1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2010 the V8 project authors. All rights reserved.
34
35
36 #include "v8.h"
37
38 #if defined(V8_TARGET_ARCH_MIPS)
39
40 #include "mips/assembler-mips-inl.h"
41 #include "serialize.h"
42
43 namespace v8 {
44 namespace internal {
45
CpuFeatures()46 CpuFeatures::CpuFeatures()
47 : supported_(0),
48 enabled_(0),
49 found_by_runtime_probing_(0) {
50 }
51
Probe(bool portable)52 void CpuFeatures::Probe(bool portable) {
53 // If the compiler is allowed to use fpu then we can use fpu too in our
54 // code generation.
55 #if !defined(__mips__)
56 // For the simulator=mips build, use FPU when FLAG_enable_fpu is enabled.
57 if (FLAG_enable_fpu) {
58 supported_ |= 1u << FPU;
59 }
60 #else
61 if (portable && Serializer::enabled()) {
62 supported_ |= OS::CpuFeaturesImpliedByPlatform();
63 return; // No features if we might serialize.
64 }
65
66 if (OS::MipsCpuHasFeature(FPU)) {
67 // This implementation also sets the FPU flags if
68 // runtime detection of FPU returns true.
69 supported_ |= 1u << FPU;
70 found_by_runtime_probing_ |= 1u << FPU;
71 }
72
73 if (!portable) found_by_runtime_probing_ = 0;
74 #endif
75 }
76
77
ToNumber(Register reg)78 int ToNumber(Register reg) {
79 ASSERT(reg.is_valid());
80 const int kNumbers[] = {
81 0, // zero_reg
82 1, // at
83 2, // v0
84 3, // v1
85 4, // a0
86 5, // a1
87 6, // a2
88 7, // a3
89 8, // t0
90 9, // t1
91 10, // t2
92 11, // t3
93 12, // t4
94 13, // t5
95 14, // t6
96 15, // t7
97 16, // s0
98 17, // s1
99 18, // s2
100 19, // s3
101 20, // s4
102 21, // s5
103 22, // s6
104 23, // s7
105 24, // t8
106 25, // t9
107 26, // k0
108 27, // k1
109 28, // gp
110 29, // sp
111 30, // s8_fp
112 31, // ra
113 };
114 return kNumbers[reg.code()];
115 }
116
117
ToRegister(int num)118 Register ToRegister(int num) {
119 ASSERT(num >= 0 && num < kNumRegisters);
120 const Register kRegisters[] = {
121 zero_reg,
122 at,
123 v0, v1,
124 a0, a1, a2, a3,
125 t0, t1, t2, t3, t4, t5, t6, t7,
126 s0, s1, s2, s3, s4, s5, s6, s7,
127 t8, t9,
128 k0, k1,
129 gp,
130 sp,
131 s8_fp,
132 ra
133 };
134 return kRegisters[num];
135 }
136
137
138 // -----------------------------------------------------------------------------
139 // Implementation of RelocInfo.
140
141 const int RelocInfo::kApplyMask = 0;
142
143
IsCodedSpecially()144 bool RelocInfo::IsCodedSpecially() {
145 // The deserializer needs to know whether a pointer is specially coded. Being
146 // specially coded on MIPS means that it is a lui/ori instruction, and that is
147 // always the case inside code objects.
148 return true;
149 }
150
151
152 // Patch the code at the current address with the supplied instructions.
PatchCode(byte * instructions,int instruction_count)153 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
154 Instr* pc = reinterpret_cast<Instr*>(pc_);
155 Instr* instr = reinterpret_cast<Instr*>(instructions);
156 for (int i = 0; i < instruction_count; i++) {
157 *(pc + i) = *(instr + i);
158 }
159
160 // Indicate that code has changed.
161 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
162 }
163
164
165 // Patch the code at the current PC with a call to the target address.
166 // Additional guard instructions can be added if required.
PatchCodeWithCall(Address target,int guard_bytes)167 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
168 // Patch the code at the current address with a call to the target.
169 UNIMPLEMENTED_MIPS();
170 }
171
172
173 // -----------------------------------------------------------------------------
174 // Implementation of Operand and MemOperand.
175 // See assembler-mips-inl.h for inlined constructors.
176
Operand(Handle<Object> handle)177 Operand::Operand(Handle<Object> handle) {
178 rm_ = no_reg;
179 // Verify all Objects referred by code are NOT in new space.
180 Object* obj = *handle;
181 ASSERT(!HEAP->InNewSpace(obj));
182 if (obj->IsHeapObject()) {
183 imm32_ = reinterpret_cast<intptr_t>(handle.location());
184 rmode_ = RelocInfo::EMBEDDED_OBJECT;
185 } else {
186 // No relocation needed.
187 imm32_ = reinterpret_cast<intptr_t>(obj);
188 rmode_ = RelocInfo::NONE;
189 }
190 }
191
192
MemOperand(Register rm,int32_t offset)193 MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
194 offset_ = offset;
195 }
196
197
198 // -----------------------------------------------------------------------------
199 // Specific instructions, constants, and masks.
200
201 static const int kNegOffset = 0x00008000;
202 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
203 // operations as post-increment of sp.
204 const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift)
205 | (sp.code() << kRtShift) | (kPointerSize & kImm16Mask);
206 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
207 const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift)
208 | (sp.code() << kRtShift) | (-kPointerSize & kImm16Mask);
209 // sw(r, MemOperand(sp, 0))
210 const Instr kPushRegPattern = SW | (sp.code() << kRsShift)
211 | (0 & kImm16Mask);
212 // lw(r, MemOperand(sp, 0))
213 const Instr kPopRegPattern = LW | (sp.code() << kRsShift)
214 | (0 & kImm16Mask);
215
216 const Instr kLwRegFpOffsetPattern = LW | (s8_fp.code() << kRsShift)
217 | (0 & kImm16Mask);
218
219 const Instr kSwRegFpOffsetPattern = SW | (s8_fp.code() << kRsShift)
220 | (0 & kImm16Mask);
221
222 const Instr kLwRegFpNegOffsetPattern = LW | (s8_fp.code() << kRsShift)
223 | (kNegOffset & kImm16Mask);
224
225 const Instr kSwRegFpNegOffsetPattern = SW | (s8_fp.code() << kRsShift)
226 | (kNegOffset & kImm16Mask);
227 // A mask for the Rt register for push, pop, lw, sw instructions.
228 const Instr kRtMask = kRtFieldMask;
229 const Instr kLwSwInstrTypeMask = 0xffe00000;
230 const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
231 const Instr kLwSwOffsetMask = kImm16Mask;
232
233
234 // Spare buffer.
235 static const int kMinimalBufferSize = 4 * KB;
236
237
Assembler(void * buffer,int buffer_size)238 Assembler::Assembler(void* buffer, int buffer_size)
239 : AssemblerBase(Isolate::Current()),
240 positions_recorder_(this),
241 allow_peephole_optimization_(false) {
242 // BUG(3245989): disable peephole optimization if crankshaft is enabled.
243 allow_peephole_optimization_ = FLAG_peephole_optimization;
244 if (buffer == NULL) {
245 // Do our own buffer management.
246 if (buffer_size <= kMinimalBufferSize) {
247 buffer_size = kMinimalBufferSize;
248
249 if (isolate()->assembler_spare_buffer() != NULL) {
250 buffer = isolate()->assembler_spare_buffer();
251 isolate()->set_assembler_spare_buffer(NULL);
252 }
253 }
254 if (buffer == NULL) {
255 buffer_ = NewArray<byte>(buffer_size);
256 } else {
257 buffer_ = static_cast<byte*>(buffer);
258 }
259 buffer_size_ = buffer_size;
260 own_buffer_ = true;
261
262 } else {
263 // Use externally provided buffer instead.
264 ASSERT(buffer_size > 0);
265 buffer_ = static_cast<byte*>(buffer);
266 buffer_size_ = buffer_size;
267 own_buffer_ = false;
268 }
269
270 // Setup buffer pointers.
271 ASSERT(buffer_ != NULL);
272 pc_ = buffer_;
273 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
274
275 last_trampoline_pool_end_ = 0;
276 no_trampoline_pool_before_ = 0;
277 trampoline_pool_blocked_nesting_ = 0;
278 next_buffer_check_ = kMaxBranchOffset - kTrampolineSize;
279 }
280
281
~Assembler()282 Assembler::~Assembler() {
283 if (own_buffer_) {
284 if (isolate()->assembler_spare_buffer() == NULL &&
285 buffer_size_ == kMinimalBufferSize) {
286 isolate()->set_assembler_spare_buffer(buffer_);
287 } else {
288 DeleteArray(buffer_);
289 }
290 }
291 }
292
293
GetCode(CodeDesc * desc)294 void Assembler::GetCode(CodeDesc* desc) {
295 ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap.
296 // Setup code descriptor.
297 desc->buffer = buffer_;
298 desc->buffer_size = buffer_size_;
299 desc->instr_size = pc_offset();
300 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
301 }
302
303
Align(int m)304 void Assembler::Align(int m) {
305 ASSERT(m >= 4 && IsPowerOf2(m));
306 while ((pc_offset() & (m - 1)) != 0) {
307 nop();
308 }
309 }
310
311
CodeTargetAlign()312 void Assembler::CodeTargetAlign() {
313 // No advantage to aligning branch/call targets to more than
314 // single instruction, that I am aware of.
