• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2  //
3  //                     The LLVM Compiler Infrastructure
4  //
5  // This file is distributed under the University of Illinois Open Source
6  // License. See LICENSE.TXT for details.
7  //
8  //===----------------------------------------------------------------------===//
9  //
10  //  This file implements the ASTContext interface.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "clang/AST/ASTContext.h"
15  #include "clang/AST/CharUnits.h"
16  #include "clang/AST/DeclCXX.h"
17  #include "clang/AST/DeclObjC.h"
18  #include "clang/AST/DeclTemplate.h"
19  #include "clang/AST/TypeLoc.h"
20  #include "clang/AST/Expr.h"
21  #include "clang/AST/ExprCXX.h"
22  #include "clang/AST/ExternalASTSource.h"
23  #include "clang/AST/ASTMutationListener.h"
24  #include "clang/AST/RecordLayout.h"
25  #include "clang/AST/Mangle.h"
26  #include "clang/Basic/Builtins.h"
27  #include "clang/Basic/SourceManager.h"
28  #include "clang/Basic/TargetInfo.h"
29  #include "llvm/ADT/SmallString.h"
30  #include "llvm/ADT/StringExtras.h"
31  #include "llvm/Support/MathExtras.h"
32  #include "llvm/Support/raw_ostream.h"
33  #include "CXXABI.h"
34  #include <map>
35  
36  using namespace clang;
37  
38  unsigned ASTContext::NumImplicitDefaultConstructors;
39  unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
40  unsigned ASTContext::NumImplicitCopyConstructors;
41  unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
42  unsigned ASTContext::NumImplicitMoveConstructors;
43  unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
44  unsigned ASTContext::NumImplicitCopyAssignmentOperators;
45  unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
46  unsigned ASTContext::NumImplicitMoveAssignmentOperators;
47  unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
48  unsigned ASTContext::NumImplicitDestructors;
49  unsigned ASTContext::NumImplicitDestructorsDeclared;
50  
51  enum FloatingRank {
52    FloatRank, DoubleRank, LongDoubleRank
53  };
54  
55  void
Profile(llvm::FoldingSetNodeID & ID,TemplateTemplateParmDecl * Parm)56  ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
57                                                 TemplateTemplateParmDecl *Parm) {
58    ID.AddInteger(Parm->getDepth());
59    ID.AddInteger(Parm->getPosition());
60    ID.AddBoolean(Parm->isParameterPack());
61  
62    TemplateParameterList *Params = Parm->getTemplateParameters();
63    ID.AddInteger(Params->size());
64    for (TemplateParameterList::const_iterator P = Params->begin(),
65                                            PEnd = Params->end();
66         P != PEnd; ++P) {
67      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
68        ID.AddInteger(0);
69        ID.AddBoolean(TTP->isParameterPack());
70        continue;
71      }
72  
73      if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
74        ID.AddInteger(1);
75        ID.AddBoolean(NTTP->isParameterPack());
76        ID.AddPointer(NTTP->getType().getAsOpaquePtr());
77        if (NTTP->isExpandedParameterPack()) {
78          ID.AddBoolean(true);
79          ID.AddInteger(NTTP->getNumExpansionTypes());
80          for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
81            ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
82        } else
83          ID.AddBoolean(false);
84        continue;
85      }
86  
87      TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
88      ID.AddInteger(2);
89      Profile(ID, TTP);
90    }
91  }
92  
93  TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const94  ASTContext::getCanonicalTemplateTemplateParmDecl(
95                                            TemplateTemplateParmDecl *TTP) const {
96    // Check if we already have a canonical template template parameter.
97    llvm::FoldingSetNodeID ID;
98    CanonicalTemplateTemplateParm::Profile(ID, TTP);
99    void *InsertPos = 0;
100    CanonicalTemplateTemplateParm *Canonical
101      = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
102    if (Canonical)
103      return Canonical->getParam();
104  
105    // Build a canonical template parameter list.
106    TemplateParameterList *Params = TTP->getTemplateParameters();
107    llvm::SmallVector<NamedDecl *, 4> CanonParams;
108    CanonParams.reserve(Params->size());
109    for (TemplateParameterList::const_iterator P = Params->begin(),
110                                            PEnd = Params->end();
111         P != PEnd; ++P) {
112      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
113        CanonParams.push_back(
114                    TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
115                                                 SourceLocation(),
116                                                 SourceLocation(),
117                                                 TTP->getDepth(),
118                                                 TTP->getIndex(), 0, false,
119                                                 TTP->isParameterPack()));
120      else if (NonTypeTemplateParmDecl *NTTP
121               = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
122        QualType T = getCanonicalType(NTTP->getType());
123        TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
124        NonTypeTemplateParmDecl *Param;
125        if (NTTP->isExpandedParameterPack()) {
126          llvm::SmallVector<QualType, 2> ExpandedTypes;
127          llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
128          for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
129            ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
130            ExpandedTInfos.push_back(
131                                  getTrivialTypeSourceInfo(ExpandedTypes.back()));
132          }
133  
134          Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
135                                                  SourceLocation(),
136                                                  SourceLocation(),
137                                                  NTTP->getDepth(),
138                                                  NTTP->getPosition(), 0,
139                                                  T,
140                                                  TInfo,
141                                                  ExpandedTypes.data(),
142                                                  ExpandedTypes.size(),
143                                                  ExpandedTInfos.data());
144        } else {
145          Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
146                                                  SourceLocation(),
147                                                  SourceLocation(),
148                                                  NTTP->getDepth(),
149                                                  NTTP->getPosition(), 0,
150                                                  T,
151                                                  NTTP->isParameterPack(),
152                                                  TInfo);
153        }
154        CanonParams.push_back(Param);
155  
156      } else
157        CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
158                                             cast<TemplateTemplateParmDecl>(*P)));
159    }
160  
161    TemplateTemplateParmDecl *CanonTTP
162      = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
163                                         SourceLocation(), TTP->getDepth(),
164                                         TTP->getPosition(),
165                                         TTP->isParameterPack(),
166                                         0,
167                           TemplateParameterList::Create(*this, SourceLocation(),
168                                                         SourceLocation(),
169                                                         CanonParams.data(),
170                                                         CanonParams.size(),
171                                                         SourceLocation()));
172  
173    // Get the new insert position for the node we care about.
174    Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
175    assert(Canonical == 0 && "Shouldn't be in the map!");
176    (void)Canonical;
177  
178    // Create the canonical template template parameter entry.
179    Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
180    CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
181    return CanonTTP;
182  }
183  
createCXXABI(const TargetInfo & T)184  CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
185    if (!LangOpts.CPlusPlus) return 0;
186  
187    switch (T.getCXXABI()) {
188    case CXXABI_ARM:
189      return CreateARMCXXABI(*this);
190    case CXXABI_Itanium:
191      return CreateItaniumCXXABI(*this);
192    case CXXABI_Microsoft:
193      return CreateMicrosoftCXXABI(*this);
194    }
195    return 0;
196  }
197  
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)198  static const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
199                                               const LangOptions &LOpts) {
200    if (LOpts.FakeAddressSpaceMap) {
201      // The fake address space map must have a distinct entry for each
202      // language-specific address space.
203      static const unsigned FakeAddrSpaceMap[] = {
204        1, // opencl_global
205        2, // opencl_local
206        3  // opencl_constant
207      };
208      return FakeAddrSpaceMap;
209    } else {
210      return T.getAddressSpaceMap();
211    }
212  }
213  
ASTContext(const LangOptions & LOpts,SourceManager & SM,const TargetInfo & t,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins,unsigned size_reserve)214  ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
215                         const TargetInfo &t,
216                         IdentifierTable &idents, SelectorTable &sels,
217                         Builtin::Context &builtins,
218                         unsigned size_reserve) :
219    FunctionProtoTypes(this_()),
220    TemplateSpecializationTypes(this_()),
221    DependentTemplateSpecializationTypes(this_()),
222    SubstTemplateTemplateParmPacks(this_()),
223    GlobalNestedNameSpecifier(0), IsInt128Installed(false),
224    CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
225    ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
226    jmp_bufDecl(0), sigjmp_bufDecl(0), BlockDescriptorType(0),
227    BlockDescriptorExtendedType(0), cudaConfigureCallDecl(0),
228    NullTypeSourceInfo(QualType()),
229    SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
230    AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
231    Idents(idents), Selectors(sels),
232    BuiltinInfo(builtins),
233    DeclarationNames(*this),
234    ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
235    LastSDM(0, 0),
236    UniqueBlockByRefTypeID(0) {
237    ObjCIdRedefinitionType = QualType();
238    ObjCClassRedefinitionType = QualType();
239    ObjCSelRedefinitionType = QualType();
240    if (size_reserve > 0) Types.reserve(size_reserve);
241    TUDecl = TranslationUnitDecl::Create(*this);
242    InitBuiltinTypes();
243  }
244  
~ASTContext()245  ASTContext::~ASTContext() {
246    // Release the DenseMaps associated with DeclContext objects.
247    // FIXME: Is this the ideal solution?
248    ReleaseDeclContextMaps();
249  
250    // Call all of the deallocation functions.
251    for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
252      Deallocations[I].first(Deallocations[I].second);
253  
254    // Release all of the memory associated with overridden C++ methods.
255    for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
256           OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
257         OM != OMEnd; ++OM)
258      OM->second.Destroy();
259  
260    // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
261    // because they can contain DenseMaps.
262    for (llvm::DenseMap<const ObjCContainerDecl*,
263         const ASTRecordLayout*>::iterator
264         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
265      // Increment in loop to prevent using deallocated memory.
266      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
267        R->Destroy(*this);
268  
269    for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
270         I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
271      // Increment in loop to prevent using deallocated memory.
272      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
273        R->Destroy(*this);
274    }
275  
276    for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
277                                                      AEnd = DeclAttrs.end();
278         A != AEnd; ++A)
279      A->second->~AttrVec();
280  }
281  
AddDeallocation(void (* Callback)(void *),void * Data)282  void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
283    Deallocations.push_back(std::make_pair(Callback, Data));
284  }
285  
286  void
setExternalSource(llvm::OwningPtr<ExternalASTSource> & Source)287  ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
288    ExternalSource.reset(Source.take());
289  }
290  
PrintStats() const291  void ASTContext::PrintStats() const {
292    llvm::errs() << "\n*** AST Context Stats:\n";
293    llvm::errs() << "  " << Types.size() << " types total.\n";
294  
295    unsigned counts[] = {
296  #define TYPE(Name, Parent) 0,
297  #define ABSTRACT_TYPE(Name, Parent)
298  #include "clang/AST/TypeNodes.def"
299      0 // Extra
300    };
301  
302    for (unsigned i = 0, e = Types.size(); i != e; ++i) {
303      Type *T = Types[i];
304      counts[(unsigned)T->getTypeClass()]++;
305    }
306  
307    unsigned Idx = 0;
308    unsigned TotalBytes = 0;
309  #define TYPE(Name, Parent)                                              \
310    if (counts[Idx])                                                      \
311      llvm::errs() << "    " << counts[Idx] << " " << #Name               \
312                   << " types\n";                                         \
313    TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
314    ++Idx;
315  #define ABSTRACT_TYPE(Name, Parent)
316  #include "clang/AST/TypeNodes.def"
317  
318    llvm::errs() << "Total bytes = " << TotalBytes << "\n";
319  
320    // Implicit special member functions.
321    llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
322                 << NumImplicitDefaultConstructors
323                 << " implicit default constructors created\n";
324    llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
325                 << NumImplicitCopyConstructors
326                 << " implicit copy constructors created\n";
327    if (getLangOptions().CPlusPlus)
328      llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
329                   << NumImplicitMoveConstructors
330                   << " implicit move constructors created\n";
331    llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
332                 << NumImplicitCopyAssignmentOperators
333                 << " implicit copy assignment operators created\n";
334    if (getLangOptions().CPlusPlus)
335      llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
336                   << NumImplicitMoveAssignmentOperators
337                   << " implicit move assignment operators created\n";
338    llvm::errs() << NumImplicitDestructorsDeclared << "/"
339                 << NumImplicitDestructors
340                 << " implicit destructors created\n";
341  
342    if (ExternalSource.get()) {
343      llvm::errs() << "\n";
344      ExternalSource->PrintStats();
345    }
346  
347    BumpAlloc.PrintStats();
348  }
349  
350  
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)351  void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
352    BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
353    R = CanQualType::CreateUnsafe(QualType(Ty, 0));
354    Types.push_back(Ty);
355  }
356  
InitBuiltinTypes()357  void ASTContext::InitBuiltinTypes() {
358    assert(VoidTy.isNull() && "Context reinitialized?");
359  
360    // C99 6.2.5p19.
361    InitBuiltinType(VoidTy,              BuiltinType::Void);
362  
363    // C99 6.2.5p2.
364    InitBuiltinType(BoolTy,              BuiltinType::Bool);
365    // C99 6.2.5p3.
366    if (LangOpts.CharIsSigned)
367      InitBuiltinType(CharTy,            BuiltinType::Char_S);
368    else
369      InitBuiltinType(CharTy,            BuiltinType::Char_U);
370    // C99 6.2.5p4.
371    InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
372    InitBuiltinType(ShortTy,             BuiltinType::Short);
373    InitBuiltinType(IntTy,               BuiltinType::Int);
374    InitBuiltinType(LongTy,              BuiltinType::Long);
375    InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
376  
377    // C99 6.2.5p6.
378    InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
379    InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
380    InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
381    InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
382    InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
383  
384    // C99 6.2.5p10.
385    InitBuiltinType(FloatTy,             BuiltinType::Float);
386    InitBuiltinType(DoubleTy,            BuiltinType::Double);
387    InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
388  
389    // GNU extension, 128-bit integers.
390    InitBuiltinType(Int128Ty,            BuiltinType::Int128);
391    InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
392  
393    if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
394      if (TargetInfo::isTypeSigned(Target.getWCharType()))
395        InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
396      else  // -fshort-wchar makes wchar_t be unsigned.
397        InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
398    } else // C99
399      WCharTy = getFromTargetType(Target.getWCharType());
400  
401    if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
402      InitBuiltinType(Char16Ty,           BuiltinType::Char16);
403    else // C99
404      Char16Ty = getFromTargetType(Target.getChar16Type());
405  
406    if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
407      InitBuiltinType(Char32Ty,           BuiltinType::Char32);
408    else // C99
409      Char32Ty = getFromTargetType(Target.getChar32Type());
410  
411    // Placeholder type for type-dependent expressions whose type is
412    // completely unknown. No code should ever check a type against
413    // DependentTy and users should never see it; however, it is here to
414    // help diagnose failures to properly check for type-dependent
415    // expressions.
416    InitBuiltinType(DependentTy,         BuiltinType::Dependent);
417  
418    // Placeholder type for functions.
419    InitBuiltinType(OverloadTy,          BuiltinType::Overload);
420  
421    // Placeholder type for bound members.
422    InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
423  
424    // "any" type; useful for debugger-like clients.
425    InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
426  
427    // C99 6.2.5p11.
428    FloatComplexTy      = getComplexType(FloatTy);
429    DoubleComplexTy     = getComplexType(DoubleTy);
430    LongDoubleComplexTy = getComplexType(LongDoubleTy);
431  
432    BuiltinVaListType = QualType();
433  
434    // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
435    ObjCIdTypedefType = QualType();
436    ObjCClassTypedefType = QualType();
437    ObjCSelTypedefType = QualType();
438  
439    // Builtin types for 'id', 'Class', and 'SEL'.
440    InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
441    InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
442    InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
443  
444    ObjCConstantStringType = QualType();
445  
446    // void * type
447    VoidPtrTy = getPointerType(VoidTy);
448  
449    // nullptr type (C++0x 2.14.7)
450    InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
451  }
452  
getDiagnostics() const453  Diagnostic &ASTContext::getDiagnostics() const {
454    return SourceMgr.getDiagnostics();
455  }
456  
getDeclAttrs(const Decl * D)457  AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
458    AttrVec *&Result = DeclAttrs[D];
459    if (!Result) {
460      void *Mem = Allocate(sizeof(AttrVec));
461      Result = new (Mem) AttrVec;
462    }
463  
464    return *Result;
465  }
466  
467  /// \brief Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)468  void ASTContext::eraseDeclAttrs(const Decl *D) {
469    llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
470    if (Pos != DeclAttrs.end()) {
471      Pos->second->~AttrVec();
472      DeclAttrs.erase(Pos);
473    }
474  }
475  
476  MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)477  ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
478    assert(Var->isStaticDataMember() && "Not a static data member");
479    llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
480      = InstantiatedFromStaticDataMember.find(Var);
481    if (Pos == InstantiatedFromStaticDataMember.end())
482      return 0;
483  
484    return Pos->second;
485  }
486  
487  void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)488  ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
489                                                  TemplateSpecializationKind TSK,
490                                            SourceLocation PointOfInstantiation) {
491    assert(Inst->isStaticDataMember() && "Not a static data member");
492    assert(Tmpl->isStaticDataMember() && "Not a static data member");
493    assert(!InstantiatedFromStaticDataMember[Inst] &&
494           "Already noted what static data member was instantiated from");
495    InstantiatedFromStaticDataMember[Inst]
496      = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
497  }
498  
499  NamedDecl *
getInstantiatedFromUsingDecl(UsingDecl * UUD)500  ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
501    llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
502      = InstantiatedFromUsingDecl.find(UUD);
503    if (Pos == InstantiatedFromUsingDecl.end())
504      return 0;
505  
506    return Pos->second;
507  }
508  
509  void
setInstantiatedFromUsingDecl(UsingDecl * Inst,NamedDecl * Pattern)510  ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
511    assert((isa<UsingDecl>(Pattern) ||
512            isa<UnresolvedUsingValueDecl>(Pattern) ||
513            isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
514           "pattern decl is not a using decl");
515    assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
516    InstantiatedFromUsingDecl[Inst] = Pattern;
517  }
518  
519  UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)520  ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
521    llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
522      = InstantiatedFromUsingShadowDecl.find(Inst);
523    if (Pos == InstantiatedFromUsingShadowDecl.end())
524      return 0;
525  
526    return Pos->second;
527  }
528  
529  void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)530  ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
531                                                 UsingShadowDecl *Pattern) {
532    assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
533    InstantiatedFromUsingShadowDecl[Inst] = Pattern;
534  }
535  
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)536  FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
537    llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
538      = InstantiatedFromUnnamedFieldDecl.find(Field);
539    if (Pos == InstantiatedFromUnnamedFieldDecl.end())
540      return 0;
541  
542    return Pos->second;
543  }
544  
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)545  void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
546                                                       FieldDecl *Tmpl) {
547    assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
548    assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
549    assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
550           "Already noted what unnamed field was instantiated from");
551  
552    InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
553  }
554  
ZeroBitfieldFollowsNonBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const555  bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
556                                      const FieldDecl *LastFD) const {
557    return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
558            FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0);
559  
560  }
561  
ZeroBitfieldFollowsBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const562  bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
563                                               const FieldDecl *LastFD) const {
564    return (FD->isBitField() && LastFD && LastFD->isBitField() &&
565            FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0 &&
566            LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() != 0);
567  
568  }
569  
BitfieldFollowsBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const570  bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
571                                           const FieldDecl *LastFD) const {
572    return (FD->isBitField() && LastFD && LastFD->isBitField() &&
573            FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() &&
574            LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
575  }
576  
NoneBitfieldFollowsBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const577  bool ASTContext::NoneBitfieldFollowsBitfield(const FieldDecl *FD,
578                                           const FieldDecl *LastFD) const {
579    return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
580            LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
581  }
582  
BitfieldFollowsNoneBitfield(const FieldDecl * FD,const FieldDecl * LastFD) const583  bool ASTContext::BitfieldFollowsNoneBitfield(const FieldDecl *FD,
584                                               const FieldDecl *LastFD) const {
585    return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
586            FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
587  }
588  
589  ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const590  ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
591    llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
592      = OverriddenMethods.find(Method);
593    if (Pos == OverriddenMethods.end())
594      return 0;
595  
596    return Pos->second.begin();
597  }
598  
599  ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const600  ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
601    llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
602      = OverriddenMethods.find(Method);
603    if (Pos == OverriddenMethods.end())
604      return 0;
605  
606    return Pos->second.end();
607  }
608  
609  unsigned
overridden_methods_size(const CXXMethodDecl * Method) const610  ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
611    llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
612      = OverriddenMethods.find(Method);
613    if (Pos == OverriddenMethods.end())
614      return 0;
615  
616    return Pos->second.size();
617  }
618  
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)619  void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
620                                       const CXXMethodDecl *Overridden) {
621    OverriddenMethods[Method].push_back(Overridden);
622  }
623  
624  //===----------------------------------------------------------------------===//
625  //                         Type Sizing and Analysis
626  //===----------------------------------------------------------------------===//
627  
628  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
629  /// scalar floating point type.
getFloatTypeSemantics(QualType T) const630  const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
631    const BuiltinType *BT = T->getAs<BuiltinType>();
632    assert(BT && "Not a floating point type!");
633    switch (BT->getKind()) {
634    default: assert(0 && "Not a floating point type!");
635    case BuiltinType::Float:      return Target.getFloatFormat();
636    case BuiltinType::Double:     return Target.getDoubleFormat();
637    case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
638    }
639  }
640  
641  /// getDeclAlign - Return a conservative estimate of the alignment of the
642  /// specified decl.  Note that bitfields do not have a valid alignment, so
643  /// this method will assert on them.
644  /// If @p RefAsPointee, references are treated like their underlying type
645  /// (for alignof), else they're treated like pointers (for CodeGen).
getDeclAlign(const Decl * D,bool RefAsPointee) const646  CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
647    unsigned Align = Target.getCharWidth();
648  
649    bool UseAlignAttrOnly = false;
650    if (unsigned AlignFromAttr = D->getMaxAlignment()) {
651      Align = AlignFromAttr;
652  
653      // __attribute__((aligned)) can increase or decrease alignment
654      // *except* on a struct or struct member, where it only increases
655      // alignment unless 'packed' is also specified.
656      //
657      // It is an error for [[align]] to decrease alignment, so we can
658      // ignore that possibility;  Sema should diagnose it.
659      if (isa<FieldDecl>(D)) {
660        UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
661          cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
662      } else {
663        UseAlignAttrOnly = true;
664      }
665    }
666    else if (isa<FieldDecl>(D))
667        UseAlignAttrOnly =
668          D->hasAttr<PackedAttr>() ||
669          cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
670  
671    // If we're using the align attribute only, just ignore everything
672    // else about the declaration and its type.
673    if (UseAlignAttrOnly) {
674      // do nothing
675  
676    } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
677      QualType T = VD->getType();
678      if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
679        if (RefAsPointee)
680          T = RT->getPointeeType();
681        else
682          T = getPointerType(RT->getPointeeType());
683      }
684      if (!T->isIncompleteType() && !T->isFunctionType()) {
685        // Adjust alignments of declarations with array type by the
686        // large-array alignment on the target.
