• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * Inlined native functions.  These definitions replace interpreted or
19  * native implementations at runtime; "intrinsic" might be a better word.
20  */
21 #include "Dalvik.h"
22 
23 #include <math.h>
24 
25 #ifdef HAVE__MEMCMP16
26 /* hand-coded assembly implementation, available on some platforms */
27 //#warning "trying memcmp16"
28 //#define CHECK_MEMCMP16
29 /* "count" is in 16-bit units */
30 extern "C" u4 __memcmp16(const u2* s0, const u2* s1, size_t count);
31 #endif
32 
33 /*
34  * Some notes on "inline" functions.
35  *
36  * These are NOT simply native implementations.  A full method definition
37  * must still be provided.  Depending on the flags passed into the VM
38  * at runtime, the original or inline version may be selected by the
39  * DEX optimizer.
40  *
41  * PLEASE DO NOT use this as the default location for native methods.
42  * The difference between this and an "internal native" static method
43  * call on a 200MHz ARM 9 is roughly 370ns vs. 700ns.  The code here
44  * "secretly replaces" the other method, so you can't avoid having two
45  * implementations.  Since the DEX optimizer mode can't be known ahead
46  * of time, both implementations must be correct and complete.
47  *
48  * The only stuff that really needs to be here are methods that
49  * are high-volume or must be low-overhead, e.g. certain String/Math
50  * methods and some java.util.concurrent.atomic operations.
51  *
52  * Normally, a class is loaded and initialized the first time a static
53  * method is invoked.  This property is NOT preserved here.  If you need
54  * to access a static field in a class, you must ensure initialization
55  * yourself (cheap/easy way is to check the resolved-methods table, and
56  * resolve the method if it hasn't been).
57  *
58  * DO NOT replace "synchronized" methods.  We do not support method
59  * synchronization here.
60  *
61  * DO NOT perform any allocations or do anything that could cause a
62  * garbage collection.  The method arguments are not visible to the GC
63  * and will not be pinned or updated when memory blocks move.  You are
64  * allowed to allocate and throw an exception so long as you only do so
65  * immediately before returning.
66  *
67  * Remember that these functions are executing while the thread is in
68  * the "RUNNING" state, not the "NATIVE" state.  If you perform a blocking
69  * operation you can stall the entire VM if the GC or debugger wants to
70  * suspend the thread.  Since these are arguably native implementations
71  * rather than VM internals, prefer NATIVE to VMWAIT if you want to change
72  * the thread state.
73  *
74  * Always write results to 32-bit or 64-bit fields in "pResult", e.g. do
75  * not write boolean results to pResult->z.  The interpreter expects
76  * 32 or 64 bits to be set.
77  *
78  * Inline op methods return "false" if an exception was thrown, "true" if
79  * everything went well.
80  *
81  * DO NOT provide implementations of methods that can be overridden by a
82  * subclass, as polymorphism does not work correctly.  For safety you should
83  * only provide inline functions for classes/methods declared "final".
84  *
85  * It's best to avoid inlining the overridden version of a method.  For
86  * example, String.hashCode() is inherited from Object.hashCode().  Code
87  * calling String.hashCode() through an Object reference will run the
88  * "slow" version, while calling it through a String reference gets
89  * the inlined version.  It's best to have just one version unless there
90  * are clear performance gains.
91  *
92  * Because the actual method is not called, debugger breakpoints on these
93  * methods will not happen.  (TODO: have the code here find the original
94  * method and call it when the debugger is active.)  Additional steps have
95  * been taken to allow method profiling to produce correct results.
96  */
97 
98 
99 /*
100  * ===========================================================================
101  *      org.apache.harmony.dalvik.NativeTestTarget
102  * ===========================================================================
103  */
104 
105 /*
106  * public static void emptyInlineMethod
107  *
108  * This exists only for benchmarks.