315 Align(4);
316 }
317
318
GetRt(Instr instr)319 Register Assembler::GetRt(Instr instr) {
320 Register rt;
321 rt.code_ = (instr & kRtMask) >> kRtShift;
322 return rt;
323 }
324
325
IsPop(Instr instr)326 bool Assembler::IsPop(Instr instr) {
327 return (instr & ~kRtMask) == kPopRegPattern;
328 }
329
330
IsPush(Instr instr)331 bool Assembler::IsPush(Instr instr) {
332 return (instr & ~kRtMask) == kPushRegPattern;
333 }
334
335
IsSwRegFpOffset(Instr instr)336 bool Assembler::IsSwRegFpOffset(Instr instr) {
337 return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
338 }
339
340
IsLwRegFpOffset(Instr instr)341 bool Assembler::IsLwRegFpOffset(Instr instr) {
342 return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
343 }
344
345
IsSwRegFpNegOffset(Instr instr)346 bool Assembler::IsSwRegFpNegOffset(Instr instr) {
347 return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
348 kSwRegFpNegOffsetPattern);
349 }
350
351
IsLwRegFpNegOffset(Instr instr)352 bool Assembler::IsLwRegFpNegOffset(Instr instr) {
353 return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
354 kLwRegFpNegOffsetPattern);
355 }
356
357
358 // Labels refer to positions in the (to be) generated code.
359 // There are bound, linked, and unused labels.
360 //
361 // Bound labels refer to known positions in the already
362 // generated code. pos() is the position the label refers to.
363 //
364 // Linked labels refer to unknown positions in the code
365 // to be generated; pos() is the position of the last
366 // instruction using the label.
367
368 // The link chain is terminated by a value in the instruction of -1,
369 // which is an otherwise illegal value (branch -1 is inf loop).
370 // The instruction 16-bit offset field addresses 32-bit words, but in
371 // code is conv to an 18-bit value addressing bytes, hence the -4 value.
372
373 const int kEndOfChain = -4;
374
375
IsBranch(Instr instr)376 bool Assembler::IsBranch(Instr instr) {
377 uint32_t opcode = ((instr & kOpcodeMask));
378 uint32_t rt_field = ((instr & kRtFieldMask));
379 uint32_t rs_field = ((instr & kRsFieldMask));
380 uint32_t label_constant = (instr & ~kImm16Mask);
381 // Checks if the instruction is a branch.
382 return opcode == BEQ ||
383 opcode == BNE ||
384 opcode == BLEZ ||
385 opcode == BGTZ ||
386 opcode == BEQL ||
387 opcode == BNEL ||
388 opcode == BLEZL ||
389 opcode == BGTZL||
390 (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
391 rt_field == BLTZAL || rt_field == BGEZAL)) ||
392 (opcode == COP1 && rs_field == BC1) || // Coprocessor branch.
393 label_constant == 0; // Emitted label const in reg-exp engine.
394 }
395
396
IsNop(Instr instr,unsigned int type)397 bool Assembler::IsNop(Instr instr, unsigned int type) {
398 // See Assembler::nop(type).
399 ASSERT(type < 32);
400 uint32_t opcode = ((instr & kOpcodeMask));
401 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
402 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
403 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
404
405 // nop(type) == sll(zero_reg, zero_reg, type);
406 // Technically all these values will be 0 but
407 // this makes more sense to the reader.
408
409 bool ret = (opcode == SLL &&
410 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
411 rs == static_cast<uint32_t>(ToNumber(zero_reg)) &&
412 sa == type);
413
414 return ret;
415 }
416
417
GetBranchOffset(Instr instr)418 int32_t Assembler::GetBranchOffset(Instr instr) {
419 ASSERT(IsBranch(instr));
420 return ((int16_t)(instr & kImm16Mask)) << 2;
421 }
422
423
IsLw(Instr instr)424 bool Assembler::IsLw(Instr instr) {
425 return ((instr & kOpcodeMask) == LW);
426 }
427
428
GetLwOffset(Instr instr)429 int16_t Assembler::GetLwOffset(Instr instr) {
430 ASSERT(IsLw(instr));
431 return ((instr & kImm16Mask));
432 }
433
434
SetLwOffset(Instr instr,int16_t offset)435 Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
436 ASSERT(IsLw(instr));
437
438 // We actually create a new lw instruction based on the original one.
439 Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask)
440 | (offset & kImm16Mask);
441
442 return temp_instr;
443 }
444
445
IsSw(Instr instr)446 bool Assembler::IsSw(Instr instr) {
447 return ((instr & kOpcodeMask) == SW);
448 }
449
450
SetSwOffset(Instr instr,int16_t offset)451 Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
452 ASSERT(IsSw(instr));
453 return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
454 }
455
456
IsAddImmediate(Instr instr)457 bool Assembler::IsAddImmediate(Instr instr) {
458 return ((instr & kOpcodeMask) == ADDIU);
459 }
460
461
SetAddImmediateOffset(Instr instr,int16_t offset)462 Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
463 ASSERT(IsAddImmediate(instr));
464 return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
465 }
466
467
target_at(int32_t pos)468 int Assembler::target_at(int32_t pos) {
469 Instr instr = instr_at(pos);
470 if ((instr & ~kImm16Mask) == 0) {
471 // Emitted label constant, not part of a branch.
472 if (instr == 0) {
473 return kEndOfChain;
474 } else {
475 int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
476 return (imm18 + pos);
477 }
478 }
479 // Check we have a branch instruction.
480 ASSERT(IsBranch(instr));
481 // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
482 // the compiler uses arithmectic shifts for signed integers.
483 int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
484
485 if (imm18 == kEndOfChain) {
486 // EndOfChain sentinel is returned directly, not relative to pc or pos.
487 return kEndOfChain;
488 } else {
489 return pos + kBranchPCOffset + imm18;
490 }
491 }
492
493
target_at_put(int32_t pos,int32_t target_pos)494 void Assembler::target_at_put(int32_t pos, int32_t target_pos) {
495 Instr instr = instr_at(pos);
496 if ((instr & ~kImm16Mask) == 0) {
497 ASSERT(target_pos == kEndOfChain || target_pos >= 0);
498 // Emitted label constant, not part of a branch.
499 // Make label relative to Code* of generated Code object.
500 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
501 return;
502 }
503
504 ASSERT(IsBranch(instr));
505 int32_t imm18 = target_pos - (pos + kBranchPCOffset);
506 ASSERT((imm18 & 3) == 0);
507
508 instr &= ~kImm16Mask;
509 int32_t imm16 = imm18 >> 2;
510 ASSERT(is_int16(imm16));
511
512 instr_at_put(pos, instr | (imm16 & kImm16Mask));
513 }
514
515
print(Label * L)516 void Assembler::print(Label* L) {
517 if (L->is_unused()) {
518 PrintF("unused label\n");
519 } else if (L->is_bound()) {
520 PrintF("bound label to %d\n", L->pos());
521 } else if (L->is_linked()) {
522 Label l = *L;
523 PrintF("unbound label");
524 while (l.is_linked()) {
525 PrintF("@ %d ", l.pos());
526 Instr instr = instr_at(l.pos());
527 if ((instr & ~kImm16Mask) == 0) {
528 PrintF("value\n");
529 } else {
530 PrintF("%d\n", instr);
531 }
532 next(&l);
533 }
534 } else {
535 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
536 }
537 }
538
539
bind_to(Label * L,int pos)540 void Assembler::bind_to(Label* L, int pos) {
541 ASSERT(0 <= pos && pos <= pc_offset()); // Must have valid binding position.
542 while (L->is_linked()) {
543 int32_t fixup_pos = L->pos();
544 int32_t dist = pos - fixup_pos;
545 next(L); // Call next before overwriting link with target at fixup_pos.
546 if (dist > kMaxBranchOffset) {
547 do {
548 int32_t trampoline_pos = get_trampoline_entry(fixup_pos);
549 ASSERT((trampoline_pos - fixup_pos) <= kMaxBranchOffset);
550 target_at_put(fixup_pos, trampoline_pos);
551 fixup_pos = trampoline_pos;
552 dist = pos - fixup_pos;
553 } while (dist > kMaxBranchOffset);
554 } else if (dist < -kMaxBranchOffset) {
555 do {
556 int32_t trampoline_pos = get_trampoline_entry(fixup_pos, false);
557 ASSERT((trampoline_pos - fixup_pos) >= -kMaxBranchOffset);
558 target_at_put(fixup_pos, trampoline_pos);
559 fixup_pos = trampoline_pos;
560 dist = pos - fixup_pos;
561 } while (dist < -kMaxBranchOffset);
562 };
563 target_at_put(fixup_pos, pos);
564 }
565 L->bind_to(pos);
566
567 // Keep track of the last bound label so we don't eliminate any instructions
568 // before a bound label.
569 if (pos > last_bound_pos_)
570 last_bound_pos_ = pos;
571 }
572
573
link_to(Label * L,Label * appendix)574 void Assembler::link_to(Label* L, Label* appendix) {
575 if (appendix->is_linked()) {
576 if (L->is_linked()) {
577 // Append appendix to L's list.