687        unsigned MinWidth = Target.getLargeArrayMinWidth();
688        const ArrayType *arrayType;
689        if (MinWidth && (arrayType = getAsArrayType(T))) {
690          if (isa<VariableArrayType>(arrayType))
691            Align = std::max(Align, Target.getLargeArrayAlign());
692          else if (isa<ConstantArrayType>(arrayType) &&
693                   MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
694            Align = std::max(Align, Target.getLargeArrayAlign());
695  
696          // Walk through any array types while we're at it.
697          T = getBaseElementType(arrayType);
698        }
699        Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
700      }
701  
702      // Fields can be subject to extra alignment constraints, like if
703      // the field is packed, the struct is packed, or the struct has a
704      // a max-field-alignment constraint (#pragma pack).  So calculate
705      // the actual alignment of the field within the struct, and then
706      // (as we're expected to) constrain that by the alignment of the type.
707      if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
708        // So calculate the alignment of the field.
709        const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
710  
711        // Start with the record's overall alignment.
712        unsigned fieldAlign = toBits(layout.getAlignment());
713  
714        // Use the GCD of that and the offset within the record.
715        uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
716        if (offset > 0) {
717          // Alignment is always a power of 2, so the GCD will be a power of 2,
718          // which means we get to do this crazy thing instead of Euclid's.
719          uint64_t lowBitOfOffset = offset & (~offset + 1);
720          if (lowBitOfOffset < fieldAlign)
721            fieldAlign = static_cast<unsigned>(lowBitOfOffset);
722        }
723  
724        Align = std::min(Align, fieldAlign);
725      }
726    }
727  
728    return toCharUnitsFromBits(Align);
729  }
730  
731  std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const732  ASTContext::getTypeInfoInChars(const Type *T) const {
733    std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
734    return std::make_pair(toCharUnitsFromBits(Info.first),
735                          toCharUnitsFromBits(Info.second));
736  }
737  
738  std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const739  ASTContext::getTypeInfoInChars(QualType T) const {
740    return getTypeInfoInChars(T.getTypePtr());
741  }
742  
743  /// getTypeSize - Return the size of the specified type, in bits.  This method
744  /// does not work on incomplete types.
745  ///
746  /// FIXME: Pointers into different addr spaces could have different sizes and
747  /// alignment requirements: getPointerInfo should take an AddrSpace, this
748  /// should take a QualType, &c.
749  std::pair<uint64_t, unsigned>
getTypeInfo(const Type * T) const750  ASTContext::getTypeInfo(const Type *T) const {
751    uint64_t Width=0;
752    unsigned Align=8;
753    switch (T->getTypeClass()) {
754  #define TYPE(Class, Base)
755  #define ABSTRACT_TYPE(Class, Base)
756  #define NON_CANONICAL_TYPE(Class, Base)
757  #define DEPENDENT_TYPE(Class, Base) case Type::Class:
758  #include "clang/AST/TypeNodes.def"
759      llvm_unreachable("Should not see dependent types");
760      break;
761  
762    case Type::FunctionNoProto:
763    case Type::FunctionProto:
764      // GCC extension: alignof(function) = 32 bits
765      Width = 0;
766      Align = 32;
767      break;
768  
769    case Type::IncompleteArray:
770    case Type::VariableArray:
771      Width = 0;
772      Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
773      break;
774  
775    case Type::ConstantArray: {
776      const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
777  
778      std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
779      Width = EltInfo.first*CAT->getSize().getZExtValue();
780      Align = EltInfo.second;
781      Width = llvm::RoundUpToAlignment(Width, Align);
782      break;
783    }
784    case Type::ExtVector:
785    case Type::Vector: {
786      const VectorType *VT = cast<VectorType>(T);
787      std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
788      Width = EltInfo.first*VT->getNumElements();
789      Align = Width;
790      // If the alignment is not a power of 2, round up to the next power of 2.
791      // This happens for non-power-of-2 length vectors.
792      if (Align & (Align-1)) {
793        Align = llvm::NextPowerOf2(Align);
794        Width = llvm::RoundUpToAlignment(Width, Align);
795      }
796      break;
797    }
798  
799    case Type::Builtin:
800      switch (cast<BuiltinType>(T)->getKind()) {
801      default: assert(0 && "Unknown builtin type!");
802      case BuiltinType::Void:
803        // GCC extension: alignof(void) = 8 bits.
804        Width = 0;
805        Align = 8;
806        break;
807  
808      case BuiltinType::Bool:
809        Width = Target.getBoolWidth();
810        Align = Target.getBoolAlign();
811        break;
812      case BuiltinType::Char_S:
813      case BuiltinType::Char_U:
814      case BuiltinType::UChar:
815      case BuiltinType::SChar:
816        Width = Target.getCharWidth();
817        Align = Target.getCharAlign();
818        break;
819      case BuiltinType::WChar_S:
820      case BuiltinType::WChar_U:
821        Width = Target.getWCharWidth();
822        Align = Target.getWCharAlign();
823        break;
824      case BuiltinType::Char16:
825        Width = Target.getChar16Width();
826        Align = Target.getChar16Align();
827        break;
828      case BuiltinType::Char32:
829        Width = Target.getChar32Width();
830        Align = Target.getChar32Align();
831        break;
832      case BuiltinType::UShort:
833      case BuiltinType::Short:
834        Width = Target.getShortWidth();
835        Align = Target.getShortAlign();
836        break;
837      case BuiltinType::UInt:
838      case BuiltinType::Int:
839        Width = Target.getIntWidth();
840        Align = Target.getIntAlign();
841        break;
842      case BuiltinType::ULong:
843      case BuiltinType::Long:
844        Width = Target.getLongWidth();
845        Align = Target.getLongAlign();
846        break;
847      case BuiltinType::ULongLong:
848      case BuiltinType::LongLong:
849        Width = Target.getLongLongWidth();
850        Align = Target.getLongLongAlign();
851        break;
852      case BuiltinType::Int128:
853      case BuiltinType::UInt128:
854        Width = 128;
855        Align = 128; // int128_t is 128-bit aligned on all targets.
856        break;
857      case BuiltinType::Float:
858        Width = Target.getFloatWidth();
859        Align = Target.getFloatAlign();
860        break;
861      case BuiltinType::Double:
862        Width = Target.getDoubleWidth();
863        Align = Target.getDoubleAlign();
864        break;
865      case BuiltinType::LongDouble:
866        Width = Target.getLongDoubleWidth();
867        Align = Target.getLongDoubleAlign();
868        break;
869      case BuiltinType::NullPtr:
870        Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
871        Align = Target.getPointerAlign(0); //   == sizeof(void*)
872        break;
873      case BuiltinType::ObjCId:
874      case BuiltinType::ObjCClass:
875      case BuiltinType::ObjCSel:
876        Width = Target.getPointerWidth(0);
877        Align = Target.getPointerAlign(0);
878        break;
879      }
880      break;
881    case Type::ObjCObjectPointer:
882      Width = Target.getPointerWidth(0);
883      Align = Target.getPointerAlign(0);
884      break;
885    case Type::BlockPointer: {
886      unsigned AS = getTargetAddressSpace(
887          cast<BlockPointerType>(T)->getPointeeType());
888      Width = Target.getPointerWidth(AS);
889      Align = Target.getPointerAlign(AS);
890      break;
891    }
892    case Type::LValueReference:
893    case Type::RValueReference: {
894      // alignof and sizeof should never enter this code path here, so we go
895      // the pointer route.
896      unsigned AS = getTargetAddressSpace(
897          cast<ReferenceType>(T)->getPointeeType());
898      Width = Target.getPointerWidth(AS);
899      Align = Target.getPointerAlign(AS);
900      break;
901    }
902    case Type::Pointer: {
903      unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
904      Width = Target.getPointerWidth(AS);
905      Align = Target.getPointerAlign(AS);
906      break;
907    }
908    case Type::MemberPointer: {
909      const MemberPointerType *MPT = cast<MemberPointerType>(T);
910      std::pair<uint64_t, unsigned> PtrDiffInfo =
911        getTypeInfo(getPointerDiffType());
912      Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
913      Align = PtrDiffInfo.second;
914      break;
915    }
916    case Type::Complex: {
917      // Complex types have the same alignment as their elements, but twice the
918      // size.
919      std::pair<uint64_t, unsigned> EltInfo =
920        getTypeInfo(cast<ComplexType>(T)->getElementType());
921      Width = EltInfo.first*2;
922      Align = EltInfo.second;
923      break;
924    }
925    case Type::ObjCObject:
926      return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
927    case Type::ObjCInterface: {
928      const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
929      const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
930      Width = toBits(Layout.getSize());
931      Align = toBits(Layout.getAlignment());
932      break;
933    }
934    case Type::Record:
935    case Type::Enum: {
936      const TagType *TT = cast<TagType>(T);
937  
938      if (TT->getDecl()->isInvalidDecl()) {
939        Width = 8;
940        Align = 8;
941        break;
942      }
943  
944      if (const EnumType *ET = dyn_cast<EnumType>(TT))
945        return getTypeInfo(ET->getDecl()->getIntegerType());
946  
947      const RecordType *RT = cast<RecordType>(TT);
948      const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
949      Width = toBits(Layout.getSize());
950      Align = toBits(Layout.getAlignment());
951      break;
952    }
953  
954    case Type::SubstTemplateTypeParm:
955      return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
956                         getReplacementType().getTypePtr());
957  
958    case Type::Auto: {
959      const AutoType *A = cast<AutoType>(T);
960      assert(A->isDeduced() && "Cannot request the size of a dependent type");
961      return getTypeInfo(A->getDeducedType().getTypePtr());
962    }
963  
964    case Type::Paren:
965      return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
966  
967    case Type::Typedef: {
968      const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
969      std::pair<uint64_t, unsigned> Info
970        = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
971      // If the typedef has an aligned attribute on it, it overrides any computed
972      // alignment we have.  This violates the GCC documentation (which says that
973      // attribute(aligned) can only round up) but matches its implementation.
974      if (unsigned AttrAlign = Typedef->getMaxAlignment())
975        Align = AttrAlign;
976      else
977        Align = Info.second;
978      Width = Info.first;
979      break;
980    }
981  
982    case Type::TypeOfExpr:
983      return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
984                           .getTypePtr());
985  
986    case Type::TypeOf:
987      return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
988  
989    case Type::Decltype:
990      return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
991                          .getTypePtr());
992  
993    case Type::UnaryTransform:
994      return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
995  
996    case Type::Elaborated:
997      return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
998  
999    case Type::Attributed:
1000      return getTypeInfo(
1001                    cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1002  
1003    case Type::TemplateSpecialization: {
1004      assert(getCanonicalType(T) != T &&
1005             "Cannot request the size of a dependent type");
1006      const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1007      // A type alias template specialization may refer to a typedef with the
1008      // aligned attribute on it.
1009      if (TST->isTypeAlias())
1010        return getTypeInfo(TST->getAliasedType().getTypePtr());
1011      else
1012        return getTypeInfo(getCanonicalType(T));
1013    }
1014  
1015    }
1016  
1017    assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
1018    return std::make_pair(Width, Align);
1019  }
1020  
1021  /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const1022  CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1023    return CharUnits::fromQuantity(BitSize / getCharWidth());
1024  }
1025  
1026  /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const1027  int64_t ASTContext::toBits(CharUnits CharSize) const {
1028    return CharSize.getQuantity() * getCharWidth();
1029  }
1030  
1031  /// getTypeSizeInChars - Return the size of the specified type, in characters.
1032  /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const1033  CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1034    return toCharUnitsFromBits(getTypeSize(T));
1035  }
getTypeSizeInChars(const Type * T) const1036  CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1037    return toCharUnitsFromBits(getTypeSize(T));
1038  }
1039  
1040  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1041  /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const1042  CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1043    return toCharUnitsFromBits(getTypeAlign(T));
1044  }
getTypeAlignInChars(const Type * T) const1045  CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1046    return toCharUnitsFromBits(getTypeAlign(T));
1047  }
1048  
1049  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1050  /// type for the current target in bits.  This can be different than the ABI
1051  /// alignment in cases where it is beneficial for performance to overalign
1052  /// a data type.
getPreferredTypeAlign(const Type * T) const1053  unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1054    unsigned ABIAlign = getTypeAlign(T);
1055  
1056    // Double and long long should be naturally aligned if possible.
1057    if (const ComplexType* CT = T->getAs<ComplexType>())
1058      T = CT->getElementType().getTypePtr();
1059    if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1060        T->isSpecificBuiltinType(BuiltinType::LongLong))
1061      return std::max(ABIAlign, (unsigned)getTypeSize(T));
1062  
1063    return ABIAlign;
1064  }
1065  
1066  /// ShallowCollectObjCIvars -
1067  /// Collect all ivars, including those synthesized, in the current class.
1068  ///
ShallowCollectObjCIvars(const ObjCInterfaceDecl * OI,llvm::SmallVectorImpl<ObjCIvarDecl * > & Ivars) const1069  void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1070                              llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1071    // FIXME. This need be removed but there are two many places which
1072    // assume const-ness of ObjCInterfaceDecl
1073    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1074    for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1075          Iv= Iv->getNextIvar())
1076      Ivars.push_back(Iv);
1077  }
1078  
1079  /// DeepCollectObjCIvars -
1080  /// This routine first collects all declared, but not synthesized, ivars in
1081  /// super class and then collects all ivars, including those synthesized for
1082  /// current class. This routine is used for implementation of current class
1083  /// when all ivars, declared and synthesized are known.
1084  ///
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,llvm::SmallVectorImpl<ObjCIvarDecl * > & Ivars) const1085  void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1086                                        bool leafClass,
1087                              llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1088    if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1089      DeepCollectObjCIvars(SuperClass, false, Ivars);
1090    if (!leafClass) {
1091      for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1092           E = OI->ivar_end(); I != E; ++I)
1093        Ivars.push_back(*I);
1094    }
1095    else {
1096      ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1097      for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1098           Iv= Iv->getNextIvar())
1099        Ivars.push_back(Iv);
1100    }
1101  }
1102  
1103  /// CollectInheritedProtocols - Collect all protocols in current class and
1104  /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)1105  void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1106                            llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1107    if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1108      // We can use protocol_iterator here instead of
1109      // all_referenced_protocol_iterator since we are walking all categories.
1110      for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1111           PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1112        ObjCProtocolDecl *Proto = (*P);
1113        Protocols.insert(Proto);
1114        for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1115             PE = Proto->protocol_end(); P != PE; ++P) {
1116          Protocols.insert(*P);
1117          CollectInheritedProtocols(*P, Protocols);
1118        }
1119      }
1120  
1121      // Categories of this Interface.
1122      for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1123           CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1124        CollectInheritedProtocols(CDeclChain, Protocols);
1125      if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1126        while (SD) {
1127          CollectInheritedProtocols(SD, Protocols);
1128          SD = SD->getSuperClass();
1129        }
1130    } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1131      for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1132           PE = OC->protocol_end(); P != PE; ++P) {
1133        ObjCProtocolDecl *Proto = (*P);
1134        Protocols.insert(Proto);
1135        for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1136             PE = Proto->protocol_end(); P != PE; ++P)
1137          CollectInheritedProtocols(*P, Protocols);
1138      }
1139    } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1140      for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1141           PE = OP->protocol_end(); P != PE; ++P) {
1142        ObjCProtocolDecl *Proto = (*P);
1143        Protocols.insert(Proto);
1144        for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1145             PE = Proto->protocol_end(); P != PE; ++P)
1146          CollectInheritedProtocols(*P, Protocols);
1147      }
1148    }
1149  }
1150  
CountNonClassIvars(const ObjCInterfaceDecl * OI) const1151  unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1152    unsigned count = 0;
1153    // Count ivars declared in class extension.
1154    for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1155         CDecl = CDecl->getNextClassExtension())
1156      count += CDecl->ivar_size();
1157  
1158    // Count ivar defined in this class's implementation.  This
1159    // includes synthesized ivars.
1160    if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1161      count += ImplDecl->ivar_size();
1162  
1163    return count;
1164  }
1165  
1166  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
getObjCImplementation(ObjCInterfaceDecl * D)1167  ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1168    llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1169      I = ObjCImpls.find(D);
1170    if (I != ObjCImpls.end())
1171      return cast<ObjCImplementationDecl>(I->second);
1172    return 0;
1173  }
1174  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
getObjCImplementation(ObjCCategoryDecl * D)1175  ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1176    llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1177      I = ObjCImpls.find(D);
1178    if (I != ObjCImpls.end())
1179      return cast<ObjCCategoryImplDecl>(I->second);
1180    return 0;
1181  }
1182  
1183  /// \brief Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)1184  void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1185                             ObjCImplementationDecl *ImplD) {
1186    assert(IFaceD && ImplD && "Passed null params");
1187    ObjCImpls[IFaceD] = ImplD;
1188  }
1189  /// \brief Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)1190  void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1191                             ObjCCategoryImplDecl *ImplD) {
1192    assert(CatD && ImplD && "Passed null params");
1193    ObjCImpls[CatD] = ImplD;
1194  }
1195  
1196  /// \brief Get the copy initialization expression of VarDecl,or NULL if
1197  /// none exists.
getBlockVarCopyInits(const VarDecl * VD)1198  Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1199    assert(VD && "Passed null params");
1200    assert(VD->hasAttr<BlocksAttr>() &&
1201           "getBlockVarCopyInits - not __block var");
1202    llvm::DenseMap<const VarDecl*, Expr*>::iterator
1203      I = BlockVarCopyInits.find(VD);
1204    return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1205  }
1206  
1207  /// \brief Set the copy inialization expression of a block var decl.
setBlockVarCopyInits(VarDecl * VD,Expr * Init)1208  void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1209    assert(VD && Init && "Passed null params");
1210    assert(VD->hasAttr<BlocksAttr>() &&
1211           "setBlockVarCopyInits - not __block var");
1212    BlockVarCopyInits[VD] = Init;
1213  }
1214  
1215  /// \brief Allocate an uninitialized TypeSourceInfo.
1216  ///
1217  /// The caller should initialize the memory held by TypeSourceInfo using
1218  /// the TypeLoc wrappers.
1219  ///
1220  /// \param T the type that will be the basis for type source info. This type
1221  /// should refer to how the declarator was written in source code, not to
1222  /// what type semantic analysis resolved the declarator to.
CreateTypeSourceInfo(QualType T,unsigned DataSize) const1223  TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1224                                                   unsigned DataSize) const {
1225    if (!DataSize)
1226      DataSize = TypeLoc::getFullDataSizeForType(T);
1227    else
1228      assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1229             "incorrect data size provided to CreateTypeSourceInfo!");
1230  
1231    TypeSourceInfo *TInfo =
1232      (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1233    new (TInfo) TypeSourceInfo(T);
1234    return TInfo;
1235  }
1236  
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const1237  TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1238                                                       SourceLocation L) const {
1239    TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1240    DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1241    return DI;
1242  }
1243  
1244  const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const1245  ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1246    return getObjCLayout(D, 0);
1247  }
1248  
1249  const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const1250  ASTContext::getASTObjCImplementationLayout(
1251                                          const ObjCImplementationDecl *D) const {
1252    return getObjCLayout(D->getClassInterface(), D);
1253  }
1254  
1255  //===----------------------------------------------------------------------===//
1256  //                   Type creation/memoization methods
1257  //===----------------------------------------------------------------------===//
1258  
1259  QualType
getExtQualType(const Type * baseType,Qualifiers quals) const1260  ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1261    unsigned fastQuals = quals.getFastQualifiers();
1262    quals.removeFastQualifiers();
1263  
1264    // Check if we've already instantiated this type.
1265    llvm::FoldingSetNodeID ID;
1266    ExtQuals::Profile(ID, baseType, quals);
1267    void *insertPos = 0;
1268    if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1269      assert(eq->getQualifiers() == quals);
1270      return QualType(eq, fastQuals);
1271    }
1272  
1273    // If the base type is not canonical, make the appropriate canonical type.
1274    QualType canon;
1275    if (!baseType->isCanonicalUnqualified()) {
1276      SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1277      canonSplit.second.addConsistentQualifiers(quals);
1278      canon = getExtQualType(canonSplit.first, canonSplit.second);
1279  
1280      // Re-find the insert position.
1281      (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1282    }
1283  
1284    ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1285    ExtQualNodes.InsertNode(eq, insertPos);
1286    return QualType(eq, fastQuals);
1287  }
1288  
1289  QualType
getAddrSpaceQualType(QualType T,unsigned AddressSpace) const1290  ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1291    QualType CanT = getCanonicalType(T);
1292    if (CanT.getAddressSpace() == AddressSpace)
1293      return T;
1294  
1295    // If we are composing extended qualifiers together, merge together
1296    // into one ExtQuals node.
1297    QualifierCollector Quals;
1298    const Type *TypeNode = Quals.strip(T);
1299  
1300    // If this type already has an address space specified, it cannot get
1301    // another one.
1302    assert(!Quals.hasAddressSpace() &&
1303           "Type cannot be in multiple addr spaces!");
1304    Quals.addAddressSpace(AddressSpace);
1305  
1306    return getExtQualType(TypeNode, Quals);
1307  }
1308  
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const1309  QualType ASTContext::getObjCGCQualType(QualType T,
1310                                         Qualifiers::GC GCAttr) const {
1311    QualType CanT = getCanonicalType(T);
1312    if (CanT.getObjCGCAttr() == GCAttr)
1313      return T;
1314  
1315    if (const PointerType *ptr = T->getAs<PointerType>()) {
1316      QualType Pointee = ptr->getPointeeType();
1317      if (Pointee->isAnyPointerType()) {
1318        QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1319        return getPointerType(ResultType);
1320      }
1321    }
1322  
1323    // If we are composing extended qualifiers together, merge together
1324    // into one ExtQuals node.
1325    QualifierCollector Quals;
1326    const Type *TypeNode = Quals.strip(T);
1327  
1328    // If this type already has an ObjCGC specified, it cannot get
1329    // another one.
1330    assert(!Quals.hasObjCGCAttr() &&
1331           "Type cannot have multiple ObjCGCs!");
1332    Quals.addObjCGCAttr(GCAttr);
1333  
1334    return getExtQualType(TypeNode, Quals);
1335  }
1336  
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)1337  const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1338                                                     FunctionType::ExtInfo Info) {
1339    if (T->getExtInfo() == Info)
1340      return T;
1341  
1342    QualType Result;
1343    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1344      Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1345    } else {
1346      const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1347      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1348      EPI.ExtInfo = Info;
1349      Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1350                               FPT->getNumArgs(), EPI);
1351    }
1352  
1353    return cast<FunctionType>(Result.getTypePtr());
1354  }
1355  
1356  /// getComplexType - Return the uniqued reference to the type for a complex
1357  /// number with the specified element type.
getComplexType(QualType T) const1358  QualType ASTContext::getComplexType(QualType T) const {
1359    // Unique pointers, to guarantee there is only one pointer of a particular
1360    // structure.