109  */
org_apache_harmony_dalvik_NativeTestTarget_emptyInlineMethod(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)110 static bool org_apache_harmony_dalvik_NativeTestTarget_emptyInlineMethod(
111     u4 arg0, u4 arg1, u4 arg2, u4 arg3, JValue* pResult)
112 {
113     // do nothing
114     return true;
115 }
116 
117 
118 /*
119  * ===========================================================================
120  *      java.lang.String
121  * ===========================================================================
122  */
123 
124 /*
125  * public char charAt(int index)
126  */
javaLangString_charAt(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)127 bool javaLangString_charAt(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
128     JValue* pResult)
129 {
130     int count, offset;
131     ArrayObject* chars;
132 
133     /* null reference check on "this" */
134     if ((Object*) arg0 == NULL) {
135         dvmThrowNullPointerException(NULL);
136         return false;
137     }
138 
139     //LOGI("String.charAt this=0x%08x index=%d", arg0, arg1);
140     count = dvmGetFieldInt((Object*) arg0, STRING_FIELDOFF_COUNT);
141     if ((s4) arg1 < 0 || (s4) arg1 >= count) {
142         dvmThrowStringIndexOutOfBoundsExceptionWithIndex(count, arg1);
143         return false;
144     } else {
145         offset = dvmGetFieldInt((Object*) arg0, STRING_FIELDOFF_OFFSET);
146         chars = (ArrayObject*)
147             dvmGetFieldObject((Object*) arg0, STRING_FIELDOFF_VALUE);
148 
149         pResult->i = ((const u2*)(void*)chars->contents)[arg1 + offset];
150         return true;
151     }
152 }
153 
154 #ifdef CHECK_MEMCMP16
155 /*
156  * Utility function when we're evaluating alternative implementations.
157  */
badMatch(StringObject * thisStrObj,StringObject * compStrObj,int expectResult,int newResult,const char * compareType)158 static void badMatch(StringObject* thisStrObj, StringObject* compStrObj,
159     int expectResult, int newResult, const char* compareType)
160 {
161     ArrayObject* thisArray;
162     ArrayObject* compArray;
163     const char* thisStr;
164     const char* compStr;
165     int thisOffset, compOffset, thisCount, compCount;
166 
167     thisCount =
168         dvmGetFieldInt((Object*) thisStrObj, STRING_FIELDOFF_COUNT);
169     compCount =
170         dvmGetFieldInt((Object*) compStrObj, STRING_FIELDOFF_COUNT);
171     thisOffset =
172         dvmGetFieldInt((Object*) thisStrObj, STRING_FIELDOFF_OFFSET);
173     compOffset =
174         dvmGetFieldInt((Object*) compStrObj, STRING_FIELDOFF_OFFSET);
175     thisArray = (ArrayObject*)
176         dvmGetFieldObject((Object*) thisStrObj, STRING_FIELDOFF_VALUE);
177     compArray = (ArrayObject*)
178         dvmGetFieldObject((Object*) compStrObj, STRING_FIELDOFF_VALUE);
179 
180     thisStr = dvmCreateCstrFromString(thisStrObj);
181     compStr = dvmCreateCstrFromString(compStrObj);
182 
183     LOGE("%s expected %d got %d", compareType, expectResult, newResult);
184     LOGE(" this (o=%d l=%d) '%s'", thisOffset, thisCount, thisStr);
185     LOGE(" comp (o=%d l=%d) '%s'", compOffset, compCount, compStr);
186     dvmPrintHexDumpEx(ANDROID_LOG_INFO, LOG_TAG,
187         ((const u2*) thisArray->contents) + thisOffset, thisCount*2,
188         kHexDumpLocal);
189     dvmPrintHexDumpEx(ANDROID_LOG_INFO, LOG_TAG,
190         ((const u2*) compArray->contents) + compOffset, compCount*2,
191         kHexDumpLocal);
192     dvmAbort();
193 }
194 #endif
195 
196 /*
197  * public int compareTo(String s)
198  */
javaLangString_compareTo(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)199 bool javaLangString_compareTo(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
200     JValue* pResult)
201 {
202     /*
203      * Null reference check on "this".  Normally this is performed during
204      * the setup of the virtual method call.  We need to do it before
205      * anything else.  While we're at it, check out the other string,
206      * which must also be non-null.
207      */
208     if ((Object*) arg0 == NULL || (Object*) arg1 == NULL) {
209         dvmThrowNullPointerException(NULL);
210         return false;
211     }
212 
213     /* quick test for comparison with itself */
214     if (arg0 == arg1) {
215         pResult->i = 0;
216         return true;
217     }
218 
219     /*
220      * This would be simpler and faster if we promoted StringObject to
221      * a full representation, lining up the C structure fields with the
222      * actual object fields.