578 int fixup_pos;
579 int link = L->pos();
580 do {
581 fixup_pos = link;
582 link = target_at(fixup_pos);
583 } while (link > 0);
584 ASSERT(link == kEndOfChain);
585 target_at_put(fixup_pos, appendix->pos());
586 } else {
587 // L is empty, simply use appendix.
588 *L = *appendix;
589 }
590 }
591 appendix->Unuse(); // Appendix should not be used anymore.
592 }
593
594
bind(Label * L)595 void Assembler::bind(Label* L) {
596 ASSERT(!L->is_bound()); // Label can only be bound once.
597 bind_to(L, pc_offset());
598 }
599
600
next(Label * L)601 void Assembler::next(Label* L) {
602 ASSERT(L->is_linked());
603 int link = target_at(L->pos());
604 ASSERT(link > 0 || link == kEndOfChain);
605 if (link == kEndOfChain) {
606 L->Unuse();
607 } else if (link > 0) {
608 L->link_to(link);
609 }
610 }
611
612
613 // We have to use a temporary register for things that can be relocated even
614 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
615 // space. There is no guarantee that the relocated location can be similarly
616 // encoded.
MustUseReg(RelocInfo::Mode rmode)617 bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
618 return rmode != RelocInfo::NONE;
619 }
620
621
GenInstrRegister(Opcode opcode,Register rs,Register rt,Register rd,uint16_t sa,SecondaryField func)622 void Assembler::GenInstrRegister(Opcode opcode,
623 Register rs,
624 Register rt,
625 Register rd,
626 uint16_t sa,
627 SecondaryField func) {
628 ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
629 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
630 | (rd.code() << kRdShift) | (sa << kSaShift) | func;
631 emit(instr);
632 }
633
634
GenInstrRegister(Opcode opcode,Register rs,Register rt,uint16_t msb,uint16_t lsb,SecondaryField func)635 void Assembler::GenInstrRegister(Opcode opcode,
636 Register rs,
637 Register rt,
638 uint16_t msb,
639 uint16_t lsb,
640 SecondaryField func) {
641 ASSERT(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
642 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
643 | (msb << kRdShift) | (lsb << kSaShift) | func;
644 emit(instr);
645 }
646
647
GenInstrRegister(Opcode opcode,SecondaryField fmt,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)648 void Assembler::GenInstrRegister(Opcode opcode,
649 SecondaryField fmt,
650 FPURegister ft,
651 FPURegister fs,
652 FPURegister fd,
653 SecondaryField func) {
654 ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid());
655 ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
656 Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift)
657 | (fd.code() << kFdShift) | func;
658 emit(instr);
659 }
660
661
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPURegister fs,FPURegister fd,SecondaryField func)662 void Assembler::GenInstrRegister(Opcode opcode,
663 SecondaryField fmt,
664 Register rt,
665 FPURegister fs,
666 FPURegister fd,
667 SecondaryField func) {
668 ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid());
669 ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
670 Instr instr = opcode | fmt | (rt.code() << kRtShift)
671 | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
672 emit(instr);
673 }
674
675
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPUControlRegister fs,SecondaryField func)676 void Assembler::GenInstrRegister(Opcode opcode,
677 SecondaryField fmt,
678 Register rt,
679 FPUControlRegister fs,
680 SecondaryField func) {
681 ASSERT(fs.is_valid() && rt.is_valid());
682 ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
683 Instr instr =
684 opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
685 emit(instr);
686 }
687
688
689 // Instructions with immediate value.
690 // Registers are in the order of the instruction encoding, from left to right.
GenInstrImmediate(Opcode opcode,Register rs,Register rt,int32_t j)691 void Assembler::GenInstrImmediate(Opcode opcode,
692 Register rs,
693 Register rt,
694 int32_t j) {
695 ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
696 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
697 | (j & kImm16Mask);
698 emit(instr);
699 }
700
701
GenInstrImmediate(Opcode opcode,Register rs,SecondaryField SF,int32_t j)702 void Assembler::GenInstrImmediate(Opcode opcode,
703 Register rs,
704 SecondaryField SF,
705 int32_t j) {
706 ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j)));
707 Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
708 emit(instr);
709 }
710
711
GenInstrImmediate(Opcode opcode,Register rs,FPURegister ft,int32_t j)712 void Assembler::GenInstrImmediate(Opcode opcode,
713 Register rs,
714 FPURegister ft,
715 int32_t j) {
716 ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
717 ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
718 Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift)
719 | (j & kImm16Mask);
720 emit(instr);
721 }
722
723
724 // Registers are in the order of the instruction encoding, from left to right.
GenInstrJump(Opcode opcode,uint32_t address)725 void Assembler::GenInstrJump(Opcode opcode,
726 uint32_t address) {
727 BlockTrampolinePoolScope block_trampoline_pool(this);
728 ASSERT(is_uint26(address));
729 Instr instr = opcode | address;
730 emit(instr);
731 BlockTrampolinePoolFor(1); // For associated delay slot.
732 }
733
734
735 // Returns the next free label entry from the next trampoline pool.
get_label_entry(int32_t pos,bool next_pool)736 int32_t Assembler::get_label_entry(int32_t pos, bool next_pool) {
737 int trampoline_count = trampolines_.length();
738 int32_t label_entry = 0;
739 ASSERT(trampoline_count > 0);
740
741 if (next_pool) {
742 for (int i = 0; i < trampoline_count; i++) {
743 if (trampolines_[i].start() > pos) {
744 label_entry = trampolines_[i].take_label();
745 break;
746 }
747 }
748 } else { // Caller needs a label entry from the previous pool.
749 for (int i = trampoline_count-1; i >= 0; i--) {
750 if (trampolines_[i].end() < pos) {
751 label_entry = trampolines_[i].take_label();
752 break;
753 }
754 }
755 }
756 return label_entry;
757 }
758
759
760 // Returns the next free trampoline entry from the next trampoline pool.
get_trampoline_entry(int32_t pos,bool next_pool)761 int32_t Assembler::get_trampoline_entry(int32_t pos, bool next_pool) {
762 int trampoline_count = trampolines_.length();
763 int32_t trampoline_entry = 0;
764 ASSERT(trampoline_count > 0);
765
766 if (next_pool) {
767 for (int i = 0; i < trampoline_count; i++) {
768 if (trampolines_[i].start() > pos) {
769 trampoline_entry = trampolines_[i].take_slot();
770 break;
771 }
772 }
773 } else { // Caller needs a trampoline entry from the previous pool.
774 for (int i = trampoline_count-1; i >= 0; i--) {
775 if (trampolines_[i].end() < pos) {
776 trampoline_entry = trampolines_[i].take_slot();
777 break;
778 }
779 }
780 }
781 return trampoline_entry;
782 }
783
784
branch_offset(Label * L,bool jump_elimination_allowed)785 int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
786 int32_t target_pos;
787 int32_t pc_offset_v = pc_offset();
788
789 if (L->is_bound()) {
790 target_pos = L->pos();
791 int32_t dist = pc_offset_v - target_pos;
792 if (dist > kMaxBranchOffset) {
793 do {
794 int32_t trampoline_pos = get_trampoline_entry(target_pos);
795 ASSERT((trampoline_pos - target_pos) > 0);
796 ASSERT((trampoline_pos - target_pos) <= kMaxBranchOffset);
797 target_at_put(trampoline_pos, target_pos);
798 target_pos = trampoline_pos;
799 dist = pc_offset_v - target_pos;
800 } while (dist > kMaxBranchOffset);
801 } else if (dist < -kMaxBranchOffset) {
802 do {
803 int32_t trampoline_pos = get_trampoline_entry(target_pos, false);
804 ASSERT((target_pos - trampoline_pos) > 0);
805 ASSERT((target_pos - trampoline_pos) <= kMaxBranchOffset);
806 target_at_put(trampoline_pos, target_pos);
807 target_pos = trampoline_pos;
808 dist = pc_offset_v - target_pos;
809 } while (dist < -kMaxBranchOffset);
810 }
811 } else {
812 if (L->is_linked()) {
813 target_pos = L->pos(); // L's link.
814 int32_t dist = pc_offset_v - target_pos;
815 if (dist > kMaxBranchOffset) {
816 do {
817 int32_t label_pos = get_label_entry(target_pos);
818 ASSERT((label_pos - target_pos) < kMaxBranchOffset);
819 label_at_put(L, label_pos);
820 target_pos = label_pos;
821 dist = pc_offset_v - target_pos;
822 } while (dist > kMaxBranchOffset);
823 } else if (dist < -kMaxBranchOffset) {
824 do {
825 int32_t label_pos = get_label_entry(target_pos, false);
826 ASSERT((label_pos - target_pos) > -kMaxBranchOffset);
827 label_at_put(L, label_pos);
828 target_pos = label_pos;
829 dist = pc_offset_v - target_pos;
830 } while (dist < -kMaxBranchOffset);
831 }
832 L->link_to(pc_offset());
833 } else {
834 L->link_to(pc_offset());
835 return kEndOfChain;
836 }
837 }
838
839 int32_t offset = target_pos - (pc_offset() + kBranchPCOffset);
840 ASSERT((offset & 3) == 0);
841 ASSERT(is_int16(offset >> 2));
842
843 return offset;
844 }
845
846
label_at_put(Label * L,int at_offset)847 void Assembler::label_at_put(Label* L, int at_offset) {
848 int target_pos;
849 if (L->is_bound()) {
850 target_pos = L->pos();
851 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
852 } else {
853 if (L->is_linked()) {
854 target_pos = L->pos(); // L's link.
