasInit=*/false);
2644     Anon->setAccess(AS);
2645     if (getLangOptions().CPlusPlus)
2646       FieldCollector->Add(cast<FieldDecl>(Anon));
2647   } else {
2648     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2649     assert(SCSpec != DeclSpec::SCS_typedef &&
2650            "Parser allowed 'typedef' as storage class VarDecl.");
2651     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2652     if (SCSpec == DeclSpec::SCS_mutable) {
2653       // mutable can only appear on non-static class members, so it's always
2654       // an error here
2655       Diag(Record->getLocation(), diag::err_mutable_nonmember);
2656       Invalid = true;
2657       SC = SC_None;
2658     }
2659     SCSpec = DS.getStorageClassSpecAsWritten();
2660     VarDecl::StorageClass SCAsWritten
2661       = StorageClassSpecToVarDeclStorageClass(SCSpec);
2662 
2663     Anon = VarDecl::Create(Context, Owner,
2664                            DS.getSourceRange().getBegin(),
2665                            Record->getLocation(), /*IdentifierInfo=*/0,
2666                            Context.getTypeDeclType(Record),
2667                            TInfo, SC, SCAsWritten);
2668   }
2669   Anon->setImplicit();
2670 
2671   // Add the anonymous struct/union object to the current
2672   // context. We'll be referencing this object when we refer to one of
2673   // its members.
2674   Owner->addDecl(Anon);
2675 
2676   // Inject the members of the anonymous struct/union into the owning
2677   // context and into the identifier resolver chain for name lookup
2678   // purposes.
2679   llvm::SmallVector<NamedDecl*, 2> Chain;
2680   Chain.push_back(Anon);
2681 
2682   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2683                                           Chain, false))
2684     Invalid = true;
2685 
2686   // Mark this as an anonymous struct/union type. Note that we do not
2687   // do this until after we have already checked and injected the
2688   // members of this anonymous struct/union type, because otherwise
2689   // the members could be injected twice: once by DeclContext when it
2690   // builds its lookup table, and once by
2691   // InjectAnonymousStructOrUnionMembers.
2692   Record->setAnonymousStructOrUnion(true);
2693 
2694   if (Invalid)
2695     Anon->setInvalidDecl();
2696 
2697   return Anon;
2698 }
2699 
2700 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2701 /// Microsoft C anonymous structure.
2702 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2703 /// Example:
2704 ///
2705 /// struct A { int a; };
2706 /// struct B { struct A; int b; };
2707 ///
2708 /// void foo() {
2709 ///   B var;
2710 ///   var.a = 3;
2711 /// }
2712 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)2713 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2714                                            RecordDecl *Record) {
2715 
2716   // If there is no Record, get the record via the typedef.
2717   if (!Record)
2718     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2719 
2720   // Mock up a declarator.
2721   Declarator Dc(DS, Declarator::TypeNameContext);
2722   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2723   assert(TInfo && "couldn't build declarator info for anonymous struct");
2724 
2725   // Create a declaration for this anonymous struct.
2726   NamedDecl* Anon = FieldDecl::Create(Context,
2727                              cast<RecordDecl>(CurContext),
2728                              DS.getSourceRange().getBegin(),
2729                              DS.getSourceRange().getBegin(),
2730                              /*IdentifierInfo=*/0,
2731                              Context.getTypeDeclType(Record),
2732                              TInfo,
2733                              /*BitWidth=*/0, /*Mutable=*/false,
2734                              /*HasInit=*/false);
2735   Anon->setImplicit();
2736 
2737   // Add the anonymous struct object to the current context.
2738   CurContext->addDecl(Anon);
2739 
2740   // Inject the members of the anonymous struct into the current
2741   // context and into the identifier resolver chain for name lookup
2742   // purposes.
2743   llvm::SmallVector<NamedDecl*, 2> Chain;
2744   Chain.push_back(Anon);
2745 
2746   if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2747                                           Record->getDefinition(),
2748                                           AS_none, Chain, true))
2749     Anon->setInvalidDecl();
2750 
2751   return Anon;
2752 }
2753 
2754 /// GetNameForDeclarator - Determine the full declaration name for the
2755 /// given Declarator.
GetNameForDeclarator(Declarator & D)2756 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2757   return GetNameFromUnqualifiedId(D.getName());
2758 }
2759 
2760 /// \brief Retrieves the declaration name from a parsed unqualified-id.
2761 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)2762 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2763   DeclarationNameInfo NameInfo;
2764   NameInfo.setLoc(Name.StartLocation);
2765 
2766   switch (Name.getKind()) {
2767 
2768   case UnqualifiedId::IK_ImplicitSelfParam:
2769   case UnqualifiedId::IK_Identifier:
2770     NameInfo.setName(Name.Identifier);
2771     NameInfo.setLoc(Name.StartLocation);
2772     return NameInfo;
2773 
2774   case UnqualifiedId::IK_OperatorFunctionId:
2775     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2776                                            Name.OperatorFunctionId.Operator));
2777     NameInfo.setLoc(Name.StartLocation);
2778     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2779       = Name.OperatorFunctionId.SymbolLocations[0];
2780     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2781       = Name.EndLocation.getRawEncoding();
2782     return NameInfo;
2783 
2784   case UnqualifiedId::IK_LiteralOperatorId:
2785     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2786                                                            Name.Identifier));
2787     NameInfo.setLoc(Name.StartLocation);
2788     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2789     return NameInfo;
2790 
2791   case UnqualifiedId::IK_ConversionFunctionId: {
2792     TypeSourceInfo *TInfo;
2793     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2794     if (Ty.isNull())
2795       return DeclarationNameInfo();
2796     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2797                                                Context.getCanonicalType(Ty)));
2798     NameInfo.setLoc(Name.StartLocation);
2799     NameInfo.setNamedTypeInfo(TInfo);
2800     return NameInfo;
2801   }
2802 
2803   case UnqualifiedId::IK_ConstructorName: {
2804     TypeSourceInfo *TInfo;
2805     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2806     if (Ty.isNull())
2807       return DeclarationNameInfo();
2808     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2809                                               Context.getCanonicalType(Ty)));
2810     NameInfo.setLoc(Name.StartLocation);
2811     NameInfo.setNamedTypeInfo(TInfo);
2812     return NameInfo;
2813   }
2814 
2815   case UnqualifiedId::IK_ConstructorTemplateId: {
2816     // In well-formed code, we can only have a constructor
2817     // template-id that refers to the current context, so go there
2818     // to find the actual type being constructed.
2819     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2820     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2821       return DeclarationNameInfo();
2822 
2823     // Determine the type of the class being constructed.
2824     QualType CurClassType = Context.getTypeDeclType(CurClass);
2825 
2826     // FIXME: Check two things: that the template-id names the same type as
2827     // CurClassType, and that the template-id does not occur when the name
2828     // was qualified.
2829 
2830     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2831                                     Context.getCanonicalType(CurClassType)));
2832     NameInfo.setLoc(Name.StartLocation);
2833     // FIXME: should we retrieve TypeSourceInfo?
2834     NameInfo.setNamedTypeInfo(0);
2835     return NameInfo;
2836   }
2837 
2838   case UnqualifiedId::IK_DestructorName: {
2839     TypeSourceInfo *TInfo;
2840     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2841     if (Ty.isNull())
2842       return DeclarationNameInfo();
2843     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2844                                               Context.getCanonicalType(Ty)));
2845     NameInfo.setLoc(Name.StartLocation);
2846     NameInfo.setNamedTypeInfo(TInfo);
2847     return NameInfo;
2848   }
2849 
2850   case UnqualifiedId::IK_TemplateId: {
2851     TemplateName TName = Name.TemplateId->Template.get();
2852     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2853     return Context.getNameForTemplate(TName, TNameLoc);
2854   }
2855 
2856   } // switch (Name.getKind())
2857 
2858   assert(false && "Unknown name kind");
2859   return DeclarationNameInfo();
2860 }
2861 
2862 /// isNearlyMatchingFunction - Determine whether the C++ functions
2863 /// Declaration and Definition are "nearly" matching. This heuristic
2864 /// is used to improve diagnostics in the case where an out-of-line
2865 /// function definition doesn't match any declaration within
2866 /// the class or namespace.
isNearlyMatchingFunction(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition)2867 static bool isNearlyMatchingFunction(ASTContext &Context,
2868                                      FunctionDecl *Declaration,
2869                                      FunctionDecl *Definition) {
2870   if (Declaration->param_size() != Definition->param_size())
2871     return false;
2872   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2873     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2874     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2875 
2876     if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2877                                         DefParamTy.getNonReferenceType()))
2878       return false;
2879   }
2880 
2881   return true;
2882 }
2883 
2884 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2885 /// declarator needs to be rebuilt in the current instantiation.
2886 /// Any bits of declarator which appear before the name are valid for
2887 /// consideration here.  That's specifically the type in the decl spec
2888 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)2889 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2890                                                     DeclarationName Name) {
2891   // The types we specifically need to rebuild are:
2892   //   - typenames, typeofs, and decltypes
2893   //   - types which will become injected class names
2894   // Of course, we also need to rebuild any type referencing such a
2895   // type.  It's safest to just say "dependent", but we call out a
2896   // few cases here.
2897 
2898   DeclSpec &DS = D.getMutableDeclSpec();
2899   switch (DS.getTypeSpecType()) {
2900   case DeclSpec::TST_typename:
2901   case DeclSpec::TST_typeofType:
2902   case DeclSpec::TST_decltype:
2903   case DeclSpec::TST_underlyingType: {
2904     // Grab the type from the parser.
2905     TypeSourceInfo *TSI = 0;
2906     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2907     if (T.isNull() || !T->isDependentType()) break;
2908 
2909     // Make sure there's a type source info.  This isn't really much
2910     // of a waste; most dependent types should have type source info
2911     // attached already.
2912     if (!TSI)
2913       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2914 
2915     // Rebuild the type in the current instantiation.
2916     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2917     if (!TSI) return true;
2918 
2919     // Store the new type back in the decl spec.
2920     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2921     DS.UpdateTypeRep(LocType);
2922     break;
2923   }
2924 
2925   case DeclSpec::TST_typeofExpr: {
2926     Expr *E = DS.getRepAsExpr();
2927     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2928     if (Result.isInvalid()) return true;
2929     DS.UpdateExprRep(Result.get());
2930     break;
2931   }
2932 
2933   default:
2934     // Nothing to do for these decl specs.
2935     break;
2936   }
2937 
2938   // It doesn't matter what order we do this in.
2939   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2940     DeclaratorChunk &Chunk = D.getTypeObject(I);
2941 
2942     // The only type information in the declarator which can come
2943     // before the declaration name is the base type of a member
2944     // pointer.
2945     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2946       continue;
2947 
2948     // Rebuild the scope specifier in-place.
2949     CXXScopeSpec &SS = Chunk.Mem.Scope();
2950     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2951       return true;
2952   }
2953 
2954   return false;
2955 }
2956 
ActOnDeclarator(Scope * S,Declarator & D)2957 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2958   return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2959                           /*IsFunctionDefinition=*/false);
2960 }
2961 
2962 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2963 ///   If T is the name of a class, then each of the following shall have a
2964 ///   name different from T:
2965 ///     - every static data member of class T;
2966 ///     - every member function of class T
2967 ///     - every member of class T that is itself a type;
2968 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)2969 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2970                                    DeclarationNameInfo NameInfo) {
2971   DeclarationName Name = NameInfo.getName();
2972 
2973   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2974     if (Record->getIdentifier() && Record->getDeclName() == Name) {
2975       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2976       return true;
2977     }
2978 
2979   return false;
2980 }
2981 
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists,bool IsFunctionDefinition)2982 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2983                              MultiTemplateParamsArg TemplateParamLists,
2984                              bool IsFunctionDefinition) {
2985   // TODO: consider using NameInfo for diagnostic.
2986   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2987   DeclarationName Name = NameInfo.getName();
2988 
2989   // All of these full declarators require an identifier.  If it doesn't have
2990   // one, the ParsedFreeStandingDeclSpec action should be used.
2991   if (!Name) {
2992     if (!D.isInvalidType())  // Reject this if we think it is valid.
2993       Diag(D.getDeclSpec().getSourceRange().getBegin(),
2994            diag::err_declarator_need_ident)
2995         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2996     return 0;
2997   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2998     return 0;
2999 
3000   // The scope passed in may not be a decl scope.  Zip up the scope tree until
3001   // we find one that is.
3002   while ((S->getFlags() & Scope::DeclScope) == 0 ||
3003          (S->getFlags() & Scope::TemplateParamScope) != 0)
3004     S = S->getParent();
3005 
3006   DeclContext *DC = CurContext;
3007   if (D.getCXXScopeSpec().isInvalid())
3008     D.setInvalidType();
3009   else if (D.getCXXScopeSpec().isSet()) {
3010     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3011                                         UPPC_DeclarationQualifier))
3012       return 0;
3013 
3014     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3015     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3016     if (!DC) {
3017       // If we could not compute the declaration context, it's because the
3018       // declaration context is dependent but does not refer to a class,
3019       // class template, or class template partial specialization. Complain
3020       // and return early, to avoid the coming semantic disaster.
3021       Diag(D.getIdentifierLoc(),
3022            diag::err_template_qualified_declarator_no_match)
3023         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3024         << D.getCXXScopeSpec().getRange();
3025       return 0;
3026     }
3027     bool IsDependentContext = DC->isDependentContext();
3028 
3029     if (!IsDependentContext &&
3030         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3031       return 0;
3032 
3033     if (isa<CXXRecordDecl>(DC)) {
3034       if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3035         Diag(D.getIdentifierLoc(),
3036              diag::err_member_def_undefined_record)
3037           << Name << DC << D.getCXXScopeSpec().getRange();
3038         D.setInvalidType();
3039       } else if (isa<CXXRecordDecl>(CurContext) &&
3040                  !D.getDeclSpec().isFriendSpecified()) {
3041         // The user provided a superfluous scope specifier inside a class
3042         // definition:
3043         //
3044         // class X {
3045         //   void X::f();
3046         // };
3047         if (CurContext->Equals(DC))
3048           Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3049             << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3050         else
3051           Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3052             << Name << D.getCXXScopeSpec().getRange();
3053 
3054         // Pretend that this qualifier was not here.
3055         D.getCXXScopeSpec().clear();
3056       }
3057     }
3058 
3059     // Check whether we need to rebuild the type of the given
3060     // declaration in the current instantiation.
3061     if (EnteringContext && IsDependentContext &&
3062         TemplateParamLists.size() != 0) {
3063       ContextRAII SavedContext(*this, DC);
3064       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3065         D.setInvalidType();
3066     }
3067   }
3068 
3069   if (DiagnoseClassNameShadow(DC, NameInfo))
3070     // If this is a typedef, we'll end up spewing multiple diagnostics.
3071     // Just return early; it's safer.
3072     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3073       return 0;
3074 
3075   NamedDecl *New;
3076 
3077   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3078   QualType R = TInfo->getType();
3079 
3080   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3081                                       UPPC_DeclarationType))
3082     D.setInvalidType();
3083 
3084   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3085                         ForRedeclaration);
3086 
3087   // See if this is a redefinition of a variable in the same scope.
3088   if (!D.getCXXScopeSpec().isSet()) {
3089     bool IsLinkageLookup = false;
3090 
3091     // If the declaration we're planning to build will be a function
3092     // or object with linkage, then look for another declaration with
3093     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3094     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3095       /* Do nothing*/;
3096     else if (R->isFunctionType()) {
3097       if (CurContext->isFunctionOrMethod() ||
3098           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3099         IsLinkageLookup = true;
3100     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3101       IsLinkageLookup = true;
3102     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3103              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3104       IsLinkageLookup = true;
3105 
3106     if (IsLinkageLookup)
3107       Previous.clear(LookupRedeclarationWithLinkage);
3108 
3109     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3110   } else { // Something like "int foo::x;"
3111     LookupQualifiedName(Previous, DC);
3112 
3113     // Don't consider using declarations as previous declarations for
3114     // out-of-line members.
3115     RemoveUsingDecls(Previous);
3116 
3117     // C++ 7.3.1.2p2:
3118     // Members (including explicit specializations of templates) of a named
3119     // namespace can also be defined outside that namespace by explicit
3120     // qualification of the name being defined, provided that the entity being
3121     // defined was already declared in the namespace and the definition appears
3122     // after the point of declaration in a namespace that encloses the
3123     // declarations namespace.
3124     //
3125     // Note that we only check the context at this point. We don't yet
3126     // have enough information to make sure that PrevDecl is actually
3127     // the declaration we want to match. For example, given:
3128     //
3129     //   class X {
3130     //     void f();
3131     //     void f(float);
3132     //   };
3133     //
3134     //   void X::f(int) { } // ill-formed
3135     //
3136     // In this case, PrevDecl will point to the overload set
3137     // containing the two f's declared in X, but neither of them
3138     // matches.
3139 
3140     // First check whether we named the global scope.
3141     if (isa<TranslationUnitDecl>(DC)) {
3142       Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3143         << Name << D.getCXXScopeSpec().getRange();
3144     } else {
3145       DeclContext *Cur = CurContext;
3146       while (isa<LinkageSpecDecl>(Cur))
3147         Cur = Cur->getParent();
3148       if (!Cur->Encloses(DC)) {
3149         // The qualifying scope doesn't enclose the original declaration.
3150         // Emit diagnostic based on current scope.
3151         SourceLocation L = D.getIdentifierLoc();
3152         SourceRange R = D.getCXXScopeSpec().getRange();
3153         if (isa<FunctionDecl>(Cur))
3154           Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3155         else
3156           Diag(L, diag::err_invalid_declarator_scope)
3157             << Name << cast<NamedDecl>(DC) << R;
3158         D.setInvalidType();
3159       }
3160     }
3161   }
3162 
3163   if (Previous.isSingleResult() &&
3164       Previous.getFoundDecl()->isTemplateParameter()) {
3165     // Maybe we will complain about the shadowed template parameter.
3166     if (!D.isInvalidType())
3167       if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3168                                           Previous.getFoundDecl()))
3169         D.setInvalidType();
3170 
3171     // Just pretend that we didn't see the previous declaration.
3172     Previous.clear();
3173   }
3174 
3175   // In C++, the previous declaration we find might be a tag type
3176   // (class or enum). In this case, the new declaration will hide the
3177   // tag type. Note that this does does not apply if we're declaring a
3178   // typedef (C++ [dcl.typedef]p4).
3179   if (Previous.isSingleTagDecl() &&
3180       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3181     Previous.clear();
3182 
3183   bool Redeclaration = false;
3184   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3185     if (TemplateParamLists.size()) {
3186       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3187       return 0;
3188     }
3189 
3190     New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3191   } else if (R->isFunctionType()) {
3192     New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3193                                   move(TemplateParamLists),
3194                                   IsFunctionDefinition, Redeclaration);
3195   } else {
3196     New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3197                                   move(TemplateParamLists),
3198                                   Redeclaration);
3199   }
3200 
3201   if (New == 0)
3202     return 0;
3203 
3204   // If this has an identifier and is not an invalid redeclaration or
3205   // function template specialization, add it to the scope stack.
3206   if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3207     PushOnScopeChains(New, S);
3208 
3209   return New;
3210 }
3211 
3212 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3213 /// types into constant array types in certain situations which would otherwise
3214 /// be errors (for GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)3215 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3216                                                     ASTContext &Context,
3217                                                     bool &SizeIsNegative,
3218                                                     llvm::APSInt &Oversized) {
3219   // This method tries to turn a variable array into a constant
3220   // array even when the size isn't an ICE.  This is necessary
3221   // for compatibility with code that depends on gcc's buggy
3222   // constant expression folding, like struct {char x[(int)(char*)2];}
3223   SizeIsNegative = false;
3224   Oversized = 0;
3225 
3226   if (T->isDependentType())
3227     return QualType();
3228 
3229   QualifierCollector Qs;
3230   const Type *Ty = Qs.strip(T);
3231 
3232   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3233     QualType Pointee = PTy->getPointeeType();
3234     QualType FixedType =
3235         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3236                                             Oversized);
3237     if (FixedType.isNull()) return FixedType;
3238     FixedType = Context.getPointerType(FixedType);
3239     return Qs.apply(Context, FixedType);
3240   }
3241   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3242     QualType Inner = PTy->getInnerType();
3243     QualType FixedType =
3244         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3245                                             Oversized);
3246     if (FixedType.isNull()) return FixedType;
3247     FixedType = Context.getParenType(FixedType);
3248     return Qs.apply(Context, FixedType);
3249   }
3250 
3251   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3252   if (!VLATy)
3253     return QualType();
3254   // FIXME: We should probably handle this case
3255   if (VLATy->getElementType()->isVariablyModifiedType())
3256     return QualType();
3257 
3258   Expr::EvalResult EvalResult;
3259   if (!VLATy->getSizeExpr() ||
3260       !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3261       !EvalResult.Val.isInt())
3262     return QualType();
3263 
3264   // Check whether the array size is negative.
3265   llvm::APSInt &Res = EvalResult.Val.getInt();
3266   if (Res.isSigned() && Res.isNegative()) {
3267     SizeIsNegative = true;
3268     return QualType();
3269   }
3270 
3271   // Check whether the array is too large to be addressed.
3272   unsigned ActiveSizeBits
3273     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3274                                               Res);
3275   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3276     Oversized = Res;
3277     return QualType();
3278   }
3279 
3280   return Context.getConstantArrayType(VLATy->getElementType(),
3281                                       Res, ArrayType::Normal, 0);
3282 }
3283 
3284 /// \brief Register the given locally-scoped external C declaration so
3285 /// that it can be found later for redeclarations
3286 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,const LookupResult & Previous,Scope * S)3287 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3288                                        const LookupResult &Previous,
3289                                        Scope *S) {
3290   assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3291          "Decl is not a locally-scoped decl!");
3292   // Note that we have a locally-scoped external with this name.
3293   LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3294 
3295   if (!Previous.isSingleResult())
3296     return;
3297 
3298   NamedDecl *PrevDecl = Previous.getFoundDecl();
3299 
3300   // If there was a previous declaration of this variable, it may be
3301   // in our identifier chain. Update the identifier chain with the new
3302   // declaration.
3303   if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3304     // The previous declaration was found on the identifer resolver
3305     // chain, so remove it from its scope.
3306 
3307     if (S->isDeclScope(PrevDecl)) {
3308       // Special case for redeclarations in the SAME scope.
3309       // Because this declaration is going to be added to the identifier chain
3310       // later, we should temporarily take it OFF the chain.
3311       IdResolver.RemoveDecl(ND);
3312 
3313     } else {
3314       // Find the scope for the original declaration.
3315       while (S && !S->isDeclScope(PrevDecl))
3316         S = S->getParent();
3317     }
3318 
3319     if (S)
3320       S->RemoveDecl(PrevDecl);
3321   }
3322 }
3323 
3324 /// \brief Diagnose function specifiers on a declaration of an identifier that
3325 /// does not identify a function.
DiagnoseFunctionSpecifiers(Declarator & D)3326 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3327   // FIXME: We should probably indicate the identifier in question to avoid
3328   // confusion for constructs like "inline int a(), b;"
3329   if (D.getDeclSpec().isInlineSpecified())
3330     Diag(D.getDeclSpec().getInlineSpecLoc(),
3331          diag::err_inline_non_function);
3332 
3333   if (D.getDeclSpec().isVirtualSpecified())
3334     Diag(D.getDeclSpec().getVirtualSpecLoc(),
3335          diag::err_virtual_non_function);
3336 
3337   if (D.getDeclSpec().isExplicitSpecified())
3338     Diag(D.getDeclSpec().getExplicitSpecLoc(),
3339          diag::err_explicit_non_function);
3340 }
3341 
3342 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,QualType R,TypeSourceInfo * TInfo,LookupResult & Previous,bool & Redeclaration)3343 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3344                              QualType R,  TypeSourceInfo *TInfo,
3345                              LookupResult &Previous, bool &Redeclaration) {
3346   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3347   if (D.getCXXScopeSpec().isSet()) {
3348     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3349       << D.getCXXScopeSpec().getRange();
3350     D.setInvalidType();
3351     // Pretend we didn't see the scope specifier.
3352     DC = CurContext;
3353     Previous.clear();
3354   }
3355 
3356   if (getLangOptions().CPlusPlus) {
3357     // Check that there are no default arguments (C++ only).
3358     CheckExtraCXXDefaultArguments(D);
3359   }
3360 
3361   DiagnoseFunctionSpecifiers(D);
3362 
3363   if (D.getDeclSpec().isThreadSpecified())
3364     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3365 
3366   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3367     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3368       << D.getName().getSourceRange();
3369     return 0;
3370   }
3371 
3372   TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3373   if (!NewTD) return 0;
3374 
3375   // Handle attributes prior to checking for duplicates in MergeVarDecl
3376   ProcessDeclAttributes(S, NewTD, D);
3377 
3378   CheckTypedefForVariablyModifiedType(S, NewTD);
3379 
3380   return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3381 }
3382 
3383 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)3384 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3385   // C99 6.7.7p2: If a typedef name specifies a variably modified type
3386   // then it shall have block scope.
3387   // Note that variably modified types must be fixed before merging the decl so
3388   // that redeclarations will match.
3389   QualType T = NewTD->getUnderlyingType();
3390   if (T->isVariablyModifiedType()) {
3391     getCurFunction()->setHasBranchProtectedScope();
3392 
3393     if (S->getFnParent() == 0) {
3394       bool SizeIsNegative;
3395       llvm::APSInt Oversized;
3396       QualType FixedTy =
3397           TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3398                                               Oversized);
3399       if (!FixedTy.isNull()) {
3400         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3401         NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3402       } else {
3403         if (SizeIsNegative)
3404           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3405         else if (T->isVariableArrayType())
3406           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3407         else if (Oversized.getBoolValue())
3408           Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3409         else
3410           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3411         NewTD->setInvalidDecl();
3412       }
3413     }
3414   }
3415 }
3416 
3417 
3418 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3419 /// declares a typedef-name, either using the 'typedef' type specifier or via
3420 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3421 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)3422 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3423                            LookupResult &Previous, bool &Redeclaration) {
3424   // Merge the decl with the existing one if appropriate. If the decl is
3425   // in an outer scope, it isn't the same thing.
3426   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3427                        /*ExplicitInstantiationOrSpecialization=*/false);
3428   if (!Previous.empty()) {
3429     Redeclaration = true;
3430     MergeTypedefNameDecl(NewTD, Previous);
3431   }
3432 
3433   // If this is the C FILE type, notify the AST context.
3434   if (IdentifierInfo *II = NewTD->getIdentifier())
3435     if (!NewTD->isInvalidDecl() &&
3436         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3437       if (II->isStr("FILE"))
3438         Context.setFILEDecl(NewTD);
3439       else if (II->isStr("jmp_buf"))
3440         Context.setjmp_bufDecl(NewTD);
3441       else if (II->isStr("sigjmp_buf"))
3442         Context.setsigjmp_bufDecl(NewTD);
3443       else if (II->isStr("__builtin_va_list"))
3444         Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3445     }
3446 
3447   return NewTD;
3448 }
3449 
3450 /// \brief Determines whether the given declaration is an out-of-scope
3451 /// previous declaration.
3452 ///
3453 /// This routine should be invoked when name lookup has found a
3454 /// previous declaration (PrevDecl) that is not in the scope where a
3455 /// new declaration by the same name is being introduced. If the new
3456 /// declaration occurs in a local scope, previous declarations with
3457 /// linkage may still be considered previous declarations (C99
3458 /// 6.2.2p4-5, C++ [basic.link]p6).
3459 ///
3460 /// \param PrevDecl the previous declaration found by name
3461 /// lookup
3462 ///
3463 /// \param DC the context in which the new declaration is being
3464 /// declared.
3465 ///
3466 /// \returns true if PrevDecl is an out-of-scope previous declaration
3467 /// for a new delcaration with the same name.