1361    llvm::FoldingSetNodeID ID;
1362    ComplexType::Profile(ID, T);
1363  
1364    void *InsertPos = 0;
1365    if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1366      return QualType(CT, 0);
1367  
1368    // If the pointee type isn't canonical, this won't be a canonical type either,
1369    // so fill in the canonical type field.
1370    QualType Canonical;
1371    if (!T.isCanonical()) {
1372      Canonical = getComplexType(getCanonicalType(T));
1373  
1374      // Get the new insert position for the node we care about.
1375      ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1376      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1377    }
1378    ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1379    Types.push_back(New);
1380    ComplexTypes.InsertNode(New, InsertPos);
1381    return QualType(New, 0);
1382  }
1383  
1384  /// getPointerType - Return the uniqued reference to the type for a pointer to
1385  /// the specified type.
getPointerType(QualType T) const1386  QualType ASTContext::getPointerType(QualType T) const {
1387    // Unique pointers, to guarantee there is only one pointer of a particular
1388    // structure.
1389    llvm::FoldingSetNodeID ID;
1390    PointerType::Profile(ID, T);
1391  
1392    void *InsertPos = 0;
1393    if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1394      return QualType(PT, 0);
1395  
1396    // If the pointee type isn't canonical, this won't be a canonical type either,
1397    // so fill in the canonical type field.
1398    QualType Canonical;
1399    if (!T.isCanonical()) {
1400      Canonical = getPointerType(getCanonicalType(T));
1401  
1402      // Get the new insert position for the node we care about.
1403      PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1404      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1405    }
1406    PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1407    Types.push_back(New);
1408    PointerTypes.InsertNode(New, InsertPos);
1409    return QualType(New, 0);
1410  }
1411  
1412  /// getBlockPointerType - Return the uniqued reference to the type for
1413  /// a pointer to the specified block.
getBlockPointerType(QualType T) const1414  QualType ASTContext::getBlockPointerType(QualType T) const {
1415    assert(T->isFunctionType() && "block of function types only");
1416    // Unique pointers, to guarantee there is only one block of a particular
1417    // structure.
1418    llvm::FoldingSetNodeID ID;
1419    BlockPointerType::Profile(ID, T);
1420  
1421    void *InsertPos = 0;
1422    if (BlockPointerType *PT =
1423          BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1424      return QualType(PT, 0);
1425  
1426    // If the block pointee type isn't canonical, this won't be a canonical
1427    // type either so fill in the canonical type field.
1428    QualType Canonical;
1429    if (!T.isCanonical()) {
1430      Canonical = getBlockPointerType(getCanonicalType(T));
1431  
1432      // Get the new insert position for the node we care about.
1433      BlockPointerType *NewIP =
1434        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1435      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1436    }
1437    BlockPointerType *New
1438      = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1439    Types.push_back(New);
1440    BlockPointerTypes.InsertNode(New, InsertPos);
1441    return QualType(New, 0);
1442  }
1443  
1444  /// getLValueReferenceType - Return the uniqued reference to the type for an
1445  /// lvalue reference to the specified type.
1446  QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const1447  ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1448    assert(getCanonicalType(T) != OverloadTy &&
1449           "Unresolved overloaded function type");
1450  
1451    // Unique pointers, to guarantee there is only one pointer of a particular
1452    // structure.
1453    llvm::FoldingSetNodeID ID;
1454    ReferenceType::Profile(ID, T, SpelledAsLValue);
1455  
1456    void *InsertPos = 0;
1457    if (LValueReferenceType *RT =
1458          LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1459      return QualType(RT, 0);
1460  
1461    const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1462  
1463    // If the referencee type isn't canonical, this won't be a canonical type
1464    // either, so fill in the canonical type field.
1465    QualType Canonical;
1466    if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1467      QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1468      Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1469  
1470      // Get the new insert position for the node we care about.
1471      LValueReferenceType *NewIP =
1472        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1473      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1474    }
1475  
1476    LValueReferenceType *New
1477      = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1478                                                       SpelledAsLValue);
1479    Types.push_back(New);
1480    LValueReferenceTypes.InsertNode(New, InsertPos);
1481  
1482    return QualType(New, 0);
1483  }
1484  
1485  /// getRValueReferenceType - Return the uniqued reference to the type for an
1486  /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const1487  QualType ASTContext::getRValueReferenceType(QualType T) const {
1488    // Unique pointers, to guarantee there is only one pointer of a particular
1489    // structure.
1490    llvm::FoldingSetNodeID ID;
1491    ReferenceType::Profile(ID, T, false);
1492  
1493    void *InsertPos = 0;
1494    if (RValueReferenceType *RT =
1495          RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1496      return QualType(RT, 0);
1497  
1498    const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1499  
1500    // If the referencee type isn't canonical, this won't be a canonical type
1501    // either, so fill in the canonical type field.
1502    QualType Canonical;
1503    if (InnerRef || !T.isCanonical()) {
1504      QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1505      Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1506  
1507      // Get the new insert position for the node we care about.
1508      RValueReferenceType *NewIP =
1509        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1510      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1511    }
1512  
1513    RValueReferenceType *New
1514      = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1515    Types.push_back(New);
1516    RValueReferenceTypes.InsertNode(New, InsertPos);
1517    return QualType(New, 0);
1518  }
1519  
1520  /// getMemberPointerType - Return the uniqued reference to the type for a
1521  /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const1522  QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1523    // Unique pointers, to guarantee there is only one pointer of a particular
1524    // structure.
1525    llvm::FoldingSetNodeID ID;
1526    MemberPointerType::Profile(ID, T, Cls);
1527  
1528    void *InsertPos = 0;
1529    if (MemberPointerType *PT =
1530        MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1531      return QualType(PT, 0);
1532  
1533    // If the pointee or class type isn't canonical, this won't be a canonical
1534    // type either, so fill in the canonical type field.
1535    QualType Canonical;
1536    if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1537      Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1538  
1539      // Get the new insert position for the node we care about.
1540      MemberPointerType *NewIP =
1541        MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1542      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1543    }
1544    MemberPointerType *New
1545      = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1546    Types.push_back(New);
1547    MemberPointerTypes.InsertNode(New, InsertPos);
1548    return QualType(New, 0);
1549  }
1550  
1551  /// getConstantArrayType - Return the unique reference to the type for an
1552  /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const1553  QualType ASTContext::getConstantArrayType(QualType EltTy,
1554                                            const llvm::APInt &ArySizeIn,
1555                                            ArrayType::ArraySizeModifier ASM,
1556                                            unsigned IndexTypeQuals) const {
1557    assert((EltTy->isDependentType() ||
1558            EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1559           "Constant array of VLAs is illegal!");
1560  
1561    // Convert the array size into a canonical width matching the pointer size for
1562    // the target.
1563    llvm::APInt ArySize(ArySizeIn);
1564    ArySize =
1565      ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
1566  
1567    llvm::FoldingSetNodeID ID;
1568    ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1569  
1570    void *InsertPos = 0;
1571    if (ConstantArrayType *ATP =
1572        ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1573      return QualType(ATP, 0);
1574  
1575    // If the element type isn't canonical or has qualifiers, this won't
1576    // be a canonical type either, so fill in the canonical type field.
1577    QualType Canon;
1578    if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1579      SplitQualType canonSplit = getCanonicalType(EltTy).split();
1580      Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1581                                   ASM, IndexTypeQuals);
1582      Canon = getQualifiedType(Canon, canonSplit.second);
1583  
1584      // Get the new insert position for the node we care about.
1585      ConstantArrayType *NewIP =
1586        ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1587      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1588    }
1589  
1590    ConstantArrayType *New = new(*this,TypeAlignment)
1591      ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1592    ConstantArrayTypes.InsertNode(New, InsertPos);
1593    Types.push_back(New);
1594    return QualType(New, 0);
1595  }
1596  
1597  /// getVariableArrayDecayedType - Turns the given type, which may be
1598  /// variably-modified, into the corresponding type with all the known
1599  /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const1600  QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1601    // Vastly most common case.
1602    if (!type->isVariablyModifiedType()) return type;
1603  
1604    QualType result;
1605  
1606    SplitQualType split = type.getSplitDesugaredType();
1607    const Type *ty = split.first;
1608    switch (ty->getTypeClass()) {
1609  #define TYPE(Class, Base)
1610  #define ABSTRACT_TYPE(Class, Base)
1611  #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1612  #include "clang/AST/TypeNodes.def"
1613      llvm_unreachable("didn't desugar past all non-canonical types?");
1614  
1615    // These types should never be variably-modified.
1616    case Type::Builtin:
1617    case Type::Complex:
1618    case Type::Vector:
1619    case Type::ExtVector:
1620    case Type::DependentSizedExtVector:
1621    case Type::ObjCObject:
1622    case Type::ObjCInterface:
1623    case Type::ObjCObjectPointer:
1624    case Type::Record:
1625    case Type::Enum:
1626    case Type::UnresolvedUsing:
1627    case Type::TypeOfExpr:
1628    case Type::TypeOf:
1629    case Type::Decltype:
1630    case Type::UnaryTransform:
1631    case Type::DependentName:
1632    case Type::InjectedClassName:
1633    case Type::TemplateSpecialization:
1634    case Type::DependentTemplateSpecialization:
1635    case Type::TemplateTypeParm:
1636    case Type::SubstTemplateTypeParmPack:
1637    case Type::Auto:
1638    case Type::PackExpansion:
1639      llvm_unreachable("type should never be variably-modified");
1640  
1641    // These types can be variably-modified but should never need to
1642    // further decay.
1643    case Type::FunctionNoProto:
1644    case Type::FunctionProto:
1645    case Type::BlockPointer:
1646    case Type::MemberPointer:
1647      return type;
1648  
1649    // These types can be variably-modified.  All these modifications
1650    // preserve structure except as noted by comments.
1651    // TODO: if we ever care about optimizing VLAs, there are no-op
1652    // optimizations available here.
1653    case Type::Pointer:
1654      result = getPointerType(getVariableArrayDecayedType(
1655                                cast<PointerType>(ty)->getPointeeType()));
1656      break;
1657  
1658    case Type::LValueReference: {
1659      const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1660      result = getLValueReferenceType(
1661                   getVariableArrayDecayedType(lv->getPointeeType()),
1662                                      lv->isSpelledAsLValue());
1663      break;
1664    }
1665  
1666    case Type::RValueReference: {
1667      const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1668      result = getRValueReferenceType(
1669                   getVariableArrayDecayedType(lv->getPointeeType()));
1670      break;
1671    }
1672  
1673    case Type::ConstantArray: {
1674      const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1675      result = getConstantArrayType(
1676                   getVariableArrayDecayedType(cat->getElementType()),
1677                                    cat->getSize(),
1678                                    cat->getSizeModifier(),
1679                                    cat->getIndexTypeCVRQualifiers());
1680      break;
1681    }
1682  
1683    case Type::DependentSizedArray: {
1684      const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1685      result = getDependentSizedArrayType(
1686                   getVariableArrayDecayedType(dat->getElementType()),
1687                                          dat->getSizeExpr(),
1688                                          dat->getSizeModifier(),
1689                                          dat->getIndexTypeCVRQualifiers(),
1690                                          dat->getBracketsRange());
1691      break;
1692    }
1693  
1694    // Turn incomplete types into [*] types.
1695    case Type::IncompleteArray: {
1696      const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1697      result = getVariableArrayType(
1698                   getVariableArrayDecayedType(iat->getElementType()),
1699                                    /*size*/ 0,
1700                                    ArrayType::Normal,
1701                                    iat->getIndexTypeCVRQualifiers(),
1702                                    SourceRange());
1703      break;
1704    }
1705  
1706    // Turn VLA types into [*] types.
1707    case Type::VariableArray: {
1708      const VariableArrayType *vat = cast<VariableArrayType>(ty);
1709      result = getVariableArrayType(
1710                   getVariableArrayDecayedType(vat->getElementType()),
1711                                    /*size*/ 0,
1712                                    ArrayType::Star,
1713                                    vat->getIndexTypeCVRQualifiers(),
1714                                    vat->getBracketsRange());
1715      break;
1716    }
1717    }
1718  
1719    // Apply the top-level qualifiers from the original.
1720    return getQualifiedType(result, split.second);
1721  }
1722  
1723  /// getVariableArrayType - Returns a non-unique reference to the type for a
1724  /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const1725  QualType ASTContext::getVariableArrayType(QualType EltTy,
1726                                            Expr *NumElts,
1727                                            ArrayType::ArraySizeModifier ASM,
1728                                            unsigned IndexTypeQuals,
1729                                            SourceRange Brackets) const {
1730    // Since we don't unique expressions, it isn't possible to unique VLA's
1731    // that have an expression provided for their size.
1732    QualType Canon;
1733  
1734    // Be sure to pull qualifiers off the element type.
1735    if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1736      SplitQualType canonSplit = getCanonicalType(EltTy).split();
1737      Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1738                                   IndexTypeQuals, Brackets);
1739      Canon = getQualifiedType(Canon, canonSplit.second);
1740    }
1741  
1742    VariableArrayType *New = new(*this, TypeAlignment)
1743      VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1744  
1745    VariableArrayTypes.push_back(New);
1746    Types.push_back(New);
1747    return QualType(New, 0);
1748  }
1749  
1750  /// getDependentSizedArrayType - Returns a non-unique reference to
1751  /// the type for a dependently-sized array of the specified element
1752  /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const1753  QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1754                                                  Expr *numElements,
1755                                                  ArrayType::ArraySizeModifier ASM,
1756                                                  unsigned elementTypeQuals,
1757                                                  SourceRange brackets) const {
1758    assert((!numElements || numElements->isTypeDependent() ||
1759            numElements->isValueDependent()) &&
1760           "Size must be type- or value-dependent!");
1761  
1762    // Dependently-sized array types that do not have a specified number
1763    // of elements will have their sizes deduced from a dependent
1764    // initializer.  We do no canonicalization here at all, which is okay
1765    // because they can't be used in most locations.
1766    if (!numElements) {
1767      DependentSizedArrayType *newType
1768        = new (*this, TypeAlignment)
1769            DependentSizedArrayType(*this, elementType, QualType(),
1770                                    numElements, ASM, elementTypeQuals,
1771                                    brackets);
1772      Types.push_back(newType);
1773      return QualType(newType, 0);
1774    }
1775  
1776    // Otherwise, we actually build a new type every time, but we
1777    // also build a canonical type.
1778  
1779    SplitQualType canonElementType = getCanonicalType(elementType).split();
1780  
1781    void *insertPos = 0;
1782    llvm::FoldingSetNodeID ID;
1783    DependentSizedArrayType::Profile(ID, *this,
1784                                     QualType(canonElementType.first, 0),
1785                                     ASM, elementTypeQuals, numElements);
1786  
1787    // Look for an existing type with these properties.
1788    DependentSizedArrayType *canonTy =
1789      DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1790  
1791    // If we don't have one, build one.
1792    if (!canonTy) {
1793      canonTy = new (*this, TypeAlignment)
1794        DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1795                                QualType(), numElements, ASM, elementTypeQuals,
1796                                brackets);
1797      DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1798      Types.push_back(canonTy);
1799    }
1800  
1801    // Apply qualifiers from the element type to the array.
1802    QualType canon = getQualifiedType(QualType(canonTy,0),
1803                                      canonElementType.second);
1804  
1805    // If we didn't need extra canonicalization for the element type,
1806    // then just use that as our result.
1807    if (QualType(canonElementType.first, 0) == elementType)
1808      return canon;
1809  
1810    // Otherwise, we need to build a type which follows the spelling
1811    // of the element type.
1812    DependentSizedArrayType *sugaredType
1813      = new (*this, TypeAlignment)
1814          DependentSizedArrayType(*this, elementType, canon, numElements,
1815                                  ASM, elementTypeQuals, brackets);
1816    Types.push_back(sugaredType);
1817    return QualType(sugaredType, 0);
1818  }
1819  
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const1820  QualType ASTContext::getIncompleteArrayType(QualType elementType,
1821                                              ArrayType::ArraySizeModifier ASM,
1822                                              unsigned elementTypeQuals) const {
1823    llvm::FoldingSetNodeID ID;
1824    IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1825  
1826    void *insertPos = 0;
1827    if (IncompleteArrayType *iat =
1828         IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1829      return QualType(iat, 0);
1830  
1831    // If the element type isn't canonical, this won't be a canonical type
1832    // either, so fill in the canonical type field.  We also have to pull
1833    // qualifiers off the element type.
1834    QualType canon;
1835  
1836    if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1837      SplitQualType canonSplit = getCanonicalType(elementType).split();
1838      canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1839                                     ASM, elementTypeQuals);
1840      canon = getQualifiedType(canon, canonSplit.second);
1841  
1842      // Get the new insert position for the node we care about.
1843      IncompleteArrayType *existing =
1844        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1845      assert(!existing && "Shouldn't be in the map!"); (void) existing;
1846    }
1847  
1848    IncompleteArrayType *newType = new (*this, TypeAlignment)
1849      IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1850  
1851    IncompleteArrayTypes.InsertNode(newType, insertPos);
1852    Types.push_back(newType);
1853    return QualType(newType, 0);
1854  }
1855  
1856  /// getVectorType - Return the unique reference to a vector type of
1857  /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const1858  QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1859                                     VectorType::VectorKind VecKind) const {
1860    assert(vecType->isBuiltinType());
1861  
1862    // Check if we've already instantiated a vector of this type.
1863    llvm::FoldingSetNodeID ID;
1864    VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1865  
1866    void *InsertPos = 0;
1867    if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1868      return QualType(VTP, 0);
1869  
1870    // If the element type isn't canonical, this won't be a canonical type either,
1871    // so fill in the canonical type field.
1872    QualType Canonical;
1873    if (!vecType.isCanonical()) {
1874      Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1875  
1876      // Get the new insert position for the node we care about.
1877      VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1878      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1879    }
1880    VectorType *New = new (*this, TypeAlignment)
1881      VectorType(vecType, NumElts, Canonical, VecKind);
1882    VectorTypes.InsertNode(New, InsertPos);
1883    Types.push_back(New);
1884    return QualType(New, 0);
1885  }
1886  
1887  /// getExtVectorType - Return the unique reference to an extended vector type of
1888  /// the specified element type and size. VectorType must be a built-in type.
1889  QualType
getExtVectorType(QualType vecType,unsigned NumElts) const1890  ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1891    assert(vecType->isBuiltinType() || vecType->isDependentType());
1892  
1893    // Check if we've already instantiated a vector of this type.
1894    llvm::FoldingSetNodeID ID;
1895    VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1896                        VectorType::GenericVector);
1897    void *InsertPos = 0;
1898    if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1899      return QualType(VTP, 0);
1900  
1901    // If the element type isn't canonical, this won't be a canonical type either,
1902    // so fill in the canonical type field.
1903    QualType Canonical;
1904    if (!vecType.isCanonical()) {
1905      Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1906  
1907      // Get the new insert position for the node we care about.
1908      VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1909      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1910    }
1911    ExtVectorType *New = new (*this, TypeAlignment)
1912      ExtVectorType(vecType, NumElts, Canonical);
1913    VectorTypes.InsertNode(New, InsertPos);
1914    Types.push_back(New);
1915    return QualType(New, 0);
1916  }
1917  
1918  QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const1919  ASTContext::getDependentSizedExtVectorType(QualType vecType,
1920                                             Expr *SizeExpr,
1921                                             SourceLocation AttrLoc) const {
1922    llvm::FoldingSetNodeID ID;
1923    DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1924                                         SizeExpr);
1925  
1926    void *InsertPos = 0;
1927    DependentSizedExtVectorType *Canon
1928      = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1929    DependentSizedExtVectorType *New;
1930    if (Canon) {
1931      // We already have a canonical version of this array type; use it as
1932      // the canonical type for a newly-built type.
1933      New = new (*this, TypeAlignment)
1934        DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1935                                    SizeExpr, AttrLoc);
1936    } else {
1937      QualType CanonVecTy = getCanonicalType(vecType);
1938      if (CanonVecTy == vecType) {
1939        New = new (*this, TypeAlignment)
1940          DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1941                                      AttrLoc);
1942  
1943        DependentSizedExtVectorType *CanonCheck
1944          = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1945        assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1946        (void)CanonCheck;
1947        DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1948      } else {
1949        QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1950                                                        SourceLocation());
1951        New = new (*this, TypeAlignment)
1952          DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1953      }
1954    }
1955  
1956    Types.push_back(New);
1957    return QualType(New, 0);
1958  }
1959  
1960  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1961  ///
1962  QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const1963  ASTContext::getFunctionNoProtoType(QualType ResultTy,
1964                                     const FunctionType::ExtInfo &Info) const {
1965    const CallingConv DefaultCC = Info.getCC();
1966    const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1967                                 CC_X86StdCall : DefaultCC;
1968    // Unique functions, to guarantee there is only one function of a particular
1969    // structure.
1970    llvm::FoldingSetNodeID ID;
1971    FunctionNoProtoType::Profile(ID, ResultTy, Info);
1972  
1973    void *InsertPos = 0;
1974    if (FunctionNoProtoType *FT =
1975          FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1976      return QualType(FT, 0);
1977  
1978    QualType Canonical;
1979    if (!ResultTy.isCanonical() ||
1980        getCanonicalCallConv(CallConv) != CallConv) {
1981      Canonical =
1982        getFunctionNoProtoType(getCanonicalType(ResultTy),
1983                       Info.withCallingConv(getCanonicalCallConv(CallConv)));
1984  
1985      // Get the new insert position for the node we care about.
1986      FunctionNoProtoType *NewIP =
1987        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1988      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1989    }
1990  
1991    FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1992    FunctionNoProtoType *New = new (*this, TypeAlignment)
1993      FunctionNoProtoType(ResultTy, Canonical, newInfo);
1994    Types.push_back(New);
1995    FunctionNoProtoTypes.InsertNode(New, InsertPos);
1996    return QualType(New, 0);
1997  }
1998  
1999  /// getFunctionType - Return a normal function type with a typed argument
2000  /// list.  isVariadic indicates whether the argument list includes '...'.
2001  QualType
getFunctionType(QualType ResultTy,const QualType * ArgArray,unsigned NumArgs,const FunctionProtoType::ExtProtoInfo & EPI) const2002  ASTContext::getFunctionType(QualType ResultTy,
2003                              const QualType *ArgArray, unsigned NumArgs,
2004                              const FunctionProtoType::ExtProtoInfo &EPI) const {
2005    // Unique functions, to guarantee there is only one function of a particular
2006    // structure.