855 int32_t imm18 = target_pos - at_offset;
856 ASSERT((imm18 & 3) == 0);
857 int32_t imm16 = imm18 >> 2;
858 ASSERT(is_int16(imm16));
859 instr_at_put(at_offset, (imm16 & kImm16Mask));
860 } else {
861 target_pos = kEndOfChain;
862 instr_at_put(at_offset, 0);
863 }
864 L->link_to(at_offset);
865 }
866 }
867
868
869 //------- Branch and jump instructions --------
870
b(int16_t offset)871 void Assembler::b(int16_t offset) {
872 beq(zero_reg, zero_reg, offset);
873 }
874
875
bal(int16_t offset)876 void Assembler::bal(int16_t offset) {
877 positions_recorder()->WriteRecordedPositions();
878 bgezal(zero_reg, offset);
879 }
880
881
beq(Register rs,Register rt,int16_t offset)882 void Assembler::beq(Register rs, Register rt, int16_t offset) {
883 BlockTrampolinePoolScope block_trampoline_pool(this);
884 GenInstrImmediate(BEQ, rs, rt, offset);
885 BlockTrampolinePoolFor(1); // For associated delay slot.
886 }
887
888
bgez(Register rs,int16_t offset)889 void Assembler::bgez(Register rs, int16_t offset) {
890 BlockTrampolinePoolScope block_trampoline_pool(this);
891 GenInstrImmediate(REGIMM, rs, BGEZ, offset);
892 BlockTrampolinePoolFor(1); // For associated delay slot.
893 }
894
895
bgezal(Register rs,int16_t offset)896 void Assembler::bgezal(Register rs, int16_t offset) {
897 BlockTrampolinePoolScope block_trampoline_pool(this);
898 positions_recorder()->WriteRecordedPositions();
899 GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
900 BlockTrampolinePoolFor(1); // For associated delay slot.
901 }
902
903
bgtz(Register rs,int16_t offset)904 void Assembler::bgtz(Register rs, int16_t offset) {
905 BlockTrampolinePoolScope block_trampoline_pool(this);
906 GenInstrImmediate(BGTZ, rs, zero_reg, offset);
907 BlockTrampolinePoolFor(1); // For associated delay slot.
908 }
909
910
blez(Register rs,int16_t offset)911 void Assembler::blez(Register rs, int16_t offset) {
912 BlockTrampolinePoolScope block_trampoline_pool(this);
913 GenInstrImmediate(BLEZ, rs, zero_reg, offset);
914 BlockTrampolinePoolFor(1); // For associated delay slot.
915 }
916
917
bltz(Register rs,int16_t offset)918 void Assembler::bltz(Register rs, int16_t offset) {
919 BlockTrampolinePoolScope block_trampoline_pool(this);
920 GenInstrImmediate(REGIMM, rs, BLTZ, offset);
921 BlockTrampolinePoolFor(1); // For associated delay slot.
922 }
923
924
bltzal(Register rs,int16_t offset)925 void Assembler::bltzal(Register rs, int16_t offset) {
926 BlockTrampolinePoolScope block_trampoline_pool(this);
927 positions_recorder()->WriteRecordedPositions();
928 GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
929 BlockTrampolinePoolFor(1); // For associated delay slot.
930 }
931
932
bne(Register rs,Register rt,int16_t offset)933 void Assembler::bne(Register rs, Register rt, int16_t offset) {
934 BlockTrampolinePoolScope block_trampoline_pool(this);
935 GenInstrImmediate(BNE, rs, rt, offset);
936 BlockTrampolinePoolFor(1); // For associated delay slot.
937 }
938
939
j(int32_t target)940 void Assembler::j(int32_t target) {
941 ASSERT(is_uint28(target) && ((target & 3) == 0));
942 GenInstrJump(J, target >> 2);
943 }
944
945
jr(Register rs)946 void Assembler::jr(Register rs) {
947 BlockTrampolinePoolScope block_trampoline_pool(this);
948 if (rs.is(ra)) {
949 positions_recorder()->WriteRecordedPositions();
950 }
951 GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
952 BlockTrampolinePoolFor(1); // For associated delay slot.
953 }
954
955
jal(int32_t target)956 void Assembler::jal(int32_t target) {
957 positions_recorder()->WriteRecordedPositions();
958 ASSERT(is_uint28(target) && ((target & 3) == 0));
959 GenInstrJump(JAL, target >> 2);
960 }
961
962
jalr(Register rs,Register rd)963 void Assembler::jalr(Register rs, Register rd) {
964 BlockTrampolinePoolScope block_trampoline_pool(this);
965 positions_recorder()->WriteRecordedPositions();
966 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
967 BlockTrampolinePoolFor(1); // For associated delay slot.
968 }
969
970
971 //-------Data-processing-instructions---------
972
973 // Arithmetic.
974
addu(Register rd,Register rs,Register rt)975 void Assembler::addu(Register rd, Register rs, Register rt) {
976 GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
977 }
978
979
addiu(Register rd,Register rs,int32_t j)980 void Assembler::addiu(Register rd, Register rs, int32_t j) {
981 GenInstrImmediate(ADDIU, rs, rd, j);
982
983 // Eliminate pattern: push(r), pop().
984 // addiu(sp, sp, Operand(-kPointerSize));
985 // sw(src, MemOperand(sp, 0);
986 // addiu(sp, sp, Operand(kPointerSize));
987 // Both instructions can be eliminated.
988 if (can_peephole_optimize(3) &&
989 // Pattern.
990 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
991 (instr_at(pc_ - 2 * kInstrSize) & ~kRtMask) == kPushRegPattern &&
992 (instr_at(pc_ - 3 * kInstrSize)) == kPushInstruction) {
993 pc_ -= 3 * kInstrSize;
994 if (FLAG_print_peephole_optimization) {
995 PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
996 }
997 }
998
999 // Eliminate pattern: push(ry), pop(rx).
1000 // addiu(sp, sp, -kPointerSize)
1001 // sw(ry, MemOperand(sp, 0)
1002 // lw(rx, MemOperand(sp, 0)
1003 // addiu(sp, sp, kPointerSize);
1004 // Both instructions can be eliminated if ry = rx.
1005 // If ry != rx, a register copy from ry to rx is inserted
1006 // after eliminating the push and the pop instructions.
1007 if (can_peephole_optimize(4)) {
1008 Instr pre_push_sp_set = instr_at(pc_ - 4 * kInstrSize);
1009 Instr push_instr = instr_at(pc_ - 3 * kInstrSize);
1010 Instr pop_instr = instr_at(pc_ - 2 * kInstrSize);
1011 Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize);
1012
1013 if (IsPush(push_instr) &&
1014 IsPop(pop_instr) && pre_push_sp_set == kPushInstruction &&
1015 post_pop_sp_set == kPopInstruction) {
1016 if ((pop_instr & kRtMask) != (push_instr & kRtMask)) {
1017 // For consecutive push and pop on different registers,
1018 // we delete both the push & pop and insert a register move.
1019 // push ry, pop rx --> mov rx, ry.
1020 Register reg_pushed, reg_popped;
1021 reg_pushed = GetRt(push_instr);
1022 reg_popped = GetRt(pop_instr);
1023 pc_ -= 4 * kInstrSize;
1024 // Insert a mov instruction, which is better than a pair of push & pop.
1025 or_(reg_popped, reg_pushed, zero_reg);
1026 if (FLAG_print_peephole_optimization) {
1027 PrintF("%x push/pop (diff reg) replaced by a reg move\n",
1028 pc_offset());
1029 }
1030 } else {
1031 // For consecutive push and pop on the same register,
1032 // both the push and the pop can be deleted.
1033 pc_ -= 4 * kInstrSize;
1034 if (FLAG_print_peephole_optimization) {
1035 PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
1036 }
1037 }
1038 }
1039 }
1040
1041 if (can_peephole_optimize(5)) {
1042 Instr pre_push_sp_set = instr_at(pc_ - 5 * kInstrSize);
1043 Instr mem_write_instr = instr_at(pc_ - 4 * kInstrSize);
1044 Instr lw_instr = instr_at(pc_ - 3 * kInstrSize);
1045 Instr mem_read_instr = instr_at(pc_ - 2 * kInstrSize);
1046 Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize);
1047
1048 if (IsPush(mem_write_instr) &&
1049 pre_push_sp_set == kPushInstruction &&
1050 IsPop(mem_read_instr) &&
1051 post_pop_sp_set == kPopInstruction) {
1052 if ((IsLwRegFpOffset(lw_instr) ||
1053 IsLwRegFpNegOffset(lw_instr))) {
1054 if ((mem_write_instr & kRtMask) ==
1055 (mem_read_instr & kRtMask)) {
1056 // Pattern: push & pop from/to same register,
1057 // with a fp+offset lw in between.