3468 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)3469 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3470                                 ASTContext &Context) {
3471   if (!PrevDecl)
3472     return false;
3473 
3474   if (!PrevDecl->hasLinkage())
3475     return false;
3476 
3477   if (Context.getLangOptions().CPlusPlus) {
3478     // C++ [basic.link]p6:
3479     //   If there is a visible declaration of an entity with linkage
3480     //   having the same name and type, ignoring entities declared
3481     //   outside the innermost enclosing namespace scope, the block
3482     //   scope declaration declares that same entity and receives the
3483     //   linkage of the previous declaration.
3484     DeclContext *OuterContext = DC->getRedeclContext();
3485     if (!OuterContext->isFunctionOrMethod())
3486       // This rule only applies to block-scope declarations.
3487       return false;
3488 
3489     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3490     if (PrevOuterContext->isRecord())
3491       // We found a member function: ignore it.
3492       return false;
3493 
3494     // Find the innermost enclosing namespace for the new and
3495     // previous declarations.
3496     OuterContext = OuterContext->getEnclosingNamespaceContext();
3497     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3498 
3499     // The previous declaration is in a different namespace, so it
3500     // isn't the same function.
3501     if (!OuterContext->Equals(PrevOuterContext))
3502       return false;
3503   }
3504 
3505   return true;
3506 }
3507 
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)3508 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3509   CXXScopeSpec &SS = D.getCXXScopeSpec();
3510   if (!SS.isSet()) return;
3511   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3512 }
3513 
inferObjCARCLifetime(ValueDecl * decl)3514 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3515   QualType type = decl->getType();
3516   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3517   if (lifetime == Qualifiers::OCL_Autoreleasing) {
3518     // Various kinds of declaration aren't allowed to be __autoreleasing.
3519     unsigned kind = -1U;
3520     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3521       if (var->hasAttr<BlocksAttr>())
3522         kind = 0; // __block
3523       else if (!var->hasLocalStorage())
3524         kind = 1; // global
3525     } else if (isa<ObjCIvarDecl>(decl)) {
3526       kind = 3; // ivar
3527     } else if (isa<FieldDecl>(decl)) {
3528       kind = 2; // field
3529     }
3530 
3531     if (kind != -1U) {
3532       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3533         << kind;
3534     }
3535   } else if (lifetime == Qualifiers::OCL_None) {
3536     // Try to infer lifetime.
3537     if (!type->isObjCLifetimeType())
3538       return false;
3539 
3540     lifetime = type->getObjCARCImplicitLifetime();
3541     type = Context.getLifetimeQualifiedType(type, lifetime);
3542     decl->setType(type);
3543   }
3544 
3545   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3546     // Thread-local variables cannot have lifetime.
3547     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3548         var->isThreadSpecified()) {
3549       Diag(var->getLocation(), diag::err_arc_thread_ownership)
3550         << var->getType();
3551       return true;
3552     }
3553   }
3554 
3555   return false;
3556 }
3557 
3558 NamedDecl*
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,QualType R,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & Redeclaration)3559 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3560                               QualType R, TypeSourceInfo *TInfo,
3561                               LookupResult &Previous,
3562                               MultiTemplateParamsArg TemplateParamLists,
3563                               bool &Redeclaration) {
3564   DeclarationName Name = GetNameForDeclarator(D).getName();
3565 
3566   // Check that there are no default arguments (C++ only).
3567   if (getLangOptions().CPlusPlus)
3568     CheckExtraCXXDefaultArguments(D);
3569 
3570   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3571   assert(SCSpec != DeclSpec::SCS_typedef &&
3572          "Parser allowed 'typedef' as storage class VarDecl.");
3573   VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3574   if (SCSpec == DeclSpec::SCS_mutable) {
3575     // mutable can only appear on non-static class members, so it's always
3576     // an error here
3577     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3578     D.setInvalidType();
3579     SC = SC_None;
3580   }
3581   SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3582   VarDecl::StorageClass SCAsWritten
3583     = StorageClassSpecToVarDeclStorageClass(SCSpec);
3584 
3585   IdentifierInfo *II = Name.getAsIdentifierInfo();
3586   if (!II) {
3587     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3588       << Name.getAsString();
3589     return 0;
3590   }
3591 
3592   DiagnoseFunctionSpecifiers(D);
3593 
3594   if (!DC->isRecord() && S->getFnParent() == 0) {
3595     // C99 6.9p2: The storage-class specifiers auto and register shall not
3596     // appear in the declaration specifiers in an external declaration.
3597     if (SC == SC_Auto || SC == SC_Register) {
3598 
3599       // If this is a register variable with an asm label specified, then this
3600       // is a GNU extension.
3601       if (SC == SC_Register && D.getAsmLabel())
3602         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3603       else
3604         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3605       D.setInvalidType();
3606     }
3607   }
3608 
3609   bool isExplicitSpecialization = false;
3610   VarDecl *NewVD;
3611   if (!getLangOptions().CPlusPlus) {
3612     NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3613                             D.getIdentifierLoc(), II,
3614                             R, TInfo, SC, SCAsWritten);
3615 
3616     if (D.isInvalidType())
3617       NewVD->setInvalidDecl();
3618   } else {
3619     if (DC->isRecord() && !CurContext->isRecord()) {
3620       // This is an out-of-line definition of a static data member.
3621       if (SC == SC_Static) {
3622         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3623              diag::err_static_out_of_line)
3624           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3625       } else if (SC == SC_None)
3626         SC = SC_Static;
3627     }
3628     if (SC == SC_Static) {
3629       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3630         if (RD->isLocalClass())
3631           Diag(D.getIdentifierLoc(),
3632                diag::err_static_data_member_not_allowed_in_local_class)
3633             << Name << RD->getDeclName();
3634 
3635         // C++ [class.union]p1: If a union contains a static data member,
3636         // the program is ill-formed.
3637         //
3638         // We also disallow static data members in anonymous structs.
3639         if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3640           Diag(D.getIdentifierLoc(),
3641                diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3642             << Name << RD->isUnion();
3643       }
3644     }
3645 
3646     // Match up the template parameter lists with the scope specifier, then
3647     // determine whether we have a template or a template specialization.
3648     isExplicitSpecialization = false;
3649     bool Invalid = false;
3650     if (TemplateParameterList *TemplateParams
3651         = MatchTemplateParametersToScopeSpecifier(
3652                                   D.getDeclSpec().getSourceRange().getBegin(),
3653                                                   D.getIdentifierLoc(),
3654                                                   D.getCXXScopeSpec(),
3655                                                   TemplateParamLists.get(),
3656                                                   TemplateParamLists.size(),
3657                                                   /*never a friend*/ false,
3658                                                   isExplicitSpecialization,
3659                                                   Invalid)) {
3660       if (TemplateParams->size() > 0) {
3661         // There is no such thing as a variable template.
3662         Diag(D.getIdentifierLoc(), diag::err_template_variable)
3663           << II
3664           << SourceRange(TemplateParams->getTemplateLoc(),
3665                          TemplateParams->getRAngleLoc());
3666         return 0;
3667       } else {
3668         // There is an extraneous 'template<>' for this variable. Complain
3669         // about it, but allow the declaration of the variable.
3670         Diag(TemplateParams->getTemplateLoc(),
3671              diag::err_template_variable_noparams)
3672           << II
3673           << SourceRange(TemplateParams->getTemplateLoc(),
3674                          TemplateParams->getRAngleLoc());
3675       }
3676     }
3677 
3678     NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3679                             D.getIdentifierLoc(), II,
3680                             R, TInfo, SC, SCAsWritten);
3681 
3682     // If this decl has an auto type in need of deduction, make a note of the
3683     // Decl so we can diagnose uses of it in its own initializer.
3684     if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3685         R->getContainedAutoType())
3686       ParsingInitForAutoVars.insert(NewVD);
3687 
3688     if (D.isInvalidType() || Invalid)
3689       NewVD->setInvalidDecl();
3690 
3691     SetNestedNameSpecifier(NewVD, D);
3692 
3693     if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3694       NewVD->setTemplateParameterListsInfo(Context,
3695                                            TemplateParamLists.size(),
3696                                            TemplateParamLists.release());
3697     }
3698   }
3699 
3700   if (D.getDeclSpec().isThreadSpecified()) {
3701     if (NewVD->hasLocalStorage())
3702       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3703     else if (!Context.Target.isTLSSupported())
3704       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3705     else
3706       NewVD->setThreadSpecified(true);
3707   }
3708 
3709   // Set the lexical context. If the declarator has a C++ scope specifier, the
3710   // lexical context will be different from the semantic context.
3711   NewVD->setLexicalDeclContext(CurContext);
3712 
3713   // Handle attributes prior to checking for duplicates in MergeVarDecl
3714   ProcessDeclAttributes(S, NewVD, D);
3715 
3716   // In auto-retain/release, infer strong retension for variables of
3717   // retainable type.
3718   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3719     NewVD->setInvalidDecl();
3720 
3721   // Handle GNU asm-label extension (encoded as an attribute).
3722   if (Expr *E = (Expr*)D.getAsmLabel()) {
3723     // The parser guarantees this is a string.
3724     StringLiteral *SE = cast<StringLiteral>(E);
3725     llvm::StringRef Label = SE->getString();
3726     if (S->getFnParent() != 0) {
3727       switch (SC) {
3728       case SC_None:
3729       case SC_Auto:
3730         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3731         break;
3732       case SC_Register:
3733         if (!Context.Target.isValidGCCRegisterName(Label))
3734           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3735         break;
3736       case SC_Static:
3737       case SC_Extern:
3738       case SC_PrivateExtern:
3739         break;
3740       }
3741     }
3742 
3743     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3744                                                 Context, Label));
3745   }
3746 
3747   // Diagnose shadowed variables before filtering for scope.
3748   if (!D.getCXXScopeSpec().isSet())
3749     CheckShadow(S, NewVD, Previous);
3750 
3751   // Don't consider existing declarations that are in a different
3752   // scope and are out-of-semantic-context declarations (if the new
3753   // declaration has linkage).
3754   FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3755                        isExplicitSpecialization);
3756 
3757   if (!getLangOptions().CPlusPlus)
3758     CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3759   else {
3760     // Merge the decl with the existing one if appropriate.
3761     if (!Previous.empty()) {
3762       if (Previous.isSingleResult() &&
3763           isa<FieldDecl>(Previous.getFoundDecl()) &&
3764           D.getCXXScopeSpec().isSet()) {
3765         // The user tried to define a non-static data member
3766         // out-of-line (C++ [dcl.meaning]p1).
3767         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3768           << D.getCXXScopeSpec().getRange();
3769         Previous.clear();
3770         NewVD->setInvalidDecl();
3771       }
3772     } else if (D.getCXXScopeSpec().isSet()) {
3773       // No previous declaration in the qualifying scope.
3774       Diag(D.getIdentifierLoc(), diag::err_no_member)
3775         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3776         << D.getCXXScopeSpec().getRange();
3777       NewVD->setInvalidDecl();
3778     }
3779 
3780     CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3781 
3782     // This is an explicit specialization of a static data member. Check it.
3783     if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3784         CheckMemberSpecialization(NewVD, Previous))
3785       NewVD->setInvalidDecl();
3786   }
3787 
3788   // attributes declared post-definition are currently ignored
3789   // FIXME: This should be handled in attribute merging, not
3790   // here.
3791   if (Previous.isSingleResult()) {
3792     VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3793     if (Def && (Def = Def->getDefinition()) &&
3794         Def != NewVD && D.hasAttributes()) {
3795       Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3796       Diag(Def->getLocation(), diag::note_previous_definition);
3797     }
3798   }
3799 
3800   // If this is a locally-scoped extern C variable, update the map of
3801   // such variables.
3802   if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3803       !NewVD->isInvalidDecl())
3804     RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3805 
3806   // If there's a #pragma GCC visibility in scope, and this isn't a class
3807   // member, set the visibility of this variable.
3808   if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3809     AddPushedVisibilityAttribute(NewVD);
3810 
3811   MarkUnusedFileScopedDecl(NewVD);
3812 
3813   return NewVD;
3814 }
3815 
3816 /// \brief Diagnose variable or built-in function shadowing.  Implements
3817 /// -Wshadow.
3818 ///
3819 /// This method is called whenever a VarDecl is added to a "useful"
3820 /// scope.
3821 ///
3822 /// \param S the scope in which the shadowing name is being declared
3823 /// \param R the lookup of the name
3824 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)3825 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3826   // Return if warning is ignored.
3827   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3828         Diagnostic::Ignored)
3829     return;
3830 
3831   // Don't diagnose declarations at file scope.
3832   if (D->hasGlobalStorage())
3833     return;
3834 
3835   DeclContext *NewDC = D->getDeclContext();
3836 
3837   // Only diagnose if we're shadowing an unambiguous field or variable.
3838   if (R.getResultKind() != LookupResult::Found)
3839     return;
3840 
3841   NamedDecl* ShadowedDecl = R.getFoundDecl();
3842   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3843     return;
3844 
3845   // Fields are not shadowed by variables in C++ static methods.
3846   if (isa<FieldDecl>(ShadowedDecl))
3847     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3848       if (MD->isStatic())
3849         return;
3850 
3851   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3852     if (shadowedVar->isExternC()) {
3853       // For shadowing external vars, make sure that we point to the global
3854       // declaration, not a locally scoped extern declaration.
3855       for (VarDecl::redecl_iterator
3856              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3857            I != E; ++I)
3858         if (I->isFileVarDecl()) {
3859           ShadowedDecl = *I;
3860           break;
3861         }
3862     }
3863 
3864   DeclContext *OldDC = ShadowedDecl->getDeclContext();
3865 
3866   // Only warn about certain kinds of shadowing for class members.
3867   if (NewDC && NewDC->isRecord()) {
3868     // In particular, don't warn about shadowing non-class members.
3869     if (!OldDC->isRecord())
3870       return;
3871 
3872     // TODO: should we warn about static data members shadowing
3873     // static data members from base classes?
3874 
3875     // TODO: don't diagnose for inaccessible shadowed members.
3876     // This is hard to do perfectly because we might friend the
3877     // shadowing context, but that's just a false negative.
3878   }
3879 
3880   // Determine what kind of declaration we're shadowing.
3881   unsigned Kind;
3882   if (isa<RecordDecl>(OldDC)) {
3883     if (isa<FieldDecl>(ShadowedDecl))
3884       Kind = 3; // field
3885     else
3886       Kind = 2; // static data member
3887   } else if (OldDC->isFileContext())
3888     Kind = 1; // global
3889   else
3890     Kind = 0; // local
3891 
3892   DeclarationName Name = R.getLookupName();
3893 
3894   // Emit warning and note.
3895   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3896   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3897 }
3898 
3899 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)3900 void Sema::CheckShadow(Scope *S, VarDecl *D) {
3901   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3902         Diagnostic::Ignored)
3903     return;
3904 
3905   LookupResult R(*this, D->getDeclName(), D->getLocation(),
3906                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3907   LookupName(R, S);
3908   CheckShadow(S, D, R);
3909 }
3910 
3911 /// \brief Perform semantic checking on a newly-created variable
3912 /// declaration.
3913 ///
3914 /// This routine performs all of the type-checking required for a
3915 /// variable declaration once it has been built. It is used both to
3916 /// check variables after they have been parsed and their declarators
3917 /// have been translated into a declaration, and to check variables
3918 /// that have been instantiated from a template.
3919 ///
3920 /// Sets NewVD->isInvalidDecl() if an error was encountered.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous,bool & Redeclaration)3921 void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3922                                     LookupResult &Previous,
3923                                     bool &Redeclaration) {
3924   // If the decl is already known invalid, don't check it.
3925   if (NewVD->isInvalidDecl())
3926     return;
3927 
3928   QualType T = NewVD->getType();
3929 
3930   if (T->isObjCObjectType()) {
3931     Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3932     return NewVD->setInvalidDecl();
3933   }
3934 
3935   // Emit an error if an address space was applied to decl with local storage.
3936   // This includes arrays of objects with address space qualifiers, but not
3937   // automatic variables that point to other address spaces.
3938   // ISO/IEC TR 18037 S5.1.2
3939   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3940     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3941     return NewVD->setInvalidDecl();
3942   }
3943 
3944   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3945       && !NewVD->hasAttr<BlocksAttr>()) {
3946     if (getLangOptions().getGCMode() != LangOptions::NonGC)
3947       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
3948     else
3949       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3950   }
3951 
3952   bool isVM = T->isVariablyModifiedType();
3953   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3954       NewVD->hasAttr<BlocksAttr>())
3955     getCurFunction()->setHasBranchProtectedScope();
3956 
3957   if ((isVM && NewVD->hasLinkage()) ||
3958       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3959     bool SizeIsNegative;
3960     llvm::APSInt Oversized;
3961     QualType FixedTy =
3962         TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3963                                             Oversized);
3964 
3965     if (FixedTy.isNull() && T->isVariableArrayType()) {
3966       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3967       // FIXME: This won't give the correct result for
3968       // int a[10][n];
3969       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3970 
3971       if (NewVD->isFileVarDecl())
3972         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3973         << SizeRange;
3974       else if (NewVD->getStorageClass() == SC_Static)
3975         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3976         << SizeRange;
3977       else
3978         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3979         << SizeRange;
3980       return NewVD->setInvalidDecl();
3981     }
3982 
3983     if (FixedTy.isNull()) {
3984       if (NewVD->isFileVarDecl())
3985         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3986       else
3987         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3988       return NewVD->setInvalidDecl();
3989     }
3990 
3991     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3992     NewVD->setType(FixedTy);
3993   }
3994 
3995   if (Previous.empty() && NewVD->isExternC()) {
3996     // Since we did not find anything by this name and we're declaring
3997     // an extern "C" variable, look for a non-visible extern "C"
3998     // declaration with the same name.
3999     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4000       = LocallyScopedExternalDecls.find(NewVD->getDeclName());
4001     if (Pos != LocallyScopedExternalDecls.end())
4002       Previous.addDecl(Pos->second);
4003   }
4004 
4005   if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4006     Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4007       << T;
4008     return NewVD->setInvalidDecl();
4009   }
4010 
4011   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4012     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4013     return NewVD->setInvalidDecl();
4014   }
4015 
4016   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4017     Diag(NewVD->getLocation(), diag::err_block_on_vm);
4018     return NewVD->setInvalidDecl();
4019   }
4020 
4021   // Function pointers and references cannot have qualified function type, only
4022   // function pointer-to-members can do that.
4023   QualType Pointee;
4024   unsigned PtrOrRef = 0;
4025   if (const PointerType *Ptr = T->getAs<PointerType>())
4026     Pointee = Ptr->getPointeeType();
4027   else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4028     Pointee = Ref->getPointeeType();
4029     PtrOrRef = 1;
4030   }
4031   if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4032       Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4033     Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4034         << PtrOrRef;
4035     return NewVD->setInvalidDecl();
4036   }
4037 
4038   if (!Previous.empty()) {
4039     Redeclaration = true;
4040     MergeVarDecl(NewVD, Previous);
4041   }
4042 }
4043 
4044 /// \brief Data used with FindOverriddenMethod
4045 struct FindOverriddenMethodData {
4046   Sema *S;
4047   CXXMethodDecl *Method;
4048 };
4049 
4050 /// \brief Member lookup function that determines whether a given C++
4051 /// method overrides a method in a base class, to be used with
4052 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)4053 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4054                                  CXXBasePath &Path,
4055                                  void *UserData) {
4056   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4057 
4058   FindOverriddenMethodData *Data
4059     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4060 
4061   DeclarationName Name = Data->Method->getDeclName();
4062 
4063   // FIXME: Do we care about other names here too?
4064   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4065     // We really want to find the base class destructor here.
4066     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4067     CanQualType CT = Data->S->Context.getCanonicalType(T);
4068 
4069     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4070   }
4071 
4072   for (Path.Decls = BaseRecord->lookup(Name);
4073        Path.Decls.first != Path.Decls.second;
4074        ++Path.Decls.first) {
4075     NamedDecl *D = *Path.Decls.first;
4076     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4077       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4078         return true;
4079     }
4080   }
4081 
4082   return false;
4083 }
4084 
4085 /// AddOverriddenMethods - See if a method overrides any in the base classes,
4086 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)4087 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4088   // Look for virtual methods in base classes that this method might override.
4089   CXXBasePaths Paths;
4090   FindOverriddenMethodData Data;
4091   Data.Method = MD;
4092   Data.S = this;
4093   bool AddedAny = false;
4094   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4095     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4096          E = Paths.found_decls_end(); I != E; ++I) {
4097       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4098         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4099         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4100             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4101             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4102           AddedAny = true;
4103         }
4104       }
4105     }
4106   }
4107 
4108   return AddedAny;
4109 }
4110 
DiagnoseInvalidRedeclaration(Sema & S,FunctionDecl * NewFD)4111 static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4112   LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4113                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4114   S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4115   assert(!Prev.isAmbiguous() &&
4116          "Cannot have an ambiguity in previous-declaration lookup");
4117   for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4118        Func != FuncEnd; ++Func) {
4119     if (isa<FunctionDecl>(*Func) &&
4120         isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4121       S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4122   }
4123 }
4124 
4125 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,QualType R,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool IsFunctionDefinition,bool & Redeclaration)4126 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4127                               QualType R, TypeSourceInfo *TInfo,
4128                               LookupResult &Previous,
4129                               MultiTemplateParamsArg TemplateParamLists,
4130                               bool IsFunctionDefinition, bool &Redeclaration) {
4131   assert(R.getTypePtr()->isFunctionType());
4132 
4133   // TODO: consider using NameInfo for diagnostic.
4134   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4135   DeclarationName Name = NameInfo.getName();
4136   FunctionDecl::StorageClass SC = SC_None;
4137   switch (D.getDeclSpec().getStorageClassSpec()) {
4138   default: assert(0 && "Unknown storage class!");
4139   case DeclSpec::SCS_auto:
4140   case DeclSpec::SCS_register:
4141   case DeclSpec::SCS_mutable:
4142     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4143          diag::err_typecheck_sclass_func);
4144     D.setInvalidType();
4145     break;
4146   case DeclSpec::SCS_unspecified: SC = SC_None; break;
4147   case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4148   case DeclSpec::SCS_static: {
4149     if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4150       // C99 6.7.1p5:
4151       //   The declaration of an identifier for a function that has
4152       //   block scope shall have no explicit storage-class specifier
4153       //   other than extern
4154       // See also (C++ [dcl.stc]p4).
4155       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4156            diag::err_static_block_func);
4157       SC = SC_None;
4158     } else
4159       SC = SC_Static;
4160     break;
4161   }
4162   case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4163   }
4164 
4165   if (D.getDeclSpec().isThreadSpecified())
4166     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4167 
4168   // Do not allow returning a objc interface by-value.
4169   if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4170     Diag(D.getIdentifierLoc(),
4171          diag::err_object_cannot_be_passed_returned_by_value) << 0
4172     << R->getAs<FunctionType>()->getResultType();
4173     D.setInvalidType();
4174   }
4175 
4176   FunctionDecl *NewFD;
4177   bool isInline = D.getDeclSpec().isInlineSpecified();
4178   bool isFriend = false;
4179   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4180   FunctionDecl::StorageClass SCAsWritten
4181     = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4182   FunctionTemplateDecl *FunctionTemplate = 0;
4183   bool isExplicitSpecialization = false;
4184   bool isFunctionTemplateSpecialization = false;
4185 
4186   if (!getLangOptions().CPlusPlus) {
4187     // Determine whether the function was written with a
4188     // prototype. This true when:
4189     //   - there is a prototype in the declarator, or
4190     //   - the type R of the function is some kind of typedef or other reference
4191     //     to a type name (which eventually refers to a function type).
4192     bool HasPrototype =
4193     (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4194     (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4195 
4196     NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4197                                  NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4198                                  HasPrototype);
4199     if (D.isInvalidType())
4200       NewFD->setInvalidDecl();
4201 
4202     // Set the lexical context.
4203     NewFD->setLexicalDeclContext(CurContext);
4204     // Filter out previous declarations that don't match the scope.
4205     FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4206                          /*ExplicitInstantiationOrSpecialization=*/false);
4207   } else {
4208     isFriend = D.getDeclSpec().isFriendSpecified();
4209     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4210     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4211     bool isVirtualOkay = false;
4212 
4213     // Check that the return type is not an abstract class type.
4214     // For record types, this is done by the AbstractClassUsageDiagnoser once
4215     // the class has been completely parsed.
4216     if (!DC->isRecord() &&
4217       RequireNonAbstractType(D.getIdentifierLoc(),
4218                              R->getAs<FunctionType>()->getResultType(),
4219                              diag::err_abstract_type_in_decl,
4220                              AbstractReturnType))
4221       D.setInvalidType();
4222 
4223     if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4224       // This is a C++ constructor declaration.
4225       assert(DC->isRecord() &&
4226              "Constructors can only be declared in a member context");
4227 
4228       R = CheckConstructorDeclarator(D, R, SC);
4229 
4230       // Create the new declaration
4231       CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4232                                          Context,
4233                                          cast<CXXRecordDecl>(DC),
4234                                          D.getSourceRange().getBegin(),
4235                                          NameInfo, R, TInfo,
4236                                          isExplicit, isInline,
4237                                          /*isImplicitlyDeclared=*/false);
4238 
4239       NewFD = NewCD;
4240     } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4241       // This is a C++ destructor declaration.
4242       if (DC->isRecord()) {
4243         R = CheckDestructorDeclarator(D, R, SC);
4244         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4245 
4246         CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4247                                           D.getSourceRange().getBegin(),
4248                                           NameInfo, R, TInfo,
4249                                           isInline,
4250                                           /*isImplicitlyDeclared=*/false);
4251         NewFD = NewDD;
4252         isVirtualOkay = true;
4253 
4254         // If the class is complete, then we now create the implicit exception
4255         // specification. If the class is incomplete or dependent, we can't do
4256         // it yet.
4257         if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4258             Record->getDefinition() && !Record->isBeingDefined() &&
4259             R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4260           AdjustDestructorExceptionSpec(Record, NewDD);
4261         }
4262 
4263       } else {
4264         Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4265 
4266         // Create a FunctionDecl to satisfy the function definition parsing
4267         // code path.
4268         NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4269                                      D.getIdentifierLoc(), Name, R, TInfo,
4270                                      SC, SCAsWritten, isInline,
4271                                      /*hasPrototype=*/true);
4272         D.setInvalidType();
4273       }
4274     } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4275       if (!DC->isRecord()) {
4276         Diag(D.getIdentifierLoc(),
4277              diag::err_conv_function_not_member);
4278         return 0;
4279       }
4280 
4281       CheckConversionDeclarator(D, R, SC);
4282       NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4283                                         D.getSourceRange().getBegin(),
4284                                         NameInfo, R, TInfo,
4285                                         isInline, isExplicit,
4286                                         SourceLocation());
4287 
4288       isVirtualOkay = true;
4289     } else if (DC->isRecord()) {
4290       // If the of the function is the same as the name of the record, then this
4291       // must be an invalid constructor that has a return type.
4292       // (The parser checks for a return type and makes the declarator a
4293       // constructor if it has no return type).
4294       // must have an invalid constructor that has a return type
4295       if (Name.getAsIdentifierInfo() &&
4296           Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4297         Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4298           << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4299           << SourceRange(D.getIdentifierLoc());
4300         return 0;
4301       }
4302 
4303       bool isStatic = SC == SC_Static;
4304 
4305       // [class.free]p1:
4306       // Any allocation function for a class T is a static member
4307       // (even if not explicitly declared static).
4308       if (Name.getCXXOverloadedOperator() == OO_New ||
4309           Name.getCXXOverloadedOperator() == OO_Array_New)
4310         isStatic = true;
4311 
4312       // [class.free]p6 Any deallocation function for a class X is a static member
4313       // (even if not explicitly declared static).
4314       if (Name.getCXXOverloadedOperator() == OO_Delete ||
4315           Name.getCXXOverloadedOperator() == OO_Array_Delete)
4316         isStatic = true;
4317 
4318       // This is a C++ method declaration.
