• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Instruction class for the VMCore library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Instruction.h"
15 #include "llvm/Type.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/Support/CallSite.h"
20 #include "llvm/Support/LeakDetector.h"
21 using namespace llvm;
22 
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,Instruction * InsertBefore)23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
24                          Instruction *InsertBefore)
25   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
26   // Make sure that we get added to a basicblock
27   LeakDetector::addGarbageObject(this);
28 
29   // If requested, insert this instruction into a basic block...
30   if (InsertBefore) {
31     assert(InsertBefore->getParent() &&
32            "Instruction to insert before is not in a basic block!");
33     InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
34   }
35 }
36 
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,BasicBlock * InsertAtEnd)37 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
38                          BasicBlock *InsertAtEnd)
39   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
40   // Make sure that we get added to a basicblock
41   LeakDetector::addGarbageObject(this);
42 
43   // append this instruction into the basic block
44   assert(InsertAtEnd && "Basic block to append to may not be NULL!");
45   InsertAtEnd->getInstList().push_back(this);
46 }
47 
48 
49 // Out of line virtual method, so the vtable, etc has a home.
~Instruction()50 Instruction::~Instruction() {
51   assert(Parent == 0 && "Instruction still linked in the program!");
52   if (hasMetadataHashEntry())
53     clearMetadataHashEntries();
54 }
55 
56 
setParent(BasicBlock * P)57 void Instruction::setParent(BasicBlock *P) {
58   if (getParent()) {
59     if (!P) LeakDetector::addGarbageObject(this);
60   } else {
61     if (P) LeakDetector::removeGarbageObject(this);
62   }
63 
64   Parent = P;
65 }
66 
removeFromParent()67 void Instruction::removeFromParent() {
68   getParent()->getInstList().remove(this);
69 }
70 
eraseFromParent()71 void Instruction::eraseFromParent() {
72   getParent()->getInstList().erase(this);
73 }
74 
75 /// insertBefore - Insert an unlinked instructions into a basic block
76 /// immediately before the specified instruction.
insertBefore(Instruction * InsertPos)77 void Instruction::insertBefore(Instruction *InsertPos) {
78   InsertPos->getParent()->getInstList().insert(InsertPos, this);
79 }
80 
81 /// insertAfter - Insert an unlinked instructions into a basic block
82 /// immediately after the specified instruction.
insertAfter(Instruction * InsertPos)83 void Instruction::insertAfter(Instruction *InsertPos) {
84   InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
85 }
86 
87 /// moveBefore - Unlink this instruction from its current basic block and
88 /// insert it into the basic block that MovePos lives in, right before
89 /// MovePos.
moveBefore(Instruction * MovePos)90 void Instruction::moveBefore(Instruction *MovePos) {
91   MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
92                                              this);
93 }
94 
95 
getOpcodeName(unsigned OpCode)96 const char *Instruction::getOpcodeName(unsigned OpCode) {
97   switch (OpCode) {
98   // Terminators
99   case Ret:    return "ret";
100   case Br:     return "br";
101   case Switch: return "switch";
102   case IndirectBr: return "indirectbr";
103   case Invoke: return "invoke";
104   case Unwind: return "unwind";
105   case Unreachable: return "unreachable";
106 
107   // Standard binary operators...
108   case Add: return "add";
109   case FAdd: return "fadd";
110   case Sub: return "sub";
111   case FSub: return "fsub";
112   case Mul: return "mul";
113   case FMul: return "fmul";
114   case UDiv: return "udiv";
115   case SDiv: return "sdiv";
116   case FDiv: return "fdiv";
117   case URem: return "urem";
118   case SRem: return "srem";
119   case FRem: return "frem";
120 
121   // Logical operators...
122   case And: return "and";
123   case Or : return "or";
124   case Xor: return "xor";
125 
126   // Memory instructions...
127   case Alloca:        return "alloca";
128   case Load:          return "load";
129   case Store:         return "store";
130   case GetElementPtr: return "getelementptr";
131 
132   // Convert instructions...
133   case Trunc:     return "trunc";
134   case ZExt:      return "zext";
135   case SExt:      return "sext";
136   case FPTrunc:   return "fptrunc";
137   case FPExt:     return "fpext";
138   case FPToUI:    return "fptoui";
139   case FPToSI:    return "fptosi";
140   case UIToFP:    return "uitofp";
141   case SIToFP:    return "sitofp";
142   case IntToPtr:  return "inttoptr";
143   case PtrToInt:  return "ptrtoint";
144   case BitCast:   return "bitcast";
145 
146   // Other instructions...