223      */
224     int thisCount, thisOffset, compCount, compOffset;
225     ArrayObject* thisArray;
226     ArrayObject* compArray;
227     const u2* thisChars;
228     const u2* compChars;
229     int minCount, countDiff;
230 
231     thisCount = dvmGetFieldInt((Object*) arg0, STRING_FIELDOFF_COUNT);
232     compCount = dvmGetFieldInt((Object*) arg1, STRING_FIELDOFF_COUNT);
233     countDiff = thisCount - compCount;
234     minCount = (countDiff < 0) ? thisCount : compCount;
235     thisOffset = dvmGetFieldInt((Object*) arg0, STRING_FIELDOFF_OFFSET);
236     compOffset = dvmGetFieldInt((Object*) arg1, STRING_FIELDOFF_OFFSET);
237     thisArray = (ArrayObject*)
238         dvmGetFieldObject((Object*) arg0, STRING_FIELDOFF_VALUE);
239     compArray = (ArrayObject*)
240         dvmGetFieldObject((Object*) arg1, STRING_FIELDOFF_VALUE);
241     thisChars = ((const u2*)(void*)thisArray->contents) + thisOffset;
242     compChars = ((const u2*)(void*)compArray->contents) + compOffset;
243 
244 #ifdef HAVE__MEMCMP16
245     /*
246      * Use assembly version, which returns the difference between the
247      * characters.  The annoying part here is that 0x00e9 - 0xffff != 0x00ea,
248      * because the interpreter converts the characters to 32-bit integers
249      * *without* sign extension before it subtracts them (which makes some
250      * sense since "char" is unsigned).  So what we get is the result of
251      * 0x000000e9 - 0x0000ffff, which is 0xffff00ea.
252      */
253     int otherRes = __memcmp16(thisChars, compChars, minCount);
254 # ifdef CHECK_MEMCMP16
255     int i;
256     for (i = 0; i < minCount; i++) {
257         if (thisChars[i] != compChars[i]) {
258             pResult->i = (s4) thisChars[i] - (s4) compChars[i];
259             if (pResult->i != otherRes) {
260                 badMatch((StringObject*) arg0, (StringObject*) arg1,
261                     pResult->i, otherRes, "compareTo");
262             }
263             return true;
264         }
265     }
266 # endif
267     if (otherRes != 0) {
268         pResult->i = otherRes;
269         return true;
270     }
271 
272 #else
273     /*
274      * Straightforward implementation, examining 16 bits at a time.  Compare
275      * the characters that overlap, and if they're all the same then return
276      * the difference in lengths.
277      */
278     int i;
279     for (i = 0; i < minCount; i++) {
280         if (thisChars[i] != compChars[i]) {
281             pResult->i = (s4) thisChars[i] - (s4) compChars[i];
282             return true;
283         }
284     }
285 #endif
286 
287     pResult->i = countDiff;
288     return true;
289 }
290 
291 /*
292  * public boolean equals(Object anObject)
293  */
javaLangString_equals(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)294 bool javaLangString_equals(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
295     JValue* pResult)
296 {
297     /*
298      * Null reference check on "this".
299      */
300     if ((Object*) arg0 == NULL) {
301         dvmThrowNullPointerException(NULL);
302         return false;
303     }
304 
305     /* quick test for comparison with itself */
306     if (arg0 == arg1) {
307         pResult->i = true;
308         return true;
309     }
310 
311     /*
312      * See if the other object is also a String.
313      *
314      * str.equals(null) is expected to return false, presumably based on
315      * the results of the instanceof test.
316      */
317     if (arg1 == 0 || ((Object*) arg0)->clazz != ((Object*) arg1)->clazz) {
318         pResult->i = false;
319         return true;
320     }
321 
322     /*
323      * This would be simpler and faster if we promoted StringObject to
324      * a full representation, lining up the C structure fields with the
325      * actual object fields.
326      */
327     int thisCount, thisOffset, compCount, compOffset;
328     ArrayObject* thisArray;
329     ArrayObject* compArray;
330     const u2* thisChars;
331     const u2* compChars;
332 
333     /* quick length check */
334     thisCount = dvmGetFieldInt((Object*) arg0, STRING_FIELDOFF_COUNT);
335     compCount = dvmGetFieldInt((Object*) arg1, STRING_FIELDOFF_COUNT);
336     if (thisCount != compCount) {
337         pResult->i = false;
338         return true;
339     }
340 
341     /*
342      * You may, at this point, be tempted to pull out the hashCode fields
343      * and compare them.  If both fields have been initialized, and they
344      * are not equal, we can return false immediately.