4319       CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4320                                                Context, cast<CXXRecordDecl>(DC),
4321                                                D.getSourceRange().getBegin(),
4322                                                NameInfo, R, TInfo,
4323                                                isStatic, SCAsWritten, isInline,
4324                                                SourceLocation());
4325       NewFD = NewMD;
4326 
4327       isVirtualOkay = !isStatic;
4328     } else {
4329       // Determine whether the function was written with a
4330       // prototype. This true when:
4331       //   - we're in C++ (where every function has a prototype),
4332       NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4333                                    NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4334                                    true/*HasPrototype*/);
4335     }
4336 
4337     if (isFriend && !isInline && IsFunctionDefinition) {
4338       // C++ [class.friend]p5
4339       //   A function can be defined in a friend declaration of a
4340       //   class . . . . Such a function is implicitly inline.
4341       NewFD->setImplicitlyInline();
4342     }
4343 
4344     SetNestedNameSpecifier(NewFD, D);
4345     isExplicitSpecialization = false;
4346     isFunctionTemplateSpecialization = false;
4347     if (D.isInvalidType())
4348       NewFD->setInvalidDecl();
4349 
4350     // Set the lexical context. If the declarator has a C++
4351     // scope specifier, or is the object of a friend declaration, the
4352     // lexical context will be different from the semantic context.
4353     NewFD->setLexicalDeclContext(CurContext);
4354 
4355     // Match up the template parameter lists with the scope specifier, then
4356     // determine whether we have a template or a template specialization.
4357     bool Invalid = false;
4358     if (TemplateParameterList *TemplateParams
4359           = MatchTemplateParametersToScopeSpecifier(
4360                                   D.getDeclSpec().getSourceRange().getBegin(),
4361                                   D.getIdentifierLoc(),
4362                                   D.getCXXScopeSpec(),
4363                                   TemplateParamLists.get(),
4364                                   TemplateParamLists.size(),
4365                                   isFriend,
4366                                   isExplicitSpecialization,
4367                                   Invalid)) {
4368       if (TemplateParams->size() > 0) {
4369         // This is a function template
4370 
4371         // Check that we can declare a template here.
4372         if (CheckTemplateDeclScope(S, TemplateParams))
4373           return 0;
4374 
4375         // A destructor cannot be a template.
4376         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4377           Diag(NewFD->getLocation(), diag::err_destructor_template);
4378           return 0;
4379         }
4380 
4381         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4382                                                         NewFD->getLocation(),
4383                                                         Name, TemplateParams,
4384                                                         NewFD);
4385         FunctionTemplate->setLexicalDeclContext(CurContext);
4386         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4387 
4388         // For source fidelity, store the other template param lists.
4389         if (TemplateParamLists.size() > 1) {
4390           NewFD->setTemplateParameterListsInfo(Context,
4391                                                TemplateParamLists.size() - 1,
4392                                                TemplateParamLists.release());
4393         }
4394       } else {
4395         // This is a function template specialization.
4396         isFunctionTemplateSpecialization = true;
4397         // For source fidelity, store all the template param lists.
4398         NewFD->setTemplateParameterListsInfo(Context,
4399                                              TemplateParamLists.size(),
4400                                              TemplateParamLists.release());
4401 
4402         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4403         if (isFriend) {
4404           // We want to remove the "template<>", found here.
4405           SourceRange RemoveRange = TemplateParams->getSourceRange();
4406 
4407           // If we remove the template<> and the name is not a
4408           // template-id, we're actually silently creating a problem:
4409           // the friend declaration will refer to an untemplated decl,
4410           // and clearly the user wants a template specialization.  So
4411           // we need to insert '<>' after the name.
4412           SourceLocation InsertLoc;
4413           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4414             InsertLoc = D.getName().getSourceRange().getEnd();
4415             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4416           }
4417 
4418           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4419             << Name << RemoveRange
4420             << FixItHint::CreateRemoval(RemoveRange)
4421             << FixItHint::CreateInsertion(InsertLoc, "<>");
4422         }
4423       }
4424     }
4425     else {
4426       // All template param lists were matched against the scope specifier:
4427       // this is NOT (an explicit specialization of) a template.
4428       if (TemplateParamLists.size() > 0)
4429         // For source fidelity, store all the template param lists.
4430         NewFD->setTemplateParameterListsInfo(Context,
4431                                              TemplateParamLists.size(),
4432                                              TemplateParamLists.release());
4433     }
4434 
4435     if (Invalid) {
4436       NewFD->setInvalidDecl();
4437       if (FunctionTemplate)
4438         FunctionTemplate->setInvalidDecl();
4439     }
4440 
4441     // C++ [dcl.fct.spec]p5:
4442     //   The virtual specifier shall only be used in declarations of
4443     //   nonstatic class member functions that appear within a
4444     //   member-specification of a class declaration; see 10.3.
4445     //
4446     if (isVirtual && !NewFD->isInvalidDecl()) {
4447       if (!isVirtualOkay) {
4448         Diag(D.getDeclSpec().getVirtualSpecLoc(),
4449              diag::err_virtual_non_function);
4450       } else if (!CurContext->isRecord()) {
4451         // 'virtual' was specified outside of the class.
4452         Diag(D.getDeclSpec().getVirtualSpecLoc(),
4453              diag::err_virtual_out_of_class)
4454           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4455       } else if (NewFD->getDescribedFunctionTemplate()) {
4456         // C++ [temp.mem]p3:
4457         //  A member function template shall not be virtual.
4458         Diag(D.getDeclSpec().getVirtualSpecLoc(),
4459              diag::err_virtual_member_function_template)
4460           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4461       } else {
4462         // Okay: Add virtual to the method.
4463         NewFD->setVirtualAsWritten(true);
4464       }
4465     }
4466 
4467     // C++ [dcl.fct.spec]p3:
4468     //  The inline specifier shall not appear on a block scope function declaration.
4469     if (isInline && !NewFD->isInvalidDecl()) {
4470       if (CurContext->isFunctionOrMethod()) {
4471         // 'inline' is not allowed on block scope function declaration.
4472         Diag(D.getDeclSpec().getInlineSpecLoc(),
4473              diag::err_inline_declaration_block_scope) << Name
4474           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4475       }
4476     }
4477 
4478     // C++ [dcl.fct.spec]p6:
4479     //  The explicit specifier shall be used only in the declaration of a
4480     //  constructor or conversion function within its class definition; see 12.3.1
4481     //  and 12.3.2.
4482     if (isExplicit && !NewFD->isInvalidDecl()) {
4483       if (!CurContext->isRecord()) {
4484         // 'explicit' was specified outside of the class.
4485         Diag(D.getDeclSpec().getExplicitSpecLoc(),
4486              diag::err_explicit_out_of_class)
4487           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4488       } else if (!isa<CXXConstructorDecl>(NewFD) &&
4489                  !isa<CXXConversionDecl>(NewFD)) {
4490         // 'explicit' was specified on a function that wasn't a constructor
4491         // or conversion function.
4492         Diag(D.getDeclSpec().getExplicitSpecLoc(),
4493              diag::err_explicit_non_ctor_or_conv_function)
4494           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4495       }
4496     }
4497 
4498     // Filter out previous declarations that don't match the scope.
4499     FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4500                          isExplicitSpecialization ||
4501                          isFunctionTemplateSpecialization);
4502 
4503     if (isFriend) {
4504       // For now, claim that the objects have no previous declaration.
4505       if (FunctionTemplate) {
4506         FunctionTemplate->setObjectOfFriendDecl(false);
4507         FunctionTemplate->setAccess(AS_public);
4508       }
4509       NewFD->setObjectOfFriendDecl(false);
4510       NewFD->setAccess(AS_public);
4511     }
4512 
4513     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4514       // A method is implicitly inline if it's defined in its class
4515       // definition.
4516       NewFD->setImplicitlyInline();
4517     }
4518 
4519     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4520         !CurContext->isRecord()) {
4521       // C++ [class.static]p1:
4522       //   A data or function member of a class may be declared static
4523       //   in a class definition, in which case it is a static member of
4524       //   the class.
4525 
4526       // Complain about the 'static' specifier if it's on an out-of-line
4527       // member function definition.
4528       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4529            diag::err_static_out_of_line)
4530         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4531     }
4532   }
4533 
4534   // Handle GNU asm-label extension (encoded as an attribute).
4535   if (Expr *E = (Expr*) D.getAsmLabel()) {
4536     // The parser guarantees this is a string.
4537     StringLiteral *SE = cast<StringLiteral>(E);
4538     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4539                                                 SE->getString()));
4540   }
4541 
4542   // Copy the parameter declarations from the declarator D to the function
4543   // declaration NewFD, if they are available.  First scavenge them into Params.
4544   llvm::SmallVector<ParmVarDecl*, 16> Params;
4545   if (D.isFunctionDeclarator()) {
4546     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4547 
4548     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4549     // function that takes no arguments, not a function that takes a
4550     // single void argument.
4551     // We let through "const void" here because Sema::GetTypeForDeclarator
4552     // already checks for that case.
4553     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4554         FTI.ArgInfo[0].Param &&
4555         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4556       // Empty arg list, don't push any params.
4557       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4558 
4559       // In C++, the empty parameter-type-list must be spelled "void"; a
4560       // typedef of void is not permitted.
4561       if (getLangOptions().CPlusPlus &&
4562           Param->getType().getUnqualifiedType() != Context.VoidTy) {
4563         bool IsTypeAlias = false;
4564         if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4565           IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4566         else if (const TemplateSpecializationType *TST =
4567                    Param->getType()->getAs<TemplateSpecializationType>())
4568           IsTypeAlias = TST->isTypeAlias();
4569         Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4570           << IsTypeAlias;
4571       }
4572     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4573       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4574         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4575         assert(Param->getDeclContext() != NewFD && "Was set before ?");
4576         Param->setDeclContext(NewFD);
4577         Params.push_back(Param);
4578 
4579         if (Param->isInvalidDecl())
4580           NewFD->setInvalidDecl();
4581       }
4582     }
4583 
4584   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4585     // When we're declaring a function with a typedef, typeof, etc as in the
4586     // following example, we'll need to synthesize (unnamed)
4587     // parameters for use in the declaration.
4588     //
4589     // @code
4590     // typedef void fn(int);
4591     // fn f;
4592     // @endcode
4593 
4594     // Synthesize a parameter for each argument type.
4595     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4596          AE = FT->arg_type_end(); AI != AE; ++AI) {
4597       ParmVarDecl *Param =
4598         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4599       Param->setScopeInfo(0, Params.size());
4600       Params.push_back(Param);
4601     }
4602   } else {
4603     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4604            "Should not need args for typedef of non-prototype fn");
4605   }
4606   // Finally, we know we have the right number of parameters, install them.
4607   NewFD->setParams(Params.data(), Params.size());
4608 
4609   // Process the non-inheritable attributes on this declaration.
4610   ProcessDeclAttributes(S, NewFD, D,
4611                         /*NonInheritable=*/true, /*Inheritable=*/false);
4612 
4613   if (!getLangOptions().CPlusPlus) {
4614     // Perform semantic checking on the function declaration.
4615     bool isExplicitSpecialization=false;
4616     CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4617                              Redeclaration);
4618     assert((NewFD->isInvalidDecl() || !Redeclaration ||
4619             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4620            "previous declaration set still overloaded");
4621   } else {
4622     // If the declarator is a template-id, translate the parser's template
4623     // argument list into our AST format.
4624     bool HasExplicitTemplateArgs = false;
4625     TemplateArgumentListInfo TemplateArgs;
4626     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4627       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4628       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4629       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4630       ASTTemplateArgsPtr TemplateArgsPtr(*this,
4631                                          TemplateId->getTemplateArgs(),
4632                                          TemplateId->NumArgs);
4633       translateTemplateArguments(TemplateArgsPtr,
4634                                  TemplateArgs);
4635       TemplateArgsPtr.release();
4636 
4637       HasExplicitTemplateArgs = true;
4638 
4639       if (NewFD->isInvalidDecl()) {
4640         HasExplicitTemplateArgs = false;
4641       } else if (FunctionTemplate) {
4642         // Function template with explicit template arguments.
4643         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4644           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4645 
4646         HasExplicitTemplateArgs = false;
4647       } else if (!isFunctionTemplateSpecialization &&
4648                  !D.getDeclSpec().isFriendSpecified()) {
4649         // We have encountered something that the user meant to be a
4650         // specialization (because it has explicitly-specified template
4651         // arguments) but that was not introduced with a "template<>" (or had
4652         // too few of them).
4653         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4654           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4655           << FixItHint::CreateInsertion(
4656                                         D.getDeclSpec().getSourceRange().getBegin(),
4657                                                   "template<> ");
4658         isFunctionTemplateSpecialization = true;
4659       } else {
4660         // "friend void foo<>(int);" is an implicit specialization decl.
4661         isFunctionTemplateSpecialization = true;
4662       }
4663     } else if (isFriend && isFunctionTemplateSpecialization) {
4664       // This combination is only possible in a recovery case;  the user
4665       // wrote something like:
4666       //   template <> friend void foo(int);
4667       // which we're recovering from as if the user had written:
4668       //   friend void foo<>(int);
4669       // Go ahead and fake up a template id.
4670       HasExplicitTemplateArgs = true;
4671         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4672       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4673     }
4674 
4675     // If it's a friend (and only if it's a friend), it's possible
4676     // that either the specialized function type or the specialized
4677     // template is dependent, and therefore matching will fail.  In
4678     // this case, don't check the specialization yet.
4679     if (isFunctionTemplateSpecialization && isFriend &&
4680         (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4681       assert(HasExplicitTemplateArgs &&
4682              "friend function specialization without template args");
4683       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4684                                                        Previous))
4685         NewFD->setInvalidDecl();
4686     } else if (isFunctionTemplateSpecialization) {
4687       if (CurContext->isDependentContext() && CurContext->isRecord()
4688           && !isFriend) {
4689         Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4690           << NewFD->getDeclName();
4691         NewFD->setInvalidDecl();
4692         return 0;
4693       } else if (CheckFunctionTemplateSpecialization(NewFD,
4694                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4695                                                      Previous))
4696         NewFD->setInvalidDecl();
4697 
4698       // C++ [dcl.stc]p1:
4699       //   A storage-class-specifier shall not be specified in an explicit
4700       //   specialization (14.7.3)
4701       if (SC != SC_None) {
4702         if (SC != NewFD->getStorageClass())
4703           Diag(NewFD->getLocation(),
4704                diag::err_explicit_specialization_inconsistent_storage_class)
4705             << SC
4706             << FixItHint::CreateRemoval(
4707                                       D.getDeclSpec().getStorageClassSpecLoc());
4708 
4709         else
4710           Diag(NewFD->getLocation(),
4711                diag::ext_explicit_specialization_storage_class)
4712             << FixItHint::CreateRemoval(
4713                                       D.getDeclSpec().getStorageClassSpecLoc());
4714       }
4715 
4716     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4717       if (CheckMemberSpecialization(NewFD, Previous))
4718           NewFD->setInvalidDecl();
4719     }
4720 
4721     // Perform semantic checking on the function declaration.
4722     CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4723                              Redeclaration);
4724 
4725     assert((NewFD->isInvalidDecl() || !Redeclaration ||
4726             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4727            "previous declaration set still overloaded");
4728 
4729     NamedDecl *PrincipalDecl = (FunctionTemplate
4730                                 ? cast<NamedDecl>(FunctionTemplate)
4731                                 : NewFD);
4732 
4733     if (isFriend && Redeclaration) {
4734       AccessSpecifier Access = AS_public;
4735       if (!NewFD->isInvalidDecl())
4736         Access = NewFD->getPreviousDeclaration()->getAccess();
4737 
4738       NewFD->setAccess(Access);
4739       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4740 
4741       PrincipalDecl->setObjectOfFriendDecl(true);
4742     }
4743 
4744     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4745         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4746       PrincipalDecl->setNonMemberOperator();
4747 
4748     // If we have a function template, check the template parameter
4749     // list. This will check and merge default template arguments.
4750     if (FunctionTemplate) {
4751       FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4752       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4753                                  PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4754                             D.getDeclSpec().isFriendSpecified()
4755                               ? (IsFunctionDefinition
4756                                    ? TPC_FriendFunctionTemplateDefinition
4757                                    : TPC_FriendFunctionTemplate)
4758                               : (D.getCXXScopeSpec().isSet() &&
4759                                  DC && DC->isRecord() &&
4760                                  DC->isDependentContext())
4761                                   ? TPC_ClassTemplateMember
4762                                   : TPC_FunctionTemplate);
4763     }
4764 
4765     if (NewFD->isInvalidDecl()) {
4766       // Ignore all the rest of this.
4767     } else if (!Redeclaration) {
4768       // Fake up an access specifier if it's supposed to be a class member.
4769       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4770         NewFD->setAccess(AS_public);
4771 
4772       // Qualified decls generally require a previous declaration.
4773       if (D.getCXXScopeSpec().isSet()) {
4774         // ...with the major exception of templated-scope or
4775         // dependent-scope friend declarations.
4776 
4777         // TODO: we currently also suppress this check in dependent
4778         // contexts because (1) the parameter depth will be off when
4779         // matching friend templates and (2) we might actually be
4780         // selecting a friend based on a dependent factor.  But there
4781         // are situations where these conditions don't apply and we
4782         // can actually do this check immediately.
4783         if (isFriend &&
4784             (TemplateParamLists.size() ||
4785              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4786              CurContext->isDependentContext())) {
4787               // ignore these
4788             } else {
4789               // The user tried to provide an out-of-line definition for a
4790               // function that is a member of a class or namespace, but there
4791               // was no such member function declared (C++ [class.mfct]p2,
4792               // C++ [namespace.memdef]p2). For example:
4793               //
4794               // class X {
4795               //   void f() const;
4796               // };
4797               //
4798               // void X::f() { } // ill-formed
4799               //
4800               // Complain about this problem, and attempt to suggest close
4801               // matches (e.g., those that differ only in cv-qualifiers and
4802               // whether the parameter types are references).
4803               Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4804               << Name << DC << D.getCXXScopeSpec().getRange();
4805               NewFD->setInvalidDecl();
4806 
4807               DiagnoseInvalidRedeclaration(*this, NewFD);
4808             }
4809 
4810         // Unqualified local friend declarations are required to resolve
4811         // to something.
4812         } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4813           Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4814           NewFD->setInvalidDecl();
4815           DiagnoseInvalidRedeclaration(*this, NewFD);
4816         }
4817 
4818     } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4819                !isFriend && !isFunctionTemplateSpecialization &&
4820                !isExplicitSpecialization) {
4821       // An out-of-line member function declaration must also be a
4822       // definition (C++ [dcl.meaning]p1).
4823       // Note that this is not the case for explicit specializations of
4824       // function templates or member functions of class templates, per
4825       // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4826       // for compatibility with old SWIG code which likes to generate them.
4827       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4828         << D.getCXXScopeSpec().getRange();
4829     }
4830   }
4831 
4832 
4833   // Handle attributes. We need to have merged decls when handling attributes
4834   // (for example to check for conflicts, etc).
4835   // FIXME: This needs to happen before we merge declarations. Then,
4836   // let attribute merging cope with attribute conflicts.
4837   ProcessDeclAttributes(S, NewFD, D,
4838                         /*NonInheritable=*/false, /*Inheritable=*/true);
4839 
4840   // attributes declared post-definition are currently ignored
4841   // FIXME: This should happen during attribute merging
4842   if (Redeclaration && Previous.isSingleResult()) {
4843     const FunctionDecl *Def;
4844     FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4845     if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4846       Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4847       Diag(Def->getLocation(), diag::note_previous_definition);
4848     }
4849   }
4850 
4851   AddKnownFunctionAttributes(NewFD);
4852 
4853   if (NewFD->hasAttr<OverloadableAttr>() &&
4854       !NewFD->getType()->getAs<FunctionProtoType>()) {
4855     Diag(NewFD->getLocation(),
4856          diag::err_attribute_overloadable_no_prototype)
4857       << NewFD;
4858 
4859     // Turn this into a variadic function with no parameters.
4860     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4861     FunctionProtoType::ExtProtoInfo EPI;
4862     EPI.Variadic = true;
4863     EPI.ExtInfo = FT->getExtInfo();
4864 
4865     QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4866     NewFD->setType(R);
4867   }
4868 
4869   // If there's a #pragma GCC visibility in scope, and this isn't a class
4870   // member, set the visibility of this function.
4871   if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4872     AddPushedVisibilityAttribute(NewFD);
4873 
4874   // If this is a locally-scoped extern C function, update the
4875   // map of such names.
4876   if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4877       && !NewFD->isInvalidDecl())
4878     RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4879 
4880   // Set this FunctionDecl's range up to the right paren.
4881   NewFD->setRangeEnd(D.getSourceRange().getEnd());
4882 
4883   if (getLangOptions().CPlusPlus) {
4884     if (FunctionTemplate) {
4885       if (NewFD->isInvalidDecl())
4886         FunctionTemplate->setInvalidDecl();
4887       return FunctionTemplate;
4888     }
4889   }
4890 
4891   MarkUnusedFileScopedDecl(NewFD);
4892 
4893   if (getLangOptions().CUDA)
4894     if (IdentifierInfo *II = NewFD->getIdentifier())
4895       if (!NewFD->isInvalidDecl() &&
4896           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4897         if (II->isStr("cudaConfigureCall")) {
4898           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4899             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4900 
4901           Context.setcudaConfigureCallDecl(NewFD);
4902         }
4903       }
4904 
4905   return NewFD;
4906 }
4907 
4908 /// \brief Perform semantic checking of a new function declaration.
4909 ///
4910 /// Performs semantic analysis of the new function declaration
4911 /// NewFD. This routine performs all semantic checking that does not
4912 /// require the actual declarator involved in the declaration, and is
4913 /// used both for the declaration of functions as they are parsed
4914 /// (called via ActOnDeclarator) and for the declaration of functions
4915 /// that have been instantiated via C++ template instantiation (called
4916 /// via InstantiateDecl).
4917 ///
4918 /// \param IsExplicitSpecialiation whether this new function declaration is
4919 /// an explicit specialization of the previous declaration.
4920 ///
4921 /// This sets NewFD->isInvalidDecl() to true if there was an error.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization,bool & Redeclaration)4922 void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4923                                     LookupResult &Previous,
4924                                     bool IsExplicitSpecialization,
4925                                     bool &Redeclaration) {
4926   // If NewFD is already known erroneous, don't do any of this checking.
4927   if (NewFD->isInvalidDecl()) {
4928     // If this is a class member, mark the class invalid immediately.
4929     // This avoids some consistency errors later.
4930     if (isa<CXXMethodDecl>(NewFD))
4931       cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4932 
4933     return;
4934   }
4935 
4936   if (NewFD->getResultType()->isVariablyModifiedType()) {
4937     // Functions returning a variably modified type violate C99 6.7.5.2p2
4938     // because all functions have linkage.
4939     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4940     return NewFD->setInvalidDecl();
4941   }
4942 
4943   if (NewFD->isMain())
4944     CheckMain(NewFD);
4945 
4946   // Check for a previous declaration of this name.
4947   if (Previous.empty() && NewFD->isExternC()) {
4948     // Since we did not find anything by this name and we're declaring
4949     // an extern "C" function, look for a non-visible extern "C"
4950     // declaration with the same name.
4951     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4952       = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4953     if (Pos != LocallyScopedExternalDecls.end())
4954       Previous.addDecl(Pos->second);
4955   }
4956 
4957   // Merge or overload the declaration with an existing declaration of
4958   // the same name, if appropriate.
4959   if (!Previous.empty()) {
4960     // Determine whether NewFD is an overload of PrevDecl or
4961     // a declaration that requires merging. If it's an overload,
4962     // there's no more work to do here; we'll just add the new
4963     // function to the scope.
4964 
4965     NamedDecl *OldDecl = 0;
4966     if (!AllowOverloadingOfFunction(Previous, Context)) {
4967       Redeclaration = true;
4968       OldDecl = Previous.getFoundDecl();
4969     } else {
4970       switch (CheckOverload(S, NewFD, Previous, OldDecl,
4971                             /*NewIsUsingDecl*/ false)) {
4972       case Ovl_Match:
4973         Redeclaration = true;
4974         break;
4975 
4976       case Ovl_NonFunction:
4977         Redeclaration = true;
4978         break;
4979 
4980       case Ovl_Overload:
4981         Redeclaration = false;
4982         break;
4983       }
4984 
4985       if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4986         // If a function name is overloadable in C, then every function
4987         // with that name must be marked "overloadable".
4988         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4989           << Redeclaration << NewFD;
4990         NamedDecl *OverloadedDecl = 0;
4991         if (Redeclaration)
4992           OverloadedDecl = OldDecl;
4993         else if (!Previous.empty())
4994           OverloadedDecl = Previous.getRepresentativeDecl();
4995         if (OverloadedDecl)
4996           Diag(OverloadedDecl->getLocation(),
4997                diag::note_attribute_overloadable_prev_overload);
4998         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4999                                                         Context));
5000       }
5001     }
5002 
5003     if (Redeclaration) {
5004       // NewFD and OldDecl represent declarations that need to be
5005       // merged.
5006       if (MergeFunctionDecl(NewFD, OldDecl))
5007         return NewFD->setInvalidDecl();
5008 
5009       Previous.clear();
5010       Previous.addDecl(OldDecl);
5011 
5012       if (FunctionTemplateDecl *OldTemplateDecl
5013                                     = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5014         NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5015         FunctionTemplateDecl *NewTemplateDecl
5016           = NewFD->getDescribedFunctionTemplate();
5017         assert(NewTemplateDecl && "Template/non-template mismatch");
5018         if (CXXMethodDecl *Method
5019               = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5020           Method->setAccess(OldTemplateDecl->getAccess());
5021           NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5022         }
5023 
5024         // If this is an explicit specialization of a member that is a function
5025         // template, mark it as a member specialization.
5026         if (IsExplicitSpecialization &&
5027             NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5028           NewTemplateDecl->setMemberSpecialization();
5029           assert(OldTemplateDecl->isMemberSpecialization());
5030         }
5031       } else {
5032         if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5033           NewFD->setAccess(OldDecl->getAccess());
5034         NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5035       }
5036     }
5037   }
5038 
5039   // Semantic checking for this function declaration (in isolation).
5040   if (getLangOptions().CPlusPlus) {
5041     // C++-specific checks.
5042     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5043       CheckConstructor(Constructor);
5044     } else if (CXXDestructorDecl *Destructor =
5045                 dyn_cast<CXXDestructorDecl>(NewFD)) {
5046       CXXRecordDecl *Record = Destructor->getParent();
5047       QualType ClassType = Context.getTypeDeclType(Record);
5048 
5049       // FIXME: Shouldn't we be able to perform this check even when the class
5050       // type is dependent? Both gcc and edg can handle that.
5051       if (!ClassType->isDependentType()) {
5052         DeclarationName Name
5053           = Context.DeclarationNames.getCXXDestructorName(
5054                                         Context.getCanonicalType(ClassType));
5055         if (NewFD->getDeclName() != Name) {
5056           Diag(NewFD->getLocation(), diag::err_destructor_name);
5057           return NewFD->setInvalidDecl();
5058         }
5059       }
5060     } else if (CXXConversionDecl *Conversion
5061                = dyn_cast<CXXConversionDecl>(NewFD)) {
5062       ActOnConversionDeclarator(Conversion);
5063     }
5064 
5065     // Find any virtual functions that this function overrides.
5066     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5067       if (!Method->isFunctionTemplateSpecialization() &&
5068           !Method->getDescribedFunctionTemplate()) {
5069         if (AddOverriddenMethods(Method->getParent(), Method)) {
5070           // If the function was marked as "static", we have a problem.
5071           if (NewFD->getStorageClass() == SC_Static) {
5072             Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5073               << NewFD->getDeclName();
5074             for (CXXMethodDecl::method_iterator
5075                       Overridden = Method->begin_overridden_methods(),
5076                    OverriddenEnd = Method->end_overridden_methods();
5077                  Overridden != OverriddenEnd;
5078                  ++Overridden) {
5079               Diag((*Overridden)->getLocation(),
5080                    diag::note_overridden_virtual_function);
5081             }
5082           }
5083         }
5084       }
5085     }
5086 
5087     // Extra checking for C++ overloaded operators (C++ [over.oper]).
5088     if (NewFD->isOverloadedOperator() &&
5089         CheckOverloadedOperatorDeclaration(NewFD))
5090       return NewFD->setInvalidDecl();
5091 
5092     // Extra checking for C++0x literal operators (C++0x [over.literal]).