2007    llvm::FoldingSetNodeID ID;
2008    FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2009  
2010    void *InsertPos = 0;
2011    if (FunctionProtoType *FTP =
2012          FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2013      return QualType(FTP, 0);
2014  
2015    // Determine whether the type being created is already canonical or not.
2016    bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2017    for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2018      if (!ArgArray[i].isCanonicalAsParam())
2019        isCanonical = false;
2020  
2021    const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2022    const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2023                                 CC_X86StdCall : DefaultCC;
2024  
2025    // If this type isn't canonical, get the canonical version of it.
2026    // The exception spec is not part of the canonical type.
2027    QualType Canonical;
2028    if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2029      llvm::SmallVector<QualType, 16> CanonicalArgs;
2030      CanonicalArgs.reserve(NumArgs);
2031      for (unsigned i = 0; i != NumArgs; ++i)
2032        CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2033  
2034      FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2035      CanonicalEPI.ExceptionSpecType = EST_None;
2036      CanonicalEPI.NumExceptions = 0;
2037      CanonicalEPI.ExtInfo
2038        = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2039  
2040      Canonical = getFunctionType(getCanonicalType(ResultTy),
2041                                  CanonicalArgs.data(), NumArgs,
2042                                  CanonicalEPI);
2043  
2044      // Get the new insert position for the node we care about.
2045      FunctionProtoType *NewIP =
2046        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2047      assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2048    }
2049  
2050    // FunctionProtoType objects are allocated with extra bytes after
2051    // them for three variable size arrays at the end:
2052    //  - parameter types
2053    //  - exception types
2054    //  - consumed-arguments flags
2055    // Instead of the exception types, there could be a noexcept
2056    // expression.
2057    size_t Size = sizeof(FunctionProtoType) +
2058                  NumArgs * sizeof(QualType);
2059    if (EPI.ExceptionSpecType == EST_Dynamic)
2060      Size += EPI.NumExceptions * sizeof(QualType);
2061    else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2062      Size += sizeof(Expr*);
2063    }
2064    if (EPI.ConsumedArguments)
2065      Size += NumArgs * sizeof(bool);
2066  
2067    FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2068    FunctionProtoType::ExtProtoInfo newEPI = EPI;
2069    newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2070    new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2071    Types.push_back(FTP);
2072    FunctionProtoTypes.InsertNode(FTP, InsertPos);
2073    return QualType(FTP, 0);
2074  }
2075  
2076  #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)2077  static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2078    if (!isa<CXXRecordDecl>(D)) return false;
2079    const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2080    if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2081      return true;
2082    if (RD->getDescribedClassTemplate() &&
2083        !isa<ClassTemplateSpecializationDecl>(RD))
2084      return true;
2085    return false;
2086  }
2087  #endif
2088  
2089  /// getInjectedClassNameType - Return the unique reference to the
2090  /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const2091  QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2092                                                QualType TST) const {
2093    assert(NeedsInjectedClassNameType(Decl));
2094    if (Decl->TypeForDecl) {
2095      assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2096    } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2097      assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2098      Decl->TypeForDecl = PrevDecl->TypeForDecl;
2099      assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2100    } else {
2101      Type *newType =
2102        new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2103      Decl->TypeForDecl = newType;
2104      Types.push_back(newType);
2105    }
2106    return QualType(Decl->TypeForDecl, 0);
2107  }
2108  
2109  /// getTypeDeclType - Return the unique reference to the type for the
2110  /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const2111  QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2112    assert(Decl && "Passed null for Decl param");
2113    assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2114  
2115    if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2116      return getTypedefType(Typedef);
2117  
2118    assert(!isa<TemplateTypeParmDecl>(Decl) &&
2119           "Template type parameter types are always available.");
2120  
2121    if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2122      assert(!Record->getPreviousDeclaration() &&
2123             "struct/union has previous declaration");
2124      assert(!NeedsInjectedClassNameType(Record));
2125      return getRecordType(Record);
2126    } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2127      assert(!Enum->getPreviousDeclaration() &&
2128             "enum has previous declaration");
2129      return getEnumType(Enum);
2130    } else if (const UnresolvedUsingTypenameDecl *Using =
2131                 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2132      Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2133      Decl->TypeForDecl = newType;
2134      Types.push_back(newType);
2135    } else
2136      llvm_unreachable("TypeDecl without a type?");
2137  
2138    return QualType(Decl->TypeForDecl, 0);
2139  }
2140  
2141  /// getTypedefType - Return the unique reference to the type for the
2142  /// specified typedef name decl.
2143  QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const2144  ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2145                             QualType Canonical) const {
2146    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2147  
2148    if (Canonical.isNull())
2149      Canonical = getCanonicalType(Decl->getUnderlyingType());
2150    TypedefType *newType = new(*this, TypeAlignment)
2151      TypedefType(Type::Typedef, Decl, Canonical);
2152    Decl->TypeForDecl = newType;
2153    Types.push_back(newType);
2154    return QualType(newType, 0);
2155  }
2156  
getRecordType(const RecordDecl * Decl) const2157  QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2158    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2159  
2160    if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2161      if (PrevDecl->TypeForDecl)
2162        return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2163  
2164    RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2165    Decl->TypeForDecl = newType;
2166    Types.push_back(newType);
2167    return QualType(newType, 0);
2168  }
2169  
getEnumType(const EnumDecl * Decl) const2170  QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2171    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2172  
2173    if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2174      if (PrevDecl->TypeForDecl)
2175        return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2176  
2177    EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2178    Decl->TypeForDecl = newType;
2179    Types.push_back(newType);
2180    return QualType(newType, 0);
2181  }
2182  
getAttributedType(AttributedType::Kind attrKind,QualType modifiedType,QualType equivalentType)2183  QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2184                                         QualType modifiedType,
2185                                         QualType equivalentType) {
2186    llvm::FoldingSetNodeID id;
2187    AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2188  
2189    void *insertPos = 0;
2190    AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2191    if (type) return QualType(type, 0);
2192  
2193    QualType canon = getCanonicalType(equivalentType);
2194    type = new (*this, TypeAlignment)
2195             AttributedType(canon, attrKind, modifiedType, equivalentType);
2196  
2197    Types.push_back(type);
2198    AttributedTypes.InsertNode(type, insertPos);
2199  
2200    return QualType(type, 0);
2201  }
2202  
2203  
2204  /// \brief Retrieve a substitution-result type.
2205  QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const2206  ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2207                                           QualType Replacement) const {
2208    assert(Replacement.isCanonical()
2209           && "replacement types must always be canonical");
2210  
2211    llvm::FoldingSetNodeID ID;
2212    SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2213    void *InsertPos = 0;
2214    SubstTemplateTypeParmType *SubstParm
2215      = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2216  
2217    if (!SubstParm) {
2218      SubstParm = new (*this, TypeAlignment)
2219        SubstTemplateTypeParmType(Parm, Replacement);
2220      Types.push_back(SubstParm);
2221      SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2222    }
2223  
2224    return QualType(SubstParm, 0);
2225  }
2226  
2227  /// \brief Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)2228  QualType ASTContext::getSubstTemplateTypeParmPackType(
2229                                            const TemplateTypeParmType *Parm,
2230                                                const TemplateArgument &ArgPack) {
2231  #ifndef NDEBUG
2232    for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2233                                      PEnd = ArgPack.pack_end();
2234         P != PEnd; ++P) {
2235      assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2236      assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2237    }
2238  #endif
2239  
2240    llvm::FoldingSetNodeID ID;
2241    SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2242    void *InsertPos = 0;
2243    if (SubstTemplateTypeParmPackType *SubstParm
2244          = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2245      return QualType(SubstParm, 0);
2246  
2247    QualType Canon;
2248    if (!Parm->isCanonicalUnqualified()) {
2249      Canon = getCanonicalType(QualType(Parm, 0));
2250      Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2251                                               ArgPack);
2252      SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2253    }
2254  
2255    SubstTemplateTypeParmPackType *SubstParm
2256      = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2257                                                                 ArgPack);
2258    Types.push_back(SubstParm);
2259    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2260    return QualType(SubstParm, 0);
2261  }
2262  
2263  /// \brief Retrieve the template type parameter type for a template
2264  /// parameter or parameter pack with the given depth, index, and (optionally)
2265  /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const2266  QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2267                                               bool ParameterPack,
2268                                               TemplateTypeParmDecl *TTPDecl) const {
2269    llvm::FoldingSetNodeID ID;
2270    TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2271    void *InsertPos = 0;
2272    TemplateTypeParmType *TypeParm
2273      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2274  
2275    if (TypeParm)
2276      return QualType(TypeParm, 0);
2277  
2278    if (TTPDecl) {
2279      QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2280      TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2281  
2282      TemplateTypeParmType *TypeCheck
2283        = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2284      assert(!TypeCheck && "Template type parameter canonical type broken");
2285      (void)TypeCheck;
2286    } else
2287      TypeParm = new (*this, TypeAlignment)
2288        TemplateTypeParmType(Depth, Index, ParameterPack);
2289  
2290    Types.push_back(TypeParm);
2291    TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2292  
2293    return QualType(TypeParm, 0);
2294  }
2295  
2296  TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const2297  ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2298                                                SourceLocation NameLoc,
2299                                          const TemplateArgumentListInfo &Args,
2300                                                QualType Underlying) const {
2301    assert(!Name.getAsDependentTemplateName() &&
2302           "No dependent template names here!");
2303    QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2304  
2305    TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2306    TemplateSpecializationTypeLoc TL
2307      = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2308    TL.setTemplateNameLoc(NameLoc);
2309    TL.setLAngleLoc(Args.getLAngleLoc());
2310    TL.setRAngleLoc(Args.getRAngleLoc());
2311    for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2312      TL.setArgLocInfo(i, Args[i].getLocInfo());
2313    return DI;
2314  }
2315  
2316  QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const2317  ASTContext::getTemplateSpecializationType(TemplateName Template,
2318                                            const TemplateArgumentListInfo &Args,
2319                                            QualType Underlying) const {
2320    assert(!Template.getAsDependentTemplateName() &&
2321           "No dependent template names here!");
2322  
2323    unsigned NumArgs = Args.size();
2324  
2325    llvm::SmallVector<TemplateArgument, 4> ArgVec;
2326    ArgVec.reserve(NumArgs);
2327    for (unsigned i = 0; i != NumArgs; ++i)
2328      ArgVec.push_back(Args[i].getArgument());
2329  
2330    return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2331                                         Underlying);
2332  }
2333  
2334  QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs,QualType Underlying) const2335  ASTContext::getTemplateSpecializationType(TemplateName Template,
2336                                            const TemplateArgument *Args,
2337                                            unsigned NumArgs,
2338                                            QualType Underlying) const {
2339    assert(!Template.getAsDependentTemplateName() &&
2340           "No dependent template names here!");
2341    // Look through qualified template names.
2342    if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2343      Template = TemplateName(QTN->getTemplateDecl());
2344  
2345    bool isTypeAlias =
2346      Template.getAsTemplateDecl() &&
2347      isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2348  
2349    QualType CanonType;
2350    if (!Underlying.isNull())
2351      CanonType = getCanonicalType(Underlying);
2352    else {
2353      assert(!isTypeAlias &&
2354             "Underlying type for template alias must be computed by caller");
2355      CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2356                                                         NumArgs);
2357    }
2358  
2359    // Allocate the (non-canonical) template specialization type, but don't
2360    // try to unique it: these types typically have location information that
2361    // we don't unique and don't want to lose.
2362    void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2363                         sizeof(TemplateArgument) * NumArgs +
2364                         (isTypeAlias ? sizeof(QualType) : 0),
2365                         TypeAlignment);
2366    TemplateSpecializationType *Spec
2367      = new (Mem) TemplateSpecializationType(Template,
2368                                             Args, NumArgs,
2369                                             CanonType,
2370                                           isTypeAlias ? Underlying : QualType());
2371  
2372    Types.push_back(Spec);
2373    return QualType(Spec, 0);
2374  }
2375  
2376  QualType
getCanonicalTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs) const2377  ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2378                                                     const TemplateArgument *Args,
2379                                                     unsigned NumArgs) const {
2380    assert(!Template.getAsDependentTemplateName() &&
2381           "No dependent template names here!");
2382    assert((!Template.getAsTemplateDecl() ||
2383            !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2384           "Underlying type for template alias must be computed by caller");
2385  
2386    // Look through qualified template names.
2387    if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2388      Template = TemplateName(QTN->getTemplateDecl());
2389  
2390    // Build the canonical template specialization type.
2391    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2392    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2393    CanonArgs.reserve(NumArgs);
2394    for (unsigned I = 0; I != NumArgs; ++I)
2395      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2396  
2397    // Determine whether this canonical template specialization type already
2398    // exists.
2399    llvm::FoldingSetNodeID ID;
2400    TemplateSpecializationType::Profile(ID, CanonTemplate,
2401                                        CanonArgs.data(), NumArgs, *this);
2402  
2403    void *InsertPos = 0;
2404    TemplateSpecializationType *Spec
2405      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2406  
2407    if (!Spec) {
2408      // Allocate a new canonical template specialization type.
2409      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2410                            sizeof(TemplateArgument) * NumArgs),
2411                           TypeAlignment);
2412      Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2413                                                  CanonArgs.data(), NumArgs,
2414                                                  QualType(), QualType());
2415      Types.push_back(Spec);
2416      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2417    }
2418  
2419    assert(Spec->isDependentType() &&
2420           "Non-dependent template-id type must have a canonical type");
2421    return QualType(Spec, 0);
2422  }
2423  
2424  QualType
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType) const2425  ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2426                                NestedNameSpecifier *NNS,
2427                                QualType NamedType) const {
2428    llvm::FoldingSetNodeID ID;
2429    ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2430  
2431    void *InsertPos = 0;
2432    ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2433    if (T)
2434      return QualType(T, 0);
2435  
2436    QualType Canon = NamedType;
2437    if (!Canon.isCanonical()) {
2438      Canon = getCanonicalType(NamedType);
2439      ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2440      assert(!CheckT && "Elaborated canonical type broken");
2441      (void)CheckT;
2442    }
2443  
2444    T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2445    Types.push_back(T);
2446    ElaboratedTypes.InsertNode(T, InsertPos);
2447    return QualType(T, 0);
2448  }
2449  
2450  QualType
getParenType(QualType InnerType) const2451  ASTContext::getParenType(QualType InnerType) const {
2452    llvm::FoldingSetNodeID ID;
2453    ParenType::Profile(ID, InnerType);
2454  
2455    void *InsertPos = 0;
2456    ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2457    if (T)
2458      return QualType(T, 0);
2459  
2460    QualType Canon = InnerType;
2461    if (!Canon.isCanonical()) {
2462      Canon = getCanonicalType(InnerType);
2463      ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2464      assert(!CheckT && "Paren canonical type broken");
2465      (void)CheckT;
2466    }
2467  
2468    T = new (*this) ParenType(InnerType, Canon);
2469    Types.push_back(T);
2470    ParenTypes.InsertNode(T, InsertPos);
2471    return QualType(T, 0);
2472  }
2473  
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const2474  QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2475                                            NestedNameSpecifier *NNS,
2476                                            const IdentifierInfo *Name,
2477                                            QualType Canon) const {
2478    assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2479  
2480    if (Canon.isNull()) {
2481      NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2482      ElaboratedTypeKeyword CanonKeyword = Keyword;
2483      if (Keyword == ETK_None)
2484        CanonKeyword = ETK_Typename;
2485  
2486      if (CanonNNS != NNS || CanonKeyword != Keyword)
2487        Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2488    }
2489  
2490    llvm::FoldingSetNodeID ID;
2491    DependentNameType::Profile(ID, Keyword, NNS, Name);
2492  
2493    void *InsertPos = 0;
2494    DependentNameType *T
2495      = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2496    if (T)
2497      return QualType(T, 0);
2498  
2499    T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2500    Types.push_back(T);
2501    DependentNameTypes.InsertNode(T, InsertPos);
2502    return QualType(T, 0);
2503  }
2504  
2505  QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const2506  ASTContext::getDependentTemplateSpecializationType(
2507                                   ElaboratedTypeKeyword Keyword,
2508                                   NestedNameSpecifier *NNS,
2509                                   const IdentifierInfo *Name,
2510                                   const TemplateArgumentListInfo &Args) const {
2511    // TODO: avoid this copy
2512    llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2513    for (unsigned I = 0, E = Args.size(); I != E; ++I)
2514      ArgCopy.push_back(Args[I].getArgument());
2515    return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2516                                                  ArgCopy.size(),
2517                                                  ArgCopy.data());
2518  }
2519  
2520  QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args) const2521  ASTContext::getDependentTemplateSpecializationType(
2522                                   ElaboratedTypeKeyword Keyword,
2523                                   NestedNameSpecifier *NNS,
2524                                   const IdentifierInfo *Name,
2525                                   unsigned NumArgs,
2526                                   const TemplateArgument *Args) const {
2527    assert((!NNS || NNS->isDependent()) &&
2528           "nested-name-specifier must be dependent");
2529  
2530    llvm::FoldingSetNodeID ID;
2531    DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2532                                                 Name, NumArgs, Args);
2533  
2534    void *InsertPos = 0;
2535    DependentTemplateSpecializationType *T
2536      = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2537    if (T)
2538      return QualType(T, 0);
2539  
2540    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2541  
2542    ElaboratedTypeKeyword CanonKeyword = Keyword;
2543    if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2544  
2545    bool AnyNonCanonArgs = false;
2546    llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2547    for (unsigned I = 0; I != NumArgs; ++I) {
2548      CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2549      if (!CanonArgs[I].structurallyEquals(Args[I]))
2550        AnyNonCanonArgs = true;
2551    }
2552  
2553    QualType Canon;
2554    if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2555      Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2556                                                     Name, NumArgs,
2557                                                     CanonArgs.data());
2558  
2559      // Find the insert position again.
2560      DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2561    }
2562  
2563    void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2564                          sizeof(TemplateArgument) * NumArgs),
2565                         TypeAlignment);
2566    T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2567                                                      Name, NumArgs, Args, Canon);
2568    Types.push_back(T);
2569    DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2570    return QualType(T, 0);
2571  }
2572  
getPackExpansionType(QualType Pattern,llvm::Optional<unsigned> NumExpansions)2573  QualType ASTContext::getPackExpansionType(QualType Pattern,
2574                                        llvm::Optional<unsigned> NumExpansions) {
2575    llvm::FoldingSetNodeID ID;
2576    PackExpansionType::Profile(ID, Pattern, NumExpansions);
2577  
2578    assert(Pattern->containsUnexpandedParameterPack() &&
2579           "Pack expansions must expand one or more parameter packs");
2580    void *InsertPos = 0;
2581    PackExpansionType *T
2582      = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2583    if (T)
2584      return QualType(T, 0);
2585  
2586    QualType Canon;
2587    if (!Pattern.isCanonical()) {
2588      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2589  
2590      // Find the insert position again.
2591      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2592    }
2593  
2594    T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2595    Types.push_back(T);
2596    PackExpansionTypes.InsertNode(T, InsertPos);
2597    return QualType(T, 0);
2598  }
2599  
2600  /// CmpProtocolNames - Comparison predicate for sorting protocols
2601  /// alphabetically.
CmpProtocolNames(const ObjCProtocolDecl * LHS,const ObjCProtocolDecl * RHS)2602  static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2603                              const ObjCProtocolDecl *RHS) {
2604    return LHS->getDeclName() < RHS->getDeclName();
2605  }
2606  
areSortedAndUniqued(ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)2607  static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2608                                  unsigned NumProtocols) {
2609    if (NumProtocols == 0) return true;
2610  
2611    for (unsigned i = 1; i != NumProtocols; ++i)
2612      if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2613        return false;
2614    return true;
2615  }
2616  
SortAndUniqueProtocols(ObjCProtocolDecl ** Protocols,unsigned & NumProtocols)2617  static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2618                                     unsigned &NumProtocols) {
2619    ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2620  
2621    // Sort protocols, keyed by name.
2622    std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2623  
2624    // Remove duplicates.
2625    ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2626    NumProtocols = ProtocolsEnd-Protocols;
2627  }
2628  
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const2629  QualType ASTContext::getObjCObjectType(QualType BaseType,
2630                                         ObjCProtocolDecl * const *Protocols,
2631                                         unsigned NumProtocols) const {
2632    // If the base type is an interface and there aren't any protocols
2633    // to add, then the interface type will do just fine.
2634    if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2635      return BaseType;
2636  
2637    // Look in the folding set for an existing type.
2638    llvm::FoldingSetNodeID ID;
2639    ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2640    void *InsertPos = 0;
2641    if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2642      return QualType(QT, 0);
2643  
2644    // Build the canonical type, which has the canonical base type and
2645    // a sorted-and-uniqued list of protocols.
2646    QualType Canonical;
2647    bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2648    if (!ProtocolsSorted || !BaseType.isCanonical()) {
2649      if (!ProtocolsSorted) {
2650        llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2651                                                       Protocols + NumProtocols);
2652        unsigned UniqueCount = NumProtocols;
2653  
2654        SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2655        Canonical = getObjCObjectType(getCanonicalType(BaseType),
2656                                      &Sorted[0], UniqueCount);
2657      } else {
2658        Canonical = getObjCObjectType(getCanonicalType(BaseType),
2659                                      Protocols, NumProtocols);
2660      }
2661  
2662      // Regenerate InsertPos.
2663      ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2664    }
2665  
2666    unsigned Size = sizeof(ObjCObjectTypeImpl);
2667    Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2668    void *Mem = Allocate(Size, TypeAlignment);
2669    ObjCObjectTypeImpl *T =
2670      new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2671  
2672    Types.push_back(T);
2673    ObjCObjectTypes.InsertNode(T, InsertPos);
2674    return QualType(T, 0);
2675  }
2676  
2677  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2678  /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const2679  QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2680    llvm::FoldingSetNodeID ID;
2681    ObjCObjectPointerType::Profile(ID, ObjectT);
2682  
2683    void *InsertPos = 0;
2684    if (ObjCObjectPointerType *QT =
2685                ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2686      return QualType(QT, 0);
2687  
2688    // Find the canonical object type.
2689    QualType Canonical;
2690    if (!ObjectT.isCanonical()) {
2691      Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2692  
2693      // Regenerate InsertPos.
2694      ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2695    }
2696  
2697    // No match.
2698    void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2699    ObjCObjectPointerType *QType =
2700      new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2701  
2702    Types.push_back(QType);
2703    ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2704    return QualType(QType, 0);
2705  }
2706  
2707  /// getObjCInterfaceType - Return the unique reference to the type for the
2708  /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl) const2709  QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2710    if (Decl->TypeForDecl)
2711      return QualType(Decl->TypeForDecl, 0);
2712  
2713    // FIXME: redeclarations?