147   case ICmp:           return "icmp";
148   case FCmp:           return "fcmp";
149   case PHI:            return "phi";
150   case Select:         return "select";
151   case Call:           return "call";
152   case Shl:            return "shl";
153   case LShr:           return "lshr";
154   case AShr:           return "ashr";
155   case VAArg:          return "va_arg";
156   case ExtractElement: return "extractelement";
157   case InsertElement:  return "insertelement";
158   case ShuffleVector:  return "shufflevector";
159   case ExtractValue:   return "extractvalue";
160   case InsertValue:    return "insertvalue";
161 
162   default: return "<Invalid operator> ";
163   }
164 
165   return 0;
166 }
167 
168 /// isIdenticalTo - Return true if the specified instruction is exactly
169 /// identical to the current one.  This means that all operands match and any
170 /// extra information (e.g. load is volatile) agree.
isIdenticalTo(const Instruction * I) const171 bool Instruction::isIdenticalTo(const Instruction *I) const {
172   return isIdenticalToWhenDefined(I) &&
173          SubclassOptionalData == I->SubclassOptionalData;
174 }
175 
176 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
177 /// ignores the SubclassOptionalData flags, which specify conditions
178 /// under which the instruction's result is undefined.
isIdenticalToWhenDefined(const Instruction * I) const179 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
180   if (getOpcode() != I->getOpcode() ||
181       getNumOperands() != I->getNumOperands() ||
182       getType() != I->getType())
183     return false;
184 
185   // We have two instructions of identical opcode and #operands.  Check to see
186   // if all operands are the same.
187   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
188     if (getOperand(i) != I->getOperand(i))
189       return false;
190 
191   // Check special state that is a part of some instructions.
192   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
193     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
194            LI->getAlignment() == cast<LoadInst>(I)->getAlignment();
195   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
196     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
197            SI->getAlignment() == cast<StoreInst>(I)->getAlignment();
198   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
199     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
200   if (const CallInst *CI = dyn_cast<CallInst>(this))
201     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
202            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
203            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
204   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
205     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
206            CI->getAttributes() == cast<InvokeInst>(I)->getAttributes();
207   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
208     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
209   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
210     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
211 
212   return true;
213 }
214 
215 // isSameOperationAs
216 // This should be kept in sync with isEquivalentOperation in
217 // lib/Transforms/IPO/MergeFunctions.cpp.
isSameOperationAs(const Instruction * I) const218 bool Instruction::isSameOperationAs(const Instruction *I) const {
219   if (getOpcode() != I->getOpcode() ||
220       getNumOperands() != I->getNumOperands() ||
221       getType() != I->getType())
222     return false;
223 
224   // We have two instructions of identical opcode and #operands.  Check to see
225   // if all operands are the same type
226   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
227     if (getOperand(i)->getType() != I->getOperand(i)->getType())
228       return false;
229 
230   // Check special state that is a part of some instructions.
231   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
232     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
233            LI->getAlignment() == cast<LoadInst>(I)->getAlignment();
234   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
235     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
236            SI->getAlignment() == cast<StoreInst>(I)->getAlignment();
237   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
238     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
239   if (const CallInst *CI = dyn_cast<CallInst>(this))
240     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
241            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
242            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
243   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
244     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
245            CI->getAttributes() ==
246              cast<InvokeInst>(I)->getAttributes();
247   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
248     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
249   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
250     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
251 
252   return true;
253 }
254 
255 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
256 /// specified block.  Note that PHI nodes are considered to evaluate their
257 /// operands in the corresponding predecessor block.
isUsedOutsideOfBlock(const BasicBlock * BB) const258 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
259   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
260     // PHI nodes uses values in the corresponding predecessor block.  For other
261     // instructions, just check to see whether the parent of the use matches up.
262     const User *U = *UI;
263     const PHINode *PN = dyn_cast<PHINode>(U);
264     if (PN == 0) {
265       if (cast<Instruction>(U)->getParent() != BB)
266         return true;
267       continue;
268     }
269 
270     if (PN->getIncomingBlock(UI) != BB)
271       return true;
272   }
273   return false;
274 }
275 
276 /// mayReadFromMemory - Return true if this instruction may read memory.