5093     if (NewFD->getLiteralIdentifier() &&
5094         CheckLiteralOperatorDeclaration(NewFD))
5095       return NewFD->setInvalidDecl();
5096 
5097     // In C++, check default arguments now that we have merged decls. Unless
5098     // the lexical context is the class, because in this case this is done
5099     // during delayed parsing anyway.
5100     if (!CurContext->isRecord())
5101       CheckCXXDefaultArguments(NewFD);
5102 
5103     // If this function declares a builtin function, check the type of this
5104     // declaration against the expected type for the builtin.
5105     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5106       ASTContext::GetBuiltinTypeError Error;
5107       QualType T = Context.GetBuiltinType(BuiltinID, Error);
5108       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5109         // The type of this function differs from the type of the builtin,
5110         // so forget about the builtin entirely.
5111         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5112       }
5113     }
5114   }
5115 }
5116 
CheckMain(FunctionDecl * FD)5117 void Sema::CheckMain(FunctionDecl* FD) {
5118   // C++ [basic.start.main]p3:  A program that declares main to be inline
5119   //   or static is ill-formed.
5120   // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5121   //   shall not appear in a declaration of main.
5122   // static main is not an error under C99, but we should warn about it.
5123   bool isInline = FD->isInlineSpecified();
5124   bool isStatic = FD->getStorageClass() == SC_Static;
5125   if (isInline || isStatic) {
5126     unsigned diagID = diag::warn_unusual_main_decl;
5127     if (isInline || getLangOptions().CPlusPlus)
5128       diagID = diag::err_unusual_main_decl;
5129 
5130     int which = isStatic + (isInline << 1) - 1;
5131     Diag(FD->getLocation(), diagID) << which;
5132   }
5133 
5134   QualType T = FD->getType();
5135   assert(T->isFunctionType() && "function decl is not of function type");
5136   const FunctionType* FT = T->getAs<FunctionType>();
5137 
5138   if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5139     Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5140     FD->setInvalidDecl(true);
5141   }
5142 
5143   // Treat protoless main() as nullary.
5144   if (isa<FunctionNoProtoType>(FT)) return;
5145 
5146   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5147   unsigned nparams = FTP->getNumArgs();
5148   assert(FD->getNumParams() == nparams);
5149 
5150   bool HasExtraParameters = (nparams > 3);
5151 
5152   // Darwin passes an undocumented fourth argument of type char**.  If
5153   // other platforms start sprouting these, the logic below will start
5154   // getting shifty.
5155   if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5156     HasExtraParameters = false;
5157 
5158   if (HasExtraParameters) {
5159     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5160     FD->setInvalidDecl(true);
5161     nparams = 3;
5162   }
5163 
5164   // FIXME: a lot of the following diagnostics would be improved
5165   // if we had some location information about types.
5166 
5167   QualType CharPP =
5168     Context.getPointerType(Context.getPointerType(Context.CharTy));
5169   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5170 
5171   for (unsigned i = 0; i < nparams; ++i) {
5172     QualType AT = FTP->getArgType(i);
5173 
5174     bool mismatch = true;
5175 
5176     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5177       mismatch = false;
5178     else if (Expected[i] == CharPP) {
5179       // As an extension, the following forms are okay:
5180       //   char const **
5181       //   char const * const *
5182       //   char * const *
5183 
5184       QualifierCollector qs;
5185       const PointerType* PT;
5186       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5187           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5188           (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5189         qs.removeConst();
5190         mismatch = !qs.empty();
5191       }
5192     }
5193 
5194     if (mismatch) {
5195       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5196       // TODO: suggest replacing given type with expected type
5197       FD->setInvalidDecl(true);
5198     }
5199   }
5200 
5201   if (nparams == 1 && !FD->isInvalidDecl()) {
5202     Diag(FD->getLocation(), diag::warn_main_one_arg);
5203   }
5204 
5205   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5206     Diag(FD->getLocation(), diag::err_main_template_decl);
5207     FD->setInvalidDecl();
5208   }
5209 }
5210 
CheckForConstantInitializer(Expr * Init,QualType DclT)5211 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5212   // FIXME: Need strict checking.  In C89, we need to check for
5213   // any assignment, increment, decrement, function-calls, or
5214   // commas outside of a sizeof.  In C99, it's the same list,
5215   // except that the aforementioned are allowed in unevaluated
5216   // expressions.  Everything else falls under the
5217   // "may accept other forms of constant expressions" exception.
5218   // (We never end up here for C++, so the constant expression
5219   // rules there don't matter.)
5220   if (Init->isConstantInitializer(Context, false))
5221     return false;
5222   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5223     << Init->getSourceRange();
5224   return true;
5225 }
5226 
5227 namespace {
5228   // Visits an initialization expression to see if OrigDecl is evaluated in
5229   // its own initialization and throws a warning if it does.
5230   class SelfReferenceChecker
5231       : public EvaluatedExprVisitor<SelfReferenceChecker> {
5232     Sema &S;
5233     Decl *OrigDecl;
5234 
5235   public:
5236     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5237 
SelfReferenceChecker(Sema & S,Decl * OrigDecl)5238     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5239                                                     S(S), OrigDecl(OrigDecl) { }
5240 
VisitExpr(Expr * E)5241     void VisitExpr(Expr *E) {
5242       if (isa<ObjCMessageExpr>(*E)) return;
5243       Inherited::VisitExpr(E);
5244     }
5245 
VisitImplicitCastExpr(ImplicitCastExpr * E)5246     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5247       CheckForSelfReference(E);
5248       Inherited::VisitImplicitCastExpr(E);
5249     }
5250 
CheckForSelfReference(ImplicitCastExpr * E)5251     void CheckForSelfReference(ImplicitCastExpr *E) {
5252       if (E->getCastKind() != CK_LValueToRValue) return;
5253       Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5254       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5255       if (!DRE) return;
5256       Decl* ReferenceDecl = DRE->getDecl();
5257       if (OrigDecl != ReferenceDecl) return;
5258       LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5259                           Sema::NotForRedeclaration);
5260       S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
5261                             S.PDiag(diag::warn_uninit_self_reference_in_init)
5262                               << Result.getLookupName()
5263                               << OrigDecl->getLocation()
5264                               << SubExpr->getSourceRange());
5265     }
5266   };
5267 }
5268 
5269 /// AddInitializerToDecl - Adds the initializer Init to the
5270 /// declaration dcl. If DirectInit is true, this is C++ direct
5271 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)5272 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5273                                 bool DirectInit, bool TypeMayContainAuto) {
5274   // If there is no declaration, there was an error parsing it.  Just ignore
5275   // the initializer.
5276   if (RealDecl == 0 || RealDecl->isInvalidDecl())
5277     return;
5278 
5279   // Check for self-references within variable initializers.
5280   if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5281     // Variables declared within a function/method body are handled
5282     // by a dataflow analysis.
5283     if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5284       SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5285   }
5286   else {
5287     SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5288   }
5289 
5290   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5291     // With declarators parsed the way they are, the parser cannot
5292     // distinguish between a normal initializer and a pure-specifier.
5293     // Thus this grotesque test.
5294     IntegerLiteral *IL;
5295     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5296         Context.getCanonicalType(IL->getType()) == Context.IntTy)
5297       CheckPureMethod(Method, Init->getSourceRange());
5298     else {
5299       Diag(Method->getLocation(), diag::err_member_function_initialization)
5300         << Method->getDeclName() << Init->getSourceRange();
5301       Method->setInvalidDecl();
5302     }
5303     return;
5304   }
5305 
5306   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5307   if (!VDecl) {
5308     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5309     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5310     RealDecl->setInvalidDecl();
5311     return;
5312   }
5313 
5314   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5315   if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5316     TypeSourceInfo *DeducedType = 0;
5317     if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5318       Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5319         << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5320         << Init->getSourceRange();
5321     if (!DeducedType) {
5322       RealDecl->setInvalidDecl();
5323       return;
5324     }
5325     VDecl->setTypeSourceInfo(DeducedType);
5326     VDecl->setType(DeducedType->getType());
5327 
5328     // In ARC, infer lifetime.
5329     if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5330       VDecl->setInvalidDecl();
5331 
5332     // If this is a redeclaration, check that the type we just deduced matches
5333     // the previously declared type.
5334     if (VarDecl *Old = VDecl->getPreviousDeclaration())
5335       MergeVarDeclTypes(VDecl, Old);
5336   }
5337 
5338 
5339   // A definition must end up with a complete type, which means it must be
5340   // complete with the restriction that an array type might be completed by the
5341   // initializer; note that later code assumes this restriction.
5342   QualType BaseDeclType = VDecl->getType();
5343   if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5344     BaseDeclType = Array->getElementType();
5345   if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5346                           diag::err_typecheck_decl_incomplete_type)) {
5347     RealDecl->setInvalidDecl();
5348     return;
5349   }
5350 
5351   // The variable can not have an abstract class type.
5352   if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5353                              diag::err_abstract_type_in_decl,
5354                              AbstractVariableType))
5355     VDecl->setInvalidDecl();
5356 
5357   const VarDecl *Def;
5358   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5359     Diag(VDecl->getLocation(), diag::err_redefinition)
5360       << VDecl->getDeclName();
5361     Diag(Def->getLocation(), diag::note_previous_definition);
5362     VDecl->setInvalidDecl();
5363     return;
5364   }
5365 
5366   const VarDecl* PrevInit = 0;
5367   if (getLangOptions().CPlusPlus) {
5368     // C++ [class.static.data]p4
5369     //   If a static data member is of const integral or const
5370     //   enumeration type, its declaration in the class definition can
5371     //   specify a constant-initializer which shall be an integral
5372     //   constant expression (5.19). In that case, the member can appear
5373     //   in integral constant expressions. The member shall still be
5374     //   defined in a namespace scope if it is used in the program and the
5375     //   namespace scope definition shall not contain an initializer.
5376     //
5377     // We already performed a redefinition check above, but for static
5378     // data members we also need to check whether there was an in-class
5379     // declaration with an initializer.
5380     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5381       Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5382       Diag(PrevInit->getLocation(), diag::note_previous_definition);
5383       return;
5384     }
5385 
5386     if (VDecl->hasLocalStorage())
5387       getCurFunction()->setHasBranchProtectedScope();
5388 
5389     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5390       VDecl->setInvalidDecl();
5391       return;
5392     }
5393   }
5394 
5395   // Capture the variable that is being initialized and the style of
5396   // initialization.
5397   InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5398 
5399   // FIXME: Poor source location information.
5400   InitializationKind Kind
5401     = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5402                                                    Init->getLocStart(),
5403                                                    Init->getLocEnd())
5404                 : InitializationKind::CreateCopy(VDecl->getLocation(),
5405                                                  Init->getLocStart());
5406 
5407   // Get the decls type and save a reference for later, since
5408   // CheckInitializerTypes may change it.
5409   QualType DclT = VDecl->getType(), SavT = DclT;
5410   if (VDecl->isLocalVarDecl()) {
5411     if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5412       Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5413       VDecl->setInvalidDecl();
5414     } else if (!VDecl->isInvalidDecl()) {
5415       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5416       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5417                                                 MultiExprArg(*this, &Init, 1),
5418                                                 &DclT);
5419       if (Result.isInvalid()) {
5420         VDecl->setInvalidDecl();
5421         return;
5422       }
5423 
5424       Init = Result.takeAs<Expr>();
5425 
5426       // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5427       // Don't check invalid declarations to avoid emitting useless diagnostics.
5428       if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5429         if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5430           CheckForConstantInitializer(Init, DclT);
5431       }
5432     }
5433   } else if (VDecl->isStaticDataMember() &&
5434              VDecl->getLexicalDeclContext()->isRecord()) {
5435     // This is an in-class initialization for a static data member, e.g.,
5436     //
5437     // struct S {
5438     //   static const int value = 17;
5439     // };
5440 
5441     // Try to perform the initialization regardless.
5442     if (!VDecl->isInvalidDecl()) {
5443       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5444       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5445                                           MultiExprArg(*this, &Init, 1),
5446                                           &DclT);
5447       if (Result.isInvalid()) {
5448         VDecl->setInvalidDecl();
5449         return;
5450       }
5451 
5452       Init = Result.takeAs<Expr>();
5453     }
5454 
5455     // C++ [class.mem]p4:
5456     //   A member-declarator can contain a constant-initializer only
5457     //   if it declares a static member (9.4) of const integral or
5458     //   const enumeration type, see 9.4.2.
5459     QualType T = VDecl->getType();
5460 
5461     // Do nothing on dependent types.
5462     if (T->isDependentType()) {
5463 
5464     // Require constness.
5465     } else if (!T.isConstQualified()) {
5466       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5467         << Init->getSourceRange();
5468       VDecl->setInvalidDecl();
5469 
5470     // We allow integer constant expressions in all cases.
5471     } else if (T->isIntegralOrEnumerationType()) {
5472       // Check whether the expression is a constant expression.
5473       SourceLocation Loc;
5474       if (Init->isValueDependent())
5475         ; // Nothing to check.
5476       else if (Init->isIntegerConstantExpr(Context, &Loc))
5477         ; // Ok, it's an ICE!
5478       else if (Init->isEvaluatable(Context)) {
5479         // If we can constant fold the initializer through heroics, accept it,
5480         // but report this as a use of an extension for -pedantic.
5481         Diag(Loc, diag::ext_in_class_initializer_non_constant)
5482           << Init->getSourceRange();
5483       } else {
5484         // Otherwise, this is some crazy unknown case.  Report the issue at the
5485         // location provided by the isIntegerConstantExpr failed check.
5486         Diag(Loc, diag::err_in_class_initializer_non_constant)
5487           << Init->getSourceRange();
5488         VDecl->setInvalidDecl();
5489       }
5490 
5491     // We allow floating-point constants as an extension in C++03, and
5492     // C++0x has far more complicated rules that we don't really
5493     // implement fully.
5494     } else {
5495       bool Allowed = false;
5496       if (getLangOptions().CPlusPlus0x) {
5497         Allowed = T->isLiteralType();
5498       } else if (T->isFloatingType()) { // also permits complex, which is ok
5499         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5500           << T << Init->getSourceRange();
5501         Allowed = true;
5502       }
5503 
5504       if (!Allowed) {
5505         Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5506           << T << Init->getSourceRange();
5507         VDecl->setInvalidDecl();
5508 
5509       // TODO: there are probably expressions that pass here that shouldn't.
5510       } else if (!Init->isValueDependent() &&
5511                  !Init->isConstantInitializer(Context, false)) {
5512         Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5513           << Init->getSourceRange();
5514         VDecl->setInvalidDecl();
5515       }
5516     }
5517   } else if (VDecl->isFileVarDecl()) {
5518     if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5519         (!getLangOptions().CPlusPlus ||
5520          !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5521       Diag(VDecl->getLocation(), diag::warn_extern_init);
5522     if (!VDecl->isInvalidDecl()) {
5523       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5524       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5525                                                 MultiExprArg(*this, &Init, 1),
5526                                                 &DclT);
5527       if (Result.isInvalid()) {
5528         VDecl->setInvalidDecl();
5529         return;
5530       }
5531 
5532       Init = Result.takeAs<Expr>();
5533     }
5534 
5535     // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5536     // Don't check invalid declarations to avoid emitting useless diagnostics.
5537     if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5538       // C99 6.7.8p4. All file scoped initializers need to be constant.
5539       CheckForConstantInitializer(Init, DclT);
5540     }
5541   }
5542   // If the type changed, it means we had an incomplete type that was
5543   // completed by the initializer. For example:
5544   //   int ary[] = { 1, 3, 5 };
5545   // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5546   if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5547     VDecl->setType(DclT);
5548     Init->setType(DclT);
5549   }
5550 
5551 
5552   // If this variable is a local declaration with record type, make sure it
5553   // doesn't have a flexible member initialization.  We only support this as a
5554   // global/static definition.
5555   if (VDecl->hasLocalStorage())
5556     if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5557       if (RT->getDecl()->hasFlexibleArrayMember()) {
5558         // Check whether the initializer tries to initialize the flexible
5559         // array member itself to anything other than an empty initializer list.
5560         if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5561           unsigned Index = std::distance(RT->getDecl()->field_begin(),
5562                                          RT->getDecl()->field_end()) - 1;
5563           if (Index < ILE->getNumInits() &&
5564               !(isa<InitListExpr>(ILE->getInit(Index)) &&
5565                 cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5566             Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5567             VDecl->setInvalidDecl();
5568           }
5569         }
5570       }
5571 
5572   // Check any implicit conversions within the expression.
5573   CheckImplicitConversions(Init, VDecl->getLocation());
5574 
5575   if (!VDecl->isInvalidDecl())
5576     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5577 
5578   Init = MaybeCreateExprWithCleanups(Init);
5579   // Attach the initializer to the decl.
5580   VDecl->setInit(Init);
5581 
5582   CheckCompleteVariableDeclaration(VDecl);
5583 }
5584 
5585 /// ActOnInitializerError - Given that there was an error parsing an
5586 /// initializer for the given declaration, try to return to some form
5587 /// of sanity.
ActOnInitializerError(Decl * D)5588 void Sema::ActOnInitializerError(Decl *D) {
5589   // Our main concern here is re-establishing invariants like "a
5590   // variable's type is either dependent or complete".
5591   if (!D || D->isInvalidDecl()) return;
5592 
5593   VarDecl *VD = dyn_cast<VarDecl>(D);
5594   if (!VD) return;
5595 
5596   // Auto types are meaningless if we can't make sense of the initializer.
5597   if (ParsingInitForAutoVars.count(D)) {
5598     D->setInvalidDecl();
5599     return;
5600   }
5601 
5602   QualType Ty = VD->getType();
5603   if (Ty->isDependentType()) return;
5604 
5605   // Require a complete type.
5606   if (RequireCompleteType(VD->getLocation(),
5607                           Context.getBaseElementType(Ty),
5608                           diag::err_typecheck_decl_incomplete_type)) {
5609     VD->setInvalidDecl();
5610     return;
5611   }
5612 
5613   // Require an abstract type.
5614   if (RequireNonAbstractType(VD->getLocation(), Ty,
5615                              diag::err_abstract_type_in_decl,
5616                              AbstractVariableType)) {
5617     VD->setInvalidDecl();
5618     return;
5619   }
5620 
5621   // Don't bother complaining about constructors or destructors,
5622   // though.
5623 }
5624 
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)5625 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5626                                   bool TypeMayContainAuto) {
5627   // If there is no declaration, there was an error parsing it. Just ignore it.
5628   if (RealDecl == 0)
5629     return;
5630 
5631   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5632     QualType Type = Var->getType();
5633 
5634     // C++0x [dcl.spec.auto]p3
5635     if (TypeMayContainAuto && Type->getContainedAutoType()) {
5636       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5637         << Var->getDeclName() << Type;
5638       Var->setInvalidDecl();
5639       return;
5640     }
5641 
5642     switch (Var->isThisDeclarationADefinition()) {
5643     case VarDecl::Definition:
5644       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5645         break;
5646 
5647       // We have an out-of-line definition of a static data member
5648       // that has an in-class initializer, so we type-check this like
5649       // a declaration.
5650       //
5651       // Fall through
5652 
5653     case VarDecl::DeclarationOnly:
5654       // It's only a declaration.
5655 
5656       // Block scope. C99 6.7p7: If an identifier for an object is
5657       // declared with no linkage (C99 6.2.2p6), the type for the
5658       // object shall be complete.
5659       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5660           !Var->getLinkage() && !Var->isInvalidDecl() &&
5661           RequireCompleteType(Var->getLocation(), Type,
5662                               diag::err_typecheck_decl_incomplete_type))
5663         Var->setInvalidDecl();
5664 
5665       // Make sure that the type is not abstract.
5666       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5667           RequireNonAbstractType(Var->getLocation(), Type,
5668                                  diag::err_abstract_type_in_decl,
5669                                  AbstractVariableType))
5670         Var->setInvalidDecl();
5671       return;
5672 
5673     case VarDecl::TentativeDefinition:
5674       // File scope. C99 6.9.2p2: A declaration of an identifier for an
5675       // object that has file scope without an initializer, and without a
5676       // storage-class specifier or with the storage-class specifier "static",
5677       // constitutes a tentative definition. Note: A tentative definition with
5678       // external linkage is valid (C99 6.2.2p5).
5679       if (!Var->isInvalidDecl()) {
5680         if (const IncompleteArrayType *ArrayT
5681                                     = Context.getAsIncompleteArrayType(Type)) {
5682           if (RequireCompleteType(Var->getLocation(),
5683                                   ArrayT->getElementType(),
5684                                   diag::err_illegal_decl_array_incomplete_type))
5685             Var->setInvalidDecl();
5686         } else if (Var->getStorageClass() == SC_Static) {
5687           // C99 6.9.2p3: If the declaration of an identifier for an object is
5688           // a tentative definition and has internal linkage (C99 6.2.2p3), the
5689           // declared type shall not be an incomplete type.
5690           // NOTE: code such as the following
5691           //     static struct s;
5692           //     struct s { int a; };
5693           // is accepted by gcc. Hence here we issue a warning instead of
5694           // an error and we do not invalidate the static declaration.
5695           // NOTE: to avoid multiple warnings, only check the first declaration.
5696           if (Var->getPreviousDeclaration() == 0)
5697             RequireCompleteType(Var->getLocation(), Type,
5698                                 diag::ext_typecheck_decl_incomplete_type);
5699         }
5700       }
5701 
5702       // Record the tentative definition; we're done.
5703       if (!Var->isInvalidDecl())
5704         TentativeDefinitions.push_back(Var);
5705       return;
5706     }
5707 
5708     // Provide a specific diagnostic for uninitialized variable
5709     // definitions with incomplete array type.
5710     if (Type->isIncompleteArrayType()) {
5711       Diag(Var->getLocation(),
5712            diag::err_typecheck_incomplete_array_needs_initializer);
5713       Var->setInvalidDecl();
5714       return;
5715     }
5716 
5717     // Provide a specific diagnostic for uninitialized variable
5718     // definitions with reference type.
5719     if (Type->isReferenceType()) {
5720       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5721         << Var->getDeclName()
5722         << SourceRange(Var->getLocation(), Var->getLocation());
5723       Var->setInvalidDecl();
5724       return;
5725     }
5726 
5727     // Do not attempt to type-check the default initializer for a
5728     // variable with dependent type.
5729     if (Type->isDependentType())
5730       return;
5731 
5732     if (Var->isInvalidDecl())
5733       return;
5734 
5735     if (RequireCompleteType(Var->getLocation(),
5736                             Context.getBaseElementType(Type),
5737                             diag::err_typecheck_decl_incomplete_type)) {
5738       Var->setInvalidDecl();
5739       return;
5740     }
5741 
5742     // The variable can not have an abstract class type.
5743     if (RequireNonAbstractType(Var->getLocation(), Type,
5744                                diag::err_abstract_type_in_decl,
5745                                AbstractVariableType)) {
5746       Var->setInvalidDecl();
5747       return;
5748     }
5749 
5750     // Check for jumps past the implicit initializer.  C++0x
5751     // clarifies that this applies to a "variable with automatic
5752     // storage duration", not a "local variable".
5753     // C++0x [stmt.dcl]p3
5754     //   A program that jumps from a point where a variable with automatic
5755     //   storage duration is not in scope to a point where it is in scope is
5756     //   ill-formed unless the variable has scalar type, class type with a
5757     //   trivial default constructor and a trivial destructor, a cv-qualified
5758     //   version of one of these types, or an array of one of the preceding
5759     //   types and is declared without an initializer.
5760     if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5761       if (const RecordType *Record
5762             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5763         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5764         if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5765             (getLangOptions().CPlusPlus0x &&
5766              (!CXXRecord->hasTrivialDefaultConstructor() ||
5767               !CXXRecord->hasTrivialDestructor())))
5768           getCurFunction()->setHasBranchProtectedScope();
5769       }
5770     }
5771 
5772     // C++03 [dcl.init]p9:
5773     //   If no initializer is specified for an object, and the
5774     //   object is of (possibly cv-qualified) non-POD class type (or
5775     //   array thereof), the object shall be default-initialized; if
5776     //   the object is of const-qualified type, the underlying class
5777     //   type shall have a user-declared default
5778     //   constructor. Otherwise, if no initializer is specified for
5779     //   a non- static object, the object and its subobjects, if
5780     //   any, have an indeterminate initial value); if the object
5781     //   or any of its subobjects are of const-qualified type, the
5782     //   program is ill-formed.
5783     // C++0x [dcl.init]p11:
5784     //   If no initializer is specified for an object, the object is
5785     //   default-initialized; [...].
5786     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5787     InitializationKind Kind
5788       = InitializationKind::CreateDefault(Var->getLocation());
5789 
5790     InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5791     ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5792                                       MultiExprArg(*this, 0, 0));
5793     if (Init.isInvalid())
5794       Var->setInvalidDecl();
5795     else if (Init.get())
5796       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5797 
5798     CheckCompleteVariableDeclaration(Var);
5799   }
5800 }
5801 
ActOnCXXForRangeDecl(Decl * D)5802 void Sema::ActOnCXXForRangeDecl(Decl *D) {
5803   VarDecl *VD = dyn_cast<VarDecl>(D);
5804   if (!VD) {
5805     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5806     D->setInvalidDecl();
5807     return;
5808   }
5809 
5810   VD->setCXXForRangeDecl(true);
5811 
5812   // for-range-declaration cannot be given a storage class specifier.
5813   int Error = -1;
5814   switch (VD->getStorageClassAsWritten()) {
5815   case SC_None:
5816     break;
5817   case SC_Extern:
5818     Error = 0;
5819     break;
5820   case SC_Static:
5821     Error = 1;
5822     break;
5823   case SC_PrivateExtern:
5824     Error = 2;
5825     break;
5826   case SC_Auto:
5827     Error = 3;
5828     break;
5829   case SC_Register:
5830     Error = 4;
5831     break;
5832   }
5833   // FIXME: constexpr isn't allowed here.
5834   //if (DS.isConstexprSpecified())
5835   //  Error = 5;
5836   if (Error != -1) {
5837     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5838       << VD->getDeclName() << Error;
5839     D->setInvalidDecl();
5840   }
5841 }
5842 
CheckCompleteVariableDeclaration(VarDecl * var)5843 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5844   if (var->isInvalidDecl()) return;
5845 
5846   // In ARC, don't allow jumps past the implicit initialization of a
5847   // local retaining variable.
5848   if (getLangOptions().ObjCAutoRefCount &&
5849       var->hasLocalStorage()) {
5850     switch (var->getType().getObjCLifetime()) {
5851     case Qualifiers::OCL_None:
5852     case Qualifiers::OCL_ExplicitNone:
5853     case Qualifiers::OCL_Autoreleasing:
5854       break;
5855 
5856     case Qualifiers::OCL_Weak:
5857     case Qualifiers::OCL_Strong:
5858       getCurFunction()->setHasBranchProtectedScope();
5859       break;
5860     }
5861   }
5862 
5863   // All the following checks are C++ only.
5864   if (!getLangOptions().CPlusPlus) return;
5865 
5866   QualType baseType = Context.getBaseElementType(var->getType());
5867   if (baseType->isDependentType()) return;
5868 
5869   // __block variables might require us to capture a copy-initializer.
5870   if (var->hasAttr<BlocksAttr>()) {
5871     // It's currently invalid to ever have a __block variable with an
5872     // array type; should we diagnose that here?
5873 
5874     // Regardless, we don't want to ignore array nesting when
5875     // constructing this copy.
5876     QualType type = var->getType();
5877 
5878     if (type->isStructureOrClassType()) {
5879       SourceLocation poi = var->getLocation();
5880       Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5881       ExprResult result =
5882         PerformCopyInitialization(
5883                         InitializedEntity::InitializeBlock(poi, type, false),
5884                                   poi, Owned(varRef));
5885       if (!result.isInvalid()) {
5886         result = MaybeCreateExprWithCleanups(result);
5887         Expr *init = result.takeAs<Expr>();
5888         Context.setBlockVarCopyInits(var, init);
5889       }
5890     }
5891   }
5892 
5893   // Check for global constructors.