1058 //
1059 // The following:
1060 // addiu sp, sp, -4
1061 // sw rx, [sp, #0]!
1062 // lw rz, [fp, #-24]
1063 // lw rx, [sp, 0],
1064 // addiu sp, sp, 4
1065 //
1066 // Becomes:
1067 // if(rx == rz)
1068 // delete all
1069 // else
1070 // lw rz, [fp, #-24]
1071
1072 if ((mem_write_instr & kRtMask) == (lw_instr & kRtMask)) {
1073 pc_ -= 5 * kInstrSize;
1074 } else {
1075 pc_ -= 5 * kInstrSize;
1076 // Reinsert back the lw rz.
1077 emit(lw_instr);
1078 }
1079 if (FLAG_print_peephole_optimization) {
1080 PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset());
1081 }
1082 } else {
1083 // Pattern: push & pop from/to different registers
1084 // with a fp + offset lw in between.
1085 //
1086 // The following:
1087 // addiu sp, sp ,-4
1088 // sw rx, [sp, 0]
1089 // lw rz, [fp, #-24]
1090 // lw ry, [sp, 0]
1091 // addiu sp, sp, 4
1092 //
1093 // Becomes:
1094 // if(ry == rz)
1095 // mov ry, rx;
1096 // else if(rx != rz)
1097 // lw rz, [fp, #-24]
1098 // mov ry, rx
1099 // else if((ry != rz) || (rx == rz)) becomes:
1100 // mov ry, rx
1101 // lw rz, [fp, #-24]
1102
1103 Register reg_pushed, reg_popped;
1104 if ((mem_read_instr & kRtMask) == (lw_instr & kRtMask)) {
1105 reg_pushed = GetRt(mem_write_instr);
1106 reg_popped = GetRt(mem_read_instr);
1107 pc_ -= 5 * kInstrSize;
1108 or_(reg_popped, reg_pushed, zero_reg); // Move instruction.
1109 } else if ((mem_write_instr & kRtMask)
1110 != (lw_instr & kRtMask)) {
1111 reg_pushed = GetRt(mem_write_instr);
1112 reg_popped = GetRt(mem_read_instr);
1113 pc_ -= 5 * kInstrSize;
1114 emit(lw_instr);
1115 or_(reg_popped, reg_pushed, zero_reg); // Move instruction.
1116 } else if (((mem_read_instr & kRtMask)
1117 != (lw_instr & kRtMask)) ||
1118 ((mem_write_instr & kRtMask)
1119 == (lw_instr & kRtMask)) ) {
1120 reg_pushed = GetRt(mem_write_instr);
1121 reg_popped = GetRt(mem_read_instr);
1122 pc_ -= 5 * kInstrSize;
1123 or_(reg_popped, reg_pushed, zero_reg); // Move instruction.
1124 emit(lw_instr);
1125 }
1126 if (FLAG_print_peephole_optimization) {
1127 PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset());
1128 }
1129 }
1130 }
1131 }
1132 }
1133 }
1134
1135
subu(Register rd,Register rs,Register rt)1136 void Assembler::subu(Register rd, Register rs, Register rt) {
1137 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
1138 }
1139
1140
mul(Register rd,Register rs,Register rt)1141 void Assembler::mul(Register rd, Register rs, Register rt) {
1142 GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
1143 }
1144
1145
mult(Register rs,Register rt)1146 void Assembler::mult(Register rs, Register rt) {
1147 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
1148 }
1149
1150
multu(Register rs,Register rt)1151 void Assembler::multu(Register rs, Register rt) {
1152 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
1153 }
1154
1155
div(Register rs,Register rt)1156 void Assembler::div(Register rs, Register rt) {
1157 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
1158 }
1159
1160
divu(Register rs,Register rt)1161 void Assembler::divu(Register rs, Register rt) {
1162 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
1163 }
1164
1165
1166 // Logical.
1167
and_(Register rd,Register rs,Register rt)1168 void Assembler::and_(Register rd, Register rs, Register rt) {
1169 GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
1170 }
1171
1172
andi(Register rt,Register rs,int32_t j)1173 void Assembler::andi(Register rt, Register rs, int32_t j) {
1174 GenInstrImmediate(ANDI, rs, rt, j);
1175 }
1176
1177
or_(Register rd,Register rs,Register rt)1178 void Assembler::or_(Register rd, Register rs, Register rt) {
1179 GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
1180 }
1181
1182
ori(Register rt,Register rs,int32_t j)1183 void Assembler::ori(Register rt, Register rs, int32_t j) {
1184 GenInstrImmediate(ORI, rs, rt, j);
1185 }
1186
1187
xor_(Register rd,Register rs,Register rt)1188 void Assembler::xor_(Register rd, Register rs, Register rt) {
1189 GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
1190 }
1191
1192
xori(Register rt,Register rs,int32_t j)1193 void Assembler::xori(Register rt, Register rs, int32_t j) {
1194 GenInstrImmediate(XORI, rs, rt, j);
1195 }
1196
1197
nor(Register rd,Register rs,Register rt)1198 void Assembler::nor(Register rd, Register rs, Register rt) {
1199 GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
1200 }
1201
1202
1203 // Shifts.
sll(Register rd,Register rt,uint16_t sa,bool coming_from_nop)1204 void Assembler::sll(Register rd,
1205 Register rt,
1206 uint16_t sa,
1207 bool coming_from_nop) {
1208 // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
1209 // generated using the sll instruction. They must be generated using
1210 // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo
1211 // instructions.
1212 ASSERT(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg)));
1213 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL);
1214 }
1215
1216
sllv(Register rd,Register rt,Register rs)1217 void Assembler::sllv(Register rd, Register rt, Register rs) {
1218 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
1219 }
1220
1221
srl(Register rd,Register rt,uint16_t sa)1222 void Assembler::srl(Register rd, Register rt, uint16_t sa) {
1223 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL);
1224 }
1225
1226
srlv(Register rd,Register rt,Register rs)1227 void Assembler::srlv(Register rd, Register rt, Register rs) {
1228 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
1229 }
1230
1231
sra(Register rd,Register rt,uint16_t sa)1232 void Assembler::sra(Register rd, Register rt, uint16_t sa) {
1233 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA);
1234 }
1235
1236
srav(Register rd,Register rt,Register rs)1237 void Assembler::srav(Register rd, Register rt, Register rs) {
1238 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
1239 }
1240
1241
rotr(Register rd,Register rt,uint16_t sa)1242 void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
1243 // Should be called via MacroAssembler::Ror.
1244 ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1245 ASSERT(mips32r2);
1246 Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift)
1247 | (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
1248 emit(instr);
1249 }
1250
1251
rotrv(Register rd,Register rt,Register rs)1252 void Assembler::rotrv(Register rd, Register rt, Register rs) {
1253 // Should be called via MacroAssembler::Ror.
1254 ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() );
1255 ASSERT(mips32r2);
1256 Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift)
1257 | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
1258 emit(instr);
1259 }
1260
1261
1262 //------------Memory-instructions-------------
1263
1264 // Helper for base-reg + offset, when offset is larger than int16.
LoadRegPlusOffsetToAt(const MemOperand & src)1265 void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) {
1266 ASSERT(!src.rm().is(at));
1267 lui(at, src.offset_ >> kLuiShift);
1268 ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset.
1269 addu(at, at, src.rm()); // Add base register.
1270 }
1271
1272
lb(Register rd,const MemOperand & rs)1273 void Assembler::lb(Register rd, const MemOperand& rs) {
1274 if (is_int16(rs.offset_)) {
1275 GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
1276 } else { // Offset > 16 bits, use multiple instructions to load.
1277 LoadRegPlusOffsetToAt(rs);
1278 GenInstrImmediate(LB, at, rd, 0); // Equiv to lb(rd, MemOperand(at, 0));
1279 }
1280 }
1281
1282
lbu(Register rd,const MemOperand & rs)1283 void Assembler::lbu(Register rd, const MemOperand& rs) {
1284 if (is_int16(rs.offset_)) {
1285 GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
1286 } else { // Offset > 16 bits, use multiple instructions to load.
1287 LoadRegPlusOffsetToAt(rs);
1288 GenInstrImmediate(LBU, at, rd, 0); // Equiv to lbu(rd, MemOperand(at, 0));
1289 }
1290 }
1291
1292
lh(Register rd,const MemOperand & rs)1293 void Assembler::lh(Register rd, const MemOperand& rs) {
1294 if (is_int16(rs.offset_)) {
1295 GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
1296 } else { // Offset > 16 bits, use multiple instructions to load.
1297 LoadRegPlusOffsetToAt(rs);
1298 GenInstrImmediate(LH, at, rd, 0); // Equiv to lh(rd, MemOperand(at, 0));
1299 }
1300 }
1301
1302
lhu(Register rd,const MemOperand & rs)1303 void Assembler::lhu(Register rd, const MemOperand& rs) {
1304 if (is_int16(rs.offset_)) {
1305 GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
1306 } else { // Offset > 16 bits, use multiple instructions to load.
1307 LoadRegPlusOffsetToAt(rs);
1308 GenInstrImmediate(LHU, at, rd, 0); // Equiv to lhu(rd, MemOperand(at, 0));
1309 }
1310 }
1311
1312
lw(Register rd,const MemOperand & rs)1313 void Assembler::lw(Register rd, const MemOperand& rs) {
1314 if (is_int16(rs.offset_)) {
1315 GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
1316 } else { // Offset > 16 bits, use multiple instructions to load.