277 ///
mayReadFromMemory() const278 bool Instruction::mayReadFromMemory() const {
279   switch (getOpcode()) {
280   default: return false;
281   case Instruction::VAArg:
282   case Instruction::Load:
283     return true;
284   case Instruction::Call:
285     return !cast<CallInst>(this)->doesNotAccessMemory();
286   case Instruction::Invoke:
287     return !cast<InvokeInst>(this)->doesNotAccessMemory();
288   case Instruction::Store:
289     return cast<StoreInst>(this)->isVolatile();
290   }
291 }
292 
293 /// mayWriteToMemory - Return true if this instruction may modify memory.
294 ///
mayWriteToMemory() const295 bool Instruction::mayWriteToMemory() const {
296   switch (getOpcode()) {
297   default: return false;
298   case Instruction::Store:
299   case Instruction::VAArg:
300     return true;
301   case Instruction::Call:
302     return !cast<CallInst>(this)->onlyReadsMemory();
303   case Instruction::Invoke:
304     return !cast<InvokeInst>(this)->onlyReadsMemory();
305   case Instruction::Load:
306     return cast<LoadInst>(this)->isVolatile();
307   }
308 }
309 
310 /// mayThrow - Return true if this instruction may throw an exception.
311 ///
mayThrow() const312 bool Instruction::mayThrow() const {
313   if (const CallInst *CI = dyn_cast<CallInst>(this))
314     return !CI->doesNotThrow();
315   return false;
316 }
317 
318 /// isAssociative - Return true if the instruction is associative:
319 ///
320 ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
321 ///
322 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
323 ///
isAssociative(unsigned Opcode)324 bool Instruction::isAssociative(unsigned Opcode) {
325   return Opcode == And || Opcode == Or || Opcode == Xor ||
326          Opcode == Add || Opcode == Mul;
327 }
328 
329 /// isCommutative - Return true if the instruction is commutative:
330 ///
331 ///   Commutative operators satisfy: (x op y) === (y op x)
332 ///
333 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
334 /// applied to any type.
335 ///
isCommutative(unsigned op)336 bool Instruction::isCommutative(unsigned op) {
337   switch (op) {
338   case Add:
339   case FAdd:
340   case Mul:
341   case FMul:
342   case And:
343   case Or:
344   case Xor:
345     return true;
346   default:
347     return false;
348   }
349 }
350 
isSafeToSpeculativelyExecute() const351 bool Instruction::isSafeToSpeculativelyExecute() const {
352   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
353     if (Constant *C = dyn_cast<Constant>(getOperand(i)))
354       if (C->canTrap())
355         return false;
356 
357   switch (getOpcode()) {
358   default:
359     return true;
360   case UDiv:
361   case URem: {
362     // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
363     ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
364     return Op && !Op->isNullValue();
365   }
366   case SDiv:
367   case SRem: {
368     // x / y is undefined if y == 0, and might be undefined if y == -1,
369     // but calcuations like x / 3 are safe.
370     ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
371     return Op && !Op->isNullValue() && !Op->isAllOnesValue();
372   }
373   case Load: {
374     const LoadInst *LI = cast<LoadInst>(this);
375     if (LI->isVolatile())
376       return false;
377     return LI->getPointerOperand()->isDereferenceablePointer();
378   }
379   case Call:
380     return false; // The called function could have undefined behavior or
381                   // side-effects.
382                   // FIXME: We should special-case some intrinsics (bswap,
383                   // overflow-checking arithmetic, etc.)
384   case VAArg:
385   case Alloca:
386   case Invoke:
387   case PHI:
388   case Store:
389   case Ret:
390   case Br:
391   case IndirectBr:
392   case Switch:
393   case Unwind:
394   case Unreachable:
395     return false; // Misc instructions which have effects
396   }
397 }
398 
clone() const399 Instruction *Instruction::clone() const {
400   Instruction *New = clone_impl();
401   New->SubclassOptionalData = SubclassOptionalData;
402   if (!hasMetadata())
403     return New;
404 
405   // Otherwise, enumerate and copy over metadata from the old instruction to the
406   // new one.
407   SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
408   getAllMetadataOtherThanDebugLoc(TheMDs);
409   for (unsigned i = 0, e = TheMDs.size(); i != e; ++i)
410     New->setMetadata(TheMDs[i].first, TheMDs[i].second);
411 
412   New->setDebugLoc(getDebugLoc());
413   return New;
414 }
415