5894   if (!var->getDeclContext()->isDependentContext() &&
5895       var->hasGlobalStorage() &&
5896       !var->isStaticLocal() &&
5897       var->getInit() &&
5898       !var->getInit()->isConstantInitializer(Context,
5899                                              baseType->isReferenceType()))
5900     Diag(var->getLocation(), diag::warn_global_constructor)
5901       << var->getInit()->getSourceRange();
5902 
5903   // Require the destructor.
5904   if (const RecordType *recordType = baseType->getAs<RecordType>())
5905     FinalizeVarWithDestructor(var, recordType);
5906 }
5907 
5908 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5909 /// any semantic actions necessary after any initializer has been attached.
5910 void
FinalizeDeclaration(Decl * ThisDecl)5911 Sema::FinalizeDeclaration(Decl *ThisDecl) {
5912   // Note that we are no longer parsing the initializer for this declaration.
5913   ParsingInitForAutoVars.erase(ThisDecl);
5914 }
5915 
5916 Sema::DeclGroupPtrTy
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,Decl ** Group,unsigned NumDecls)5917 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5918                               Decl **Group, unsigned NumDecls) {
5919   llvm::SmallVector<Decl*, 8> Decls;
5920 
5921   if (DS.isTypeSpecOwned())
5922     Decls.push_back(DS.getRepAsDecl());
5923 
5924   for (unsigned i = 0; i != NumDecls; ++i)
5925     if (Decl *D = Group[i])
5926       Decls.push_back(D);
5927 
5928   return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5929                               DS.getTypeSpecType() == DeclSpec::TST_auto);
5930 }
5931 
5932 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
5933 /// group, performing any necessary semantic checking.
5934 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(Decl ** Group,unsigned NumDecls,bool TypeMayContainAuto)5935 Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5936                            bool TypeMayContainAuto) {
5937   // C++0x [dcl.spec.auto]p7:
5938   //   If the type deduced for the template parameter U is not the same in each
5939   //   deduction, the program is ill-formed.
5940   // FIXME: When initializer-list support is added, a distinction is needed
5941   // between the deduced type U and the deduced type which 'auto' stands for.
5942   //   auto a = 0, b = { 1, 2, 3 };
5943   // is legal because the deduced type U is 'int' in both cases.
5944   if (TypeMayContainAuto && NumDecls > 1) {
5945     QualType Deduced;
5946     CanQualType DeducedCanon;
5947     VarDecl *DeducedDecl = 0;
5948     for (unsigned i = 0; i != NumDecls; ++i) {
5949       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5950         AutoType *AT = D->getType()->getContainedAutoType();
5951         // Don't reissue diagnostics when instantiating a template.
5952         if (AT && D->isInvalidDecl())
5953           break;
5954         if (AT && AT->isDeduced()) {
5955           QualType U = AT->getDeducedType();
5956           CanQualType UCanon = Context.getCanonicalType(U);
5957           if (Deduced.isNull()) {
5958             Deduced = U;
5959             DeducedCanon = UCanon;
5960             DeducedDecl = D;
5961           } else if (DeducedCanon != UCanon) {
5962             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5963                  diag::err_auto_different_deductions)
5964               << Deduced << DeducedDecl->getDeclName()
5965               << U << D->getDeclName()
5966               << DeducedDecl->getInit()->getSourceRange()
5967               << D->getInit()->getSourceRange();
5968             D->setInvalidDecl();
5969             break;
5970           }
5971         }
5972       }
5973     }
5974   }
5975 
5976   return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5977 }
5978 
5979 
5980 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5981 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)5982 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5983   const DeclSpec &DS = D.getDeclSpec();
5984 
5985   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5986   VarDecl::StorageClass StorageClass = SC_None;
5987   VarDecl::StorageClass StorageClassAsWritten = SC_None;
5988   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5989     StorageClass = SC_Register;
5990     StorageClassAsWritten = SC_Register;
5991   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5992     Diag(DS.getStorageClassSpecLoc(),
5993          diag::err_invalid_storage_class_in_func_decl);
5994     D.getMutableDeclSpec().ClearStorageClassSpecs();
5995   }
5996 
5997   if (D.getDeclSpec().isThreadSpecified())
5998     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5999 
6000   DiagnoseFunctionSpecifiers(D);
6001 
6002   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6003   QualType parmDeclType = TInfo->getType();
6004 
6005   if (getLangOptions().CPlusPlus) {
6006     // Check that there are no default arguments inside the type of this
6007     // parameter.
6008     CheckExtraCXXDefaultArguments(D);
6009 
6010     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6011     if (D.getCXXScopeSpec().isSet()) {
6012       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6013         << D.getCXXScopeSpec().getRange();
6014       D.getCXXScopeSpec().clear();
6015     }
6016   }
6017 
6018   // Ensure we have a valid name
6019   IdentifierInfo *II = 0;
6020   if (D.hasName()) {
6021     II = D.getIdentifier();
6022     if (!II) {
6023       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6024         << GetNameForDeclarator(D).getName().getAsString();
6025       D.setInvalidType(true);
6026     }
6027   }
6028 
6029   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6030   if (II) {
6031     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6032                    ForRedeclaration);
6033     LookupName(R, S);
6034     if (R.isSingleResult()) {
6035       NamedDecl *PrevDecl = R.getFoundDecl();
6036       if (PrevDecl->isTemplateParameter()) {
6037         // Maybe we will complain about the shadowed template parameter.
6038         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6039         // Just pretend that we didn't see the previous declaration.
6040         PrevDecl = 0;
6041       } else if (S->isDeclScope(PrevDecl)) {
6042         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6043         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6044 
6045         // Recover by removing the name
6046         II = 0;
6047         D.SetIdentifier(0, D.getIdentifierLoc());
6048         D.setInvalidType(true);
6049       }
6050     }
6051   }
6052 
6053   // Temporarily put parameter variables in the translation unit, not
6054   // the enclosing context.  This prevents them from accidentally
6055   // looking like class members in C++.
6056   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6057                                     D.getSourceRange().getBegin(),
6058                                     D.getIdentifierLoc(), II,
6059                                     parmDeclType, TInfo,
6060                                     StorageClass, StorageClassAsWritten);
6061 
6062   if (D.isInvalidType())
6063     New->setInvalidDecl();
6064 
6065   assert(S->isFunctionPrototypeScope());
6066   assert(S->getFunctionPrototypeDepth() >= 1);
6067   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6068                     S->getNextFunctionPrototypeIndex());
6069 
6070   // Add the parameter declaration into this scope.
6071   S->AddDecl(New);
6072   if (II)
6073     IdResolver.AddDecl(New);
6074 
6075   ProcessDeclAttributes(S, New, D);
6076 
6077   if (New->hasAttr<BlocksAttr>()) {
6078     Diag(New->getLocation(), diag::err_block_on_nonlocal);
6079   }
6080   return New;
6081 }
6082 
6083 /// \brief Synthesizes a variable for a parameter arising from a
6084 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)6085 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6086                                               SourceLocation Loc,
6087                                               QualType T) {
6088   /* FIXME: setting StartLoc == Loc.
6089      Would it be worth to modify callers so as to provide proper source
6090      location for the unnamed parameters, embedding the parameter's type? */
6091   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6092                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
6093                                            SC_None, SC_None, 0);
6094   Param->setImplicit();
6095   return Param;
6096 }
6097 
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)6098 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6099                                     ParmVarDecl * const *ParamEnd) {
6100   // Don't diagnose unused-parameter errors in template instantiations; we
6101   // will already have done so in the template itself.
6102   if (!ActiveTemplateInstantiations.empty())
6103     return;
6104 
6105   for (; Param != ParamEnd; ++Param) {
6106     if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6107         !(*Param)->hasAttr<UnusedAttr>()) {
6108       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6109         << (*Param)->getDeclName();
6110     }
6111   }
6112 }
6113 
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)6114 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6115                                                   ParmVarDecl * const *ParamEnd,
6116                                                   QualType ReturnTy,
6117                                                   NamedDecl *D) {
6118   if (LangOpts.NumLargeByValueCopy == 0) // No check.
6119     return;
6120 
6121   // Warn if the return value is pass-by-value and larger than the specified
6122   // threshold.
6123   if (ReturnTy.isPODType(Context)) {
6124     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6125     if (Size > LangOpts.NumLargeByValueCopy)
6126       Diag(D->getLocation(), diag::warn_return_value_size)
6127           << D->getDeclName() << Size;
6128   }
6129 
6130   // Warn if any parameter is pass-by-value and larger than the specified
6131   // threshold.
6132   for (; Param != ParamEnd; ++Param) {
6133     QualType T = (*Param)->getType();
6134     if (!T.isPODType(Context))
6135       continue;
6136     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6137     if (Size > LangOpts.NumLargeByValueCopy)
6138       Diag((*Param)->getLocation(), diag::warn_parameter_size)
6139           << (*Param)->getDeclName() << Size;
6140   }
6141 }
6142 
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,VarDecl::StorageClass StorageClass,VarDecl::StorageClass StorageClassAsWritten)6143 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6144                                   SourceLocation NameLoc, IdentifierInfo *Name,
6145                                   QualType T, TypeSourceInfo *TSInfo,
6146                                   VarDecl::StorageClass StorageClass,
6147                                   VarDecl::StorageClass StorageClassAsWritten) {
6148   // In ARC, infer a lifetime qualifier for appropriate parameter types.
6149   if (getLangOptions().ObjCAutoRefCount &&
6150       T.getObjCLifetime() == Qualifiers::OCL_None &&
6151       T->isObjCLifetimeType()) {
6152 
6153     Qualifiers::ObjCLifetime lifetime;
6154 
6155     // Special cases for arrays:
6156     //   - if it's const, use __unsafe_unretained
6157     //   - otherwise, it's an error
6158     if (T->isArrayType()) {
6159       if (!T.isConstQualified()) {
6160         Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6161           << TSInfo->getTypeLoc().getSourceRange();
6162       }
6163       lifetime = Qualifiers::OCL_ExplicitNone;
6164     } else {
6165       lifetime = T->getObjCARCImplicitLifetime();
6166     }
6167     T = Context.getLifetimeQualifiedType(T, lifetime);
6168   }
6169 
6170   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6171                                          Context.getAdjustedParameterType(T),
6172                                          TSInfo,
6173                                          StorageClass, StorageClassAsWritten,
6174                                          0);
6175 
6176   // Parameters can not be abstract class types.
6177   // For record types, this is done by the AbstractClassUsageDiagnoser once
6178   // the class has been completely parsed.
6179   if (!CurContext->isRecord() &&
6180       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6181                              AbstractParamType))
6182     New->setInvalidDecl();
6183 
6184   // Parameter declarators cannot be interface types. All ObjC objects are
6185   // passed by reference.
6186   if (T->isObjCObjectType()) {
6187     Diag(NameLoc,
6188          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6189     New->setInvalidDecl();
6190   }
6191 
6192   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6193   // duration shall not be qualified by an address-space qualifier."
6194   // Since all parameters have automatic store duration, they can not have
6195   // an address space.
6196   if (T.getAddressSpace() != 0) {
6197     Diag(NameLoc, diag::err_arg_with_address_space);
6198     New->setInvalidDecl();
6199   }
6200 
6201   return New;
6202 }
6203 
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)6204 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6205                                            SourceLocation LocAfterDecls) {
6206   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6207 
6208   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6209   // for a K&R function.
6210   if (!FTI.hasPrototype) {
6211     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6212       --i;
6213       if (FTI.ArgInfo[i].Param == 0) {
6214         llvm::SmallString<256> Code;
6215         llvm::raw_svector_ostream(Code) << "  int "
6216                                         << FTI.ArgInfo[i].Ident->getName()
6217                                         << ";\n";
6218         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6219           << FTI.ArgInfo[i].Ident
6220           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6221 
6222         // Implicitly declare the argument as type 'int' for lack of a better
6223         // type.
6224         AttributeFactory attrs;
6225         DeclSpec DS(attrs);
6226         const char* PrevSpec; // unused
6227         unsigned DiagID; // unused
6228         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6229                            PrevSpec, DiagID);
6230         Declarator ParamD(DS, Declarator::KNRTypeListContext);
6231         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6232         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6233       }
6234     }
6235   }
6236 }
6237 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)6238 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6239                                          Declarator &D) {
6240   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6241   assert(D.isFunctionDeclarator() && "Not a function declarator!");
6242   Scope *ParentScope = FnBodyScope->getParent();
6243 
6244   Decl *DP = HandleDeclarator(ParentScope, D,
6245                               MultiTemplateParamsArg(*this),
6246                               /*IsFunctionDefinition=*/true);
6247   return ActOnStartOfFunctionDef(FnBodyScope, DP);
6248 }
6249 
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD)6250 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6251   // Don't warn about invalid declarations.
6252   if (FD->isInvalidDecl())
6253     return false;
6254 
6255   // Or declarations that aren't global.
6256   if (!FD->isGlobal())
6257     return false;
6258 
6259   // Don't warn about C++ member functions.
6260   if (isa<CXXMethodDecl>(FD))
6261     return false;
6262 
6263   // Don't warn about 'main'.
6264   if (FD->isMain())
6265     return false;
6266 
6267   // Don't warn about inline functions.
6268   if (FD->isInlined())
6269     return false;
6270 
6271   // Don't warn about function templates.
6272   if (FD->getDescribedFunctionTemplate())
6273     return false;
6274 
6275   // Don't warn about function template specializations.
6276   if (FD->isFunctionTemplateSpecialization())
6277     return false;
6278 
6279   bool MissingPrototype = true;
6280   for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6281        Prev; Prev = Prev->getPreviousDeclaration()) {
6282     // Ignore any declarations that occur in function or method
6283     // scope, because they aren't visible from the header.
6284     if (Prev->getDeclContext()->isFunctionOrMethod())
6285       continue;
6286 
6287     MissingPrototype = !Prev->getType()->isFunctionProtoType();
6288     break;
6289   }
6290 
6291   return MissingPrototype;
6292 }
6293 
CheckForFunctionRedefinition(FunctionDecl * FD)6294 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6295   // Don't complain if we're in GNU89 mode and the previous definition
6296   // was an extern inline function.
6297   const FunctionDecl *Definition;
6298   if (FD->isDefined(Definition) &&
6299       !canRedefineFunction(Definition, getLangOptions())) {
6300     if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6301         Definition->getStorageClass() == SC_Extern)
6302       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6303         << FD->getDeclName() << getLangOptions().CPlusPlus;
6304     else
6305       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6306     Diag(Definition->getLocation(), diag::note_previous_definition);
6307   }
6308 }
6309 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)6310 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6311   // Clear the last template instantiation error context.
6312   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6313 
6314   if (!D)
6315     return D;
6316   FunctionDecl *FD = 0;
6317 
6318   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6319     FD = FunTmpl->getTemplatedDecl();
6320   else
6321     FD = cast<FunctionDecl>(D);
6322 
6323   // Enter a new function scope
6324   PushFunctionScope();
6325 
6326   // See if this is a redefinition.
6327   if (!FD->isLateTemplateParsed())
6328     CheckForFunctionRedefinition(FD);
6329 
6330   // Builtin functions cannot be defined.
6331   if (unsigned BuiltinID = FD->getBuiltinID()) {
6332     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6333       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6334       FD->setInvalidDecl();
6335     }
6336   }
6337 
6338   // The return type of a function definition must be complete
6339   // (C99 6.9.1p3, C++ [dcl.fct]p6).
6340   QualType ResultType = FD->getResultType();
6341   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6342       !FD->isInvalidDecl() &&
6343       RequireCompleteType(FD->getLocation(), ResultType,
6344                           diag::err_func_def_incomplete_result))
6345     FD->setInvalidDecl();
6346 
6347   // GNU warning -Wmissing-prototypes:
6348   //   Warn if a global function is defined without a previous
6349   //   prototype declaration. This warning is issued even if the
6350   //   definition itself provides a prototype. The aim is to detect
6351   //   global functions that fail to be declared in header files.
6352   if (ShouldWarnAboutMissingPrototype(FD))
6353     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6354 
6355   if (FnBodyScope)
6356     PushDeclContext(FnBodyScope, FD);
6357 
6358   // Check the validity of our function parameters
6359   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6360                            /*CheckParameterNames=*/true);
6361 
6362   // Introduce our parameters into the function scope
6363   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6364     ParmVarDecl *Param = FD->getParamDecl(p);
6365     Param->setOwningFunction(FD);
6366 
6367     // If this has an identifier, add it to the scope stack.
6368     if (Param->getIdentifier() && FnBodyScope) {
6369       CheckShadow(FnBodyScope, Param);
6370 
6371       PushOnScopeChains(Param, FnBodyScope);
6372     }
6373   }
6374 
6375   // Checking attributes of current function definition
6376   // dllimport attribute.
6377   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6378   if (DA && (!FD->getAttr<DLLExportAttr>())) {
6379     // dllimport attribute cannot be directly applied to definition.
6380     // Microsoft accepts dllimport for functions defined within class scope.
6381     if (!DA->isInherited() &&
6382         !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6383       Diag(FD->getLocation(),
6384            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6385         << "dllimport";
6386       FD->setInvalidDecl();
6387       return FD;
6388     }
6389 
6390     // Visual C++ appears to not think this is an issue, so only issue
6391     // a warning when Microsoft extensions are disabled.
6392     if (!LangOpts.Microsoft) {
6393       // If a symbol previously declared dllimport is later defined, the
6394       // attribute is ignored in subsequent references, and a warning is
6395       // emitted.
6396       Diag(FD->getLocation(),
6397            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6398         << FD->getName() << "dllimport";
6399     }
6400   }
6401   return FD;
6402 }
6403 
6404 /// \brief Given the set of return statements within a function body,
6405 /// compute the variables that are subject to the named return value
6406 /// optimization.
6407 ///
6408 /// Each of the variables that is subject to the named return value
6409 /// optimization will be marked as NRVO variables in the AST, and any
6410 /// return statement that has a marked NRVO variable as its NRVO candidate can
6411 /// use the named return value optimization.
6412 ///
6413 /// This function applies a very simplistic algorithm for NRVO: if every return
6414 /// statement in the function has the same NRVO candidate, that candidate is
6415 /// the NRVO variable.
6416 ///
6417 /// FIXME: Employ a smarter algorithm that accounts for multiple return
6418 /// statements and the lifetimes of the NRVO candidates. We should be able to
6419 /// find a maximal set of NRVO variables.
ComputeNRVO(Stmt * Body,FunctionScopeInfo * Scope)6420 static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6421   ReturnStmt **Returns = Scope->Returns.data();
6422 
6423   const VarDecl *NRVOCandidate = 0;
6424   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6425     if (!Returns[I]->getNRVOCandidate())
6426       return;
6427 
6428     if (!NRVOCandidate)
6429       NRVOCandidate = Returns[I]->getNRVOCandidate();
6430     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6431       return;
6432   }
6433 
6434   if (NRVOCandidate)
6435     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6436 }
6437 
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)6438 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6439   return ActOnFinishFunctionBody(D, move(BodyArg), false);
6440 }
6441 
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)6442 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6443                                     bool IsInstantiation) {
6444   FunctionDecl *FD = 0;
6445   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6446   if (FunTmpl)
6447     FD = FunTmpl->getTemplatedDecl();
6448   else
6449     FD = dyn_cast_or_null<FunctionDecl>(dcl);
6450 
6451   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6452   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6453 
6454   if (FD) {
6455     FD->setBody(Body);
6456     if (FD->isMain()) {
6457       // C and C++ allow for main to automagically return 0.
6458       // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6459       FD->setHasImplicitReturnZero(true);
6460       WP.disableCheckFallThrough();
6461     } else if (FD->hasAttr<NakedAttr>()) {
6462       // If the function is marked 'naked', don't complain about missing return
6463       // statements.
6464       WP.disableCheckFallThrough();
6465     }
6466 
6467     // MSVC permits the use of pure specifier (=0) on function definition,
6468     // defined at class scope, warn about this non standard construct.
6469     if (getLangOptions().Microsoft && FD->isPure())
6470       Diag(FD->getLocation(), diag::warn_pure_function_definition);
6471 
6472     if (!FD->isInvalidDecl()) {
6473       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6474       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6475                                              FD->getResultType(), FD);
6476 
6477       // If this is a constructor, we need a vtable.
6478       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6479         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6480 
6481       ComputeNRVO(Body, getCurFunction());
6482     }
6483 
6484     assert(FD == getCurFunctionDecl() && "Function parsing confused");
6485   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6486     assert(MD == getCurMethodDecl() && "Method parsing confused");
6487     MD->setBody(Body);
6488     if (Body)
6489       MD->setEndLoc(Body->getLocEnd());
6490     if (!MD->isInvalidDecl()) {
6491       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6492       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6493                                              MD->getResultType(), MD);
6494     }
6495   } else {
6496     return 0;
6497   }
6498 
6499   // Verify and clean out per-function state.
6500   if (Body) {
6501     // C++ constructors that have function-try-blocks can't have return
6502     // statements in the handlers of that block. (C++ [except.handle]p14)
6503     // Verify this.
6504     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6505       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6506 
6507     // Verify that that gotos and switch cases don't jump into scopes illegally.
6508     // Verify that that gotos and switch cases don't jump into scopes illegally.
6509     if (getCurFunction()->NeedsScopeChecking() &&
6510         !dcl->isInvalidDecl() &&
6511         !hasAnyUnrecoverableErrorsInThisFunction())
6512       DiagnoseInvalidJumps(Body);
6513 
6514     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6515       if (!Destructor->getParent()->isDependentType())
6516         CheckDestructor(Destructor);
6517 
6518       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6519                                              Destructor->getParent());
6520     }
6521 
6522     // If any errors have occurred, clear out any temporaries that may have
6523     // been leftover. This ensures that these temporaries won't be picked up for
6524     // deletion in some later function.
6525     if (PP.getDiagnostics().hasErrorOccurred() ||
6526         PP.getDiagnostics().getSuppressAllDiagnostics()) {
6527       ExprTemporaries.clear();
6528       ExprNeedsCleanups = false;
6529     } else if (!isa<FunctionTemplateDecl>(dcl)) {
6530       // Since the body is valid, issue any analysis-based warnings that are
6531       // enabled.
6532       ActivePolicy = &WP;
6533     }
6534 
6535     assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6536     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6537   }
6538 
6539   if (!IsInstantiation)
6540     PopDeclContext();
6541 
6542   PopFunctionOrBlockScope(ActivePolicy, dcl);
6543 
6544   // If any errors have occurred, clear out any temporaries that may have
6545   // been leftover. This ensures that these temporaries won't be picked up for
6546   // deletion in some later function.
6547   if (getDiagnostics().hasErrorOccurred()) {
6548     ExprTemporaries.clear();
6549     ExprNeedsCleanups = false;
6550   }
6551 
6552   return dcl;
6553 }
6554 
6555 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6556 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)6557 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6558                                           IdentifierInfo &II, Scope *S) {
6559   // Before we produce a declaration for an implicitly defined
6560   // function, see whether there was a locally-scoped declaration of
6561   // this name as a function or variable. If so, use that
6562   // (non-visible) declaration, and complain about it.
6563   llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6564     = LocallyScopedExternalDecls.find(&II);
6565   if (Pos != LocallyScopedExternalDecls.end()) {
6566     Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6567     Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6568     return Pos->second;
6569   }
6570 
6571   // Extension in C99.  Legal in C90, but warn about it.
6572   if (II.getName().startswith("__builtin_"))
6573     Diag(Loc, diag::warn_builtin_unknown) << &II;
6574   else if (getLangOptions().C99)
6575     Diag(Loc, diag::ext_implicit_function_decl) << &II;
6576   else
6577     Diag(Loc, diag::warn_implicit_function_decl) << &II;
6578 
6579   // Set a Declarator for the implicit definition: int foo();
6580   const char *Dummy;
6581   AttributeFactory attrFactory;
6582   DeclSpec DS(attrFactory);
6583   unsigned DiagID;
6584   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6585   (void)Error; // Silence warning.
6586   assert(!Error && "Error setting up implicit decl!");
6587   Declarator D(DS, Declarator::BlockContext);
6588   D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6589                                              0, 0, true, SourceLocation(),
6590                                              SourceLocation(),
6591                                              EST_None, SourceLocation(),
6592                                              0, 0, 0, 0, Loc, Loc, D),
6593                 DS.getAttributes(),
6594                 SourceLocation());
6595   D.SetIdentifier(&II, Loc);
6596 
6597   // Insert this function into translation-unit scope.
6598 
6599   DeclContext *PrevDC = CurContext;
6600   CurContext = Context.getTranslationUnitDecl();
6601 
6602   FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6603   FD->setImplicit();
6604 
6605   CurContext = PrevDC;
6606 
6607   AddKnownFunctionAttributes(FD);
6608 
6609   return FD;
6610 }
6611 
6612 /// \brief Adds any function attributes that we know a priori based on
6613 /// the declaration of this function.
6614 ///
6615 /// These attributes can apply both to implicitly-declared builtins
6616 /// (like __builtin___printf_chk) or to library-declared functions
6617 /// like NSLog or printf.
6618 ///
6619 /// We need to check for duplicate attributes both here and where user-written
6620 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)6621 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6622   if (FD->isInvalidDecl())
6623     return;
6624 
6625   // If this is a built-in function, map its builtin attributes to
6626   // actual attributes.
6627   if (unsigned BuiltinID = FD->getBuiltinID()) {
6628     // Handle printf-formatting attributes.
6629     unsigned FormatIdx;
6630     bool HasVAListArg;
6631     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6632       if (!FD->getAttr<FormatAttr>())
6633         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6634                                                 "printf", FormatIdx+1,
6635                                                HasVAListArg ? 0 : FormatIdx+2));
6636     }
6637     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6638                                              HasVAListArg)) {
6639      if (!FD->getAttr<FormatAttr>())
6640        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6641                                               "scanf", FormatIdx+1,
6642                                               HasVAListArg ? 0 : FormatIdx+2));
6643     }
6644 
6645     // Mark const if we don't care about errno and that is the only
6646     // thing preventing the function from being const. This allows
6647     // IRgen to use LLVM intrinsics for such functions.
6648     if (!getLangOptions().MathErrno &&
6649         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6650       if (!FD->getAttr<ConstAttr>())
6651         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6652     }
6653 
6654     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6655       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6656     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6657       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6658   }
6659 
6660   IdentifierInfo *Name = FD->getIdentifier();
6661   if (!Name)
6662     return;
6663   if ((!getLangOptions().CPlusPlus &&
6664        FD->getDeclContext()->isTranslationUnit()) ||
6665       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6666        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6667        LinkageSpecDecl::lang_c)) {
6668     // Okay: this could be a libc/libm/Objective-C function we know
6669     // about.
6670   } else
6671     return;
6672 
6673   if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6674     // FIXME: NSLog and NSLogv should be target specific
6675     if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6676       // FIXME: We known better than our headers.
6677       const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6678     } else
6679       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6680                                              "printf", 1,
6681                                              Name->isStr("NSLogv") ? 0 : 2));
6682   } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6683     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6684     // target-specific builtins, perhaps?
6685     if (!FD->getAttr<FormatAttr>())
6686       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6687                                              "printf", 2,
6688                                              Name->isStr("vasprintf") ? 0 : 3));
6689   }
6690 }
6691 
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)6692 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6693                                     TypeSourceInfo *TInfo) {
6694   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6695   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6696 
6697   if (!TInfo) {
6698     assert(D.isInvalidType() && "no declarator info for valid type");
6699     TInfo = Context.getTrivialTypeSourceInfo(T);
6700   }
6701 
6702   // Scope manipulation handled by caller.
6703   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6704                                            D.getSourceRange().getBegin(),
6705                                            D.getIdentifierLoc(),
6706                                            D.getIdentifier(),
6707                                            TInfo);
6708 
6709   // Bail out immediately if we have an invalid declaration.
6710   if (D.isInvalidType()) {
6711     NewTD->setInvalidDecl();
6712     return NewTD;
6713   }
6714 
6715   // C++ [dcl.typedef]p8:
6716   //   If the typedef declaration defines an unnamed class (or
6717   //   enum), the first typedef-name declared by the declaration
6718   //   to be that class type (or enum type) is used to denote the
6719   //   class type (or enum type) for linkage purposes only.