345      *
346      * However, the hashCode field is often not set.  If it is set,
347      * there's an excellent chance that the String is being used as a key
348      * in a hashed data structure (e.g. HashMap).  That data structure has
349      * already made the comparison and determined that the hashes are equal,
350      * making a check here redundant.
351      *
352      * It's not clear that checking the hashes will be a win in "typical"
353      * use cases.  We err on the side of simplicity and ignore them.
354      */
355 
356     thisOffset = dvmGetFieldInt((Object*) arg0, STRING_FIELDOFF_OFFSET);
357     compOffset = dvmGetFieldInt((Object*) arg1, STRING_FIELDOFF_OFFSET);
358     thisArray = (ArrayObject*)
359         dvmGetFieldObject((Object*) arg0, STRING_FIELDOFF_VALUE);
360     compArray = (ArrayObject*)
361         dvmGetFieldObject((Object*) arg1, STRING_FIELDOFF_VALUE);
362     thisChars = ((const u2*)(void*)thisArray->contents) + thisOffset;
363     compChars = ((const u2*)(void*)compArray->contents) + compOffset;
364 
365 #ifdef HAVE__MEMCMP16
366     pResult->i = (__memcmp16(thisChars, compChars, thisCount) == 0);
367 # ifdef CHECK_MEMCMP16
368     int otherRes = (memcmp(thisChars, compChars, thisCount * 2) == 0);
369     if (pResult->i != otherRes) {
370         badMatch((StringObject*) arg0, (StringObject*) arg1,
371             otherRes, pResult->i, "equals-1");
372     }
373 # endif
374 #else
375     /*
376      * Straightforward implementation, examining 16 bits at a time.  The
377      * direction of the loop doesn't matter, and starting at the end may
378      * give us an advantage when comparing certain types of strings (e.g.
379      * class names).
380      *
381      * We want to go forward for benchmarks against __memcmp16 so we get a
382      * meaningful comparison when the strings don't match (could also test
383      * with palindromes).
384      */
385     int i;
386     //for (i = 0; i < thisCount; i++)
387     for (i = thisCount-1; i >= 0; --i)
388     {
389         if (thisChars[i] != compChars[i]) {
390             pResult->i = false;
391             return true;
392         }
393     }
394     pResult->i = true;
395 #endif
396 
397     return true;
398 }
399 
400 /*
401  * public int length()
402  */
javaLangString_length(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)403 bool javaLangString_length(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
404     JValue* pResult)
405 {
406     //LOGI("String.length this=0x%08x pResult=%p", arg0, pResult);
407 
408     /* null reference check on "this" */
409     if ((Object*) arg0 == NULL) {
410         dvmThrowNullPointerException(NULL);
411         return false;
412     }
413 
414     pResult->i = dvmGetFieldInt((Object*) arg0, STRING_FIELDOFF_COUNT);
415     return true;
416 }
417 
418 /*
419  * public boolean isEmpty()
420  */
javaLangString_isEmpty(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)421 bool javaLangString_isEmpty(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
422     JValue* pResult)
423 {
424     //LOGI("String.isEmpty this=0x%08x pResult=%p", arg0, pResult);
425 
426     /* null reference check on "this" */
427     if ((Object*) arg0 == NULL) {
428         dvmThrowNullPointerException(NULL);
429         return false;
430     }
431 
432     pResult->i = (dvmGetFieldInt((Object*) arg0, STRING_FIELDOFF_COUNT) == 0);
433     return true;
434 }
435 
436 /*
437  * Determine the index of the first character matching "ch".  The string
438  * to search is described by "chars", "offset", and "count".
439  *
440  * The character must be <= 0xffff. Supplementary characters are handled in
441  * Java.
442  *
443  * The "start" parameter must be clamped to [0..count].
444  *
445  * Returns -1 if no match is found.