2714    void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2715    ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2716    Decl->TypeForDecl = T;
2717    Types.push_back(T);
2718    return QualType(T, 0);
2719  }
2720  
2721  /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2722  /// TypeOfExprType AST's (since expression's are never shared). For example,
2723  /// multiple declarations that refer to "typeof(x)" all contain different
2724  /// DeclRefExpr's. This doesn't effect the type checker, since it operates
2725  /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const2726  QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2727    TypeOfExprType *toe;
2728    if (tofExpr->isTypeDependent()) {
2729      llvm::FoldingSetNodeID ID;
2730      DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2731  
2732      void *InsertPos = 0;
2733      DependentTypeOfExprType *Canon
2734        = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2735      if (Canon) {
2736        // We already have a "canonical" version of an identical, dependent
2737        // typeof(expr) type. Use that as our canonical type.
2738        toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2739                                            QualType((TypeOfExprType*)Canon, 0));
2740      }
2741      else {
2742        // Build a new, canonical typeof(expr) type.
2743        Canon
2744          = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2745        DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2746        toe = Canon;
2747      }
2748    } else {
2749      QualType Canonical = getCanonicalType(tofExpr->getType());
2750      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2751    }
2752    Types.push_back(toe);
2753    return QualType(toe, 0);
2754  }
2755  
2756  /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2757  /// TypeOfType AST's. The only motivation to unique these nodes would be
2758  /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2759  /// an issue. This doesn't effect the type checker, since it operates
2760  /// on canonical type's (which are always unique).
getTypeOfType(QualType tofType) const2761  QualType ASTContext::getTypeOfType(QualType tofType) const {
2762    QualType Canonical = getCanonicalType(tofType);
2763    TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2764    Types.push_back(tot);
2765    return QualType(tot, 0);
2766  }
2767  
2768  /// getDecltypeForExpr - Given an expr, will return the decltype for that
2769  /// expression, according to the rules in C++0x [dcl.type.simple]p4
getDecltypeForExpr(const Expr * e,const ASTContext & Context)2770  static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2771    if (e->isTypeDependent())
2772      return Context.DependentTy;
2773  
2774    // If e is an id expression or a class member access, decltype(e) is defined
2775    // as the type of the entity named by e.
2776    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2777      if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2778        return VD->getType();
2779    }
2780    if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2781      if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2782        return FD->getType();
2783    }
2784    // If e is a function call or an invocation of an overloaded operator,
2785    // (parentheses around e are ignored), decltype(e) is defined as the
2786    // return type of that function.
2787    if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2788      return CE->getCallReturnType();
2789  
2790    QualType T = e->getType();
2791  
2792    // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2793    // defined as T&, otherwise decltype(e) is defined as T.
2794    if (e->isLValue())
2795      T = Context.getLValueReferenceType(T);
2796  
2797    return T;
2798  }
2799  
2800  /// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2801  /// DecltypeType AST's. The only motivation to unique these nodes would be
2802  /// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2803  /// an issue. This doesn't effect the type checker, since it operates
2804  /// on canonical type's (which are always unique).
getDecltypeType(Expr * e) const2805  QualType ASTContext::getDecltypeType(Expr *e) const {
2806    DecltypeType *dt;
2807  
2808    // C++0x [temp.type]p2:
2809    //   If an expression e involves a template parameter, decltype(e) denotes a
2810    //   unique dependent type. Two such decltype-specifiers refer to the same
2811    //   type only if their expressions are equivalent (14.5.6.1).
2812    if (e->isInstantiationDependent()) {
2813      llvm::FoldingSetNodeID ID;
2814      DependentDecltypeType::Profile(ID, *this, e);
2815  
2816      void *InsertPos = 0;
2817      DependentDecltypeType *Canon
2818        = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2819      if (Canon) {
2820        // We already have a "canonical" version of an equivalent, dependent
2821        // decltype type. Use that as our canonical type.
2822        dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2823                                         QualType((DecltypeType*)Canon, 0));
2824      }
2825      else {
2826        // Build a new, canonical typeof(expr) type.
2827        Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2828        DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2829        dt = Canon;
2830      }
2831    } else {
2832      QualType T = getDecltypeForExpr(e, *this);
2833      dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2834    }
2835    Types.push_back(dt);
2836    return QualType(dt, 0);
2837  }
2838  
2839  /// getUnaryTransformationType - We don't unique these, since the memory
2840  /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const2841  QualType ASTContext::getUnaryTransformType(QualType BaseType,
2842                                             QualType UnderlyingType,
2843                                             UnaryTransformType::UTTKind Kind)
2844      const {
2845    UnaryTransformType *Ty =
2846      new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2847                                                     Kind,
2848                                   UnderlyingType->isDependentType() ?
2849                                      QualType() : UnderlyingType);
2850    Types.push_back(Ty);
2851    return QualType(Ty, 0);
2852  }
2853  
2854  /// getAutoType - We only unique auto types after they've been deduced.
getAutoType(QualType DeducedType) const2855  QualType ASTContext::getAutoType(QualType DeducedType) const {
2856    void *InsertPos = 0;
2857    if (!DeducedType.isNull()) {
2858      // Look in the folding set for an existing type.
2859      llvm::FoldingSetNodeID ID;
2860      AutoType::Profile(ID, DeducedType);
2861      if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2862        return QualType(AT, 0);
2863    }
2864  
2865    AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2866    Types.push_back(AT);
2867    if (InsertPos)
2868      AutoTypes.InsertNode(AT, InsertPos);
2869    return QualType(AT, 0);
2870  }
2871  
2872  /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const2873  QualType ASTContext::getAutoDeductType() const {
2874    if (AutoDeductTy.isNull())
2875      AutoDeductTy = getAutoType(QualType());
2876    assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2877    return AutoDeductTy;
2878  }
2879  
2880  /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const2881  QualType ASTContext::getAutoRRefDeductType() const {
2882    if (AutoRRefDeductTy.isNull())
2883      AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2884    assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2885    return AutoRRefDeductTy;
2886  }
2887  
2888  /// getTagDeclType - Return the unique reference to the type for the
2889  /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const2890  QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2891    assert (Decl);
2892    // FIXME: What is the design on getTagDeclType when it requires casting
2893    // away const?  mutable?
2894    return getTypeDeclType(const_cast<TagDecl*>(Decl));
2895  }
2896  
2897  /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2898  /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2899  /// needs to agree with the definition in <stddef.h>.
getSizeType() const2900  CanQualType ASTContext::getSizeType() const {
2901    return getFromTargetType(Target.getSizeType());
2902  }
2903  
2904  /// getSignedWCharType - Return the type of "signed wchar_t".
2905  /// Used when in C++, as a GCC extension.
getSignedWCharType() const2906  QualType ASTContext::getSignedWCharType() const {
2907    // FIXME: derive from "Target" ?
2908    return WCharTy;
2909  }
2910  
2911  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2912  /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const2913  QualType ASTContext::getUnsignedWCharType() const {
2914    // FIXME: derive from "Target" ?
2915    return UnsignedIntTy;
2916  }
2917  
2918  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2919  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const2920  QualType ASTContext::getPointerDiffType() const {
2921    return getFromTargetType(Target.getPtrDiffType(0));
2922  }
2923  
2924  //===----------------------------------------------------------------------===//
2925  //                              Type Operators
2926  //===----------------------------------------------------------------------===//
2927  
getCanonicalParamType(QualType T) const2928  CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2929    // Push qualifiers into arrays, and then discard any remaining
2930    // qualifiers.
2931    T = getCanonicalType(T);
2932    T = getVariableArrayDecayedType(T);
2933    const Type *Ty = T.getTypePtr();
2934    QualType Result;
2935    if (isa<ArrayType>(Ty)) {
2936      Result = getArrayDecayedType(QualType(Ty,0));
2937    } else if (isa<FunctionType>(Ty)) {
2938      Result = getPointerType(QualType(Ty, 0));
2939    } else {
2940      Result = QualType(Ty, 0);
2941    }
2942  
2943    return CanQualType::CreateUnsafe(Result);
2944  }
2945  
getUnqualifiedArrayType(QualType type,Qualifiers & quals)2946  QualType ASTContext::getUnqualifiedArrayType(QualType type,
2947                                               Qualifiers &quals) {
2948    SplitQualType splitType = type.getSplitUnqualifiedType();
2949  
2950    // FIXME: getSplitUnqualifiedType() actually walks all the way to
2951    // the unqualified desugared type and then drops it on the floor.
2952    // We then have to strip that sugar back off with
2953    // getUnqualifiedDesugaredType(), which is silly.
2954    const ArrayType *AT =
2955      dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2956  
2957    // If we don't have an array, just use the results in splitType.
2958    if (!AT) {
2959      quals = splitType.second;
2960      return QualType(splitType.first, 0);
2961    }
2962  
2963    // Otherwise, recurse on the array's element type.
2964    QualType elementType = AT->getElementType();
2965    QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2966  
2967    // If that didn't change the element type, AT has no qualifiers, so we
2968    // can just use the results in splitType.
2969    if (elementType == unqualElementType) {
2970      assert(quals.empty()); // from the recursive call
2971      quals = splitType.second;
2972      return QualType(splitType.first, 0);
2973    }
2974  
2975    // Otherwise, add in the qualifiers from the outermost type, then
2976    // build the type back up.
2977    quals.addConsistentQualifiers(splitType.second);
2978  
2979    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2980      return getConstantArrayType(unqualElementType, CAT->getSize(),
2981                                  CAT->getSizeModifier(), 0);
2982    }
2983  
2984    if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2985      return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2986    }
2987  
2988    if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2989      return getVariableArrayType(unqualElementType,
2990                                  VAT->getSizeExpr(),
2991                                  VAT->getSizeModifier(),
2992                                  VAT->getIndexTypeCVRQualifiers(),
2993                                  VAT->getBracketsRange());
2994    }
2995  
2996    const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2997    return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2998                                      DSAT->getSizeModifier(), 0,
2999                                      SourceRange());
3000  }
3001  
3002  /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3003  /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3004  /// they point to and return true. If T1 and T2 aren't pointer types
3005  /// or pointer-to-member types, or if they are not similar at this
3006  /// level, returns false and leaves T1 and T2 unchanged. Top-level
3007  /// qualifiers on T1 and T2 are ignored. This function will typically
3008  /// be called in a loop that successively "unwraps" pointer and
3009  /// pointer-to-member types to compare them at each level.
UnwrapSimilarPointerTypes(QualType & T1,QualType & T2)3010  bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3011    const PointerType *T1PtrType = T1->getAs<PointerType>(),
3012                      *T2PtrType = T2->getAs<PointerType>();
3013    if (T1PtrType && T2PtrType) {
3014      T1 = T1PtrType->getPointeeType();
3015      T2 = T2PtrType->getPointeeType();
3016      return true;
3017    }
3018  
3019    const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3020                            *T2MPType = T2->getAs<MemberPointerType>();
3021    if (T1MPType && T2MPType &&
3022        hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3023                               QualType(T2MPType->getClass(), 0))) {
3024      T1 = T1MPType->getPointeeType();
3025      T2 = T2MPType->getPointeeType();
3026      return true;
3027    }
3028  
3029    if (getLangOptions().ObjC1) {
3030      const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3031                                  *T2OPType = T2->getAs<ObjCObjectPointerType>();
3032      if (T1OPType && T2OPType) {
3033        T1 = T1OPType->getPointeeType();
3034        T2 = T2OPType->getPointeeType();
3035        return true;
3036      }
3037    }
3038  
3039    // FIXME: Block pointers, too?
3040  
3041    return false;
3042  }
3043  
3044  DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const3045  ASTContext::getNameForTemplate(TemplateName Name,
3046                                 SourceLocation NameLoc) const {
3047    switch (Name.getKind()) {
3048    case TemplateName::QualifiedTemplate:
3049    case TemplateName::Template:
3050      // DNInfo work in progress: CHECKME: what about DNLoc?
3051      return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3052                                 NameLoc);
3053  
3054    case TemplateName::OverloadedTemplate: {
3055      OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3056      // DNInfo work in progress: CHECKME: what about DNLoc?
3057      return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3058    }
3059  
3060    case TemplateName::DependentTemplate: {
3061      DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3062      DeclarationName DName;
3063      if (DTN->isIdentifier()) {
3064        DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3065        return DeclarationNameInfo(DName, NameLoc);
3066      } else {
3067        DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3068        // DNInfo work in progress: FIXME: source locations?
3069        DeclarationNameLoc DNLoc;
3070        DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3071        DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3072        return DeclarationNameInfo(DName, NameLoc, DNLoc);
3073      }
3074    }
3075  
3076    case TemplateName::SubstTemplateTemplateParm: {
3077      SubstTemplateTemplateParmStorage *subst
3078        = Name.getAsSubstTemplateTemplateParm();
3079      return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3080                                 NameLoc);
3081    }
3082  
3083    case TemplateName::SubstTemplateTemplateParmPack: {
3084      SubstTemplateTemplateParmPackStorage *subst
3085        = Name.getAsSubstTemplateTemplateParmPack();
3086      return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3087                                 NameLoc);
3088    }
3089    }
3090  
3091    llvm_unreachable("bad template name kind!");
3092  }
3093  
getCanonicalTemplateName(TemplateName Name) const3094  TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3095    switch (Name.getKind()) {
3096    case TemplateName::QualifiedTemplate:
3097    case TemplateName::Template: {
3098      TemplateDecl *Template = Name.getAsTemplateDecl();
3099      if (TemplateTemplateParmDecl *TTP
3100            = dyn_cast<TemplateTemplateParmDecl>(Template))
3101        Template = getCanonicalTemplateTemplateParmDecl(TTP);
3102  
3103      // The canonical template name is the canonical template declaration.
3104      return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3105    }
3106  
3107    case TemplateName::OverloadedTemplate:
3108      llvm_unreachable("cannot canonicalize overloaded template");
3109  
3110    case TemplateName::DependentTemplate: {
3111      DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3112      assert(DTN && "Non-dependent template names must refer to template decls.");
3113      return DTN->CanonicalTemplateName;
3114    }
3115  
3116    case TemplateName::SubstTemplateTemplateParm: {
3117      SubstTemplateTemplateParmStorage *subst
3118        = Name.getAsSubstTemplateTemplateParm();
3119      return getCanonicalTemplateName(subst->getReplacement());
3120    }
3121  
3122    case TemplateName::SubstTemplateTemplateParmPack: {
3123      SubstTemplateTemplateParmPackStorage *subst
3124                                    = Name.getAsSubstTemplateTemplateParmPack();
3125      TemplateTemplateParmDecl *canonParameter
3126        = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3127      TemplateArgument canonArgPack
3128        = getCanonicalTemplateArgument(subst->getArgumentPack());
3129      return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3130    }
3131    }
3132  
3133    llvm_unreachable("bad template name!");
3134  }
3135  
hasSameTemplateName(TemplateName X,TemplateName Y)3136  bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3137    X = getCanonicalTemplateName(X);
3138    Y = getCanonicalTemplateName(Y);
3139    return X.getAsVoidPointer() == Y.getAsVoidPointer();
3140  }
3141  
3142  TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const3143  ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3144    switch (Arg.getKind()) {
3145      case TemplateArgument::Null:
3146        return Arg;
3147  
3148      case TemplateArgument::Expression:
3149        return Arg;
3150  
3151      case TemplateArgument::Declaration:
3152        return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3153  
3154      case TemplateArgument::Template:
3155        return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3156  
3157      case TemplateArgument::TemplateExpansion:
3158        return TemplateArgument(getCanonicalTemplateName(
3159                                           Arg.getAsTemplateOrTemplatePattern()),
3160                                Arg.getNumTemplateExpansions());
3161  
3162      case TemplateArgument::Integral:
3163        return TemplateArgument(*Arg.getAsIntegral(),
3164                                getCanonicalType(Arg.getIntegralType()));
3165  
3166      case TemplateArgument::Type:
3167        return TemplateArgument(getCanonicalType(Arg.getAsType()));
3168  
3169      case TemplateArgument::Pack: {
3170        if (Arg.pack_size() == 0)
3171          return Arg;
3172  
3173        TemplateArgument *CanonArgs
3174          = new (*this) TemplateArgument[Arg.pack_size()];
3175        unsigned Idx = 0;
3176        for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3177                                          AEnd = Arg.pack_end();
3178             A != AEnd; (void)++A, ++Idx)
3179          CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3180  
3181        return TemplateArgument(CanonArgs, Arg.pack_size());
3182      }
3183    }
3184  
3185    // Silence GCC warning
3186    assert(false && "Unhandled template argument kind");
3187    return TemplateArgument();
3188  }
3189  
3190  NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const3191  ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3192    if (!NNS)
3193      return 0;
3194  
3195    switch (NNS->getKind()) {
3196    case NestedNameSpecifier::Identifier:
3197      // Canonicalize the prefix but keep the identifier the same.
3198      return NestedNameSpecifier::Create(*this,
3199                           getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3200                                         NNS->getAsIdentifier());
3201  
3202    case NestedNameSpecifier::Namespace:
3203      // A namespace is canonical; build a nested-name-specifier with
3204      // this namespace and no prefix.
3205      return NestedNameSpecifier::Create(*this, 0,
3206                                   NNS->getAsNamespace()->getOriginalNamespace());
3207  
3208    case NestedNameSpecifier::NamespaceAlias:
3209      // A namespace is canonical; build a nested-name-specifier with
3210      // this namespace and no prefix.
3211      return NestedNameSpecifier::Create(*this, 0,
3212                                      NNS->getAsNamespaceAlias()->getNamespace()
3213                                                        ->getOriginalNamespace());
3214  
3215    case NestedNameSpecifier::TypeSpec:
3216    case NestedNameSpecifier::TypeSpecWithTemplate: {
3217      QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3218  
3219      // If we have some kind of dependent-named type (e.g., "typename T::type"),
3220      // break it apart into its prefix and identifier, then reconsititute those
3221      // as the canonical nested-name-specifier. This is required to canonicalize
3222      // a dependent nested-name-specifier involving typedefs of dependent-name
3223      // types, e.g.,
3224      //   typedef typename T::type T1;
3225      //   typedef typename T1::type T2;
3226      if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3227        NestedNameSpecifier *Prefix
3228          = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3229        return NestedNameSpecifier::Create(*this, Prefix,
3230                             const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3231      }
3232  
3233      // Do the same thing as above, but with dependent-named specializations.
3234      if (const DependentTemplateSpecializationType *DTST
3235            = T->getAs<DependentTemplateSpecializationType>()) {
3236        NestedNameSpecifier *Prefix
3237          = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3238  
3239        T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3240                                                   Prefix, DTST->getIdentifier(),
3241                                                   DTST->getNumArgs(),
3242                                                   DTST->getArgs());
3243        T = getCanonicalType(T);
3244      }
3245  
3246      return NestedNameSpecifier::Create(*this, 0, false,
3247                                         const_cast<Type*>(T.getTypePtr()));
3248    }
3249  
3250    case NestedNameSpecifier::Global:
3251      // The global specifier is canonical and unique.
3252      return NNS;
3253    }
3254  
3255    // Required to silence a GCC warning
3256    return 0;
3257  }
3258  
3259  
getAsArrayType(QualType T) const3260  const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3261    // Handle the non-qualified case efficiently.
3262    if (!T.hasLocalQualifiers()) {
3263      // Handle the common positive case fast.
3264      if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3265        return AT;
3266    }
3267  
3268    // Handle the common negative case fast.
3269    if (!isa<ArrayType>(T.getCanonicalType()))
3270      return 0;
3271  
3272    // Apply any qualifiers from the array type to the element type.  This
3273    // implements C99 6.7.3p8: "If the specification of an array type includes
3274    // any type qualifiers, the element type is so qualified, not the array type."
3275  
3276    // If we get here, we either have type qualifiers on the type, or we have
3277    // sugar such as a typedef in the way.  If we have type qualifiers on the type
3278    // we must propagate them down into the element type.
3279  
3280    SplitQualType split = T.getSplitDesugaredType();
3281    Qualifiers qs = split.second;
3282  
3283    // If we have a simple case, just return now.
3284    const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3285    if (ATy == 0 || qs.empty())
3286      return ATy;
3287  
3288    // Otherwise, we have an array and we have qualifiers on it.  Push the
3289    // qualifiers into the array element type and return a new array type.
3290    QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3291  
3292    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3293      return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3294                                                  CAT->getSizeModifier(),
3295                                             CAT->getIndexTypeCVRQualifiers()));
3296    if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3297      return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3298                                                    IAT->getSizeModifier(),
3299                                             IAT->getIndexTypeCVRQualifiers()));
3300  
3301    if (const DependentSizedArrayType *DSAT
3302          = dyn_cast<DependentSizedArrayType>(ATy))
3303      return cast<ArrayType>(
3304                       getDependentSizedArrayType(NewEltTy,
3305                                                  DSAT->getSizeExpr(),
3306                                                  DSAT->getSizeModifier(),
3307                                                DSAT->getIndexTypeCVRQualifiers(),
3308                                                  DSAT->getBracketsRange()));
3309  
3310    const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3311    return cast<ArrayType>(getVariableArrayType(NewEltTy,
3312                                                VAT->getSizeExpr(),
3313                                                VAT->getSizeModifier(),
3314                                                VAT->getIndexTypeCVRQualifiers(),
3315                                                VAT->getBracketsRange()));
3316  }
3317  
getAdjustedParameterType(QualType T)3318  QualType ASTContext::getAdjustedParameterType(QualType T) {
3319    // C99 6.7.5.3p7:
3320    //   A declaration of a parameter as "array of type" shall be
3321    //   adjusted to "qualified pointer to type", where the type
3322    //   qualifiers (if any) are those specified within the [ and ] of
3323    //   the array type derivation.
3324    if (T->isArrayType())
3325      return getArrayDecayedType(T);
3326  
3327    // C99 6.7.5.3p8:
3328    //   A declaration of a parameter as "function returning type"
3329    //   shall be adjusted to "pointer to function returning type", as
3330    //   in 6.3.2.1.
3331    if (T->isFunctionType())
3332      return getPointerType(T);
3333  
3334    return T;
3335  }
3336  
getSignatureParameterType(QualType T)3337  QualType ASTContext::getSignatureParameterType(QualType T) {
3338    T = getVariableArrayDecayedType(T);
3339    T = getAdjustedParameterType(T);
3340    return T.getUnqualifiedType();
3341  }
3342  
3343  /// getArrayDecayedType - Return the properly qualified result of decaying the
3344  /// specified array type to a pointer.  This operation is non-trivial when
3345  /// handling typedefs etc.  The canonical type of "T" must be an array type,
3346  /// this returns a pointer to a properly qualified element of the array.