6720   // We need to check whether the type was declared in the declaration.
6721   switch (D.getDeclSpec().getTypeSpecType()) {
6722   case TST_enum:
6723   case TST_struct:
6724   case TST_union:
6725   case TST_class: {
6726     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6727 
6728     // Do nothing if the tag is not anonymous or already has an
6729     // associated typedef (from an earlier typedef in this decl group).
6730     if (tagFromDeclSpec->getIdentifier()) break;
6731     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6732 
6733     // A well-formed anonymous tag must always be a TUK_Definition.
6734     assert(tagFromDeclSpec->isThisDeclarationADefinition());
6735 
6736     // The type must match the tag exactly;  no qualifiers allowed.
6737     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6738       break;
6739 
6740     // Otherwise, set this is the anon-decl typedef for the tag.
6741     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6742     break;
6743   }
6744 
6745   default:
6746     break;
6747   }
6748 
6749   return NewTD;
6750 }
6751 
6752 
6753 /// \brief Determine whether a tag with a given kind is acceptable
6754 /// as a redeclaration of the given tag declaration.
6755 ///
6756 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)6757 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6758                                         TagTypeKind NewTag, bool isDefinition,
6759                                         SourceLocation NewTagLoc,
6760                                         const IdentifierInfo &Name) {
6761   // C++ [dcl.type.elab]p3:
6762   //   The class-key or enum keyword present in the
6763   //   elaborated-type-specifier shall agree in kind with the
6764   //   declaration to which the name in the elaborated-type-specifier
6765   //   refers. This rule also applies to the form of
6766   //   elaborated-type-specifier that declares a class-name or
6767   //   friend class since it can be construed as referring to the
6768   //   definition of the class. Thus, in any
6769   //   elaborated-type-specifier, the enum keyword shall be used to
6770   //   refer to an enumeration (7.2), the union class-key shall be
6771   //   used to refer to a union (clause 9), and either the class or
6772   //   struct class-key shall be used to refer to a class (clause 9)
6773   //   declared using the class or struct class-key.
6774   TagTypeKind OldTag = Previous->getTagKind();
6775   if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
6776     if (OldTag == NewTag)
6777       return true;
6778 
6779   if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6780       (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6781     // Warn about the struct/class tag mismatch.
6782     bool isTemplate = false;
6783     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6784       isTemplate = Record->getDescribedClassTemplate();
6785 
6786     if (!ActiveTemplateInstantiations.empty()) {
6787       // In a template instantiation, do not offer fix-its for tag mismatches
6788       // since they usually mess up the template instead of fixing the problem.
6789       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6790         << (NewTag == TTK_Class) << isTemplate << &Name;
6791       return true;
6792     }
6793 
6794     if (isDefinition) {
6795       // On definitions, check previous tags and issue a fix-it for each
6796       // one that doesn't match the current tag.
6797       if (Previous->getDefinition()) {
6798         // Don't suggest fix-its for redefinitions.
6799         return true;
6800       }
6801 
6802       bool previousMismatch = false;
6803       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
6804            E(Previous->redecls_end()); I != E; ++I) {
6805         if (I->getTagKind() != NewTag) {
6806           if (!previousMismatch) {
6807             previousMismatch = true;
6808             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
6809               << (NewTag == TTK_Class) << isTemplate << &Name;
6810           }
6811           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
6812             << (NewTag == TTK_Class)
6813             << FixItHint::CreateReplacement(I->getInnerLocStart(),
6814                                             NewTag == TTK_Class?
6815                                             "class" : "struct");
6816         }
6817       }
6818       return true;
6819     }
6820 
6821     // Check for a previous definition.  If current tag and definition
6822     // are same type, do nothing.  If no definition, but disagree with
6823     // with previous tag type, give a warning, but no fix-it.
6824     const TagDecl *Redecl = Previous->getDefinition() ?
6825                             Previous->getDefinition() : Previous;
6826     if (Redecl->getTagKind() == NewTag) {
6827       return true;
6828     }
6829 
6830     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6831       << (NewTag == TTK_Class)
6832       << isTemplate << &Name;
6833     Diag(Redecl->getLocation(), diag::note_previous_use);
6834 
6835     // If there is a previous defintion, suggest a fix-it.
6836     if (Previous->getDefinition()) {
6837         Diag(NewTagLoc, diag::note_struct_class_suggestion)
6838           << (Redecl->getTagKind() == TTK_Class)
6839           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6840                         Redecl->getTagKind() == TTK_Class? "class" : "struct");
6841     }
6842 
6843     return true;
6844   }
6845   return false;
6846 }
6847 
6848 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6849 /// former case, Name will be non-null.  In the later case, Name will be null.
6850 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6851 /// reference/declaration/definition of a tag.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,bool ScopedEnum,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType)6852 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6853                      SourceLocation KWLoc, CXXScopeSpec &SS,
6854                      IdentifierInfo *Name, SourceLocation NameLoc,
6855                      AttributeList *Attr, AccessSpecifier AS,
6856                      MultiTemplateParamsArg TemplateParameterLists,
6857                      bool &OwnedDecl, bool &IsDependent,
6858                      bool ScopedEnum, bool ScopedEnumUsesClassTag,
6859                      TypeResult UnderlyingType) {
6860   // If this is not a definition, it must have a name.
6861   assert((Name != 0 || TUK == TUK_Definition) &&
6862          "Nameless record must be a definition!");
6863   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6864 
6865   OwnedDecl = false;
6866   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6867 
6868   // FIXME: Check explicit specializations more carefully.
6869   bool isExplicitSpecialization = false;
6870   bool Invalid = false;
6871 
6872   // We only need to do this matching if we have template parameters
6873   // or a scope specifier, which also conveniently avoids this work
6874   // for non-C++ cases.
6875   if (TemplateParameterLists.size() > 0 ||
6876       (SS.isNotEmpty() && TUK != TUK_Reference)) {
6877     if (TemplateParameterList *TemplateParams
6878           = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6879                                                 TemplateParameterLists.get(),
6880                                                 TemplateParameterLists.size(),
6881                                                     TUK == TUK_Friend,
6882                                                     isExplicitSpecialization,
6883                                                     Invalid)) {
6884       if (TemplateParams->size() > 0) {
6885         // This is a declaration or definition of a class template (which may
6886         // be a member of another template).
6887 
6888         if (Invalid)
6889           return 0;
6890 
6891         OwnedDecl = false;
6892         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6893                                                SS, Name, NameLoc, Attr,
6894                                                TemplateParams, AS,
6895                                            TemplateParameterLists.size() - 1,
6896                  (TemplateParameterList**) TemplateParameterLists.release());
6897         return Result.get();
6898       } else {
6899         // The "template<>" header is extraneous.
6900         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6901           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6902         isExplicitSpecialization = true;
6903       }
6904     }
6905   }
6906 
6907   // Figure out the underlying type if this a enum declaration. We need to do
6908   // this early, because it's needed to detect if this is an incompatible
6909   // redeclaration.
6910   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6911 
6912   if (Kind == TTK_Enum) {
6913     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6914       // No underlying type explicitly specified, or we failed to parse the
6915       // type, default to int.
6916       EnumUnderlying = Context.IntTy.getTypePtr();
6917     else if (UnderlyingType.get()) {
6918       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6919       // integral type; any cv-qualification is ignored.
6920       TypeSourceInfo *TI = 0;
6921       QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6922       EnumUnderlying = TI;
6923 
6924       SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6925 
6926       if (!T->isDependentType() && !T->isIntegralType(Context)) {
6927         Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6928           << T;
6929         // Recover by falling back to int.
6930         EnumUnderlying = Context.IntTy.getTypePtr();
6931       }
6932 
6933       if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6934                                           UPPC_FixedUnderlyingType))
6935         EnumUnderlying = Context.IntTy.getTypePtr();
6936 
6937     } else if (getLangOptions().Microsoft)
6938       // Microsoft enums are always of int type.
6939       EnumUnderlying = Context.IntTy.getTypePtr();
6940   }
6941 
6942   DeclContext *SearchDC = CurContext;
6943   DeclContext *DC = CurContext;
6944   bool isStdBadAlloc = false;
6945 
6946   RedeclarationKind Redecl = ForRedeclaration;
6947   if (TUK == TUK_Friend || TUK == TUK_Reference)
6948     Redecl = NotForRedeclaration;
6949 
6950   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6951 
6952   if (Name && SS.isNotEmpty()) {
6953     // We have a nested-name tag ('struct foo::bar').
6954 
6955     // Check for invalid 'foo::'.
6956     if (SS.isInvalid()) {
6957       Name = 0;
6958       goto CreateNewDecl;
6959     }
6960 
6961     // If this is a friend or a reference to a class in a dependent
6962     // context, don't try to make a decl for it.
6963     if (TUK == TUK_Friend || TUK == TUK_Reference) {
6964       DC = computeDeclContext(SS, false);
6965       if (!DC) {
6966         IsDependent = true;
6967         return 0;
6968       }
6969     } else {
6970       DC = computeDeclContext(SS, true);
6971       if (!DC) {
6972         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6973           << SS.getRange();
6974         return 0;
6975       }
6976     }
6977 
6978     if (RequireCompleteDeclContext(SS, DC))
6979       return 0;
6980 
6981     SearchDC = DC;
6982     // Look-up name inside 'foo::'.
6983     LookupQualifiedName(Previous, DC);
6984 
6985     if (Previous.isAmbiguous())
6986       return 0;
6987 
6988     if (Previous.empty()) {
6989       // Name lookup did not find anything. However, if the
6990       // nested-name-specifier refers to the current instantiation,
6991       // and that current instantiation has any dependent base
6992       // classes, we might find something at instantiation time: treat
6993       // this as a dependent elaborated-type-specifier.
6994       // But this only makes any sense for reference-like lookups.
6995       if (Previous.wasNotFoundInCurrentInstantiation() &&
6996           (TUK == TUK_Reference || TUK == TUK_Friend)) {
6997         IsDependent = true;
6998         return 0;
6999       }
7000 
7001       // A tag 'foo::bar' must already exist.
7002       Diag(NameLoc, diag::err_not_tag_in_scope)
7003         << Kind << Name << DC << SS.getRange();
7004       Name = 0;
7005       Invalid = true;
7006       goto CreateNewDecl;
7007     }
7008   } else if (Name) {
7009     // If this is a named struct, check to see if there was a previous forward
7010     // declaration or definition.
7011     // FIXME: We're looking into outer scopes here, even when we
7012     // shouldn't be. Doing so can result in ambiguities that we
7013     // shouldn't be diagnosing.
7014     LookupName(Previous, S);
7015 
7016     if (Previous.isAmbiguous() &&
7017         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7018       LookupResult::Filter F = Previous.makeFilter();
7019       while (F.hasNext()) {
7020         NamedDecl *ND = F.next();
7021         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7022           F.erase();
7023       }
7024       F.done();
7025     }
7026 
7027     // Note:  there used to be some attempt at recovery here.
7028     if (Previous.isAmbiguous())
7029       return 0;
7030 
7031     if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7032       // FIXME: This makes sure that we ignore the contexts associated
7033       // with C structs, unions, and enums when looking for a matching
7034       // tag declaration or definition. See the similar lookup tweak
7035       // in Sema::LookupName; is there a better way to deal with this?
7036       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7037         SearchDC = SearchDC->getParent();
7038     }
7039   } else if (S->isFunctionPrototypeScope()) {
7040     // If this is an enum declaration in function prototype scope, set its
7041     // initial context to the translation unit.
7042     SearchDC = Context.getTranslationUnitDecl();
7043   }
7044 
7045   if (Previous.isSingleResult() &&
7046       Previous.getFoundDecl()->isTemplateParameter()) {
7047     // Maybe we will complain about the shadowed template parameter.
7048     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7049     // Just pretend that we didn't see the previous declaration.
7050     Previous.clear();
7051   }
7052 
7053   if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7054       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7055     // This is a declaration of or a reference to "std::bad_alloc".
7056     isStdBadAlloc = true;
7057 
7058     if (Previous.empty() && StdBadAlloc) {
7059       // std::bad_alloc has been implicitly declared (but made invisible to
7060       // name lookup). Fill in this implicit declaration as the previous
7061       // declaration, so that the declarations get chained appropriately.
7062       Previous.addDecl(getStdBadAlloc());
7063     }
7064   }
7065 
7066   // If we didn't find a previous declaration, and this is a reference
7067   // (or friend reference), move to the correct scope.  In C++, we
7068   // also need to do a redeclaration lookup there, just in case
7069   // there's a shadow friend decl.
7070   if (Name && Previous.empty() &&
7071       (TUK == TUK_Reference || TUK == TUK_Friend)) {
7072     if (Invalid) goto CreateNewDecl;
7073     assert(SS.isEmpty());
7074 
7075     if (TUK == TUK_Reference) {
7076       // C++ [basic.scope.pdecl]p5:
7077       //   -- for an elaborated-type-specifier of the form
7078       //
7079       //          class-key identifier
7080       //
7081       //      if the elaborated-type-specifier is used in the
7082       //      decl-specifier-seq or parameter-declaration-clause of a
7083       //      function defined in namespace scope, the identifier is
7084       //      declared as a class-name in the namespace that contains
7085       //      the declaration; otherwise, except as a friend
7086       //      declaration, the identifier is declared in the smallest
7087       //      non-class, non-function-prototype scope that contains the
7088       //      declaration.
7089       //
7090       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7091       // C structs and unions.
7092       //
7093       // It is an error in C++ to declare (rather than define) an enum
7094       // type, including via an elaborated type specifier.  We'll
7095       // diagnose that later; for now, declare the enum in the same
7096       // scope as we would have picked for any other tag type.
7097       //
7098       // GNU C also supports this behavior as part of its incomplete
7099       // enum types extension, while GNU C++ does not.
7100       //
7101       // Find the context where we'll be declaring the tag.
7102       // FIXME: We would like to maintain the current DeclContext as the
7103       // lexical context,
7104       while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7105         SearchDC = SearchDC->getParent();
7106 
7107       // Find the scope where we'll be declaring the tag.
7108       while (S->isClassScope() ||
7109              (getLangOptions().CPlusPlus &&
7110               S->isFunctionPrototypeScope()) ||
7111              ((S->getFlags() & Scope::DeclScope) == 0) ||
7112              (S->getEntity() &&
7113               ((DeclContext *)S->getEntity())->isTransparentContext()))
7114         S = S->getParent();
7115     } else {
7116       assert(TUK == TUK_Friend);
7117       // C++ [namespace.memdef]p3:
7118       //   If a friend declaration in a non-local class first declares a
7119       //   class or function, the friend class or function is a member of
7120       //   the innermost enclosing namespace.
7121       SearchDC = SearchDC->getEnclosingNamespaceContext();
7122     }
7123 
7124     // In C++, we need to do a redeclaration lookup to properly
7125     // diagnose some problems.
7126     if (getLangOptions().CPlusPlus) {
7127       Previous.setRedeclarationKind(ForRedeclaration);
7128       LookupQualifiedName(Previous, SearchDC);
7129     }
7130   }
7131 
7132   if (!Previous.empty()) {
7133     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7134 
7135     // It's okay to have a tag decl in the same scope as a typedef
7136     // which hides a tag decl in the same scope.  Finding this
7137     // insanity with a redeclaration lookup can only actually happen
7138     // in C++.
7139     //
7140     // This is also okay for elaborated-type-specifiers, which is
7141     // technically forbidden by the current standard but which is
7142     // okay according to the likely resolution of an open issue;
7143     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7144     if (getLangOptions().CPlusPlus) {
7145       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7146         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7147           TagDecl *Tag = TT->getDecl();
7148           if (Tag->getDeclName() == Name &&
7149               Tag->getDeclContext()->getRedeclContext()
7150                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
7151             PrevDecl = Tag;
7152             Previous.clear();
7153             Previous.addDecl(Tag);
7154             Previous.resolveKind();
7155           }
7156         }
7157       }
7158     }
7159 
7160     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7161       // If this is a use of a previous tag, or if the tag is already declared
7162       // in the same scope (so that the definition/declaration completes or
7163       // rementions the tag), reuse the decl.
7164       if (TUK == TUK_Reference || TUK == TUK_Friend ||
7165           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7166         // Make sure that this wasn't declared as an enum and now used as a
7167         // struct or something similar.
7168         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7169                                           TUK == TUK_Definition, KWLoc,
7170                                           *Name)) {
7171           bool SafeToContinue
7172             = (PrevTagDecl->getTagKind() != TTK_Enum &&
7173                Kind != TTK_Enum);
7174           if (SafeToContinue)
7175             Diag(KWLoc, diag::err_use_with_wrong_tag)
7176               << Name
7177               << FixItHint::CreateReplacement(SourceRange(KWLoc),
7178                                               PrevTagDecl->getKindName());
7179           else
7180             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7181           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7182 
7183           if (SafeToContinue)
7184             Kind = PrevTagDecl->getTagKind();
7185           else {
7186             // Recover by making this an anonymous redefinition.
7187             Name = 0;
7188             Previous.clear();
7189             Invalid = true;
7190           }
7191         }
7192 
7193         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7194           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7195 
7196           // All conflicts with previous declarations are recovered by
7197           // returning the previous declaration.
7198           if (ScopedEnum != PrevEnum->isScoped()) {
7199             Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7200               << PrevEnum->isScoped();
7201             Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7202             return PrevTagDecl;
7203           }
7204           else if (EnumUnderlying && PrevEnum->isFixed()) {
7205             QualType T;
7206             if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7207                 T = TI->getType();
7208             else
7209                 T = QualType(EnumUnderlying.get<const Type*>(), 0);
7210 
7211             if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7212               Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7213                    diag::err_enum_redeclare_type_mismatch)
7214                 << T
7215                 << PrevEnum->getIntegerType();
7216               Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7217               return PrevTagDecl;
7218             }
7219           }
7220           else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7221             Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7222               << PrevEnum->isFixed();
7223             Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7224             return PrevTagDecl;
7225           }
7226         }
7227 
7228         if (!Invalid) {
7229           // If this is a use, just return the declaration we found.
7230 
7231           // FIXME: In the future, return a variant or some other clue
7232           // for the consumer of this Decl to know it doesn't own it.
7233           // For our current ASTs this shouldn't be a problem, but will
7234           // need to be changed with DeclGroups.
7235           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7236                getLangOptions().Microsoft)) || TUK == TUK_Friend)
7237             return PrevTagDecl;
7238 
7239           // Diagnose attempts to redefine a tag.
7240           if (TUK == TUK_Definition) {
7241             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7242               // If we're defining a specialization and the previous definition
7243               // is from an implicit instantiation, don't emit an error
7244               // here; we'll catch this in the general case below.
7245               if (!isExplicitSpecialization ||
7246                   !isa<CXXRecordDecl>(Def) ||
7247                   cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7248                                                == TSK_ExplicitSpecialization) {
7249                 Diag(NameLoc, diag::err_redefinition) << Name;
7250                 Diag(Def->getLocation(), diag::note_previous_definition);
7251                 // If this is a redefinition, recover by making this
7252                 // struct be anonymous, which will make any later
7253                 // references get the previous definition.
7254                 Name = 0;
7255                 Previous.clear();
7256                 Invalid = true;
7257               }
7258             } else {
7259               // If the type is currently being defined, complain
7260               // about a nested redefinition.
7261               const TagType *Tag
7262                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7263               if (Tag->isBeingDefined()) {
7264                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
7265                 Diag(PrevTagDecl->getLocation(),
7266                      diag::note_previous_definition);
7267                 Name = 0;
7268                 Previous.clear();
7269                 Invalid = true;
7270               }
7271             }
7272 
7273             // Okay, this is definition of a previously declared or referenced
7274             // tag PrevDecl. We're going to create a new Decl for it.
7275           }
7276         }
7277         // If we get here we have (another) forward declaration or we
7278         // have a definition.  Just create a new decl.
7279 
7280       } else {
7281         // If we get here, this is a definition of a new tag type in a nested
7282         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7283         // new decl/type.  We set PrevDecl to NULL so that the entities
7284         // have distinct types.
7285         Previous.clear();
7286       }
7287       // If we get here, we're going to create a new Decl. If PrevDecl
7288       // is non-NULL, it's a definition of the tag declared by
7289       // PrevDecl. If it's NULL, we have a new definition.
7290 
7291 
7292     // Otherwise, PrevDecl is not a tag, but was found with tag
7293     // lookup.  This is only actually possible in C++, where a few
7294     // things like templates still live in the tag namespace.
7295     } else {
7296       assert(getLangOptions().CPlusPlus);
7297 
7298       // Use a better diagnostic if an elaborated-type-specifier
7299       // found the wrong kind of type on the first
7300       // (non-redeclaration) lookup.
7301       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7302           !Previous.isForRedeclaration()) {
7303         unsigned Kind = 0;
7304         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7305         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7306         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7307         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7308         Diag(PrevDecl->getLocation(), diag::note_declared_at);
7309         Invalid = true;
7310 
7311       // Otherwise, only diagnose if the declaration is in scope.
7312       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7313                                 isExplicitSpecialization)) {
7314         // do nothing
7315 
7316       // Diagnose implicit declarations introduced by elaborated types.
7317       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7318         unsigned Kind = 0;
7319         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7320         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7321         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7322         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7323         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7324         Invalid = true;
7325 
7326       // Otherwise it's a declaration.  Call out a particularly common
7327       // case here.
7328       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7329         unsigned Kind = 0;
7330         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7331         Diag(NameLoc, diag::err_tag_definition_of_typedef)
7332           << Name << Kind << TND->getUnderlyingType();
7333         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7334         Invalid = true;
7335 
7336       // Otherwise, diagnose.
7337       } else {
7338         // The tag name clashes with something else in the target scope,
7339         // issue an error and recover by making this tag be anonymous.
7340         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7341         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7342         Name = 0;
7343         Invalid = true;
7344       }
7345 
7346       // The existing declaration isn't relevant to us; we're in a
7347       // new scope, so clear out the previous declaration.
7348       Previous.clear();
7349     }
7350   }
7351 
7352 CreateNewDecl:
7353 
7354   TagDecl *PrevDecl = 0;
7355   if (Previous.isSingleResult())
7356     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7357 
7358   // If there is an identifier, use the location of the identifier as the
7359   // location of the decl, otherwise use the location of the struct/union
7360   // keyword.
7361   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7362 
7363   // Otherwise, create a new declaration. If there is a previous
7364   // declaration of the same entity, the two will be linked via
7365   // PrevDecl.
7366   TagDecl *New;
7367 
7368   bool IsForwardReference = false;
7369   if (Kind == TTK_Enum) {
7370     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7371     // enum X { A, B, C } D;    D should chain to X.
7372     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7373                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7374                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7375     // If this is an undefined enum, warn.
7376     if (TUK != TUK_Definition && !Invalid) {
7377       TagDecl *Def;
7378       if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7379         // C++0x: 7.2p2: opaque-enum-declaration.
7380         // Conflicts are diagnosed above. Do nothing.
7381       }
7382       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7383         Diag(Loc, diag::ext_forward_ref_enum_def)
7384           << New;
7385         Diag(Def->getLocation(), diag::note_previous_definition);
7386       } else {
7387         unsigned DiagID = diag::ext_forward_ref_enum;
7388         if (getLangOptions().Microsoft)
7389           DiagID = diag::ext_ms_forward_ref_enum;
7390         else if (getLangOptions().CPlusPlus)
7391           DiagID = diag::err_forward_ref_enum;
7392         Diag(Loc, DiagID);
7393 
7394         // If this is a forward-declared reference to an enumeration, make a
7395         // note of it; we won't actually be introducing the declaration into
7396         // the declaration context.
7397         if (TUK == TUK_Reference)
7398           IsForwardReference = true;
7399       }
7400     }
7401 
7402     if (EnumUnderlying) {
7403       EnumDecl *ED = cast<EnumDecl>(New);
7404       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7405         ED->setIntegerTypeSourceInfo(TI);
7406       else
7407         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7408       ED->setPromotionType(ED->getIntegerType());
7409     }
7410 
7411   } else {
7412     // struct/union/class
7413 
7414     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7415     // struct X { int A; } D;    D should chain to X.
7416     if (getLangOptions().CPlusPlus) {
7417       // FIXME: Look for a way to use RecordDecl for simple structs.
7418       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7419                                   cast_or_null<CXXRecordDecl>(PrevDecl));
7420 
7421       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7422         StdBadAlloc = cast<CXXRecordDecl>(New);
7423     } else
7424       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7425                                cast_or_null<RecordDecl>(PrevDecl));
7426   }
7427 
7428   // Maybe add qualifier info.
7429   if (SS.isNotEmpty()) {
7430     if (SS.isSet()) {
7431       New->setQualifierInfo(SS.getWithLocInContext(Context));
7432       if (TemplateParameterLists.size() > 0) {
7433         New->setTemplateParameterListsInfo(Context,
7434                                            TemplateParameterLists.size(),
7435                     (TemplateParameterList**) TemplateParameterLists.release());
7436       }
7437     }
7438     else
7439       Invalid = true;
7440   }
7441 
7442   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7443     // Add alignment attributes if necessary; these attributes are checked when
7444     // the ASTContext lays out the structure.
7445     //
7446     // It is important for implementing the correct semantics that this
7447     // happen here (in act on tag decl). The #pragma pack stack is
7448     // maintained as a result of parser callbacks which can occur at
7449     // many points during the parsing of a struct declaration (because
7450     // the #pragma tokens are effectively skipped over during the
7451     // parsing of the struct).
7452     AddAlignmentAttributesForRecord(RD);
7453 
7454     AddMsStructLayoutForRecord(RD);
7455   }
7456 
7457   // If this is a specialization of a member class (of a class template),
7458   // check the specialization.
7459   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7460     Invalid = true;
7461 
7462   if (Invalid)
7463     New->setInvalidDecl();
7464 
7465   if (Attr)
7466     ProcessDeclAttributeList(S, New, Attr);
7467 
7468   // If we're declaring or defining a tag in function prototype scope
7469   // in C, note that this type can only be used within the function.
7470   if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7471     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7472 
7473   // Set the lexical context. If the tag has a C++ scope specifier, the
7474   // lexical context will be different from the semantic context.
7475   New->setLexicalDeclContext(CurContext);
7476 
7477   // Mark this as a friend decl if applicable.
7478   // In Microsoft mode, a friend declaration also acts as a forward
7479   // declaration so we always pass true to setObjectOfFriendDecl to make
7480   // the tag name visible.
7481   if (TUK == TUK_Friend)
7482     New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7483                                getLangOptions().Microsoft);
7484 
7485   // Set the access specifier.
7486   if (!Invalid && SearchDC->isRecord())
7487     SetMemberAccessSpecifier(New, PrevDecl, AS);
7488 
7489   if (TUK == TUK_Definition)
7490     New->startDefinition();
7491 
7492   // If this has an identifier, add it to the scope stack.
7493   if (TUK == TUK_Friend) {
7494     // We might be replacing an existing declaration in the lookup tables;
7495     // if so, borrow its access specifier.
7496     if (PrevDecl)
7497       New->setAccess(PrevDecl->getAccess());
7498 
7499     DeclContext *DC = New->getDeclContext()->getRedeclContext();
7500     DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7501     if (Name) // can be null along some error paths
7502       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7503         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7504   } else if (Name) {
7505     S = getNonFieldDeclScope(S);
7506     PushOnScopeChains(New, S, !IsForwardReference);
7507     if (IsForwardReference)
7508       SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7509 
7510   } else {
7511     CurContext->addDecl(New);
7512   }
7513 
7514   // If this is the C FILE type, notify the AST context.
7515   if (IdentifierInfo *II = New->getIdentifier())
7516     if (!New->isInvalidDecl() &&
7517         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7518         II->isStr("FILE"))
7519       Context.setFILEDecl(New);
7520 
7521   OwnedDecl = true;
7522   return New;
7523 }
7524 
ActOnTagStartDefinition(Scope * S,Decl * TagD)7525 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7526   AdjustDeclIfTemplate(TagD);
7527   TagDecl *Tag = cast<TagDecl>(TagD);
7528 
7529   // Enter the tag context.