446  */
indexOfCommon(Object * strObj,int ch,int start)447 static inline int indexOfCommon(Object* strObj, int ch, int start)
448 {
449     //if ((ch & 0xffff) != ch)        /* 32-bit code point */
450     //    return -1;
451 
452     /* pull out the basic elements */
453     ArrayObject* charArray =
454         (ArrayObject*) dvmGetFieldObject(strObj, STRING_FIELDOFF_VALUE);
455     const u2* chars = (const u2*)(void*)charArray->contents;
456     int offset = dvmGetFieldInt(strObj, STRING_FIELDOFF_OFFSET);
457     int count = dvmGetFieldInt(strObj, STRING_FIELDOFF_COUNT);
458     //LOGI("String.indexOf(0x%08x, 0x%04x, %d) off=%d count=%d",
459     //    (u4) strObj, ch, start, offset, count);
460 
461     /* factor out the offset */
462     chars += offset;
463 
464     if (start < 0)
465         start = 0;
466 
467 #if 0
468     /* 16-bit loop, simple */
469     while (start < count) {
470         if (chars[start] == ch)
471             return start;
472         start++;
473     }
474 #else
475     /* 16-bit loop, slightly better on ARM */
476     const u2* ptr = chars + start;
477     const u2* endPtr = chars + count;
478     while (ptr < endPtr) {
479         if (*ptr++ == ch)
480             return (ptr-1) - chars;
481     }
482 #endif
483 
484     return -1;
485 }
486 
487 /*
488  * public int indexOf(int c, int start)
489  *
490  * Scan forward through the string for a matching character.
491  * The character must be <= 0xffff; this method does not handle supplementary
492  * characters.
493  */
javaLangString_fastIndexOf_II(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)494 bool javaLangString_fastIndexOf_II(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
495     JValue* pResult)
496 {
497     /* null reference check on "this" */
498     if ((Object*) arg0 == NULL) {
499         dvmThrowNullPointerException(NULL);
500         return false;
501     }
502 
503     pResult->i = indexOfCommon((Object*) arg0, arg1, arg2);
504     return true;
505 }
506 
507 
508 /*
509  * ===========================================================================
510  *      java.lang.Math
511  * ===========================================================================
512  */
513 
514 union Convert32 {
515     u4 arg;
516     float ff;
517 };
518 
519 union Convert64 {
520     u4 arg[2];
521     s8 ll;
522     double dd;
523 };
524 
525 /*
526  * public static int abs(int)
527  */
javaLangMath_abs_int(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)528 bool javaLangMath_abs_int(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
529     JValue* pResult)
530 {
531     s4 val = (s4) arg0;
532     pResult->i = (val >= 0) ? val : -val;
533     return true;
534 }
535 
536 /*
537  * public static long abs(long)
538  */
javaLangMath_abs_long(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)539 bool javaLangMath_abs_long(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
540     JValue* pResult)
541 {
542     Convert64 convert;
543     convert.arg[0] = arg0;
544     convert.arg[1] = arg1;
545     s8 val = convert.ll;
546     pResult->j = (val >= 0) ? val : -val;
547     return true;
548 }
549 
550 /*
551  * public static float abs(float)
552  */
javaLangMath_abs_float(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)553 bool javaLangMath_abs_float(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
554     JValue* pResult)
555 {
556     Convert32 convert;
557     /* clear the sign bit; assumes a fairly common fp representation */
558     convert.arg = arg0 & 0x7fffffff;
559     pResult->f = convert.ff;
560     return true;
561 }
562 
563 /*
564  * public static double abs(double)
565  */
javaLangMath_abs_double(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)566 bool javaLangMath_abs_double(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
567     JValue* pResult)
568 {
569     Convert64 convert;
570     convert.arg[0] = arg0;
571     convert.arg[1] = arg1;
572     /* clear the sign bit in the (endian-dependent) high word */
573     convert.ll &= 0x7fffffffffffffffULL;
574     pResult->d = convert.dd;
575     return true;
576 }
577 
578 /*
579  * public static int min(int)
580  */
javaLangMath_min_int(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)581 bool javaLangMath_min_int(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
582     JValue* pResult)
583 {
584     pResult->i = ((s4) arg0 < (s4) arg1) ? arg0 : arg1;
585     return true;
586 }
587 
588 /*
589  * public static int max(int)
590  */
javaLangMath_max_int(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)591 bool javaLangMath_max_int(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
592     JValue* pResult)
593 {
594     pResult->i = ((s4) arg0 > (s4) arg1) ? arg0 : arg1;
595     return true;
596 }
597 
598 /*
599  * public static double sqrt(double)
600  *
601  * With ARM VFP enabled, gcc turns this into an fsqrtd instruction, followed
602  * by an fcmpd of the result against itself.  If it doesn't match (i.e.