3347  ///
3348  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const3349  QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3350    // Get the element type with 'getAsArrayType' so that we don't lose any
3351    // typedefs in the element type of the array.  This also handles propagation
3352    // of type qualifiers from the array type into the element type if present
3353    // (C99 6.7.3p8).
3354    const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3355    assert(PrettyArrayType && "Not an array type!");
3356  
3357    QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3358  
3359    // int x[restrict 4] ->  int *restrict
3360    return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3361  }
3362  
getBaseElementType(const ArrayType * array) const3363  QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3364    return getBaseElementType(array->getElementType());
3365  }
3366  
getBaseElementType(QualType type) const3367  QualType ASTContext::getBaseElementType(QualType type) const {
3368    Qualifiers qs;
3369    while (true) {
3370      SplitQualType split = type.getSplitDesugaredType();
3371      const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3372      if (!array) break;
3373  
3374      type = array->getElementType();
3375      qs.addConsistentQualifiers(split.second);
3376    }
3377  
3378    return getQualifiedType(type, qs);
3379  }
3380  
3381  /// getConstantArrayElementCount - Returns number of constant array elements.
3382  uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const3383  ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3384    uint64_t ElementCount = 1;
3385    do {
3386      ElementCount *= CA->getSize().getZExtValue();
3387      CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3388    } while (CA);
3389    return ElementCount;
3390  }
3391  
3392  /// getFloatingRank - Return a relative rank for floating point types.
3393  /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)3394  static FloatingRank getFloatingRank(QualType T) {
3395    if (const ComplexType *CT = T->getAs<ComplexType>())
3396      return getFloatingRank(CT->getElementType());
3397  
3398    assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3399    switch (T->getAs<BuiltinType>()->getKind()) {
3400    default: assert(0 && "getFloatingRank(): not a floating type");
3401    case BuiltinType::Float:      return FloatRank;
3402    case BuiltinType::Double:     return DoubleRank;
3403    case BuiltinType::LongDouble: return LongDoubleRank;
3404    }
3405  }
3406  
3407  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3408  /// point or a complex type (based on typeDomain/typeSize).
3409  /// 'typeDomain' is a real floating point or complex type.
3410  /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const3411  QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3412                                                         QualType Domain) const {
3413    FloatingRank EltRank = getFloatingRank(Size);
3414    if (Domain->isComplexType()) {
3415      switch (EltRank) {
3416      default: assert(0 && "getFloatingRank(): illegal value for rank");
3417      case FloatRank:      return FloatComplexTy;
3418      case DoubleRank:     return DoubleComplexTy;
3419      case LongDoubleRank: return LongDoubleComplexTy;
3420      }
3421    }
3422  
3423    assert(Domain->isRealFloatingType() && "Unknown domain!");
3424    switch (EltRank) {
3425    default: assert(0 && "getFloatingRank(): illegal value for rank");
3426    case FloatRank:      return FloatTy;
3427    case DoubleRank:     return DoubleTy;
3428    case LongDoubleRank: return LongDoubleTy;
3429    }
3430  }
3431  
3432  /// getFloatingTypeOrder - Compare the rank of the two specified floating
3433  /// point types, ignoring the domain of the type (i.e. 'double' ==
3434  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3435  /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const3436  int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3437    FloatingRank LHSR = getFloatingRank(LHS);
3438    FloatingRank RHSR = getFloatingRank(RHS);
3439  
3440    if (LHSR == RHSR)
3441      return 0;
3442    if (LHSR > RHSR)
3443      return 1;
3444    return -1;
3445  }
3446  
3447  /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3448  /// routine will assert if passed a built-in type that isn't an integer or enum,
3449  /// or if it is not canonicalized.
getIntegerRank(const Type * T) const3450  unsigned ASTContext::getIntegerRank(const Type *T) const {
3451    assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3452    if (const EnumType* ET = dyn_cast<EnumType>(T))
3453      T = ET->getDecl()->getPromotionType().getTypePtr();
3454  
3455    if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3456        T->isSpecificBuiltinType(BuiltinType::WChar_U))
3457      T = getFromTargetType(Target.getWCharType()).getTypePtr();
3458  
3459    if (T->isSpecificBuiltinType(BuiltinType::Char16))
3460      T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3461  
3462    if (T->isSpecificBuiltinType(BuiltinType::Char32))
3463      T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3464  
3465    switch (cast<BuiltinType>(T)->getKind()) {
3466    default: assert(0 && "getIntegerRank(): not a built-in integer");
3467    case BuiltinType::Bool:
3468      return 1 + (getIntWidth(BoolTy) << 3);
3469    case BuiltinType::Char_S:
3470    case BuiltinType::Char_U:
3471    case BuiltinType::SChar:
3472    case BuiltinType::UChar:
3473      return 2 + (getIntWidth(CharTy) << 3);
3474    case BuiltinType::Short:
3475    case BuiltinType::UShort:
3476      return 3 + (getIntWidth(ShortTy) << 3);
3477    case BuiltinType::Int:
3478    case BuiltinType::UInt:
3479      return 4 + (getIntWidth(IntTy) << 3);
3480    case BuiltinType::Long:
3481    case BuiltinType::ULong:
3482      return 5 + (getIntWidth(LongTy) << 3);
3483    case BuiltinType::LongLong:
3484    case BuiltinType::ULongLong:
3485      return 6 + (getIntWidth(LongLongTy) << 3);
3486    case BuiltinType::Int128:
3487    case BuiltinType::UInt128:
3488      return 7 + (getIntWidth(Int128Ty) << 3);
3489    }
3490  }
3491  
3492  /// \brief Whether this is a promotable bitfield reference according
3493  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3494  ///
3495  /// \returns the type this bit-field will promote to, or NULL if no
3496  /// promotion occurs.
isPromotableBitField(Expr * E) const3497  QualType ASTContext::isPromotableBitField(Expr *E) const {
3498    if (E->isTypeDependent() || E->isValueDependent())
3499      return QualType();
3500  
3501    FieldDecl *Field = E->getBitField();
3502    if (!Field)
3503      return QualType();
3504  
3505    QualType FT = Field->getType();
3506  
3507    llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3508    uint64_t BitWidth = BitWidthAP.getZExtValue();
3509    uint64_t IntSize = getTypeSize(IntTy);
3510    // GCC extension compatibility: if the bit-field size is less than or equal
3511    // to the size of int, it gets promoted no matter what its type is.
3512    // For instance, unsigned long bf : 4 gets promoted to signed int.
3513    if (BitWidth < IntSize)
3514      return IntTy;
3515  
3516    if (BitWidth == IntSize)
3517      return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3518  
3519    // Types bigger than int are not subject to promotions, and therefore act
3520    // like the base type.
3521    // FIXME: This doesn't quite match what gcc does, but what gcc does here
3522    // is ridiculous.
3523    return QualType();
3524  }
3525  
3526  /// getPromotedIntegerType - Returns the type that Promotable will
3527  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3528  /// integer type.
getPromotedIntegerType(QualType Promotable) const3529  QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3530    assert(!Promotable.isNull());
3531    assert(Promotable->isPromotableIntegerType());
3532    if (const EnumType *ET = Promotable->getAs<EnumType>())
3533      return ET->getDecl()->getPromotionType();
3534    if (Promotable->isSignedIntegerType())
3535      return IntTy;
3536    uint64_t PromotableSize = getTypeSize(Promotable);
3537    uint64_t IntSize = getTypeSize(IntTy);
3538    assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3539    return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3540  }
3541  
3542  /// \brief Recurses in pointer/array types until it finds an objc retainable
3543  /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const3544  Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3545    while (!T.isNull()) {
3546      if (T.getObjCLifetime() != Qualifiers::OCL_None)
3547        return T.getObjCLifetime();
3548      if (T->isArrayType())
3549        T = getBaseElementType(T);
3550      else if (const PointerType *PT = T->getAs<PointerType>())
3551        T = PT->getPointeeType();
3552      else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3553        T = RT->getPointeeType();
3554      else
3555        break;
3556    }
3557  
3558    return Qualifiers::OCL_None;
3559  }
3560  
3561  /// getIntegerTypeOrder - Returns the highest ranked integer type:
3562  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3563  /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const3564  int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3565    const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3566    const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3567    if (LHSC == RHSC) return 0;
3568  
3569    bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3570    bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3571  
3572    unsigned LHSRank = getIntegerRank(LHSC);
3573    unsigned RHSRank = getIntegerRank(RHSC);
3574  
3575    if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3576      if (LHSRank == RHSRank) return 0;
3577      return LHSRank > RHSRank ? 1 : -1;
3578    }
3579  
3580    // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3581    if (LHSUnsigned) {
3582      // If the unsigned [LHS] type is larger, return it.
3583      if (LHSRank >= RHSRank)
3584        return 1;
3585  
3586      // If the signed type can represent all values of the unsigned type, it
3587      // wins.  Because we are dealing with 2's complement and types that are
3588      // powers of two larger than each other, this is always safe.
3589      return -1;
3590    }
3591  
3592    // If the unsigned [RHS] type is larger, return it.
3593    if (RHSRank >= LHSRank)
3594      return -1;
3595  
3596    // If the signed type can represent all values of the unsigned type, it
3597    // wins.  Because we are dealing with 2's complement and types that are
3598    // powers of two larger than each other, this is always safe.
3599    return 1;
3600  }
3601  
3602  static RecordDecl *
CreateRecordDecl(const ASTContext & Ctx,RecordDecl::TagKind TK,DeclContext * DC,IdentifierInfo * Id)3603  CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3604                   DeclContext *DC, IdentifierInfo *Id) {
3605    SourceLocation Loc;
3606    if (Ctx.getLangOptions().CPlusPlus)
3607      return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3608    else
3609      return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3610  }
3611  
3612  // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const3613  QualType ASTContext::getCFConstantStringType() const {
3614    if (!CFConstantStringTypeDecl) {
3615      CFConstantStringTypeDecl =
3616        CreateRecordDecl(*this, TTK_Struct, TUDecl,
3617                         &Idents.get("NSConstantString"));
3618      CFConstantStringTypeDecl->startDefinition();
3619  
3620      QualType FieldTypes[4];
3621  
3622      // const int *isa;
3623      FieldTypes[0] = getPointerType(IntTy.withConst());
3624      // int flags;
3625      FieldTypes[1] = IntTy;
3626      // const char *str;
3627      FieldTypes[2] = getPointerType(CharTy.withConst());
3628      // long length;
3629      FieldTypes[3] = LongTy;
3630  
3631      // Create fields
3632      for (unsigned i = 0; i < 4; ++i) {
3633        FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3634                                             SourceLocation(),
3635                                             SourceLocation(), 0,
3636                                             FieldTypes[i], /*TInfo=*/0,
3637                                             /*BitWidth=*/0,
3638                                             /*Mutable=*/false,
3639                                             /*HasInit=*/false);
3640        Field->setAccess(AS_public);
3641        CFConstantStringTypeDecl->addDecl(Field);
3642      }
3643  
3644      CFConstantStringTypeDecl->completeDefinition();
3645    }
3646  
3647    return getTagDeclType(CFConstantStringTypeDecl);
3648  }
3649  
setCFConstantStringType(QualType T)3650  void ASTContext::setCFConstantStringType(QualType T) {
3651    const RecordType *Rec = T->getAs<RecordType>();
3652    assert(Rec && "Invalid CFConstantStringType");
3653    CFConstantStringTypeDecl = Rec->getDecl();
3654  }
3655  
3656  // getNSConstantStringType - Return the type used for constant NSStrings.
getNSConstantStringType() const3657  QualType ASTContext::getNSConstantStringType() const {
3658    if (!NSConstantStringTypeDecl) {
3659      NSConstantStringTypeDecl =
3660      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3661                       &Idents.get("__builtin_NSString"));
3662      NSConstantStringTypeDecl->startDefinition();
3663  
3664      QualType FieldTypes[3];
3665  
3666      // const int *isa;
3667      FieldTypes[0] = getPointerType(IntTy.withConst());
3668      // const char *str;
3669      FieldTypes[1] = getPointerType(CharTy.withConst());
3670      // unsigned int length;
3671      FieldTypes[2] = UnsignedIntTy;
3672  
3673      // Create fields
3674      for (unsigned i = 0; i < 3; ++i) {
3675        FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3676                                             SourceLocation(),
3677                                             SourceLocation(), 0,
3678                                             FieldTypes[i], /*TInfo=*/0,
3679                                             /*BitWidth=*/0,
3680                                             /*Mutable=*/false,
3681                                             /*HasInit=*/false);
3682        Field->setAccess(AS_public);
3683        NSConstantStringTypeDecl->addDecl(Field);
3684      }
3685  
3686      NSConstantStringTypeDecl->completeDefinition();
3687    }
3688  
3689    return getTagDeclType(NSConstantStringTypeDecl);
3690  }
3691  
setNSConstantStringType(QualType T)3692  void ASTContext::setNSConstantStringType(QualType T) {
3693    const RecordType *Rec = T->getAs<RecordType>();
3694    assert(Rec && "Invalid NSConstantStringType");
3695    NSConstantStringTypeDecl = Rec->getDecl();
3696  }
3697  
getObjCFastEnumerationStateType() const3698  QualType ASTContext::getObjCFastEnumerationStateType() const {
3699    if (!ObjCFastEnumerationStateTypeDecl) {
3700      ObjCFastEnumerationStateTypeDecl =
3701        CreateRecordDecl(*this, TTK_Struct, TUDecl,
3702                         &Idents.get("__objcFastEnumerationState"));
3703      ObjCFastEnumerationStateTypeDecl->startDefinition();
3704  
3705      QualType FieldTypes[] = {
3706        UnsignedLongTy,
3707        getPointerType(ObjCIdTypedefType),
3708        getPointerType(UnsignedLongTy),
3709        getConstantArrayType(UnsignedLongTy,
3710                             llvm::APInt(32, 5), ArrayType::Normal, 0)
3711      };
3712  
3713      for (size_t i = 0; i < 4; ++i) {
3714        FieldDecl *Field = FieldDecl::Create(*this,
3715                                             ObjCFastEnumerationStateTypeDecl,
3716                                             SourceLocation(),
3717                                             SourceLocation(), 0,
3718                                             FieldTypes[i], /*TInfo=*/0,
3719                                             /*BitWidth=*/0,
3720                                             /*Mutable=*/false,
3721                                             /*HasInit=*/false);
3722        Field->setAccess(AS_public);
3723        ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3724      }
3725  
3726      ObjCFastEnumerationStateTypeDecl->completeDefinition();
3727    }
3728  
3729    return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3730  }
3731  
getBlockDescriptorType() const3732  QualType ASTContext::getBlockDescriptorType() const {
3733    if (BlockDescriptorType)
3734      return getTagDeclType(BlockDescriptorType);
3735  
3736    RecordDecl *T;
3737    // FIXME: Needs the FlagAppleBlock bit.
3738    T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3739                         &Idents.get("__block_descriptor"));
3740    T->startDefinition();
3741  
3742    QualType FieldTypes[] = {
3743      UnsignedLongTy,
3744      UnsignedLongTy,
3745    };
3746  
3747    const char *FieldNames[] = {
3748      "reserved",
3749      "Size"
3750    };
3751  
3752    for (size_t i = 0; i < 2; ++i) {
3753      FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3754                                           SourceLocation(),
3755                                           &Idents.get(FieldNames[i]),
3756                                           FieldTypes[i], /*TInfo=*/0,
3757                                           /*BitWidth=*/0,
3758                                           /*Mutable=*/false,
3759                                           /*HasInit=*/false);
3760      Field->setAccess(AS_public);
3761      T->addDecl(Field);
3762    }
3763  
3764    T->completeDefinition();
3765  
3766    BlockDescriptorType = T;
3767  
3768    return getTagDeclType(BlockDescriptorType);
3769  }
3770  
setBlockDescriptorType(QualType T)3771  void ASTContext::setBlockDescriptorType(QualType T) {
3772    const RecordType *Rec = T->getAs<RecordType>();
3773    assert(Rec && "Invalid BlockDescriptorType");
3774    BlockDescriptorType = Rec->getDecl();
3775  }
3776  
getBlockDescriptorExtendedType() const3777  QualType ASTContext::getBlockDescriptorExtendedType() const {
3778    if (BlockDescriptorExtendedType)
3779      return getTagDeclType(BlockDescriptorExtendedType);
3780  
3781    RecordDecl *T;
3782    // FIXME: Needs the FlagAppleBlock bit.
3783    T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3784                         &Idents.get("__block_descriptor_withcopydispose"));
3785    T->startDefinition();
3786  
3787    QualType FieldTypes[] = {
3788      UnsignedLongTy,
3789      UnsignedLongTy,
3790      getPointerType(VoidPtrTy),
3791      getPointerType(VoidPtrTy)
3792    };
3793  
3794    const char *FieldNames[] = {
3795      "reserved",
3796      "Size",
3797      "CopyFuncPtr",
3798      "DestroyFuncPtr"
3799    };
3800  
3801    for (size_t i = 0; i < 4; ++i) {
3802      FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3803                                           SourceLocation(),
3804                                           &Idents.get(FieldNames[i]),
3805                                           FieldTypes[i], /*TInfo=*/0,
3806                                           /*BitWidth=*/0,
3807                                           /*Mutable=*/false,
3808                                           /*HasInit=*/false);
3809      Field->setAccess(AS_public);
3810      T->addDecl(Field);
3811    }
3812  
3813    T->completeDefinition();
3814  
3815    BlockDescriptorExtendedType = T;
3816  
3817    return getTagDeclType(BlockDescriptorExtendedType);
3818  }
3819  
setBlockDescriptorExtendedType(QualType T)3820  void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3821    const RecordType *Rec = T->getAs<RecordType>();
3822    assert(Rec && "Invalid BlockDescriptorType");
3823    BlockDescriptorExtendedType = Rec->getDecl();
3824  }
3825  
BlockRequiresCopying(QualType Ty) const3826  bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3827    if (Ty->isObjCRetainableType())
3828      return true;
3829    if (getLangOptions().CPlusPlus) {
3830      if (const RecordType *RT = Ty->getAs<RecordType>()) {
3831        CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3832        return RD->hasConstCopyConstructor();
3833  
3834      }
3835    }
3836    return false;
3837  }
3838  
3839  QualType
BuildByRefType(llvm::StringRef DeclName,QualType Ty) const3840  ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3841    //  type = struct __Block_byref_1_X {
3842    //    void *__isa;
3843    //    struct __Block_byref_1_X *__forwarding;
3844    //    unsigned int __flags;
3845    //    unsigned int __size;
3846    //    void *__copy_helper;            // as needed
3847    //    void *__destroy_help            // as needed
3848    //    int X;
3849    //  } *
3850  
3851    bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3852  
3853    // FIXME: Move up
3854    llvm::SmallString<36> Name;
3855    llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3856                                    ++UniqueBlockByRefTypeID << '_' << DeclName;
3857    RecordDecl *T;
3858    T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3859    T->startDefinition();
3860    QualType Int32Ty = IntTy;
3861    assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3862    QualType FieldTypes[] = {
3863      getPointerType(VoidPtrTy),
3864      getPointerType(getTagDeclType(T)),
3865      Int32Ty,
3866      Int32Ty,
3867      getPointerType(VoidPtrTy),
3868      getPointerType(VoidPtrTy),
3869      Ty
3870    };
3871  
3872    llvm::StringRef FieldNames[] = {
3873      "__isa",
3874      "__forwarding",
3875      "__flags",
3876      "__size",
3877      "__copy_helper",
3878      "__destroy_helper",
3879      DeclName,
3880    };
3881  
3882    for (size_t i = 0; i < 7; ++i) {
3883      if (!HasCopyAndDispose && i >=4 && i <= 5)
3884        continue;
3885      FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3886                                           SourceLocation(),
3887                                           &Idents.get(FieldNames[i]),
3888                                           FieldTypes[i], /*TInfo=*/0,
3889                                           /*BitWidth=*/0, /*Mutable=*/false,
3890                                           /*HasInit=*/false);
3891      Field->setAccess(AS_public);
3892      T->addDecl(Field);
3893    }
3894  
3895    T->completeDefinition();
3896  
3897    return getPointerType(getTagDeclType(T));
3898  }
3899  
setObjCFastEnumerationStateType(QualType T)3900  void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3901    const RecordType *Rec = T->getAs<RecordType>();
3902    assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3903    ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3904  }
3905  
3906  // This returns true if a type has been typedefed to BOOL:
3907  // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)3908  static bool isTypeTypedefedAsBOOL(QualType T) {
3909    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3910      if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3911        return II->isStr("BOOL");
3912  
3913    return false;
3914  }
3915  
3916  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
3917  /// purpose.
getObjCEncodingTypeSize(QualType type) const3918  CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3919    if (!type->isIncompleteArrayType() && type->isIncompleteType())
3920      return CharUnits::Zero();
3921  
3922    CharUnits sz = getTypeSizeInChars(type);
3923  
3924    // Make all integer and enum types at least as large as an int
3925    if (sz.isPositive() && type->isIntegralOrEnumerationType())
3926      sz = std::max(sz, getTypeSizeInChars(IntTy));
3927    // Treat arrays as pointers, since that's how they're passed in.
3928    else if (type->isArrayType())
3929      sz = getTypeSizeInChars(VoidPtrTy);
3930    return sz;
3931  }
3932  
3933  static inline
charUnitsToString(const CharUnits & CU)3934  std::string charUnitsToString(const CharUnits &CU) {
3935    return llvm::itostr(CU.getQuantity());
3936  }
3937  
3938  /// getObjCEncodingForBlock - Return the encoded type for this block
3939  /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const3940  std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3941    std::string S;
3942  
3943    const BlockDecl *Decl = Expr->getBlockDecl();
3944    QualType BlockTy =
3945        Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3946    // Encode result type.
3947    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3948    // Compute size of all parameters.
3949    // Start with computing size of a pointer in number of bytes.
3950    // FIXME: There might(should) be a better way of doing this computation!
3951    SourceLocation Loc;
3952    CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3953    CharUnits ParmOffset = PtrSize;
3954    for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3955         E = Decl->param_end(); PI != E; ++PI) {
3956      QualType PType = (*PI)->getType();
3957      CharUnits sz = getObjCEncodingTypeSize(PType);
3958      assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3959      ParmOffset += sz;
3960    }
3961    // Size of the argument frame
3962    S += charUnitsToString(ParmOffset);
3963    // Block pointer and offset.
3964    S += "@?0";
3965    ParmOffset = PtrSize;
3966  
3967    // Argument types.
3968    ParmOffset = PtrSize;
3969    for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3970         Decl->param_end(); PI != E; ++PI) {
3971      ParmVarDecl *PVDecl = *PI;
3972      QualType PType = PVDecl->getOriginalType();
3973      if (const ArrayType *AT =
3974            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3975        // Use array's original type only if it has known number of
3976        // elements.