7530   PushDeclContext(S, Tag);
7531 }
7532 
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,SourceLocation LBraceLoc)7533 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7534                                            SourceLocation FinalLoc,
7535                                            SourceLocation LBraceLoc) {
7536   AdjustDeclIfTemplate(TagD);
7537   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7538 
7539   FieldCollector->StartClass();
7540 
7541   if (!Record->getIdentifier())
7542     return;
7543 
7544   if (FinalLoc.isValid())
7545     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7546 
7547   // C++ [class]p2:
7548   //   [...] The class-name is also inserted into the scope of the
7549   //   class itself; this is known as the injected-class-name. For
7550   //   purposes of access checking, the injected-class-name is treated
7551   //   as if it were a public member name.
7552   CXXRecordDecl *InjectedClassName
7553     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7554                             Record->getLocStart(), Record->getLocation(),
7555                             Record->getIdentifier(),
7556                             /*PrevDecl=*/0,
7557                             /*DelayTypeCreation=*/true);
7558   Context.getTypeDeclType(InjectedClassName, Record);
7559   InjectedClassName->setImplicit();
7560   InjectedClassName->setAccess(AS_public);
7561   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7562       InjectedClassName->setDescribedClassTemplate(Template);
7563   PushOnScopeChains(InjectedClassName, S);
7564   assert(InjectedClassName->isInjectedClassName() &&
7565          "Broken injected-class-name");
7566 }
7567 
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)7568 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7569                                     SourceLocation RBraceLoc) {
7570   AdjustDeclIfTemplate(TagD);
7571   TagDecl *Tag = cast<TagDecl>(TagD);
7572   Tag->setRBraceLoc(RBraceLoc);
7573 
7574   if (isa<CXXRecordDecl>(Tag))
7575     FieldCollector->FinishClass();
7576 
7577   // Exit this scope of this tag's definition.
7578   PopDeclContext();
7579 
7580   // Notify the consumer that we've defined a tag.
7581   Consumer.HandleTagDeclDefinition(Tag);
7582 }
7583 
ActOnTagDefinitionError(Scope * S,Decl * TagD)7584 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7585   AdjustDeclIfTemplate(TagD);
7586   TagDecl *Tag = cast<TagDecl>(TagD);
7587   Tag->setInvalidDecl();
7588 
7589   // We're undoing ActOnTagStartDefinition here, not
7590   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7591   // the FieldCollector.
7592 
7593   PopDeclContext();
7594 }
7595 
7596 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,const Expr * BitWidth,bool * ZeroWidth)7597 bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7598                           QualType FieldTy, const Expr *BitWidth,
7599                           bool *ZeroWidth) {
7600   // Default to true; that shouldn't confuse checks for emptiness
7601   if (ZeroWidth)
7602     *ZeroWidth = true;
7603 
7604   // C99 6.7.2.1p4 - verify the field type.
7605   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7606   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7607     // Handle incomplete types with specific error.
7608     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7609       return true;
7610     if (FieldName)
7611       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7612         << FieldName << FieldTy << BitWidth->getSourceRange();
7613     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7614       << FieldTy << BitWidth->getSourceRange();
7615   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7616                                              UPPC_BitFieldWidth))
7617     return true;
7618 
7619   // If the bit-width is type- or value-dependent, don't try to check
7620   // it now.
7621   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7622     return false;
7623 
7624   llvm::APSInt Value;
7625   if (VerifyIntegerConstantExpression(BitWidth, &Value))
7626     return true;
7627 
7628   if (Value != 0 && ZeroWidth)
7629     *ZeroWidth = false;
7630 
7631   // Zero-width bitfield is ok for anonymous field.
7632   if (Value == 0 && FieldName)
7633     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7634 
7635   if (Value.isSigned() && Value.isNegative()) {
7636     if (FieldName)
7637       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7638                << FieldName << Value.toString(10);
7639     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7640       << Value.toString(10);
7641   }
7642 
7643   if (!FieldTy->isDependentType()) {
7644     uint64_t TypeSize = Context.getTypeSize(FieldTy);
7645     if (Value.getZExtValue() > TypeSize) {
7646       if (!getLangOptions().CPlusPlus) {
7647         if (FieldName)
7648           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7649             << FieldName << (unsigned)Value.getZExtValue()
7650             << (unsigned)TypeSize;
7651 
7652         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7653           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7654       }
7655 
7656       if (FieldName)
7657         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7658           << FieldName << (unsigned)Value.getZExtValue()
7659           << (unsigned)TypeSize;
7660       else
7661         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7662           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7663     }
7664   }
7665 
7666   return false;
7667 }
7668 
7669 /// ActOnField - Each field of a C struct/union is passed into this in order
7670 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,ExprTy * BitfieldWidth)7671 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7672                        Declarator &D, ExprTy *BitfieldWidth) {
7673   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7674                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7675                                /*HasInit=*/false, AS_public);
7676   return Res;
7677 }
7678 
7679 /// HandleField - Analyze a field of a C struct or a C++ data member.
7680 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,bool HasInit,AccessSpecifier AS)7681 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7682                              SourceLocation DeclStart,
7683                              Declarator &D, Expr *BitWidth, bool HasInit,
7684                              AccessSpecifier AS) {
7685   IdentifierInfo *II = D.getIdentifier();
7686   SourceLocation Loc = DeclStart;
7687   if (II) Loc = D.getIdentifierLoc();
7688 
7689   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7690   QualType T = TInfo->getType();
7691   if (getLangOptions().CPlusPlus) {
7692     CheckExtraCXXDefaultArguments(D);
7693 
7694     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7695                                         UPPC_DataMemberType)) {
7696       D.setInvalidType();
7697       T = Context.IntTy;
7698       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7699     }
7700   }
7701 
7702   DiagnoseFunctionSpecifiers(D);
7703 
7704   if (D.getDeclSpec().isThreadSpecified())
7705     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7706 
7707   // Check to see if this name was declared as a member previously
7708   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7709   LookupName(Previous, S);
7710   assert((Previous.empty() || Previous.isOverloadedResult() ||
7711           Previous.isSingleResult())
7712     && "Lookup of member name should be either overloaded, single or null");
7713 
7714   // If the name is overloaded then get any declaration else get the single result
7715   NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7716     Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7717 
7718   if (PrevDecl && PrevDecl->isTemplateParameter()) {
7719     // Maybe we will complain about the shadowed template parameter.
7720     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7721     // Just pretend that we didn't see the previous declaration.
7722     PrevDecl = 0;
7723   }
7724 
7725   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7726     PrevDecl = 0;
7727 
7728   bool Mutable
7729     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7730   SourceLocation TSSL = D.getSourceRange().getBegin();
7731   FieldDecl *NewFD
7732     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
7733                      TSSL, AS, PrevDecl, &D);
7734 
7735   if (NewFD->isInvalidDecl())
7736     Record->setInvalidDecl();
7737 
7738   if (NewFD->isInvalidDecl() && PrevDecl) {
7739     // Don't introduce NewFD into scope; there's already something
7740     // with the same name in the same scope.
7741   } else if (II) {
7742     PushOnScopeChains(NewFD, S);
7743   } else
7744     Record->addDecl(NewFD);
7745 
7746   return NewFD;
7747 }
7748 
7749 /// \brief Build a new FieldDecl and check its well-formedness.
7750 ///
7751 /// This routine builds a new FieldDecl given the fields name, type,
7752 /// record, etc. \p PrevDecl should refer to any previous declaration
7753 /// with the same name and in the same scope as the field to be
7754 /// created.
7755 ///
7756 /// \returns a new FieldDecl.
7757 ///
7758 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,bool HasInit,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)7759 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7760                                 TypeSourceInfo *TInfo,
7761                                 RecordDecl *Record, SourceLocation Loc,
7762                                 bool Mutable, Expr *BitWidth, bool HasInit,
7763                                 SourceLocation TSSL,
7764                                 AccessSpecifier AS, NamedDecl *PrevDecl,
7765                                 Declarator *D) {
7766   IdentifierInfo *II = Name.getAsIdentifierInfo();
7767   bool InvalidDecl = false;
7768   if (D) InvalidDecl = D->isInvalidType();
7769 
7770   // If we receive a broken type, recover by assuming 'int' and
7771   // marking this declaration as invalid.
7772   if (T.isNull()) {
7773     InvalidDecl = true;
7774     T = Context.IntTy;
7775   }
7776 
7777   QualType EltTy = Context.getBaseElementType(T);
7778   if (!EltTy->isDependentType() &&
7779       RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7780     // Fields of incomplete type force their record to be invalid.
7781     Record->setInvalidDecl();
7782     InvalidDecl = true;
7783   }
7784 
7785   // C99 6.7.2.1p8: A member of a structure or union may have any type other
7786   // than a variably modified type.
7787   if (!InvalidDecl && T->isVariablyModifiedType()) {
7788     bool SizeIsNegative;
7789     llvm::APSInt Oversized;
7790     QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7791                                                            SizeIsNegative,
7792                                                            Oversized);
7793     if (!FixedTy.isNull()) {
7794       Diag(Loc, diag::warn_illegal_constant_array_size);
7795       T = FixedTy;
7796     } else {
7797       if (SizeIsNegative)
7798         Diag(Loc, diag::err_typecheck_negative_array_size);
7799       else if (Oversized.getBoolValue())
7800         Diag(Loc, diag::err_array_too_large)
7801           << Oversized.toString(10);
7802       else
7803         Diag(Loc, diag::err_typecheck_field_variable_size);
7804       InvalidDecl = true;
7805     }
7806   }
7807 
7808   // Fields can not have abstract class types
7809   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7810                                              diag::err_abstract_type_in_decl,
7811                                              AbstractFieldType))
7812     InvalidDecl = true;
7813 
7814   bool ZeroWidth = false;
7815   // If this is declared as a bit-field, check the bit-field.
7816   if (!InvalidDecl && BitWidth &&
7817       VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7818     InvalidDecl = true;
7819     BitWidth = 0;
7820     ZeroWidth = false;
7821   }
7822 
7823   // Check that 'mutable' is consistent with the type of the declaration.
7824   if (!InvalidDecl && Mutable) {
7825     unsigned DiagID = 0;
7826     if (T->isReferenceType())
7827       DiagID = diag::err_mutable_reference;
7828     else if (T.isConstQualified())
7829       DiagID = diag::err_mutable_const;
7830 
7831     if (DiagID) {
7832       SourceLocation ErrLoc = Loc;
7833       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7834         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7835       Diag(ErrLoc, DiagID);
7836       Mutable = false;
7837       InvalidDecl = true;
7838     }
7839   }
7840 
7841   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7842                                        BitWidth, Mutable, HasInit);
7843   if (InvalidDecl)
7844     NewFD->setInvalidDecl();
7845 
7846   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7847     Diag(Loc, diag::err_duplicate_member) << II;
7848     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7849     NewFD->setInvalidDecl();
7850   }
7851 
7852   if (!InvalidDecl && getLangOptions().CPlusPlus) {
7853     if (Record->isUnion()) {
7854       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7855         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7856         if (RDecl->getDefinition()) {
7857           // C++ [class.union]p1: An object of a class with a non-trivial
7858           // constructor, a non-trivial copy constructor, a non-trivial
7859           // destructor, or a non-trivial copy assignment operator
7860           // cannot be a member of a union, nor can an array of such
7861           // objects.
7862           if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7863             NewFD->setInvalidDecl();
7864         }
7865       }
7866 
7867       // C++ [class.union]p1: If a union contains a member of reference type,
7868       // the program is ill-formed.
7869       if (EltTy->isReferenceType()) {
7870         Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7871           << NewFD->getDeclName() << EltTy;
7872         NewFD->setInvalidDecl();
7873       }
7874     }
7875   }
7876 
7877   // FIXME: We need to pass in the attributes given an AST
7878   // representation, not a parser representation.
7879   if (D)
7880     // FIXME: What to pass instead of TUScope?
7881     ProcessDeclAttributes(TUScope, NewFD, *D);
7882 
7883   // In auto-retain/release, infer strong retension for fields of
7884   // retainable type.
7885   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
7886     NewFD->setInvalidDecl();
7887 
7888   if (T.isObjCGCWeak())
7889     Diag(Loc, diag::warn_attribute_weak_on_field);
7890 
7891   NewFD->setAccess(AS);
7892   return NewFD;
7893 }
7894 
CheckNontrivialField(FieldDecl * FD)7895 bool Sema::CheckNontrivialField(FieldDecl *FD) {
7896   assert(FD);
7897   assert(getLangOptions().CPlusPlus && "valid check only for C++");
7898 
7899   if (FD->isInvalidDecl())
7900     return true;
7901 
7902   QualType EltTy = Context.getBaseElementType(FD->getType());
7903   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7904     CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7905     if (RDecl->getDefinition()) {
7906       // We check for copy constructors before constructors
7907       // because otherwise we'll never get complaints about
7908       // copy constructors.
7909 
7910       CXXSpecialMember member = CXXInvalid;
7911       if (!RDecl->hasTrivialCopyConstructor())
7912         member = CXXCopyConstructor;
7913       else if (!RDecl->hasTrivialDefaultConstructor())
7914         member = CXXDefaultConstructor;
7915       else if (!RDecl->hasTrivialCopyAssignment())
7916         member = CXXCopyAssignment;
7917       else if (!RDecl->hasTrivialDestructor())
7918         member = CXXDestructor;
7919 
7920       if (member != CXXInvalid) {
7921         if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
7922           // Objective-C++ ARC: it is an error to have a non-trivial field of
7923           // a union. However, system headers in Objective-C programs
7924           // occasionally have Objective-C lifetime objects within unions,
7925           // and rather than cause the program to fail, we make those
7926           // members unavailable.
7927           SourceLocation Loc = FD->getLocation();
7928           if (getSourceManager().isInSystemHeader(Loc)) {
7929             if (!FD->hasAttr<UnavailableAttr>())
7930               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
7931                                   "this system field has retaining ownership"));
7932             return false;
7933           }
7934         }
7935 
7936         Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7937               << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7938         DiagnoseNontrivial(RT, member);
7939         return true;
7940       }
7941     }
7942   }
7943 
7944   return false;
7945 }
7946 
7947 /// DiagnoseNontrivial - Given that a class has a non-trivial
7948 /// special member, figure out why.
DiagnoseNontrivial(const RecordType * T,CXXSpecialMember member)7949 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7950   QualType QT(T, 0U);
7951   CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7952 
7953   // Check whether the member was user-declared.
7954   switch (member) {
7955   case CXXInvalid:
7956     break;
7957 
7958   case CXXDefaultConstructor:
7959     if (RD->hasUserDeclaredConstructor()) {
7960       typedef CXXRecordDecl::ctor_iterator ctor_iter;
7961       for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7962         const FunctionDecl *body = 0;
7963         ci->hasBody(body);
7964         if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7965           SourceLocation CtorLoc = ci->getLocation();
7966           Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7967           return;
7968         }
7969       }
7970 
7971       assert(0 && "found no user-declared constructors");
7972       return;
7973     }
7974     break;
7975 
7976   case CXXCopyConstructor:
7977     if (RD->hasUserDeclaredCopyConstructor()) {
7978       SourceLocation CtorLoc =
7979         RD->getCopyConstructor(0)->getLocation();
7980       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7981       return;
7982     }
7983     break;
7984 
7985   case CXXMoveConstructor:
7986     if (RD->hasUserDeclaredMoveConstructor()) {
7987       SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
7988       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7989       return;
7990     }
7991     break;
7992 
7993   case CXXCopyAssignment:
7994     if (RD->hasUserDeclaredCopyAssignment()) {
7995       // FIXME: this should use the location of the copy
7996       // assignment, not the type.
7997       SourceLocation TyLoc = RD->getSourceRange().getBegin();
7998       Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7999       return;
8000     }
8001     break;
8002 
8003   case CXXMoveAssignment:
8004     if (RD->hasUserDeclaredMoveAssignment()) {
8005       SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8006       Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8007       return;
8008     }
8009     break;
8010 
8011   case CXXDestructor:
8012     if (RD->hasUserDeclaredDestructor()) {
8013       SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8014       Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8015       return;
8016     }
8017     break;
8018   }
8019 
8020   typedef CXXRecordDecl::base_class_iterator base_iter;
8021 
8022   // Virtual bases and members inhibit trivial copying/construction,
8023   // but not trivial destruction.
8024   if (member != CXXDestructor) {
8025     // Check for virtual bases.  vbases includes indirect virtual bases,
8026     // so we just iterate through the direct bases.
8027     for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8028       if (bi->isVirtual()) {
8029         SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8030         Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8031         return;
8032       }
8033 
8034     // Check for virtual methods.
8035     typedef CXXRecordDecl::method_iterator meth_iter;
8036     for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8037          ++mi) {
8038       if (mi->isVirtual()) {
8039         SourceLocation MLoc = mi->getSourceRange().getBegin();
8040         Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8041         return;
8042       }
8043     }
8044   }
8045 
8046   bool (CXXRecordDecl::*hasTrivial)() const;
8047   switch (member) {
8048   case CXXDefaultConstructor:
8049     hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8050   case CXXCopyConstructor:
8051     hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8052   case CXXCopyAssignment:
8053     hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8054   case CXXDestructor:
8055     hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8056   default:
8057     assert(0 && "unexpected special member"); return;
8058   }
8059 
8060   // Check for nontrivial bases (and recurse).
8061   for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8062     const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8063     assert(BaseRT && "Don't know how to handle dependent bases");
8064     CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8065     if (!(BaseRecTy->*hasTrivial)()) {
8066       SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8067       Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8068       DiagnoseNontrivial(BaseRT, member);
8069       return;
8070     }
8071   }
8072 
8073   // Check for nontrivial members (and recurse).
8074   typedef RecordDecl::field_iterator field_iter;
8075   for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8076        ++fi) {
8077     QualType EltTy = Context.getBaseElementType((*fi)->getType());
8078     if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8079       CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8080 
8081       if (!(EltRD->*hasTrivial)()) {
8082         SourceLocation FLoc = (*fi)->getLocation();
8083         Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8084         DiagnoseNontrivial(EltRT, member);
8085         return;
8086       }
8087     }
8088 
8089     if (EltTy->isObjCLifetimeType()) {
8090       switch (EltTy.getObjCLifetime()) {
8091       case Qualifiers::OCL_None:
8092       case Qualifiers::OCL_ExplicitNone:
8093         break;
8094 
8095       case Qualifiers::OCL_Autoreleasing:
8096       case Qualifiers::OCL_Weak:
8097       case Qualifiers::OCL_Strong:
8098         Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8099           << QT << EltTy.getObjCLifetime();
8100         return;
8101       }
8102     }
8103   }
8104 
8105   assert(0 && "found no explanation for non-trivial member");
8106 }
8107 
8108 /// TranslateIvarVisibility - Translate visibility from a token ID to an
8109 ///  AST enum value.
8110 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)8111 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8112   switch (ivarVisibility) {
8113   default: assert(0 && "Unknown visitibility kind");
8114   case tok::objc_private: return ObjCIvarDecl::Private;
8115   case tok::objc_public: return ObjCIvarDecl::Public;
8116   case tok::objc_protected: return ObjCIvarDecl::Protected;
8117   case tok::objc_package: return ObjCIvarDecl::Package;
8118   }
8119 }
8120 
8121 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
8122 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Decl * IntfDecl,Declarator & D,ExprTy * BitfieldWidth,tok::ObjCKeywordKind Visibility)8123 Decl *Sema::ActOnIvar(Scope *S,
8124                                 SourceLocation DeclStart,
8125                                 Decl *IntfDecl,
8126                                 Declarator &D, ExprTy *BitfieldWidth,
8127                                 tok::ObjCKeywordKind Visibility) {
8128 
8129   IdentifierInfo *II = D.getIdentifier();
8130   Expr *BitWidth = (Expr*)BitfieldWidth;
8131   SourceLocation Loc = DeclStart;
8132   if (II) Loc = D.getIdentifierLoc();
8133 
8134   // FIXME: Unnamed fields can be handled in various different ways, for
8135   // example, unnamed unions inject all members into the struct namespace!
8136 
8137   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8138   QualType T = TInfo->getType();
8139 
8140   if (BitWidth) {
8141     // 6.7.2.1p3, 6.7.2.1p4
8142     if (VerifyBitField(Loc, II, T, BitWidth)) {
8143       D.setInvalidType();
8144       BitWidth = 0;
8145     }
8146   } else {
8147     // Not a bitfield.
8148 
8149     // validate II.
8150 
8151   }
8152   if (T->isReferenceType()) {
8153     Diag(Loc, diag::err_ivar_reference_type);
8154     D.setInvalidType();
8155   }
8156   // C99 6.7.2.1p8: A member of a structure or union may have any type other
8157   // than a variably modified type.
8158   else if (T->isVariablyModifiedType()) {
8159     Diag(Loc, diag::err_typecheck_ivar_variable_size);
8160     D.setInvalidType();
8161   }
8162 
8163   // Get the visibility (access control) for this ivar.
8164   ObjCIvarDecl::AccessControl ac =
8165     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8166                                         : ObjCIvarDecl::None;
8167   // Must set ivar's DeclContext to its enclosing interface.
8168   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
8169   ObjCContainerDecl *EnclosingContext;
8170   if (ObjCImplementationDecl *IMPDecl =
8171       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8172     if (!LangOpts.ObjCNonFragileABI2) {
8173     // Case of ivar declared in an implementation. Context is that of its class.
8174       EnclosingContext = IMPDecl->getClassInterface();
8175       assert(EnclosingContext && "Implementation has no class interface!");
8176     }
8177     else
8178       EnclosingContext = EnclosingDecl;
8179   } else {
8180     if (ObjCCategoryDecl *CDecl =
8181         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8182       if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8183         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8184         return 0;
8185       }
8186     }
8187     EnclosingContext = EnclosingDecl;
8188   }
8189 
8190   // Construct the decl.
8191   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8192                                              DeclStart, Loc, II, T,
8193                                              TInfo, ac, (Expr *)BitfieldWidth);
8194 
8195   if (II) {
8196     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8197                                            ForRedeclaration);
8198     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8199         && !isa<TagDecl>(PrevDecl)) {
8200       Diag(Loc, diag::err_duplicate_member) << II;
8201       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8202       NewID->setInvalidDecl();
8203     }
8204   }
8205 
8206   // Process attributes attached to the ivar.
8207   ProcessDeclAttributes(S, NewID, D);
8208 
8209   if (D.isInvalidType())
8210     NewID->setInvalidDecl();
8211 
8212   // In ARC, infer 'retaining' for ivars of retainable type.
8213   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8214     NewID->setInvalidDecl();
8215 
8216   if (II) {
8217     // FIXME: When interfaces are DeclContexts, we'll need to add
8218     // these to the interface.
8219     S->AddDecl(NewID);
8220     IdResolver.AddDecl(NewID);
8221   }
8222 
8223   return NewID;
8224 }
8225 
8226 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8227 /// class and class extensions. For every class @interface and class
8228 /// extension @interface, if the last ivar is a bitfield of any type,
8229 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,Decl * EnclosingDecl,llvm::SmallVectorImpl<Decl * > & AllIvarDecls)8230 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
8231                              llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
8232   if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8233     return;
8234 
8235   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8236   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8237 
8238   if (!Ivar->isBitField())
8239     return;
8240   uint64_t BitFieldSize =
8241     Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8242   if (BitFieldSize == 0)
8243     return;
8244   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
8245   if (!ID) {
8246     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8247       if (!CD->IsClassExtension())
8248         return;
8249     }
8250     // No need to add this to end of @implementation.
8251     else
8252       return;
8253   }
8254   // All conditions are met. Add a new bitfield to the tail end of ivars.
8255   llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
8256   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
8257 
8258   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
8259                               DeclLoc, DeclLoc, 0,
8260                               Context.CharTy,
8261                               Context.CreateTypeSourceInfo(Context.CharTy),
8262                               ObjCIvarDecl::Private, BW,
8263                               true);
8264   AllIvarDecls.push_back(Ivar);
8265 }
8266 
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,Decl ** Fields,unsigned NumFields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)8267 void Sema::ActOnFields(Scope* S,
8268                        SourceLocation RecLoc, Decl *EnclosingDecl,
8269                        Decl **Fields, unsigned NumFields,
8270                        SourceLocation LBrac, SourceLocation RBrac,
8271                        AttributeList *Attr) {
8272   assert(EnclosingDecl && "missing record or interface decl");
8273 
8274   // If the decl this is being inserted into is invalid, then it may be a
8275   // redeclaration or some other bogus case.  Don't try to add fields to it.
8276   if (EnclosingDecl->isInvalidDecl()) {
8277     // FIXME: Deallocate fields?
8278     return;
8279   }
8280 
8281 
8282   // Verify that all the fields are okay.
8283   unsigned NumNamedMembers = 0;
8284   llvm::SmallVector<FieldDecl*, 32> RecFields;
8285 
8286   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8287   bool ARCErrReported = false;
8288   for (unsigned i = 0; i != NumFields; ++i) {
8289     FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8290 
8291     // Get the type for the field.
8292     const Type *FDTy = FD->getType().getTypePtr();
8293 
8294     if (!FD->isAnonymousStructOrUnion()) {
8295       // Remember all fields written by the user.
8296       RecFields.push_back(FD);
8297     }
8298 
8299     // If the field is already invalid for some reason, don't emit more
8300     // diagnostics about it.
8301     if (FD->isInvalidDecl()) {
8302       EnclosingDecl->setInvalidDecl();
8303       continue;
8304     }
8305 
8306     // C99 6.7.2.1p2:
8307     //   A structure or union shall not contain a member with
8308     //   incomplete or function type (hence, a structure shall not
8309     //   contain an instance of itself, but may contain a pointer to
8310     //   an instance of itself), except that the last member of a
8311     //   structure with more than one named member may have incomplete
8312     //   array type; such a structure (and any union containing,
8313     //   possibly recursively, a member that is such a structure)
8314     //   shall not be a member of a structure or an element of an
8315     //   array.
8316     if (FDTy->isFunctionType()) {
8317       // Field declared as a function.
8318       Diag(FD->getLocation(), diag::err_field_declared_as_function)
8319         << FD->getDeclName();
8320       FD->setInvalidDecl();
8321       EnclosingDecl->setInvalidDecl();
8322       continue;
8323     } else if (FDTy->isIncompleteArrayType() && Record &&
8324                ((i == NumFields - 1 && !Record->isUnion()) ||
8325                 ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8326                  (i == NumFields - 1 || Record->isUnion())))) {
8327       // Flexible array member.
8328       // Microsoft and g++ is more permissive regarding flexible array.
8329       // It will accept flexible array in union and also
8330       // as the sole element of a struct/class.
8331       if (getLangOptions().Microsoft) {
8332         if (Record->isUnion())
8333           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8334             << FD->getDeclName();
8335         else if (NumFields == 1)
8336           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8337             << FD->getDeclName() << Record->getTagKind();
8338       } else if (getLangOptions().CPlusPlus) {
8339         if (Record->isUnion())
8340           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8341             << FD->getDeclName();
8342         else if (NumFields == 1)
8343           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8344             << FD->getDeclName() << Record->getTagKind();
8345       } else if (NumNamedMembers < 1) {
8346         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8347           << FD->getDeclName();
8348         FD->setInvalidDecl();
8349         EnclosingDecl->setInvalidDecl();
8350         continue;
8351       }
8352       if (!FD->getType()->isDependentType() &&
8353           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8354         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8355           << FD->getDeclName() << FD->getType();
8356         FD->setInvalidDecl();
8357         EnclosingDecl->setInvalidDecl();
8358         continue;
8359       }
8360       // Okay, we have a legal flexible array member at the end of the struct.
8361       if (Record)
8362         Record->setHasFlexibleArrayMember(true);
8363     } else if (!FDTy->isDependentType() &&
8364                RequireCompleteType(FD->getLocation(), FD->getType(),
8365                                    diag::err_field_incomplete)) {
8366       // Incomplete type
8367       FD->setInvalidDecl();
8368       EnclosingDecl->setInvalidDecl();
8369       continue;
8370     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8371       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8372         // If this is a member of a union, then entire union becomes "flexible".
8373         if (Record && Record->isUnion()) {
8374           Record->setHasFlexibleArrayMember(true);
8375         } else {
8376           // If this is a struct/class and this is not the last element, reject
8377           // it.  Note that GCC supports variable sized arrays in the middle of
8378           // structures.