1317 LoadRegPlusOffsetToAt(rs);
1318 GenInstrImmediate(LW, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0));
1319 }
1320
1321 if (can_peephole_optimize(2)) {
1322 Instr sw_instr = instr_at(pc_ - 2 * kInstrSize);
1323 Instr lw_instr = instr_at(pc_ - 1 * kInstrSize);
1324
1325 if ((IsSwRegFpOffset(sw_instr) &&
1326 IsLwRegFpOffset(lw_instr)) ||
1327 (IsSwRegFpNegOffset(sw_instr) &&
1328 IsLwRegFpNegOffset(lw_instr))) {
1329 if ((lw_instr & kLwSwInstrArgumentMask) ==
1330 (sw_instr & kLwSwInstrArgumentMask)) {
1331 // Pattern: Lw/sw same fp+offset, same register.
1332 //
1333 // The following:
1334 // sw rx, [fp, #-12]
1335 // lw rx, [fp, #-12]
1336 //
1337 // Becomes:
1338 // sw rx, [fp, #-12]
1339
1340 pc_ -= 1 * kInstrSize;
1341 if (FLAG_print_peephole_optimization) {
1342 PrintF("%x sw/lw (fp + same offset), same reg\n", pc_offset());
1343 }
1344 } else if ((lw_instr & kLwSwOffsetMask) ==
1345 (sw_instr & kLwSwOffsetMask)) {
1346 // Pattern: Lw/sw same fp+offset, different register.
1347 //
1348 // The following:
1349 // sw rx, [fp, #-12]
1350 // lw ry, [fp, #-12]
1351 //
1352 // Becomes:
1353 // sw rx, [fp, #-12]
1354 // mov ry, rx
1355
1356 Register reg_stored, reg_loaded;
1357 reg_stored = GetRt(sw_instr);
1358 reg_loaded = GetRt(lw_instr);
1359 pc_ -= 1 * kInstrSize;
1360 // Insert a mov instruction, which is better than lw.
1361 or_(reg_loaded, reg_stored, zero_reg); // Move instruction.
1362 if (FLAG_print_peephole_optimization) {
1363 PrintF("%x sw/lw (fp + same offset), diff reg \n", pc_offset());
1364 }
1365 }
1366 }
1367 }
1368 }
1369
1370
lwl(Register rd,const MemOperand & rs)1371 void Assembler::lwl(Register rd, const MemOperand& rs) {
1372 GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
1373 }
1374
1375
lwr(Register rd,const MemOperand & rs)1376 void Assembler::lwr(Register rd, const MemOperand& rs) {
1377 GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
1378 }
1379
1380
sb(Register rd,const MemOperand & rs)1381 void Assembler::sb(Register rd, const MemOperand& rs) {
1382 if (is_int16(rs.offset_)) {
1383 GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
1384 } else { // Offset > 16 bits, use multiple instructions to store.
1385 LoadRegPlusOffsetToAt(rs);
1386 GenInstrImmediate(SB, at, rd, 0); // Equiv to sb(rd, MemOperand(at, 0));
1387 }
1388 }
1389
1390
sh(Register rd,const MemOperand & rs)1391 void Assembler::sh(Register rd, const MemOperand& rs) {
1392 if (is_int16(rs.offset_)) {
1393 GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
1394 } else { // Offset > 16 bits, use multiple instructions to store.
1395 LoadRegPlusOffsetToAt(rs);
1396 GenInstrImmediate(SH, at, rd, 0); // Equiv to sh(rd, MemOperand(at, 0));
1397 }
1398 }
1399
1400
sw(Register rd,const MemOperand & rs)1401 void Assembler::sw(Register rd, const MemOperand& rs) {
1402 if (is_int16(rs.offset_)) {
1403 GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
1404 } else { // Offset > 16 bits, use multiple instructions to store.
1405 LoadRegPlusOffsetToAt(rs);
1406 GenInstrImmediate(SW, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0));
1407 }
1408
1409 // Eliminate pattern: pop(), push(r).
1410 // addiu sp, sp, Operand(kPointerSize);
1411 // addiu sp, sp, Operand(-kPointerSize);
1412 // -> sw r, MemOpernad(sp, 0);
1413 if (can_peephole_optimize(3) &&
1414 // Pattern.
1415 instr_at(pc_ - 1 * kInstrSize) ==
1416 (kPushRegPattern | (rd.code() << kRtShift)) &&
1417 instr_at(pc_ - 2 * kInstrSize) == kPushInstruction &&
1418 instr_at(pc_ - 3 * kInstrSize) == kPopInstruction) {
1419 pc_ -= 3 * kInstrSize;
1420 GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
1421 if (FLAG_print_peephole_optimization) {
1422 PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
1423 }
1424 }
1425 }
1426
1427
swl(Register rd,const MemOperand & rs)1428 void Assembler::swl(Register rd, const MemOperand& rs) {
1429 GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
1430 }
1431
1432
swr(Register rd,const MemOperand & rs)1433 void Assembler::swr(Register rd, const MemOperand& rs) {
1434 GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
1435 }
1436
1437
lui(Register rd,int32_t j)1438 void Assembler::lui(Register rd, int32_t j) {
1439 GenInstrImmediate(LUI, zero_reg, rd, j);
1440 }
1441
1442
1443 //-------------Misc-instructions--------------
1444
1445 // Break / Trap instructions.
break_(uint32_t code)1446 void Assembler::break_(uint32_t code) {
1447 ASSERT((code & ~0xfffff) == 0);
1448 Instr break_instr = SPECIAL | BREAK | (code << 6);
1449 emit(break_instr);
1450 }
1451
1452
tge(Register rs,Register rt,uint16_t code)1453 void Assembler::tge(Register rs, Register rt, uint16_t code) {
1454 ASSERT(is_uint10(code));
1455 Instr instr = SPECIAL | TGE | rs.code() << kRsShift
1456 | rt.code() << kRtShift | code << 6;
1457 emit(instr);
1458 }
1459
1460
tgeu(Register rs,Register rt,uint16_t code)1461 void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
1462 ASSERT(is_uint10(code));
1463 Instr instr = SPECIAL | TGEU | rs.code() << kRsShift
1464 | rt.code() << kRtShift | code << 6;
1465 emit(instr);
1466 }
1467
1468
tlt(Register rs,Register rt,uint16_t code)1469 void Assembler::tlt(Register rs, Register rt, uint16_t code) {
1470 ASSERT(is_uint10(code));
1471 Instr instr =
1472 SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
1473 emit(instr);
1474 }
1475
1476
tltu(Register rs,Register rt,uint16_t code)1477 void Assembler::tltu(Register rs, Register rt, uint16_t code) {
1478 ASSERT(is_uint10(code));
1479 Instr instr =
1480 SPECIAL | TLTU | rs.code() << kRsShift
1481 | rt.code() << kRtShift | code << 6;
1482 emit(instr);
1483 }
1484
1485
teq(Register rs,Register rt,uint16_t code)1486 void Assembler::teq(Register rs, Register rt, uint16_t code) {
1487 ASSERT(is_uint10(code));
1488 Instr instr =
1489 SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
1490 emit(instr);
1491 }
1492
1493
tne(Register rs,Register rt,uint16_t code)1494 void Assembler::tne(Register rs, Register rt, uint16_t code) {
1495 ASSERT(is_uint10(code));
1496 Instr instr =
1497 SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
1498 emit(instr);
1499 }
1500
1501
1502 // Move from HI/LO register.
1503
mfhi(Register rd)1504 void Assembler::mfhi(Register rd) {
1505 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
1506 }
1507
1508
mflo(Register rd)1509 void Assembler::mflo(Register rd) {
1510 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
1511 }
1512
1513
1514 // Set on less than instructions.
slt(Register rd,Register rs,Register rt)1515 void Assembler::slt(Register rd, Register rs, Register rt) {
1516 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
1517 }
1518
1519
sltu(Register rd,Register rs,Register rt)1520 void Assembler::sltu(Register rd, Register rs, Register rt) {
1521 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
1522 }
1523
1524
slti(Register rt,Register rs,int32_t j)1525 void Assembler::slti(Register rt, Register rs, int32_t j) {
1526 GenInstrImmediate(SLTI, rs, rt, j);
1527 }
1528
1529
sltiu(Register rt,Register rs,int32_t j)1530 void Assembler::sltiu(Register rt, Register rs, int32_t j) {
1531 GenInstrImmediate(SLTIU, rs, rt, j);
1532 }
1533
1534
1535 // Conditional move.
movz(Register rd,Register rs,Register rt)1536 void Assembler::movz(Register rd, Register rs, Register rt) {
1537 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
1538 }
1539
1540
movn(Register rd,Register rs,Register rt)1541 void Assembler::movn(Register rd, Register rs, Register rt) {
1542 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
1543 }
1544
1545
movt(Register rd,Register rs,uint16_t cc)1546 void Assembler::movt(Register rd, Register rs, uint16_t cc) {
1547 Register rt;
1548 rt.code_ = (cc & 0x0003) << 2 | 1;
1549 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
1550 }
1551
1552
movf(Register rd,Register rs,uint16_t cc)1553 void Assembler::movf(Register rd, Register rs, uint16_t cc) {
1554 Register rt;
1555 rt.code_ = (cc & 0x0003) << 2 | 0;
1556 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
1557 }
1558
1559
1560 // Bit twiddling.
clz(Register rd,Register rs)1561 void Assembler::clz(Register rd, Register rs) {
1562 // Clz instr requires same GPR number in 'rd' and 'rt' fields.