603  * it's NaN), the libm sqrt() is invoked.
604  */
javaLangMath_sqrt(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)605 bool javaLangMath_sqrt(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
606     JValue* pResult)
607 {
608     Convert64 convert;
609     convert.arg[0] = arg0;
610     convert.arg[1] = arg1;
611     pResult->d = sqrt(convert.dd);
612     return true;
613 }
614 
615 /*
616  * public static double cos(double)
617  */
javaLangMath_cos(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)618 bool javaLangMath_cos(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
619     JValue* pResult)
620 {
621     Convert64 convert;
622     convert.arg[0] = arg0;
623     convert.arg[1] = arg1;
624     pResult->d = cos(convert.dd);
625     return true;
626 }
627 
628 /*
629  * public static double sin(double)
630  */
javaLangMath_sin(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult)631 bool javaLangMath_sin(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
632     JValue* pResult)
633 {
634     Convert64 convert;
635     convert.arg[0] = arg0;
636     convert.arg[1] = arg1;
637     pResult->d = sin(convert.dd);
638     return true;
639 }
640 
641 /*
642  * ===========================================================================
643  *      java.lang.Float
644  * ===========================================================================
645  */
646 
javaLangFloat_floatToIntBits(u4 arg0,u4 arg1,u4 arg2,u4 arg,JValue * pResult)647 bool javaLangFloat_floatToIntBits(u4 arg0, u4 arg1, u4 arg2, u4 arg,
648     JValue* pResult)
649 {
650     Convert32 convert;
651     convert.arg = arg0;
652     pResult->i = isnanf(convert.ff) ? 0x7fc00000 : arg0;
653     return true;
654 }
655 
javaLangFloat_floatToRawIntBits(u4 arg0,u4 arg1,u4 arg2,u4 arg,JValue * pResult)656 bool javaLangFloat_floatToRawIntBits(u4 arg0, u4 arg1, u4 arg2, u4 arg,
657     JValue* pResult)
658 {
659     pResult->i = arg0;
660     return true;
661 }
662 
javaLangFloat_intBitsToFloat(u4 arg0,u4 arg1,u4 arg2,u4 arg,JValue * pResult)663 bool javaLangFloat_intBitsToFloat(u4 arg0, u4 arg1, u4 arg2, u4 arg,
664     JValue* pResult)
665 {
666     Convert32 convert;
667     convert.arg = arg0;
668     pResult->f = convert.ff;
669     return true;
670 }
671 
672 /*
673  * ===========================================================================
674  *      java.lang.Double
675  * ===========================================================================
676  */
677 
javaLangDouble_doubleToLongBits(u4 arg0,u4 arg1,u4 arg2,u4 arg,JValue * pResult)678 bool javaLangDouble_doubleToLongBits(u4 arg0, u4 arg1, u4 arg2, u4 arg,
679     JValue* pResult)
680 {
681     Convert64 convert;
682     convert.arg[0] = arg0;
683     convert.arg[1] = arg1;
684     pResult->j = isnan(convert.dd) ? 0x7ff8000000000000LL : convert.ll;
685     return true;
686 }
687 
javaLangDouble_doubleToRawLongBits(u4 arg0,u4 arg1,u4 arg2,u4 arg,JValue * pResult)688 bool javaLangDouble_doubleToRawLongBits(u4 arg0, u4 arg1, u4 arg2,
689     u4 arg, JValue* pResult)
690 {
691     Convert64 convert;
692     convert.arg[0] = arg0;
693     convert.arg[1] = arg1;
694     pResult->j = convert.ll;
695     return true;
696 }
697 
javaLangDouble_longBitsToDouble(u4 arg0,u4 arg1,u4 arg2,u4 arg,JValue * pResult)698 bool javaLangDouble_longBitsToDouble(u4 arg0, u4 arg1, u4 arg2, u4 arg,
699     JValue* pResult)
700 {
701     Convert64 convert;
702     convert.arg[0] = arg0;
703     convert.arg[1] = arg1;
704     pResult->d = convert.dd;
705     return true;
706 }
707 
708 /*
709  * ===========================================================================
710  *      Infrastructure
711  * ===========================================================================
712  */
713 
714 /*
715  * Table of methods.