3977        if (!isa<ConstantArrayType>(AT))
3978          PType = PVDecl->getType();
3979      } else if (PType->isFunctionType())
3980        PType = PVDecl->getType();
3981      getObjCEncodingForType(PType, S);
3982      S += charUnitsToString(ParmOffset);
3983      ParmOffset += getObjCEncodingTypeSize(PType);
3984    }
3985  
3986    return S;
3987  }
3988  
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl,std::string & S)3989  bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3990                                                  std::string& S) {
3991    // Encode result type.
3992    getObjCEncodingForType(Decl->getResultType(), S);
3993    CharUnits ParmOffset;
3994    // Compute size of all parameters.
3995    for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3996         E = Decl->param_end(); PI != E; ++PI) {
3997      QualType PType = (*PI)->getType();
3998      CharUnits sz = getObjCEncodingTypeSize(PType);
3999      if (sz.isZero())
4000        return true;
4001  
4002      assert (sz.isPositive() &&
4003          "getObjCEncodingForFunctionDecl - Incomplete param type");
4004      ParmOffset += sz;
4005    }
4006    S += charUnitsToString(ParmOffset);
4007    ParmOffset = CharUnits::Zero();
4008  
4009    // Argument types.
4010    for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4011         E = Decl->param_end(); PI != E; ++PI) {
4012      ParmVarDecl *PVDecl = *PI;
4013      QualType PType = PVDecl->getOriginalType();
4014      if (const ArrayType *AT =
4015            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4016        // Use array's original type only if it has known number of
4017        // elements.
4018        if (!isa<ConstantArrayType>(AT))
4019          PType = PVDecl->getType();
4020      } else if (PType->isFunctionType())
4021        PType = PVDecl->getType();
4022      getObjCEncodingForType(PType, S);
4023      S += charUnitsToString(ParmOffset);
4024      ParmOffset += getObjCEncodingTypeSize(PType);
4025    }
4026  
4027    return false;
4028  }
4029  
4030  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
4031  /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,std::string & S) const4032  bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4033                                                std::string& S) const {
4034    // FIXME: This is not very efficient.
4035    // Encode type qualifer, 'in', 'inout', etc. for the return type.
4036    getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
4037    // Encode result type.
4038    getObjCEncodingForType(Decl->getResultType(), S);
4039    // Compute size of all parameters.
4040    // Start with computing size of a pointer in number of bytes.
4041    // FIXME: There might(should) be a better way of doing this computation!
4042    SourceLocation Loc;
4043    CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4044    // The first two arguments (self and _cmd) are pointers; account for
4045    // their size.
4046    CharUnits ParmOffset = 2 * PtrSize;
4047    for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4048         E = Decl->sel_param_end(); PI != E; ++PI) {
4049      QualType PType = (*PI)->getType();
4050      CharUnits sz = getObjCEncodingTypeSize(PType);
4051      if (sz.isZero())
4052        return true;
4053  
4054      assert (sz.isPositive() &&
4055          "getObjCEncodingForMethodDecl - Incomplete param type");
4056      ParmOffset += sz;
4057    }
4058    S += charUnitsToString(ParmOffset);
4059    S += "@0:";
4060    S += charUnitsToString(PtrSize);
4061  
4062    // Argument types.
4063    ParmOffset = 2 * PtrSize;
4064    for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4065         E = Decl->sel_param_end(); PI != E; ++PI) {
4066      ParmVarDecl *PVDecl = *PI;
4067      QualType PType = PVDecl->getOriginalType();
4068      if (const ArrayType *AT =
4069            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4070        // Use array's original type only if it has known number of
4071        // elements.
4072        if (!isa<ConstantArrayType>(AT))
4073          PType = PVDecl->getType();
4074      } else if (PType->isFunctionType())
4075        PType = PVDecl->getType();
4076      // Process argument qualifiers for user supplied arguments; such as,
4077      // 'in', 'inout', etc.
4078      getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
4079      getObjCEncodingForType(PType, S);
4080      S += charUnitsToString(ParmOffset);
4081      ParmOffset += getObjCEncodingTypeSize(PType);
4082    }
4083  
4084    return false;
4085  }
4086  
4087  /// getObjCEncodingForPropertyDecl - Return the encoded type for this
4088  /// property declaration. If non-NULL, Container must be either an
4089  /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4090  /// NULL when getting encodings for protocol properties.
4091  /// Property attributes are stored as a comma-delimited C string. The simple
4092  /// attributes readonly and bycopy are encoded as single characters. The
4093  /// parametrized attributes, getter=name, setter=name, and ivar=name, are
4094  /// encoded as single characters, followed by an identifier. Property types
4095  /// are also encoded as a parametrized attribute. The characters used to encode
4096  /// these attributes are defined by the following enumeration:
4097  /// @code
4098  /// enum PropertyAttributes {
4099  /// kPropertyReadOnly = 'R',   // property is read-only.
4100  /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4101  /// kPropertyByref = '&',  // property is a reference to the value last assigned
4102  /// kPropertyDynamic = 'D',    // property is dynamic
4103  /// kPropertyGetter = 'G',     // followed by getter selector name
4104  /// kPropertySetter = 'S',     // followed by setter selector name
4105  /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4106  /// kPropertyType = 't'              // followed by old-style type encoding.
4107  /// kPropertyWeak = 'W'              // 'weak' property
4108  /// kPropertyStrong = 'P'            // property GC'able
4109  /// kPropertyNonAtomic = 'N'         // property non-atomic
4110  /// };
4111  /// @endcode
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container,std::string & S) const4112  void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4113                                                  const Decl *Container,
4114                                                  std::string& S) const {
4115    // Collect information from the property implementation decl(s).
4116    bool Dynamic = false;
4117    ObjCPropertyImplDecl *SynthesizePID = 0;
4118  
4119    // FIXME: Duplicated code due to poor abstraction.
4120    if (Container) {
4121      if (const ObjCCategoryImplDecl *CID =
4122          dyn_cast<ObjCCategoryImplDecl>(Container)) {
4123        for (ObjCCategoryImplDecl::propimpl_iterator
4124               i = CID->propimpl_begin(), e = CID->propimpl_end();
4125             i != e; ++i) {
4126          ObjCPropertyImplDecl *PID = *i;
4127          if (PID->getPropertyDecl() == PD) {
4128            if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4129              Dynamic = true;
4130            } else {
4131              SynthesizePID = PID;
4132            }
4133          }
4134        }
4135      } else {
4136        const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4137        for (ObjCCategoryImplDecl::propimpl_iterator
4138               i = OID->propimpl_begin(), e = OID->propimpl_end();
4139             i != e; ++i) {
4140          ObjCPropertyImplDecl *PID = *i;
4141          if (PID->getPropertyDecl() == PD) {
4142            if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4143              Dynamic = true;
4144            } else {
4145              SynthesizePID = PID;
4146            }
4147          }
4148        }
4149      }
4150    }
4151  
4152    // FIXME: This is not very efficient.
4153    S = "T";
4154  
4155    // Encode result type.
4156    // GCC has some special rules regarding encoding of properties which
4157    // closely resembles encoding of ivars.
4158    getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4159                               true /* outermost type */,
4160                               true /* encoding for property */);
4161  
4162    if (PD->isReadOnly()) {
4163      S += ",R";
4164    } else {
4165      switch (PD->getSetterKind()) {
4166      case ObjCPropertyDecl::Assign: break;
4167      case ObjCPropertyDecl::Copy:   S += ",C"; break;
4168      case ObjCPropertyDecl::Retain: S += ",&"; break;
4169      }
4170    }
4171  
4172    // It really isn't clear at all what this means, since properties
4173    // are "dynamic by default".
4174    if (Dynamic)
4175      S += ",D";
4176  
4177    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4178      S += ",N";
4179  
4180    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4181      S += ",G";
4182      S += PD->getGetterName().getAsString();
4183    }
4184  
4185    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4186      S += ",S";
4187      S += PD->getSetterName().getAsString();
4188    }
4189  
4190    if (SynthesizePID) {
4191      const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4192      S += ",V";
4193      S += OID->getNameAsString();
4194    }
4195  
4196    // FIXME: OBJCGC: weak & strong
4197  }
4198  
4199  /// getLegacyIntegralTypeEncoding -
4200  /// Another legacy compatibility encoding: 32-bit longs are encoded as
4201  /// 'l' or 'L' , but not always.  For typedefs, we need to use
4202  /// 'i' or 'I' instead if encoding a struct field, or a pointer!
4203  ///
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const4204  void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4205    if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4206      if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4207        if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4208          PointeeTy = UnsignedIntTy;
4209        else
4210          if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4211            PointeeTy = IntTy;
4212      }
4213    }
4214  }
4215  
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field) const4216  void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4217                                          const FieldDecl *Field) const {
4218    // We follow the behavior of gcc, expanding structures which are
4219    // directly pointed to, and expanding embedded structures. Note that
4220    // these rules are sufficient to prevent recursive encoding of the
4221    // same type.
4222    getObjCEncodingForTypeImpl(T, S, true, true, Field,
4223                               true /* outermost type */);
4224  }
4225  
ObjCEncodingForPrimitiveKind(const ASTContext * C,QualType T)4226  static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4227      switch (T->getAs<BuiltinType>()->getKind()) {
4228      default: assert(0 && "Unhandled builtin type kind");
4229      case BuiltinType::Void:       return 'v';
4230      case BuiltinType::Bool:       return 'B';
4231      case BuiltinType::Char_U:
4232      case BuiltinType::UChar:      return 'C';
4233      case BuiltinType::UShort:     return 'S';
4234      case BuiltinType::UInt:       return 'I';
4235      case BuiltinType::ULong:
4236          return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4237      case BuiltinType::UInt128:    return 'T';
4238      case BuiltinType::ULongLong:  return 'Q';
4239      case BuiltinType::Char_S:
4240      case BuiltinType::SChar:      return 'c';
4241      case BuiltinType::Short:      return 's';
4242      case BuiltinType::WChar_S:
4243      case BuiltinType::WChar_U:
4244      case BuiltinType::Int:        return 'i';
4245      case BuiltinType::Long:
4246        return C->getIntWidth(T) == 32 ? 'l' : 'q';
4247      case BuiltinType::LongLong:   return 'q';
4248      case BuiltinType::Int128:     return 't';
4249      case BuiltinType::Float:      return 'f';
4250      case BuiltinType::Double:     return 'd';
4251      case BuiltinType::LongDouble: return 'D';
4252      }
4253  }
4254  
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)4255  static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4256                             QualType T, const FieldDecl *FD) {
4257    const Expr *E = FD->getBitWidth();
4258    assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
4259    S += 'b';
4260    // The NeXT runtime encodes bit fields as b followed by the number of bits.
4261    // The GNU runtime requires more information; bitfields are encoded as b,
4262    // then the offset (in bits) of the first element, then the type of the
4263    // bitfield, then the size in bits.  For example, in this structure:
4264    //
4265    // struct
4266    // {
4267    //    int integer;
4268    //    int flags:2;
4269    // };
4270    // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4271    // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4272    // information is not especially sensible, but we're stuck with it for
4273    // compatibility with GCC, although providing it breaks anything that
4274    // actually uses runtime introspection and wants to work on both runtimes...
4275    if (!Ctx->getLangOptions().NeXTRuntime) {
4276      const RecordDecl *RD = FD->getParent();
4277      const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4278      S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4279      if (T->isEnumeralType())
4280        S += 'i';
4281      else
4282        S += ObjCEncodingForPrimitiveKind(Ctx, T);
4283    }
4284    unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4285    S += llvm::utostr(N);
4286  }
4287  
4288  // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,bool ExpandPointedToStructures,bool ExpandStructures,const FieldDecl * FD,bool OutermostType,bool EncodingProperty,bool StructField) const4289  void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4290                                              bool ExpandPointedToStructures,
4291                                              bool ExpandStructures,
4292                                              const FieldDecl *FD,
4293                                              bool OutermostType,
4294                                              bool EncodingProperty,
4295                                              bool StructField) const {
4296    if (T->getAs<BuiltinType>()) {
4297      if (FD && FD->isBitField())
4298        return EncodeBitField(this, S, T, FD);
4299      S += ObjCEncodingForPrimitiveKind(this, T);
4300      return;
4301    }
4302  
4303    if (const ComplexType *CT = T->getAs<ComplexType>()) {
4304      S += 'j';
4305      getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4306                                 false);
4307      return;
4308    }
4309  
4310    // encoding for pointer or r3eference types.
4311    QualType PointeeTy;
4312    if (const PointerType *PT = T->getAs<PointerType>()) {
4313      if (PT->isObjCSelType()) {
4314        S += ':';
4315        return;
4316      }
4317      PointeeTy = PT->getPointeeType();
4318    }
4319    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4320      PointeeTy = RT->getPointeeType();
4321    if (!PointeeTy.isNull()) {
4322      bool isReadOnly = false;
4323      // For historical/compatibility reasons, the read-only qualifier of the
4324      // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4325      // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4326      // Also, do not emit the 'r' for anything but the outermost type!
4327      if (isa<TypedefType>(T.getTypePtr())) {
4328        if (OutermostType && T.isConstQualified()) {
4329          isReadOnly = true;
4330          S += 'r';
4331        }
4332      } else if (OutermostType) {
4333        QualType P = PointeeTy;
4334        while (P->getAs<PointerType>())
4335          P = P->getAs<PointerType>()->getPointeeType();
4336        if (P.isConstQualified()) {
4337          isReadOnly = true;
4338          S += 'r';
4339        }
4340      }
4341      if (isReadOnly) {
4342        // Another legacy compatibility encoding. Some ObjC qualifier and type
4343        // combinations need to be rearranged.
4344        // Rewrite "in const" from "nr" to "rn"
4345        if (llvm::StringRef(S).endswith("nr"))
4346          S.replace(S.end()-2, S.end(), "rn");
4347      }
4348  
4349      if (PointeeTy->isCharType()) {
4350        // char pointer types should be encoded as '*' unless it is a
4351        // type that has been typedef'd to 'BOOL'.
4352        if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4353          S += '*';
4354          return;
4355        }
4356      } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4357        // GCC binary compat: Need to convert "struct objc_class *" to "#".
4358        if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4359          S += '#';
4360          return;
4361        }
4362        // GCC binary compat: Need to convert "struct objc_object *" to "@".
4363        if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4364          S += '@';
4365          return;
4366        }
4367        // fall through...
4368      }
4369      S += '^';
4370      getLegacyIntegralTypeEncoding(PointeeTy);
4371  
4372      getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4373                                 NULL);
4374      return;
4375    }
4376  
4377    if (const ArrayType *AT =
4378        // Ignore type qualifiers etc.
4379          dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4380      if (isa<IncompleteArrayType>(AT) && !StructField) {
4381        // Incomplete arrays are encoded as a pointer to the array element.
4382        S += '^';
4383  
4384        getObjCEncodingForTypeImpl(AT->getElementType(), S,
4385                                   false, ExpandStructures, FD);
4386      } else {
4387        S += '[';
4388  
4389        if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4390          if (getTypeSize(CAT->getElementType()) == 0)
4391            S += '0';
4392          else
4393            S += llvm::utostr(CAT->getSize().getZExtValue());
4394        } else {
4395          //Variable length arrays are encoded as a regular array with 0 elements.
4396          assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4397                 "Unknown array type!");
4398          S += '0';
4399        }
4400  
4401        getObjCEncodingForTypeImpl(AT->getElementType(), S,
4402                                   false, ExpandStructures, FD);
4403        S += ']';
4404      }
4405      return;
4406    }
4407  
4408    if (T->getAs<FunctionType>()) {
4409      S += '?';
4410      return;
4411    }
4412  
4413    if (const RecordType *RTy = T->getAs<RecordType>()) {
4414      RecordDecl *RDecl = RTy->getDecl();
4415      S += RDecl->isUnion() ? '(' : '{';
4416      // Anonymous structures print as '?'
4417      if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4418        S += II->getName();
4419        if (ClassTemplateSpecializationDecl *Spec
4420            = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4421          const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4422          std::string TemplateArgsStr
4423            = TemplateSpecializationType::PrintTemplateArgumentList(
4424                                              TemplateArgs.data(),
4425                                              TemplateArgs.size(),
4426                                              (*this).PrintingPolicy);
4427  
4428          S += TemplateArgsStr;
4429        }
4430      } else {
4431        S += '?';
4432      }
4433      if (ExpandStructures) {
4434        S += '=';
4435        if (!RDecl->isUnion()) {
4436          getObjCEncodingForStructureImpl(RDecl, S, FD);
4437        } else {
4438          for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4439                                       FieldEnd = RDecl->field_end();
4440               Field != FieldEnd; ++Field) {
4441            if (FD) {
4442              S += '"';
4443              S += Field->getNameAsString();
4444              S += '"';
4445            }
4446  
4447            // Special case bit-fields.
4448            if (Field->isBitField()) {
4449              getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4450                                         (*Field));
4451            } else {
4452              QualType qt = Field->getType();
4453              getLegacyIntegralTypeEncoding(qt);
4454              getObjCEncodingForTypeImpl(qt, S, false, true,
4455                                         FD, /*OutermostType*/false,
4456                                         /*EncodingProperty*/false,
4457                                         /*StructField*/true);
4458            }
4459          }
4460        }
4461      }
4462      S += RDecl->isUnion() ? ')' : '}';
4463      return;
4464    }
4465  
4466    if (T->isEnumeralType()) {
4467      if (FD && FD->isBitField())
4468        EncodeBitField(this, S, T, FD);
4469      else
4470        S += 'i';
4471      return;
4472    }
4473  
4474    if (T->isBlockPointerType()) {
4475      S += "@?"; // Unlike a pointer-to-function, which is "^?".
4476      return;
4477    }
4478  
4479    // Ignore protocol qualifiers when mangling at this level.
4480    if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4481      T = OT->getBaseType();
4482  
4483    if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4484      // @encode(class_name)
4485      ObjCInterfaceDecl *OI = OIT->getDecl();
4486      S += '{';
4487      const IdentifierInfo *II = OI->getIdentifier();
4488      S += II->getName();
4489      S += '=';
4490      llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4491      DeepCollectObjCIvars(OI, true, Ivars);
4492      for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4493        FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4494        if (Field->isBitField())
4495          getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4496        else
4497          getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4498      }
4499      S += '}';
4500      return;
4501    }
4502  
4503    if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4504      if (OPT->isObjCIdType()) {
4505        S += '@';
4506        return;
4507      }
4508  
4509      if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4510        // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4511        // Since this is a binary compatibility issue, need to consult with runtime
4512        // folks. Fortunately, this is a *very* obsure construct.
4513        S += '#';
4514        return;
4515      }
4516  
4517      if (OPT->isObjCQualifiedIdType()) {
4518        getObjCEncodingForTypeImpl(getObjCIdType(), S,
4519                                   ExpandPointedToStructures,
4520                                   ExpandStructures, FD);
4521        if (FD || EncodingProperty) {
4522          // Note that we do extended encoding of protocol qualifer list
4523          // Only when doing ivar or property encoding.
4524          S += '"';
4525          for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4526               E = OPT->qual_end(); I != E; ++I) {
4527            S += '<';
4528            S += (*I)->getNameAsString();
4529            S += '>';
4530          }
4531          S += '"';
4532        }
4533        return;
4534      }
4535  
4536      QualType PointeeTy = OPT->getPointeeType();
4537      if (!EncodingProperty &&
4538          isa<TypedefType>(PointeeTy.getTypePtr())) {
4539        // Another historical/compatibility reason.
4540        // We encode the underlying type which comes out as
4541        // {...};
4542        S += '^';
4543        getObjCEncodingForTypeImpl(PointeeTy, S,
4544                                   false, ExpandPointedToStructures,
4545                                   NULL);
4546        return;
4547      }
4548  
4549      S += '@';
4550      if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4551        S += '"';
4552        S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4553        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4554             E = OPT->qual_end(); I != E; ++I) {
4555          S += '<';
4556          S += (*I)->getNameAsString();
4557          S += '>';
4558        }
4559        S += '"';
4560      }
4561      return;
4562    }
4563  
4564    // gcc just blithely ignores member pointers.
4565    // TODO: maybe there should be a mangling for these
4566    if (T->getAs<MemberPointerType>())
4567      return;
4568  
4569    if (T->isVectorType()) {
4570      // This matches gcc's encoding, even though technically it is
4571      // insufficient.
4572      // FIXME. We should do a better job than gcc.
4573      return;
4574    }
4575  
4576    assert(0 && "@encode for type not implemented!");
4577  }
4578  
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases) const4579  void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4580                                                   std::string &S,
4581                                                   const FieldDecl *FD,
4582                                                   bool includeVBases) const {
4583    assert(RDecl && "Expected non-null RecordDecl");
4584    assert(!RDecl->isUnion() && "Should not be called for unions");
4585    if (!RDecl->getDefinition())
4586      return;
4587  
4588    CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4589    std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4590    const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4591  
4592    if (CXXRec) {
4593      for (CXXRecordDecl::base_class_iterator
4594             BI = CXXRec->bases_begin(),
4595             BE = CXXRec->bases_end(); BI != BE; ++BI) {
4596        if (!BI->isVirtual()) {
4597          CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4598          if (base->isEmpty())
4599            continue;
4600          uint64_t offs = layout.getBaseClassOffsetInBits(base);
4601          FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4602                                    std::make_pair(offs, base));
4603        }
4604      }
4605    }
4606  
4607    unsigned i = 0;
4608    for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4609                                 FieldEnd = RDecl->field_end();
4610         Field != FieldEnd; ++Field, ++i) {
4611      uint64_t offs = layout.getFieldOffset(i);
4612      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4613                                std::make_pair(offs, *Field));
4614    }
4615  
4616    if (CXXRec && includeVBases) {
4617      for (CXXRecordDecl::base_class_iterator
4618             BI = CXXRec->vbases_begin(),
4619             BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4620        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4621        if (base->isEmpty())
4622          continue;
4623        uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4624        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4625                                  std::make_pair(offs, base));
4626      }
4627    }
4628  
4629    CharUnits size;
4630    if (CXXRec) {
4631      size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4632    } else {
4633      size = layout.getSize();
4634    }
4635  
4636    uint64_t CurOffs = 0;
4637    std::multimap<uint64_t, NamedDecl *>::iterator
4638      CurLayObj = FieldOrBaseOffsets.begin();
4639  
4640    if (CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) {
4641      assert(CXXRec && CXXRec->isDynamicClass() &&
4642             "Offset 0 was empty but no VTable ?");
4643      if (FD) {
4644        S += "\"_vptr$";
4645        std::string recname = CXXRec->getNameAsString();
4646        if (recname.empty()) recname = "?";
4647        S += recname;
4648        S += '"';
4649      }
4650      S += "^^?";
4651      CurOffs += getTypeSize(VoidPtrTy);
4652    }
4653  
4654    if (!RDecl->hasFlexibleArrayMember()) {
4655      // Mark the end of the structure.