1563 GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
1564 }
1565
1566
ins_(Register rt,Register rs,uint16_t pos,uint16_t size)1567 void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
1568 // Should be called via MacroAssembler::Ins.
1569 // Ins instr has 'rt' field as dest, and two uint5: msb, lsb.
1570 ASSERT(mips32r2);
1571 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
1572 }
1573
1574
ext_(Register rt,Register rs,uint16_t pos,uint16_t size)1575 void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
1576 // Should be called via MacroAssembler::Ext.
1577 // Ext instr has 'rt' field as dest, and two uint5: msb, lsb.
1578 ASSERT(mips32r2);
1579 GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
1580 }
1581
1582
1583 //--------Coprocessor-instructions----------------
1584
1585 // Load, store, move.
lwc1(FPURegister fd,const MemOperand & src)1586 void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
1587 GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
1588 }
1589
1590
ldc1(FPURegister fd,const MemOperand & src)1591 void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
1592 // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit
1593 // load to two 32-bit loads.
1594 GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
1595 FPURegister nextfpreg;
1596 nextfpreg.setcode(fd.code() + 1);
1597 GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ + 4);
1598 }
1599
1600
swc1(FPURegister fd,const MemOperand & src)1601 void Assembler::swc1(FPURegister fd, const MemOperand& src) {
1602 GenInstrImmediate(SWC1, src.rm(), fd, src.offset_);
1603 }
1604
1605
sdc1(FPURegister fd,const MemOperand & src)1606 void Assembler::sdc1(FPURegister fd, const MemOperand& src) {
1607 // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit
1608 // store to two 32-bit stores.
1609 GenInstrImmediate(SWC1, src.rm(), fd, src.offset_);
1610 FPURegister nextfpreg;
1611 nextfpreg.setcode(fd.code() + 1);
1612 GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ + 4);
1613 }
1614
1615
mtc1(Register rt,FPURegister fs)1616 void Assembler::mtc1(Register rt, FPURegister fs) {
1617 GenInstrRegister(COP1, MTC1, rt, fs, f0);
1618 }
1619
1620
mfc1(Register rt,FPURegister fs)1621 void Assembler::mfc1(Register rt, FPURegister fs) {
1622 GenInstrRegister(COP1, MFC1, rt, fs, f0);
1623 }
1624
1625
ctc1(Register rt,FPUControlRegister fs)1626 void Assembler::ctc1(Register rt, FPUControlRegister fs) {
1627 GenInstrRegister(COP1, CTC1, rt, fs);
1628 }
1629
1630
cfc1(Register rt,FPUControlRegister fs)1631 void Assembler::cfc1(Register rt, FPUControlRegister fs) {
1632 GenInstrRegister(COP1, CFC1, rt, fs);
1633 }
1634
1635
1636 // Arithmetic.
1637
add_d(FPURegister fd,FPURegister fs,FPURegister ft)1638 void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
1639 GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
1640 }
1641
1642
sub_d(FPURegister fd,FPURegister fs,FPURegister ft)1643 void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
1644 GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
1645 }
1646
1647
mul_d(FPURegister fd,FPURegister fs,FPURegister ft)1648 void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
1649 GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
1650 }
1651
1652
div_d(FPURegister fd,FPURegister fs,FPURegister ft)1653 void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
1654 GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
1655 }
1656
1657
abs_d(FPURegister fd,FPURegister fs)1658 void Assembler::abs_d(FPURegister fd, FPURegister fs) {
1659 GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
1660 }
1661
1662
mov_d(FPURegister fd,FPURegister fs)1663 void Assembler::mov_d(FPURegister fd, FPURegister fs) {
1664 GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
1665 }
1666
1667
neg_d(FPURegister fd,FPURegister fs)1668 void Assembler::neg_d(FPURegister fd, FPURegister fs) {
1669 GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
1670 }
1671
1672
sqrt_d(FPURegister fd,FPURegister fs)1673 void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
1674 GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
1675 }
1676
1677
1678 // Conversions.
1679
cvt_w_s(FPURegister fd,FPURegister fs)1680 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
1681 GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
1682 }
1683
1684
cvt_w_d(FPURegister fd,FPURegister fs)1685 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
1686 GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
1687 }
1688
1689
trunc_w_s(FPURegister fd,FPURegister fs)1690 void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
1691 GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
1692 }
1693
1694
trunc_w_d(FPURegister fd,FPURegister fs)1695 void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
1696 GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
1697 }
1698
1699
round_w_s(FPURegister fd,FPURegister fs)1700 void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
1701 GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
1702 }
1703
1704
round_w_d(FPURegister fd,FPURegister fs)1705 void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
1706 GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
1707 }
1708
1709
floor_w_s(FPURegister fd,FPURegister fs)1710 void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
1711 GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
1712 }
1713
1714
floor_w_d(FPURegister fd,FPURegister fs)1715 void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
1716 GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
1717 }
1718
1719
ceil_w_s(FPURegister fd,FPURegister fs)1720 void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
1721 GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
1722 }
1723
1724
ceil_w_d(FPURegister fd,FPURegister fs)1725 void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
1726 GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
1727 }
1728
1729
cvt_l_s(FPURegister fd,FPURegister fs)1730 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
1731 ASSERT(mips32r2);
1732 GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
1733 }
1734
1735
cvt_l_d(FPURegister fd,FPURegister fs)1736 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
1737 ASSERT(mips32r2);
1738 GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
1739 }
1740
1741
trunc_l_s(FPURegister fd,FPURegister fs)1742 void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
1743 ASSERT(mips32r2);
1744 GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
1745 }
1746
1747
trunc_l_d(FPURegister fd,FPURegister fs)1748 void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
1749 ASSERT(mips32r2);
1750 GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
1751 }
1752
1753
round_l_s(FPURegister fd,FPURegister fs)1754 void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
1755 GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
1756 }
1757
1758
round_l_d(FPURegister fd,FPURegister fs)1759 void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
1760 GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
1761 }
1762
1763
floor_l_s(FPURegister fd,FPURegister fs)1764 void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
1765 GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
1766 }
1767
1768
floor_l_d(FPURegister fd,FPURegister fs)1769 void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
1770 GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
1771 }
1772
1773
ceil_l_s(FPURegister fd,FPURegister fs)1774 void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
1775 GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
1776 }
1777
1778
ceil_l_d(FPURegister fd,FPURegister fs)1779 void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
1780 GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
1781 }
1782
1783
cvt_s_w(FPURegister fd,FPURegister fs)1784 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
1785 GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
1786 }
1787
1788
cvt_s_l(FPURegister fd,FPURegister fs)1789 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
1790 ASSERT(mips32r2);
1791 GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
1792 }
1793
1794
cvt_s_d(FPURegister fd,FPURegister fs)1795 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
1796 GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
1797 }
1798
1799
cvt_d_w(FPURegister fd,FPURegister fs)1800 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
1801 GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
1802 }
1803
1804
cvt_d_l(FPURegister fd,FPURegister fs)1805 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
1806 ASSERT(mips32r2);
1807 GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
1808 }
1809
1810
cvt_d_s(FPURegister fd,FPURegister fs)1811 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
1812 GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
1813 }
1814
1815
1816 // Conditions.
c(FPUCondition cond,SecondaryField fmt,FPURegister fs,FPURegister ft,uint16_t cc)1817 void Assembler::c(FPUCondition cond, SecondaryField fmt,
1818 FPURegister fs, FPURegister ft, uint16_t cc) {
1819 ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
1820 ASSERT(is_uint3(cc));
1821 ASSERT((fmt & ~(31 << kRsShift)) == 0);
1822 Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift
1823 | cc << 8 | 3 << 4 | cond;
1824 emit(instr);
1825 }
1826
1827
fcmp(FPURegister src1,const double src2,FPUCondition cond)1828 void Assembler::fcmp(FPURegister src1, const double src2,
1829 FPUCondition cond) {
1830 ASSERT(isolate()->cpu_features()->IsSupported(FPU));
1831 ASSERT(src2 == 0.0);
1832 mtc1(zero_reg, f14);
1833 cvt_d_w(f14, f14);
1834 c(cond, D, src1, f14, 0);
1835 }
1836
1837
bc1f(int16_t offset,uint16_t cc)1838 void Assembler::bc1f(int16_t offset, uint16_t cc) {
1839 ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
1840 ASSERT(is_uint3(cc));
1841 Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
1842 emit(instr);
1843 }
1844
1845
bc1t(int16_t offset,uint16_t cc)1846 void Assembler::bc1t(int16_t offset, uint16_t cc) {
1847 ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
1848 ASSERT(is_uint3(cc));
1849 Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
1850 emit(instr);
1851 }
1852
1853
1854 // Debugging.