8379           if (i != NumFields-1)
8380             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8381               << FD->getDeclName() << FD->getType();
8382           else {
8383             // We support flexible arrays at the end of structs in
8384             // other structs as an extension.
8385             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8386               << FD->getDeclName();
8387             if (Record)
8388               Record->setHasFlexibleArrayMember(true);
8389           }
8390         }
8391       }
8392       if (Record && FDTTy->getDecl()->hasObjectMember())
8393         Record->setHasObjectMember(true);
8394     } else if (FDTy->isObjCObjectType()) {
8395       /// A field cannot be an Objective-c object
8396       Diag(FD->getLocation(), diag::err_statically_allocated_object);
8397       FD->setInvalidDecl();
8398       EnclosingDecl->setInvalidDecl();
8399       continue;
8400     }
8401     else if (!getLangOptions().CPlusPlus) {
8402       if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8403         // It's an error in ARC if a field has lifetime.
8404         // We don't want to report this in a system header, though,
8405         // so we just make the field unavailable.
8406         // FIXME: that's really not sufficient; we need to make the type
8407         // itself invalid to, say, initialize or copy.
8408         QualType T = FD->getType();
8409         Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8410         if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8411           SourceLocation loc = FD->getLocation();
8412           if (getSourceManager().isInSystemHeader(loc)) {
8413             if (!FD->hasAttr<UnavailableAttr>()) {
8414               FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8415                                 "this system field has retaining ownership"));
8416             }
8417           } else {
8418             Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8419           }
8420           ARCErrReported = true;
8421         }
8422       }
8423       else if (getLangOptions().ObjC1 &&
8424                getLangOptions().getGCMode() != LangOptions::NonGC &&
8425                Record && !Record->hasObjectMember()) {
8426         if (FD->getType()->isObjCObjectPointerType() ||
8427             FD->getType().isObjCGCStrong())
8428           Record->setHasObjectMember(true);
8429         else if (Context.getAsArrayType(FD->getType())) {
8430           QualType BaseType = Context.getBaseElementType(FD->getType());
8431           if (BaseType->isRecordType() &&
8432               BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8433             Record->setHasObjectMember(true);
8434           else if (BaseType->isObjCObjectPointerType() ||
8435                    BaseType.isObjCGCStrong())
8436                  Record->setHasObjectMember(true);
8437         }
8438       }
8439     }
8440     // Keep track of the number of named members.
8441     if (FD->getIdentifier())
8442       ++NumNamedMembers;
8443   }
8444 
8445   // Okay, we successfully defined 'Record'.
8446   if (Record) {
8447     bool Completed = false;
8448     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8449       if (!CXXRecord->isInvalidDecl()) {
8450         // Set access bits correctly on the directly-declared conversions.
8451         UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8452         for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8453              I != E; ++I)
8454           Convs->setAccess(I, (*I)->getAccess());
8455 
8456         if (!CXXRecord->isDependentType()) {
8457           // Objective-C Automatic Reference Counting:
8458           //   If a class has a non-static data member of Objective-C pointer
8459           //   type (or array thereof), it is a non-POD type and its
8460           //   default constructor (if any), copy constructor, copy assignment
8461           //   operator, and destructor are non-trivial.
8462           //
8463           // This rule is also handled by CXXRecordDecl::completeDefinition().
8464           // However, here we check whether this particular class is only
8465           // non-POD because of the presence of an Objective-C pointer member.
8466           // If so, objects of this type cannot be shared between code compiled
8467           // with instant objects and code compiled with manual retain/release.
8468           if (getLangOptions().ObjCAutoRefCount &&
8469               CXXRecord->hasObjectMember() &&
8470               CXXRecord->getLinkage() == ExternalLinkage) {
8471             if (CXXRecord->isPOD()) {
8472               Diag(CXXRecord->getLocation(),
8473                    diag::warn_arc_non_pod_class_with_object_member)
8474                << CXXRecord;
8475             } else {
8476               // FIXME: Fix-Its would be nice here, but finding a good location
8477               // for them is going to be tricky.
8478               if (CXXRecord->hasTrivialCopyConstructor())
8479                 Diag(CXXRecord->getLocation(),
8480                      diag::warn_arc_trivial_member_function_with_object_member)
8481                   << CXXRecord << 0;
8482               if (CXXRecord->hasTrivialCopyAssignment())
8483                 Diag(CXXRecord->getLocation(),
8484                      diag::warn_arc_trivial_member_function_with_object_member)
8485                 << CXXRecord << 1;
8486               if (CXXRecord->hasTrivialDestructor())
8487                 Diag(CXXRecord->getLocation(),
8488                      diag::warn_arc_trivial_member_function_with_object_member)
8489                 << CXXRecord << 2;
8490             }
8491           }
8492 
8493           // Adjust user-defined destructor exception spec.
8494           if (getLangOptions().CPlusPlus0x &&
8495               CXXRecord->hasUserDeclaredDestructor())
8496             AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8497 
8498           // Add any implicitly-declared members to this class.
8499           AddImplicitlyDeclaredMembersToClass(CXXRecord);
8500 
8501           // If we have virtual base classes, we may end up finding multiple
8502           // final overriders for a given virtual function. Check for this
8503           // problem now.
8504           if (CXXRecord->getNumVBases()) {
8505             CXXFinalOverriderMap FinalOverriders;
8506             CXXRecord->getFinalOverriders(FinalOverriders);
8507 
8508             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8509                                              MEnd = FinalOverriders.end();
8510                  M != MEnd; ++M) {
8511               for (OverridingMethods::iterator SO = M->second.begin(),
8512                                             SOEnd = M->second.end();
8513                    SO != SOEnd; ++SO) {
8514                 assert(SO->second.size() > 0 &&
8515                        "Virtual function without overridding functions?");
8516                 if (SO->second.size() == 1)
8517                   continue;
8518 
8519                 // C++ [class.virtual]p2:
8520                 //   In a derived class, if a virtual member function of a base
8521                 //   class subobject has more than one final overrider the
8522                 //   program is ill-formed.
8523                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8524                   << (NamedDecl *)M->first << Record;
8525                 Diag(M->first->getLocation(),
8526                      diag::note_overridden_virtual_function);
8527                 for (OverridingMethods::overriding_iterator
8528                           OM = SO->second.begin(),
8529                        OMEnd = SO->second.end();
8530                      OM != OMEnd; ++OM)
8531                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
8532                     << (NamedDecl *)M->first << OM->Method->getParent();
8533 
8534                 Record->setInvalidDecl();
8535               }
8536             }
8537             CXXRecord->completeDefinition(&FinalOverriders);
8538             Completed = true;
8539           }
8540         }
8541       }
8542     }
8543 
8544     if (!Completed)
8545       Record->completeDefinition();
8546 
8547     // Now that the record is complete, do any delayed exception spec checks
8548     // we were missing.
8549     while (!DelayedDestructorExceptionSpecChecks.empty()) {
8550       const CXXDestructorDecl *Dtor =
8551               DelayedDestructorExceptionSpecChecks.back().first;
8552       if (Dtor->getParent() != Record)
8553         break;
8554 
8555       assert(!Dtor->getParent()->isDependentType() &&
8556           "Should not ever add destructors of templates into the list.");
8557       CheckOverridingFunctionExceptionSpec(Dtor,
8558           DelayedDestructorExceptionSpecChecks.back().second);
8559       DelayedDestructorExceptionSpecChecks.pop_back();
8560     }
8561 
8562   } else {
8563     ObjCIvarDecl **ClsFields =
8564       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8565     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8566       ID->setLocEnd(RBrac);
8567       // Add ivar's to class's DeclContext.
8568       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8569         ClsFields[i]->setLexicalDeclContext(ID);
8570         ID->addDecl(ClsFields[i]);
8571       }
8572       // Must enforce the rule that ivars in the base classes may not be
8573       // duplicates.
8574       if (ID->getSuperClass())
8575         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8576     } else if (ObjCImplementationDecl *IMPDecl =
8577                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8578       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8579       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8580         // Ivar declared in @implementation never belongs to the implementation.
8581         // Only it is in implementation's lexical context.
8582         ClsFields[I]->setLexicalDeclContext(IMPDecl);
8583       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8584     } else if (ObjCCategoryDecl *CDecl =
8585                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8586       // case of ivars in class extension; all other cases have been
8587       // reported as errors elsewhere.
8588       // FIXME. Class extension does not have a LocEnd field.
8589       // CDecl->setLocEnd(RBrac);
8590       // Add ivar's to class extension's DeclContext.
8591       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8592         ClsFields[i]->setLexicalDeclContext(CDecl);
8593         CDecl->addDecl(ClsFields[i]);
8594       }
8595     }
8596   }
8597 
8598   if (Attr)
8599     ProcessDeclAttributeList(S, Record, Attr);
8600 
8601   // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8602   // set the visibility of this record.
8603   if (Record && !Record->getDeclContext()->isRecord())
8604     AddPushedVisibilityAttribute(Record);
8605 }
8606 
8607 /// \brief Determine whether the given integral value is representable within
8608 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)8609 static bool isRepresentableIntegerValue(ASTContext &Context,
8610                                         llvm::APSInt &Value,
8611                                         QualType T) {
8612   assert(T->isIntegralType(Context) && "Integral type required!");
8613   unsigned BitWidth = Context.getIntWidth(T);
8614 
8615   if (Value.isUnsigned() || Value.isNonNegative()) {
8616     if (T->isSignedIntegerOrEnumerationType())
8617       --BitWidth;
8618     return Value.getActiveBits() <= BitWidth;
8619   }
8620   return Value.getMinSignedBits() <= BitWidth;
8621 }
8622 
8623 // \brief Given an integral type, return the next larger integral type
8624 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)8625 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8626   // FIXME: Int128/UInt128 support, which also needs to be introduced into
8627   // enum checking below.
8628   assert(T->isIntegralType(Context) && "Integral type required!");
8629   const unsigned NumTypes = 4;
8630   QualType SignedIntegralTypes[NumTypes] = {
8631     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8632   };
8633   QualType UnsignedIntegralTypes[NumTypes] = {
8634     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8635     Context.UnsignedLongLongTy
8636   };
8637 
8638   unsigned BitWidth = Context.getTypeSize(T);
8639   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8640                                                         : UnsignedIntegralTypes;
8641   for (unsigned I = 0; I != NumTypes; ++I)
8642     if (Context.getTypeSize(Types[I]) > BitWidth)
8643       return Types[I];
8644 
8645   return QualType();
8646 }
8647 
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)8648 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8649                                           EnumConstantDecl *LastEnumConst,
8650                                           SourceLocation IdLoc,
8651                                           IdentifierInfo *Id,
8652                                           Expr *Val) {
8653   unsigned IntWidth = Context.Target.getIntWidth();
8654   llvm::APSInt EnumVal(IntWidth);
8655   QualType EltTy;
8656 
8657   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8658     Val = 0;
8659 
8660   if (Val) {
8661     if (Enum->isDependentType() || Val->isTypeDependent())
8662       EltTy = Context.DependentTy;
8663     else {
8664       // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8665       SourceLocation ExpLoc;
8666       if (!Val->isValueDependent() &&
8667           VerifyIntegerConstantExpression(Val, &EnumVal)) {
8668         Val = 0;
8669       } else {
8670         if (!getLangOptions().CPlusPlus) {
8671           // C99 6.7.2.2p2:
8672           //   The expression that defines the value of an enumeration constant
8673           //   shall be an integer constant expression that has a value
8674           //   representable as an int.
8675 
8676           // Complain if the value is not representable in an int.
8677           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8678             Diag(IdLoc, diag::ext_enum_value_not_int)
8679               << EnumVal.toString(10) << Val->getSourceRange()
8680               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8681           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8682             // Force the type of the expression to 'int'.
8683             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8684           }
8685         }
8686 
8687         if (Enum->isFixed()) {
8688           EltTy = Enum->getIntegerType();
8689 
8690           // C++0x [dcl.enum]p5:
8691           //   ... if the initializing value of an enumerator cannot be
8692           //   represented by the underlying type, the program is ill-formed.
8693           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8694             if (getLangOptions().Microsoft) {
8695               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8696               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8697             } else
8698               Diag(IdLoc, diag::err_enumerator_too_large)
8699                 << EltTy;
8700           } else
8701             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8702         }
8703         else {
8704           // C++0x [dcl.enum]p5:
8705           //   If the underlying type is not fixed, the type of each enumerator
8706           //   is the type of its initializing value:
8707           //     - If an initializer is specified for an enumerator, the
8708           //       initializing value has the same type as the expression.
8709           EltTy = Val->getType();
8710         }
8711       }
8712     }
8713   }
8714 
8715   if (!Val) {
8716     if (Enum->isDependentType())
8717       EltTy = Context.DependentTy;
8718     else if (!LastEnumConst) {
8719       // C++0x [dcl.enum]p5:
8720       //   If the underlying type is not fixed, the type of each enumerator
8721       //   is the type of its initializing value:
8722       //     - If no initializer is specified for the first enumerator, the
8723       //       initializing value has an unspecified integral type.
8724       //
8725       // GCC uses 'int' for its unspecified integral type, as does
8726       // C99 6.7.2.2p3.
8727       if (Enum->isFixed()) {
8728         EltTy = Enum->getIntegerType();
8729       }
8730       else {
8731         EltTy = Context.IntTy;
8732       }
8733     } else {
8734       // Assign the last value + 1.
8735       EnumVal = LastEnumConst->getInitVal();
8736       ++EnumVal;
8737       EltTy = LastEnumConst->getType();
8738 
8739       // Check for overflow on increment.
8740       if (EnumVal < LastEnumConst->getInitVal()) {
8741         // C++0x [dcl.enum]p5:
8742         //   If the underlying type is not fixed, the type of each enumerator
8743         //   is the type of its initializing value:
8744         //
8745         //     - Otherwise the type of the initializing value is the same as
8746         //       the type of the initializing value of the preceding enumerator
8747         //       unless the incremented value is not representable in that type,
8748         //       in which case the type is an unspecified integral type
8749         //       sufficient to contain the incremented value. If no such type
8750         //       exists, the program is ill-formed.
8751         QualType T = getNextLargerIntegralType(Context, EltTy);
8752         if (T.isNull() || Enum->isFixed()) {
8753           // There is no integral type larger enough to represent this
8754           // value. Complain, then allow the value to wrap around.
8755           EnumVal = LastEnumConst->getInitVal();
8756           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8757           ++EnumVal;
8758           if (Enum->isFixed())
8759             // When the underlying type is fixed, this is ill-formed.
8760             Diag(IdLoc, diag::err_enumerator_wrapped)
8761               << EnumVal.toString(10)
8762               << EltTy;
8763           else
8764             Diag(IdLoc, diag::warn_enumerator_too_large)
8765               << EnumVal.toString(10);
8766         } else {
8767           EltTy = T;
8768         }
8769 
8770         // Retrieve the last enumerator's value, extent that type to the
8771         // type that is supposed to be large enough to represent the incremented
8772         // value, then increment.
8773         EnumVal = LastEnumConst->getInitVal();
8774         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8775         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8776         ++EnumVal;
8777 
8778         // If we're not in C++, diagnose the overflow of enumerator values,
8779         // which in C99 means that the enumerator value is not representable in
8780         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8781         // permits enumerator values that are representable in some larger
8782         // integral type.
8783         if (!getLangOptions().CPlusPlus && !T.isNull())
8784           Diag(IdLoc, diag::warn_enum_value_overflow);
8785       } else if (!getLangOptions().CPlusPlus &&
8786                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8787         // Enforce C99 6.7.2.2p2 even when we compute the next value.
8788         Diag(IdLoc, diag::ext_enum_value_not_int)
8789           << EnumVal.toString(10) << 1;
8790       }
8791     }
8792   }
8793 
8794   if (!EltTy->isDependentType()) {
8795     // Make the enumerator value match the signedness and size of the
8796     // enumerator's type.
8797     EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8798     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8799   }
8800 
8801   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8802                                   Val, EnumVal);
8803 }
8804 
8805 
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,ExprTy * val)8806 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8807                               SourceLocation IdLoc, IdentifierInfo *Id,
8808                               AttributeList *Attr,
8809                               SourceLocation EqualLoc, ExprTy *val) {
8810   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8811   EnumConstantDecl *LastEnumConst =
8812     cast_or_null<EnumConstantDecl>(lastEnumConst);
8813   Expr *Val = static_cast<Expr*>(val);
8814 
8815   // The scope passed in may not be a decl scope.  Zip up the scope tree until
8816   // we find one that is.
8817   S = getNonFieldDeclScope(S);
8818 
8819   // Verify that there isn't already something declared with this name in this
8820   // scope.
8821   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8822                                          ForRedeclaration);
8823   if (PrevDecl && PrevDecl->isTemplateParameter()) {
8824     // Maybe we will complain about the shadowed template parameter.
8825     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8826     // Just pretend that we didn't see the previous declaration.
8827     PrevDecl = 0;
8828   }
8829 
8830   if (PrevDecl) {
8831     // When in C++, we may get a TagDecl with the same name; in this case the
8832     // enum constant will 'hide' the tag.
8833     assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8834            "Received TagDecl when not in C++!");
8835     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8836       if (isa<EnumConstantDecl>(PrevDecl))
8837         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8838       else
8839         Diag(IdLoc, diag::err_redefinition) << Id;
8840       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8841       return 0;
8842     }
8843   }
8844 
8845   // C++ [class.mem]p13:
8846   //   If T is the name of a class, then each of the following shall have a
8847   //   name different from T:
8848   //     - every enumerator of every member of class T that is an enumerated
8849   //       type
8850   if (CXXRecordDecl *Record
8851                       = dyn_cast<CXXRecordDecl>(
8852                              TheEnumDecl->getDeclContext()->getRedeclContext()))
8853     if (Record->getIdentifier() && Record->getIdentifier() == Id)
8854       Diag(IdLoc, diag::err_member_name_of_class) << Id;
8855 
8856   EnumConstantDecl *New =
8857     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8858 
8859   if (New) {
8860     // Process attributes.
8861     if (Attr) ProcessDeclAttributeList(S, New, Attr);
8862 
8863     // Register this decl in the current scope stack.
8864     New->setAccess(TheEnumDecl->getAccess());
8865     PushOnScopeChains(New, S);
8866   }
8867 
8868   return New;
8869 }
8870 
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,Decl ** Elements,unsigned NumElements,Scope * S,AttributeList * Attr)8871 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8872                          SourceLocation RBraceLoc, Decl *EnumDeclX,
8873                          Decl **Elements, unsigned NumElements,
8874                          Scope *S, AttributeList *Attr) {
8875   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8876   QualType EnumType = Context.getTypeDeclType(Enum);
8877 
8878   if (Attr)
8879     ProcessDeclAttributeList(S, Enum, Attr);
8880 
8881   if (Enum->isDependentType()) {
8882     for (unsigned i = 0; i != NumElements; ++i) {
8883       EnumConstantDecl *ECD =
8884         cast_or_null<EnumConstantDecl>(Elements[i]);
8885       if (!ECD) continue;
8886 
8887       ECD->setType(EnumType);
8888     }
8889 
8890     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8891     return;
8892   }
8893 
8894   // TODO: If the result value doesn't fit in an int, it must be a long or long
8895   // long value.  ISO C does not support this, but GCC does as an extension,
8896   // emit a warning.
8897   unsigned IntWidth = Context.Target.getIntWidth();
8898   unsigned CharWidth = Context.Target.getCharWidth();
8899   unsigned ShortWidth = Context.Target.getShortWidth();
8900 
8901   // Verify that all the values are okay, compute the size of the values, and
8902   // reverse the list.
8903   unsigned NumNegativeBits = 0;
8904   unsigned NumPositiveBits = 0;
8905 
8906   // Keep track of whether all elements have type int.
8907   bool AllElementsInt = true;
8908 
8909   for (unsigned i = 0; i != NumElements; ++i) {
8910     EnumConstantDecl *ECD =
8911       cast_or_null<EnumConstantDecl>(Elements[i]);
8912     if (!ECD) continue;  // Already issued a diagnostic.
8913 
8914     const llvm::APSInt &InitVal = ECD->getInitVal();
8915 
8916     // Keep track of the size of positive and negative values.
8917     if (InitVal.isUnsigned() || InitVal.isNonNegative())
8918       NumPositiveBits = std::max(NumPositiveBits,
8919                                  (unsigned)InitVal.getActiveBits());
8920     else
8921       NumNegativeBits = std::max(NumNegativeBits,
8922                                  (unsigned)InitVal.getMinSignedBits());
8923 
8924     // Keep track of whether every enum element has type int (very commmon).
8925     if (AllElementsInt)
8926       AllElementsInt = ECD->getType() == Context.IntTy;
8927   }
8928 
8929   // Figure out the type that should be used for this enum.
8930   QualType BestType;
8931   unsigned BestWidth;
8932 
8933   // C++0x N3000 [conv.prom]p3:
8934   //   An rvalue of an unscoped enumeration type whose underlying
8935   //   type is not fixed can be converted to an rvalue of the first
8936   //   of the following types that can represent all the values of
8937   //   the enumeration: int, unsigned int, long int, unsigned long
8938   //   int, long long int, or unsigned long long int.
8939   // C99 6.4.4.3p2:
8940   //   An identifier declared as an enumeration constant has type int.
8941   // The C99 rule is modified by a gcc extension
8942   QualType BestPromotionType;
8943 
8944   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8945   // -fshort-enums is the equivalent to specifying the packed attribute on all
8946   // enum definitions.
8947   if (LangOpts.ShortEnums)
8948     Packed = true;
8949 
8950   if (Enum->isFixed()) {
8951     BestType = BestPromotionType = Enum->getIntegerType();
8952     // We don't need to set BestWidth, because BestType is going to be the type
8953     // of the enumerators, but we do anyway because otherwise some compilers
8954     // warn that it might be used uninitialized.
8955     BestWidth = CharWidth;
8956   }
8957   else if (NumNegativeBits) {
8958     // If there is a negative value, figure out the smallest integer type (of
8959     // int/long/longlong) that fits.
8960     // If it's packed, check also if it fits a char or a short.
8961     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8962       BestType = Context.SignedCharTy;
8963       BestWidth = CharWidth;
8964     } else if (Packed && NumNegativeBits <= ShortWidth &&
8965                NumPositiveBits < ShortWidth) {
8966       BestType = Context.ShortTy;
8967       BestWidth = ShortWidth;
8968     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8969       BestType = Context.IntTy;
8970       BestWidth = IntWidth;
8971     } else {
8972       BestWidth = Context.Target.getLongWidth();
8973 
8974       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8975         BestType = Context.LongTy;
8976       } else {
8977         BestWidth = Context.Target.getLongLongWidth();
8978 
8979         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8980           Diag(Enum->getLocation(), diag::warn_enum_too_large);
8981         BestType = Context.LongLongTy;
8982       }
8983     }
8984     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8985   } else {
8986     // If there is no negative value, figure out the smallest type that fits
8987     // all of the enumerator values.
8988     // If it's packed, check also if it fits a char or a short.
8989     if (Packed && NumPositiveBits <= CharWidth) {
8990       BestType = Context.UnsignedCharTy;
8991       BestPromotionType = Context.IntTy;
8992       BestWidth = CharWidth;
8993     } else if (Packed && NumPositiveBits <= ShortWidth) {
8994       BestType = Context.UnsignedShortTy;
8995       BestPromotionType = Context.IntTy;
8996       BestWidth = ShortWidth;
8997     } else if (NumPositiveBits <= IntWidth) {
8998       BestType = Context.UnsignedIntTy;
8999       BestWidth = IntWidth;
9000       BestPromotionType
9001         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9002                            ? Context.UnsignedIntTy : Context.IntTy;
9003     } else if (NumPositiveBits <=
9004                (BestWidth = Context.Target.getLongWidth())) {
9005       BestType = Context.UnsignedLongTy;
9006       BestPromotionType
9007         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9008                            ? Context.UnsignedLongTy : Context.LongTy;
9009     } else {
9010       BestWidth = Context.Target.getLongLongWidth();
9011       assert(NumPositiveBits <= BestWidth &&
9012              "How could an initializer get larger than ULL?");
9013       BestType = Context.UnsignedLongLongTy;
9014       BestPromotionType
9015         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9016                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
9017     }
9018   }
9019 
9020   // Loop over all of the enumerator constants, changing their types to match
9021   // the type of the enum if needed.
9022   for (unsigned i = 0; i != NumElements; ++i) {
9023     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9024     if (!ECD) continue;  // Already issued a diagnostic.
9025 
9026     // Standard C says the enumerators have int type, but we allow, as an
9027     // extension, the enumerators to be larger than int size.  If each
9028     // enumerator value fits in an int, type it as an int, otherwise type it the
9029     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9030     // that X has type 'int', not 'unsigned'.
9031 
9032     // Determine whether the value fits into an int.
9033     llvm::APSInt InitVal = ECD->getInitVal();
9034 
9035     // If it fits into an integer type, force it.  Otherwise force it to match
9036     // the enum decl type.
9037     QualType NewTy;
9038     unsigned NewWidth;
9039     bool NewSign;
9040     if (!getLangOptions().CPlusPlus &&
9041         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9042       NewTy = Context.IntTy;
9043       NewWidth = IntWidth;
9044       NewSign = true;
9045     } else if (ECD->getType() == BestType) {
9046       // Already the right type!
9047       if (getLangOptions().CPlusPlus)
9048         // C++ [dcl.enum]p4: Following the closing brace of an
9049         // enum-specifier, each enumerator has the type of its
9050         // enumeration.
9051         ECD->setType(EnumType);
9052       continue;
9053     } else {
9054       NewTy = BestType;
9055       NewWidth = BestWidth;
9056       NewSign = BestType->isSignedIntegerOrEnumerationType();
9057     }
9058 
9059     // Adjust the APSInt value.
9060     InitVal = InitVal.extOrTrunc(NewWidth);
9061     InitVal.setIsSigned(NewSign);
9062     ECD->setInitVal(InitVal);
9063 
9064     // Adjust the Expr initializer and type.
9065     if (ECD->getInitExpr() &&
9066         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9067       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9068                                                 CK_IntegralCast,
9069                                                 ECD->getInitExpr(),
9070                                                 /*base paths*/ 0,
9071                                                 VK_RValue));
9072     if (getLangOptions().CPlusPlus)
9073       // C++ [dcl.enum]p4: Following the closing brace of an
9074       // enum-specifier, each enumerator has the type of its
9075       // enumeration.
9076       ECD->setType(EnumType);
9077     else
9078       ECD->setType(NewTy);
9079   }
9080 
9081   Enum->completeDefinition(BestType, BestPromotionType,
9082                            NumPositiveBits, NumNegativeBits);
9083 }
9084 
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)9085 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9086                                   SourceLocation StartLoc,
9087                                   SourceLocation EndLoc) {
9088   StringLiteral *AsmString = cast<StringLiteral>(expr);
9089 
9090   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9091                                                    AsmString, StartLoc,
9092                                                    EndLoc);
9093   CurContext->addDecl(New);
9094   return New;
9095 }
9096 
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)9097 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9098                              SourceLocation PragmaLoc,
9099                              SourceLocation NameLoc) {
9100   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9101 
9102   if (PrevDecl) {
9103     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9104   } else {
9105     (void)WeakUndeclaredIdentifiers.insert(
9106       std::pair<IdentifierInfo*,WeakInfo>
9107         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9108   }
9109 }
9110 
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)9111 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9112                                 IdentifierInfo* AliasName,
9113                                 SourceLocation PragmaLoc,
9114                                 SourceLocation NameLoc,
9115                                 SourceLocation AliasNameLoc) {
9116   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9117                                     LookupOrdinaryName);
9118   WeakInfo W = WeakInfo(Name, NameLoc);
9119 
9120   if (PrevDecl) {
9121     if (!PrevDecl->hasAttr<AliasAttr>())
9122       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9123         DeclApplyPragmaWeak(TUScope, ND, W);
9124   } else {
9125     (void)WeakUndeclaredIdentifiers.insert(
9126       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9127   }
9128 }
9129