716  *
717  * The DEX optimizer uses the class/method/signature string fields to decide
718  * which calls it can trample.  The interpreter just uses the function
719  * pointer field.
720  *
721  * IMPORTANT: you must update DALVIK_VM_BUILD in DalvikVersion.h if you make
722  * changes to this table.
723  *
724  * NOTE: If present, the JIT will also need to know about changes
725  * to this table.  Update the NativeInlineOps enum in InlineNative.h and
726  * the dispatch code in compiler/codegen/<target>/Codegen.c.
727  */
728 const InlineOperation gDvmInlineOpsTable[] = {
729     { org_apache_harmony_dalvik_NativeTestTarget_emptyInlineMethod,
730         "Lorg/apache/harmony/dalvik/NativeTestTarget;",
731         "emptyInlineMethod", "()V" },
732 
733     { javaLangString_charAt,
734         "Ljava/lang/String;", "charAt", "(I)C" },
735     { javaLangString_compareTo,
736         "Ljava/lang/String;", "compareTo", "(Ljava/lang/String;)I" },
737     { javaLangString_equals,
738         "Ljava/lang/String;", "equals", "(Ljava/lang/Object;)Z" },
739     { javaLangString_fastIndexOf_II,
740         "Ljava/lang/String;", "fastIndexOf", "(II)I" },
741     { javaLangString_isEmpty,
742         "Ljava/lang/String;", "isEmpty", "()Z" },
743     { javaLangString_length,
744         "Ljava/lang/String;", "length", "()I" },
745 
746     { javaLangMath_abs_int,
747         "Ljava/lang/Math;", "abs", "(I)I" },
748     { javaLangMath_abs_long,
749         "Ljava/lang/Math;", "abs", "(J)J" },
750     { javaLangMath_abs_float,
751         "Ljava/lang/Math;", "abs", "(F)F" },
752     { javaLangMath_abs_double,
753         "Ljava/lang/Math;", "abs", "(D)D" },
754     { javaLangMath_min_int,
755         "Ljava/lang/Math;", "min", "(II)I" },
756     { javaLangMath_max_int,
757         "Ljava/lang/Math;", "max", "(II)I" },
758     { javaLangMath_sqrt,
759         "Ljava/lang/Math;", "sqrt", "(D)D" },
760     { javaLangMath_cos,
761         "Ljava/lang/Math;", "cos", "(D)D" },
762     { javaLangMath_sin,
763         "Ljava/lang/Math;", "sin", "(D)D" },
764 
765     { javaLangFloat_floatToIntBits,
766         "Ljava/lang/Float;", "floatToIntBits", "(F)I" },
767     { javaLangFloat_floatToRawIntBits,
768         "Ljava/lang/Float;", "floatToRawIntBits", "(F)I" },
769     { javaLangFloat_intBitsToFloat,
770         "Ljava/lang/Float;", "intBitsToFloat", "(I)F" },
771 
772     { javaLangDouble_doubleToLongBits,
773         "Ljava/lang/Double;", "doubleToLongBits", "(D)J" },
774     { javaLangDouble_doubleToRawLongBits,
775         "Ljava/lang/Double;", "doubleToRawLongBits", "(D)J" },
776     { javaLangDouble_longBitsToDouble,
777         "Ljava/lang/Double;", "longBitsToDouble", "(J)D" },
778 };
779 
780 /*
781  * Allocate some tables.
782  */
dvmInlineNativeStartup()783 bool dvmInlineNativeStartup()
784 {
785     gDvm.inlinedMethods =
786         (Method**) calloc(NELEM(gDvmInlineOpsTable), sizeof(Method*));
787     if (gDvm.inlinedMethods == NULL)
788         return false;
789 
790     return true;
791 }
792 
793 /*
794  * Free generated tables.
795  */
dvmInlineNativeShutdown()796 void dvmInlineNativeShutdown()
797 {
798     free(gDvm.inlinedMethods);
799 }
800 
801 
802 /*
803  * Get a pointer to the inlineops table.
804  */
dvmGetInlineOpsTable()805 const InlineOperation* dvmGetInlineOpsTable()
806 {
807     return gDvmInlineOpsTable;
808 }
809 
810 /*
811  * Get the number of entries in the inlineops table.