RecordJSReturn()1855 void Assembler::RecordJSReturn() {
1856 positions_recorder()->WriteRecordedPositions();
1857 CheckBuffer();
1858 RecordRelocInfo(RelocInfo::JS_RETURN);
1859 }
1860
1861
RecordDebugBreakSlot()1862 void Assembler::RecordDebugBreakSlot() {
1863 positions_recorder()->WriteRecordedPositions();
1864 CheckBuffer();
1865 RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
1866 }
1867
1868
RecordComment(const char * msg)1869 void Assembler::RecordComment(const char* msg) {
1870 if (FLAG_code_comments) {
1871 CheckBuffer();
1872 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
1873 }
1874 }
1875
1876
GrowBuffer()1877 void Assembler::GrowBuffer() {
1878 if (!own_buffer_) FATAL("external code buffer is too small");
1879
1880 // Compute new buffer size.
1881 CodeDesc desc; // The new buffer.
1882 if (buffer_size_ < 4*KB) {
1883 desc.buffer_size = 4*KB;
1884 } else if (buffer_size_ < 1*MB) {
1885 desc.buffer_size = 2*buffer_size_;
1886 } else {
1887 desc.buffer_size = buffer_size_ + 1*MB;
1888 }
1889 CHECK_GT(desc.buffer_size, 0); // No overflow.
1890
1891 // Setup new buffer.
1892 desc.buffer = NewArray<byte>(desc.buffer_size);
1893
1894 desc.instr_size = pc_offset();
1895 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
1896
1897 // Copy the data.
1898 int pc_delta = desc.buffer - buffer_;
1899 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
1900 memmove(desc.buffer, buffer_, desc.instr_size);
1901 memmove(reloc_info_writer.pos() + rc_delta,
1902 reloc_info_writer.pos(), desc.reloc_size);
1903
1904 // Switch buffers.
1905 DeleteArray(buffer_);
1906 buffer_ = desc.buffer;
1907 buffer_size_ = desc.buffer_size;
1908 pc_ += pc_delta;
1909 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
1910 reloc_info_writer.last_pc() + pc_delta);
1911
1912 // On ia32 and ARM pc relative addressing is used, and we thus need to apply a
1913 // shift by pc_delta. But on MIPS the target address it directly loaded, so
1914 // we do not need to relocate here.
1915
1916 ASSERT(!overflow());
1917 }
1918
1919
db(uint8_t data)1920 void Assembler::db(uint8_t data) {
1921 CheckBuffer();
1922 *reinterpret_cast<uint8_t*>(pc_) = data;
1923 pc_ += sizeof(uint8_t);
1924 }
1925
1926
dd(uint32_t data)1927 void Assembler::dd(uint32_t data) {
1928 CheckBuffer();
1929 *reinterpret_cast<uint32_t*>(pc_) = data;
1930 pc_ += sizeof(uint32_t);
1931 }
1932
1933
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)1934 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
1935 RelocInfo rinfo(pc_, rmode, data); // We do not try to reuse pool constants.
1936 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
1937 // Adjust code for new modes.
1938 ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
1939 || RelocInfo::IsJSReturn(rmode)
1940 || RelocInfo::IsComment(rmode)
1941 || RelocInfo::IsPosition(rmode));
1942 // These modes do not need an entry in the constant pool.
1943 }
1944 if (rinfo.rmode() != RelocInfo::NONE) {
1945 // Don't record external references unless the heap will be serialized.
1946 if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
1947 !Serializer::enabled() &&
1948 !FLAG_debug_code) {
1949 return;
1950 }
1951 ASSERT(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here.
1952 reloc_info_writer.Write(&rinfo);
1953 }
1954 }
1955
1956
BlockTrampolinePoolFor(int instructions)1957 void Assembler::BlockTrampolinePoolFor(int instructions) {
1958 BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
1959 }
1960
1961
CheckTrampolinePool(bool force_emit)1962 void Assembler::CheckTrampolinePool(bool force_emit) {
1963 // Calculate the offset of the next check.
1964 next_buffer_check_ = pc_offset() + kCheckConstInterval;
1965
1966 int dist = pc_offset() - last_trampoline_pool_end_;
1967
1968 if (dist <= kMaxDistBetweenPools && !force_emit) {
1969 return;
1970 }
1971
1972 // Some small sequences of instructions must not be broken up by the
1973 // insertion of a trampoline pool; such sequences are protected by setting
1974 // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
1975 // which are both checked here. Also, recursive calls to CheckTrampolinePool
1976 // are blocked by trampoline_pool_blocked_nesting_.
1977 if ((trampoline_pool_blocked_nesting_ > 0) ||
1978 (pc_offset() < no_trampoline_pool_before_)) {
1979 // Emission is currently blocked; make sure we try again as soon as
1980 // possible.
1981 if (trampoline_pool_blocked_nesting_ > 0) {
1982 next_buffer_check_ = pc_offset() + kInstrSize;
1983 } else {
1984 next_buffer_check_ = no_trampoline_pool_before_;
1985 }
1986 return;
1987 }
1988
1989 // First we emit jump (2 instructions), then we emit trampoline pool.
1990 { BlockTrampolinePoolScope block_trampoline_pool(this);
1991 Label after_pool;
1992 b(&after_pool);
1993 nop();
1994
1995 int pool_start = pc_offset();
1996 for (int i = 0; i < kSlotsPerTrampoline; i++) {
1997 b(&after_pool);
1998 nop();
1999 }
2000 for (int i = 0; i < kLabelsPerTrampoline; i++) {
2001 emit(0);
2002 }
2003 last_trampoline_pool_end_ = pc_offset() - kInstrSize;
2004 bind(&after_pool);
2005 trampolines_.Add(Trampoline(pool_start,
2006 kSlotsPerTrampoline,
2007 kLabelsPerTrampoline));
2008
2009 // Since a trampoline pool was just emitted,
2010 // move the check offset forward by the standard interval.
2011 next_buffer_check_ = last_trampoline_pool_end_ + kMaxDistBetweenPools;
2012 }
2013 return;
2014 }
2015
2016
target_address_at(Address pc)2017 Address Assembler::target_address_at(Address pc) {
2018 Instr instr1 = instr_at(pc);
2019 Instr instr2 = instr_at(pc + kInstrSize);
2020 // Check we have 2 instructions generated by li.
2021 ASSERT(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) ||
2022 ((instr1 == nopInstr) && ((instr2 & kOpcodeMask) == ADDI ||
2023 (instr2 & kOpcodeMask) == ORI ||
2024 (instr2 & kOpcodeMask) == LUI)));
2025 // Interpret these 2 instructions.
2026 if (instr1 == nopInstr) {
2027 if ((instr2 & kOpcodeMask) == ADDI) {
2028 return reinterpret_cast<Address>(((instr2 & kImm16Mask) << 16) >> 16);
2029 } else if ((instr2 & kOpcodeMask) == ORI) {
2030 return reinterpret_cast<Address>(instr2 & kImm16Mask);
2031 } else if ((instr2 & kOpcodeMask) == LUI) {
2032 return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16);
2033 }
2034 } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) {
2035 // 32 bit value.
2036 return reinterpret_cast<Address>(
2037 (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask));
2038 }
2039
2040 // We should never get here.
2041 UNREACHABLE();
2042 return (Address)0x0;
2043 }
2044
2045
set_target_address_at(Address pc,Address target)2046 void Assembler::set_target_address_at(Address pc, Address target) {
2047 // On MIPS we need to patch the code to generate.
2048
2049 // First check we have a li.
2050 Instr instr2 = instr_at(pc + kInstrSize);
2051 #ifdef DEBUG
2052 Instr instr1 = instr_at(pc);
2053
2054 // Check we have indeed the result from a li with MustUseReg true.
2055 CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) ||
2056 ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU ||
2057 (instr2 & kOpcodeMask)== ORI ||
2058 (instr2 & kOpcodeMask)== LUI)));
2059 #endif
2060
2061 uint32_t rt_code = (instr2 & kRtFieldMask);
2062 uint32_t* p = reinterpret_cast<uint32_t*>(pc);
2063 uint32_t itarget = reinterpret_cast<uint32_t>(target);
2064
2065 if (is_int16(itarget)) {
2066 // nop.
2067 // addiu rt zero_reg j.
2068 *p = nopInstr;
2069 *(p+1) = ADDIU | rt_code | (itarget & kImm16Mask);
2070 } else if (!(itarget & kHiMask)) {
2071 // nop.
2072 // ori rt zero_reg j.
2073 *p = nopInstr;
2074 *(p+1) = ORI | rt_code | (itarget & kImm16Mask);
2075 } else if (!(itarget & kImm16Mask)) {
2076 // nop.
2077 // lui rt (kHiMask & itarget) >> kLuiShift.
2078 *p = nopInstr;
2079 *(p+1) = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift);
2080 } else {
2081 // lui rt (kHiMask & itarget) >> kLuiShift.
2082 // ori rt rt, (kImm16Mask & itarget).
2083 *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift);
2084 *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask);
2085 }
2086
2087 CPU::FlushICache(pc, 2 * sizeof(int32_t));
2088 }
2089
2090
2091 } } // namespace v8::internal
2092
2093 #endif // V8_TARGET_ARCH_MIPS
2094