812  */
dvmGetInlineOpsTableLength()813 int dvmGetInlineOpsTableLength()
814 {
815     return NELEM(gDvmInlineOpsTable);
816 }
817 
dvmFindInlinableMethod(const char * classDescriptor,const char * methodName,const char * methodSignature)818 Method* dvmFindInlinableMethod(const char* classDescriptor,
819     const char* methodName, const char* methodSignature)
820 {
821     /*
822      * Find the class.
823      */
824     ClassObject* clazz = dvmFindClassNoInit(classDescriptor, NULL);
825     if (clazz == NULL) {
826         LOGE("dvmFindInlinableMethod: can't find class '%s'",
827             classDescriptor);
828         dvmClearException(dvmThreadSelf());
829         return NULL;
830     }
831 
832     /*
833      * Method could be virtual or direct.  Try both.  Don't use
834      * the "hier" versions.
835      */
836     Method* method = dvmFindDirectMethodByDescriptor(clazz, methodName,
837         methodSignature);
838     if (method == NULL) {
839         method = dvmFindVirtualMethodByDescriptor(clazz, methodName,
840             methodSignature);
841     }
842     if (method == NULL) {
843         LOGE("dvmFindInlinableMethod: can't find method %s.%s %s",
844             clazz->descriptor, methodName, methodSignature);
845         return NULL;
846     }
847 
848     /*
849      * Check that the method is appropriate for inlining.
850      */
851     if (!dvmIsFinalClass(clazz) && !dvmIsFinalMethod(method)) {
852         LOGE("dvmFindInlinableMethod: can't inline non-final method %s.%s",
853             clazz->descriptor, method->name);
854         return NULL;
855     }
856     if (dvmIsSynchronizedMethod(method) ||
857             dvmIsDeclaredSynchronizedMethod(method)) {
858         LOGE("dvmFindInlinableMethod: can't inline synchronized method %s.%s",
859             clazz->descriptor, method->name);
860         return NULL;
861     }
862 
863     return method;
864 }
865 
866 /*
867  * Populate the methods table on first use.  It's possible the class
868  * hasn't been resolved yet, so we need to do the full "calling the
869  * method for the first time" routine.  (It's probably okay to skip
870  * the access checks.)
871  *
872  * Currently assuming that we're only inlining stuff loaded by the
873  * bootstrap class loader.  This is a safe assumption for many reasons.
874  */
dvmResolveInlineNative(int opIndex)875 Method* dvmResolveInlineNative(int opIndex)
876 {
877     assert(opIndex >= 0 && opIndex < NELEM(gDvmInlineOpsTable));
878     Method* method = gDvm.inlinedMethods[opIndex];
879     if (method != NULL) {
880         return method;
881     }
882 
883     method = dvmFindInlinableMethod(
884         gDvmInlineOpsTable[opIndex].classDescriptor,
885         gDvmInlineOpsTable[opIndex].methodName,
886         gDvmInlineOpsTable[opIndex].methodSignature);
887 
888     if (method == NULL) {
889         /* We already reported the error. */
890         return NULL;
891     }
892 
893     gDvm.inlinedMethods[opIndex] = method;
894     IF_LOGV() {
895         char* desc = dexProtoCopyMethodDescriptor(&method->prototype);
896         LOGV("Registered for profile: %s.%s %s",
897             method->clazz->descriptor, method->name, desc);
898         free(desc);
899     }
900 
901     return method;
902 }
903 
904 /*
905  * Make an inline call for the "debug" interpreter, used when the debugger
906  * or profiler is active.
907  */
dvmPerformInlineOp4Dbg(u4 arg0,u4 arg1,u4 arg2,u4 arg3,JValue * pResult,int opIndex)908 bool dvmPerformInlineOp4Dbg(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
909     JValue* pResult, int opIndex)
910 {
911     Method* method = dvmResolveInlineNative(opIndex);
912     if (method == NULL) {
913         return (*gDvmInlineOpsTable[opIndex].func)(arg0, arg1, arg2, arg3,
914             pResult);
915     }
916 
917     Thread* self = dvmThreadSelf();
918     TRACE_METHOD_ENTER(self, method);
919     bool result = (*gDvmInlineOpsTable[opIndex].func)(arg0, arg1, arg2, arg3,
920         pResult);
921     TRACE_METHOD_EXIT(self, method);
922     return result;
923 }
924