4656      uint64_t offs = toBits(size);
4657      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4658                                std::make_pair(offs, (NamedDecl*)0));
4659    }
4660  
4661    for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4662      assert(CurOffs <= CurLayObj->first);
4663  
4664      if (CurOffs < CurLayObj->first) {
4665        uint64_t padding = CurLayObj->first - CurOffs;
4666        // FIXME: There doesn't seem to be a way to indicate in the encoding that
4667        // packing/alignment of members is different that normal, in which case
4668        // the encoding will be out-of-sync with the real layout.
4669        // If the runtime switches to just consider the size of types without
4670        // taking into account alignment, we could make padding explicit in the
4671        // encoding (e.g. using arrays of chars). The encoding strings would be
4672        // longer then though.
4673        CurOffs += padding;
4674      }
4675  
4676      NamedDecl *dcl = CurLayObj->second;
4677      if (dcl == 0)
4678        break; // reached end of structure.
4679  
4680      if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4681        // We expand the bases without their virtual bases since those are going
4682        // in the initial structure. Note that this differs from gcc which
4683        // expands virtual bases each time one is encountered in the hierarchy,
4684        // making the encoding type bigger than it really is.
4685        getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4686        assert(!base->isEmpty());
4687        CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4688      } else {
4689        FieldDecl *field = cast<FieldDecl>(dcl);
4690        if (FD) {
4691          S += '"';
4692          S += field->getNameAsString();
4693          S += '"';
4694        }
4695  
4696        if (field->isBitField()) {
4697          EncodeBitField(this, S, field->getType(), field);
4698          CurOffs += field->getBitWidth()->EvaluateAsInt(*this).getZExtValue();
4699        } else {
4700          QualType qt = field->getType();
4701          getLegacyIntegralTypeEncoding(qt);
4702          getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4703                                     /*OutermostType*/false,
4704                                     /*EncodingProperty*/false,
4705                                     /*StructField*/true);
4706          CurOffs += getTypeSize(field->getType());
4707        }
4708      }
4709    }
4710  }
4711  
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const4712  void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4713                                                   std::string& S) const {
4714    if (QT & Decl::OBJC_TQ_In)
4715      S += 'n';
4716    if (QT & Decl::OBJC_TQ_Inout)
4717      S += 'N';
4718    if (QT & Decl::OBJC_TQ_Out)
4719      S += 'o';
4720    if (QT & Decl::OBJC_TQ_Bycopy)
4721      S += 'O';
4722    if (QT & Decl::OBJC_TQ_Byref)
4723      S += 'R';
4724    if (QT & Decl::OBJC_TQ_Oneway)
4725      S += 'V';
4726  }
4727  
setBuiltinVaListType(QualType T)4728  void ASTContext::setBuiltinVaListType(QualType T) {
4729    assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4730  
4731    BuiltinVaListType = T;
4732  }
4733  
setObjCIdType(QualType T)4734  void ASTContext::setObjCIdType(QualType T) {
4735    ObjCIdTypedefType = T;
4736  }
4737  
setObjCSelType(QualType T)4738  void ASTContext::setObjCSelType(QualType T) {
4739    ObjCSelTypedefType = T;
4740  }
4741  
setObjCProtoType(QualType QT)4742  void ASTContext::setObjCProtoType(QualType QT) {
4743    ObjCProtoType = QT;
4744  }
4745  
setObjCClassType(QualType T)4746  void ASTContext::setObjCClassType(QualType T) {
4747    ObjCClassTypedefType = T;
4748  }
4749  
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)4750  void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4751    assert(ObjCConstantStringType.isNull() &&
4752           "'NSConstantString' type already set!");
4753  
4754    ObjCConstantStringType = getObjCInterfaceType(Decl);
4755  }
4756  
4757  /// \brief Retrieve the template name that corresponds to a non-empty
4758  /// lookup.
4759  TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const4760  ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4761                                        UnresolvedSetIterator End) const {
4762    unsigned size = End - Begin;
4763    assert(size > 1 && "set is not overloaded!");
4764  
4765    void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4766                            size * sizeof(FunctionTemplateDecl*));
4767    OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4768  
4769    NamedDecl **Storage = OT->getStorage();
4770    for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4771      NamedDecl *D = *I;
4772      assert(isa<FunctionTemplateDecl>(D) ||
4773             (isa<UsingShadowDecl>(D) &&
4774              isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4775      *Storage++ = D;
4776    }
4777  
4778    return TemplateName(OT);
4779  }
4780  
4781  /// \brief Retrieve the template name that represents a qualified
4782  /// template name such as \c std::vector.
4783  TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const4784  ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4785                                       bool TemplateKeyword,
4786                                       TemplateDecl *Template) const {
4787    assert(NNS && "Missing nested-name-specifier in qualified template name");
4788  
4789    // FIXME: Canonicalization?
4790    llvm::FoldingSetNodeID ID;
4791    QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4792  
4793    void *InsertPos = 0;
4794    QualifiedTemplateName *QTN =
4795      QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4796    if (!QTN) {
4797      QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4798      QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4799    }
4800  
4801    return TemplateName(QTN);
4802  }
4803  
4804  /// \brief Retrieve the template name that represents a dependent
4805  /// template name such as \c MetaFun::template apply.
4806  TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const4807  ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4808                                       const IdentifierInfo *Name) const {
4809    assert((!NNS || NNS->isDependent()) &&
4810           "Nested name specifier must be dependent");
4811  
4812    llvm::FoldingSetNodeID ID;
4813    DependentTemplateName::Profile(ID, NNS, Name);
4814  
4815    void *InsertPos = 0;
4816    DependentTemplateName *QTN =
4817      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4818  
4819    if (QTN)
4820      return TemplateName(QTN);
4821  
4822    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4823    if (CanonNNS == NNS) {
4824      QTN = new (*this,4) DependentTemplateName(NNS, Name);
4825    } else {
4826      TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4827      QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4828      DependentTemplateName *CheckQTN =
4829        DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4830      assert(!CheckQTN && "Dependent type name canonicalization broken");
4831      (void)CheckQTN;
4832    }
4833  
4834    DependentTemplateNames.InsertNode(QTN, InsertPos);
4835    return TemplateName(QTN);
4836  }
4837  
4838  /// \brief Retrieve the template name that represents a dependent
4839  /// template name such as \c MetaFun::template operator+.
4840  TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const4841  ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4842                                       OverloadedOperatorKind Operator) const {
4843    assert((!NNS || NNS->isDependent()) &&
4844           "Nested name specifier must be dependent");
4845  
4846    llvm::FoldingSetNodeID ID;
4847    DependentTemplateName::Profile(ID, NNS, Operator);
4848  
4849    void *InsertPos = 0;
4850    DependentTemplateName *QTN
4851      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4852  
4853    if (QTN)
4854      return TemplateName(QTN);
4855  
4856    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4857    if (CanonNNS == NNS) {
4858      QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4859    } else {
4860      TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4861      QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4862  
4863      DependentTemplateName *CheckQTN
4864        = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4865      assert(!CheckQTN && "Dependent template name canonicalization broken");
4866      (void)CheckQTN;
4867    }
4868  
4869    DependentTemplateNames.InsertNode(QTN, InsertPos);
4870    return TemplateName(QTN);
4871  }
4872  
4873  TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const4874  ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
4875                                           TemplateName replacement) const {
4876    llvm::FoldingSetNodeID ID;
4877    SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
4878  
4879    void *insertPos = 0;
4880    SubstTemplateTemplateParmStorage *subst
4881      = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
4882  
4883    if (!subst) {
4884      subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
4885      SubstTemplateTemplateParms.InsertNode(subst, insertPos);
4886    }
4887  
4888    return TemplateName(subst);
4889  }
4890  
4891  TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const4892  ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4893                                         const TemplateArgument &ArgPack) const {
4894    ASTContext &Self = const_cast<ASTContext &>(*this);
4895    llvm::FoldingSetNodeID ID;
4896    SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4897  
4898    void *InsertPos = 0;
4899    SubstTemplateTemplateParmPackStorage *Subst
4900      = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4901  
4902    if (!Subst) {
4903      Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
4904                                                             ArgPack.pack_size(),
4905                                                           ArgPack.pack_begin());
4906      SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4907    }
4908  
4909    return TemplateName(Subst);
4910  }
4911  
4912  /// getFromTargetType - Given one of the integer types provided by
4913  /// TargetInfo, produce the corresponding type. The unsigned @p Type
4914  /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const4915  CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4916    switch (Type) {
4917    case TargetInfo::NoInt: return CanQualType();
4918    case TargetInfo::SignedShort: return ShortTy;
4919    case TargetInfo::UnsignedShort: return UnsignedShortTy;
4920    case TargetInfo::SignedInt: return IntTy;
4921    case TargetInfo::UnsignedInt: return UnsignedIntTy;
4922    case TargetInfo::SignedLong: return LongTy;
4923    case TargetInfo::UnsignedLong: return UnsignedLongTy;
4924    case TargetInfo::SignedLongLong: return LongLongTy;
4925    case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4926    }
4927  
4928    assert(false && "Unhandled TargetInfo::IntType value");
4929    return CanQualType();
4930  }
4931  
4932  //===----------------------------------------------------------------------===//
4933  //                        Type Predicates.
4934  //===----------------------------------------------------------------------===//
4935  
4936  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4937  /// garbage collection attribute.
4938  ///
getObjCGCAttrKind(QualType Ty) const4939  Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4940    if (getLangOptions().getGCMode() == LangOptions::NonGC)
4941      return Qualifiers::GCNone;
4942  
4943    assert(getLangOptions().ObjC1);
4944    Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4945  
4946    // Default behaviour under objective-C's gc is for ObjC pointers
4947    // (or pointers to them) be treated as though they were declared
4948    // as __strong.
4949    if (GCAttrs == Qualifiers::GCNone) {
4950      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4951        return Qualifiers::Strong;
4952      else if (Ty->isPointerType())
4953        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4954    } else {
4955      // It's not valid to set GC attributes on anything that isn't a
4956      // pointer.
4957  #ifndef NDEBUG
4958      QualType CT = Ty->getCanonicalTypeInternal();
4959      while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4960        CT = AT->getElementType();
4961      assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4962  #endif
4963    }
4964    return GCAttrs;
4965  }
4966  
4967  //===----------------------------------------------------------------------===//
4968  //                        Type Compatibility Testing
4969  //===----------------------------------------------------------------------===//
4970  
4971  /// areCompatVectorTypes - Return true if the two specified vector types are
4972  /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)4973  static bool areCompatVectorTypes(const VectorType *LHS,
4974                                   const VectorType *RHS) {
4975    assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4976    return LHS->getElementType() == RHS->getElementType() &&
4977           LHS->getNumElements() == RHS->getNumElements();
4978  }
4979  
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)4980  bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4981                                            QualType SecondVec) {
4982    assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4983    assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4984  
4985    if (hasSameUnqualifiedType(FirstVec, SecondVec))
4986      return true;
4987  
4988    // Treat Neon vector types and most AltiVec vector types as if they are the
4989    // equivalent GCC vector types.
4990    const VectorType *First = FirstVec->getAs<VectorType>();
4991    const VectorType *Second = SecondVec->getAs<VectorType>();
4992    if (First->getNumElements() == Second->getNumElements() &&
4993        hasSameType(First->getElementType(), Second->getElementType()) &&
4994        First->getVectorKind() != VectorType::AltiVecPixel &&
4995        First->getVectorKind() != VectorType::AltiVecBool &&
4996        Second->getVectorKind() != VectorType::AltiVecPixel &&
4997        Second->getVectorKind() != VectorType::AltiVecBool)
4998      return true;
4999  
5000    return false;
5001  }
5002  
5003  //===----------------------------------------------------------------------===//
5004  // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5005  //===----------------------------------------------------------------------===//
5006  
5007  /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5008  /// inheritance hierarchy of 'rProto'.
5009  bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const5010  ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5011                                             ObjCProtocolDecl *rProto) const {
5012    if (lProto == rProto)
5013      return true;
5014    for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5015         E = rProto->protocol_end(); PI != E; ++PI)
5016      if (ProtocolCompatibleWithProtocol(lProto, *PI))
5017        return true;
5018    return false;
5019  }
5020  
5021  /// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5022  /// return true if lhs's protocols conform to rhs's protocol; false
5023  /// otherwise.
QualifiedIdConformsQualifiedId(QualType lhs,QualType rhs)5024  bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5025    if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5026      return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5027    return false;
5028  }
5029  
5030  /// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5031  /// Class<p1, ...>.
ObjCQualifiedClassTypesAreCompatible(QualType lhs,QualType rhs)5032  bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5033                                                        QualType rhs) {
5034    const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5035    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5036    assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5037  
5038    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5039         E = lhsQID->qual_end(); I != E; ++I) {
5040      bool match = false;
5041      ObjCProtocolDecl *lhsProto = *I;
5042      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5043           E = rhsOPT->qual_end(); J != E; ++J) {
5044        ObjCProtocolDecl *rhsProto = *J;
5045        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5046          match = true;
5047          break;
5048        }
5049      }
5050      if (!match)
5051        return false;
5052    }
5053    return true;
5054  }
5055  
5056  /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5057  /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(QualType lhs,QualType rhs,bool compare)5058  bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5059                                                     bool compare) {
5060    // Allow id<P..> and an 'id' or void* type in all cases.
5061    if (lhs->isVoidPointerType() ||
5062        lhs->isObjCIdType() || lhs->isObjCClassType())
5063      return true;
5064    else if (rhs->isVoidPointerType() ||
5065             rhs->isObjCIdType() || rhs->isObjCClassType())
5066      return true;
5067  
5068    if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5069      const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5070  
5071      if (!rhsOPT) return false;
5072  
5073      if (rhsOPT->qual_empty()) {
5074        // If the RHS is a unqualified interface pointer "NSString*",
5075        // make sure we check the class hierarchy.
5076        if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5077          for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5078               E = lhsQID->qual_end(); I != E; ++I) {
5079            // when comparing an id<P> on lhs with a static type on rhs,
5080            // see if static class implements all of id's protocols, directly or
5081            // through its super class and categories.
5082            if (!rhsID->ClassImplementsProtocol(*I, true))
5083              return false;
5084          }
5085        }
5086        // If there are no qualifiers and no interface, we have an 'id'.
5087        return true;
5088      }
5089      // Both the right and left sides have qualifiers.
5090      for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5091           E = lhsQID->qual_end(); I != E; ++I) {
5092        ObjCProtocolDecl *lhsProto = *I;
5093        bool match = false;
5094  
5095        // when comparing an id<P> on lhs with a static type on rhs,
5096        // see if static class implements all of id's protocols, directly or
5097        // through its super class and categories.
5098        for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5099             E = rhsOPT->qual_end(); J != E; ++J) {
5100          ObjCProtocolDecl *rhsProto = *J;
5101          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5102              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5103            match = true;
5104            break;
5105          }
5106        }
5107        // If the RHS is a qualified interface pointer "NSString<P>*",
5108        // make sure we check the class hierarchy.
5109        if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5110          for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5111               E = lhsQID->qual_end(); I != E; ++I) {
5112            // when comparing an id<P> on lhs with a static type on rhs,
5113            // see if static class implements all of id's protocols, directly or
5114            // through its super class and categories.
5115            if (rhsID->ClassImplementsProtocol(*I, true)) {
5116              match = true;
5117              break;
5118            }
5119          }
5120        }
5121        if (!match)
5122          return false;
5123      }
5124  
5125      return true;
5126    }
5127  
5128    const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5129    assert(rhsQID && "One of the LHS/RHS should be id<x>");
5130  
5131    if (const ObjCObjectPointerType *lhsOPT =
5132          lhs->getAsObjCInterfacePointerType()) {
5133      // If both the right and left sides have qualifiers.
5134      for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5135           E = lhsOPT->qual_end(); I != E; ++I) {
5136        ObjCProtocolDecl *lhsProto = *I;
5137        bool match = false;
5138  
5139        // when comparing an id<P> on rhs with a static type on lhs,
5140        // see if static class implements all of id's protocols, directly or
5141        // through its super class and categories.
5142        // First, lhs protocols in the qualifier list must be found, direct
5143        // or indirect in rhs's qualifier list or it is a mismatch.
5144        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5145             E = rhsQID->qual_end(); J != E; ++J) {
5146          ObjCProtocolDecl *rhsProto = *J;
5147          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5148              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5149            match = true;
5150            break;
5151          }
5152        }
5153        if (!match)
5154          return false;
5155      }
5156  
5157      // Static class's protocols, or its super class or category protocols
5158      // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5159      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5160        llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5161        CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5162        // This is rather dubious but matches gcc's behavior. If lhs has
5163        // no type qualifier and its class has no static protocol(s)
5164        // assume that it is mismatch.
5165        if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5166          return false;
5167        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5168             LHSInheritedProtocols.begin(),
5169             E = LHSInheritedProtocols.end(); I != E; ++I) {
5170          bool match = false;
5171          ObjCProtocolDecl *lhsProto = (*I);
5172          for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5173               E = rhsQID->qual_end(); J != E; ++J) {
5174            ObjCProtocolDecl *rhsProto = *J;
5175            if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5176                (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5177              match = true;
5178              break;
5179            }
5180          }
5181          if (!match)
5182            return false;
5183        }
5184      }
5185      return true;
5186    }
5187    return false;
5188  }
5189  
5190  /// canAssignObjCInterfaces - Return true if the two interface types are
5191  /// compatible for assignment from RHS to LHS.  This handles validation of any
5192  /// protocol qualifiers on the LHS or RHS.
5193  ///
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)5194  bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5195                                           const ObjCObjectPointerType *RHSOPT) {
5196    const ObjCObjectType* LHS = LHSOPT->getObjectType();
5197    const ObjCObjectType* RHS = RHSOPT->getObjectType();
5198  
5199    // If either type represents the built-in 'id' or 'Class' types, return true.
5200    if (LHS->isObjCUnqualifiedIdOrClass() ||
5201        RHS->isObjCUnqualifiedIdOrClass())
5202      return true;
5203  
5204    if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5205      return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5206                                               QualType(RHSOPT,0),
5207                                               false);
5208  
5209    if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5210      return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5211                                                  QualType(RHSOPT,0));
5212  
5213    // If we have 2 user-defined types, fall into that path.
5214    if (LHS->getInterface() && RHS->getInterface())
5215      return canAssignObjCInterfaces(LHS, RHS);
5216  
5217    return false;
5218  }
5219  
5220  /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5221  /// for providing type-safety for objective-c pointers used to pass/return
5222  /// arguments in block literals. When passed as arguments, passing 'A*' where
5223  /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5224  /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)5225  bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5226                                           const ObjCObjectPointerType *LHSOPT,
5227                                           const ObjCObjectPointerType *RHSOPT,
5228                                           bool BlockReturnType) {
5229    if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5230      return true;
5231  
5232    if (LHSOPT->isObjCBuiltinType()) {
5233      return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5234    }
5235  
5236    if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5237      return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5238                                               QualType(RHSOPT,0),
5239                                               false);
5240  
5241    const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5242    const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5243    if (LHS && RHS)  { // We have 2 user-defined types.
5244      if (LHS != RHS) {
5245        if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5246          return BlockReturnType;
5247        if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5248          return !BlockReturnType;
5249      }
5250      else
5251        return true;
5252    }
5253    return false;
5254  }
5255  
5256  /// getIntersectionOfProtocols - This routine finds the intersection of set
5257  /// of protocols inherited from two distinct objective-c pointer objects.
5258  /// It is used to build composite qualifier list of the composite type of
5259  /// the conditional expression involving two objective-c pointer objects.
5260  static
getIntersectionOfProtocols(ASTContext & Context,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,llvm::SmallVectorImpl<ObjCProtocolDecl * > & IntersectionOfProtocols)5261  void getIntersectionOfProtocols(ASTContext &Context,
5262                                  const ObjCObjectPointerType *LHSOPT,
5263                                  const ObjCObjectPointerType *RHSOPT,
5264        llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5265  
5266    const ObjCObjectType* LHS = LHSOPT->getObjectType();
5267    const ObjCObjectType* RHS = RHSOPT->getObjectType();
5268    assert(LHS->getInterface() && "LHS must have an interface base");
5269    assert(RHS->getInterface() && "RHS must have an interface base");
5270  
5271    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5272    unsigned LHSNumProtocols = LHS->getNumProtocols();
5273    if (LHSNumProtocols > 0)
5274      InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5275    else {
5276      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5277      Context.CollectInheritedProtocols(LHS->getInterface(),
5278                                        LHSInheritedProtocols);
5279      InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5280                                  LHSInheritedProtocols.end());
5281    }
5282  
5283    unsigned RHSNumProtocols = RHS->getNumProtocols();
5284    if (RHSNumProtocols > 0) {
5285      ObjCProtocolDecl **RHSProtocols =
5286        const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5287      for (unsigned i = 0; i < RHSNumProtocols; ++i)
5288        if (InheritedProtocolSet.count(RHSProtocols[i]))
5289          IntersectionOfProtocols.push_back(RHSProtocols[i]);
5290    }
5291    else {
5292      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5293      Context.CollectInheritedProtocols(RHS->getInterface(),
5294                                        RHSInheritedProtocols);
5295      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5296           RHSInheritedProtocols.begin(),
5297           E = RHSInheritedProtocols.end(); I != E; ++I)
5298        if (InheritedProtocolSet.count((*I)))
5299          IntersectionOfProtocols.push_back((*I));
5300    }
5301  }
5302  
5303  /// areCommonBaseCompatible - Returns common base class of the two classes if
5304  /// one found. Note that this is O'2 algorithm. But it will be called as the
5305  /// last type comparison in a ?-exp of ObjC pointer types before a
5306  /// warning is issued. So, its invokation is extremely rare.
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)5307  QualType ASTContext::areCommonBaseCompatible(
5308                                            const ObjCObjectPointerType *Lptr,
5309                                            const ObjCObjectPointerType *Rptr) {
5310    const ObjCObjectType *LHS = Lptr->getObjectType();
5311    const ObjCObjectType *RHS = Rptr->getObjectType();
5312    const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5313    const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5314    if (!LDecl || !RDecl || (LDecl == RDecl))
5315      return QualType();
5316  
5317    do {
5318      LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5319      if (canAssignObjCInterfaces(LHS, RHS)) {
5320        llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
5321        getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5322  
5323        QualType Result = QualType(LHS, 0);
5324        if (!Protocols.empty())
5325          Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5326        Result = getObjCObjectPointerType(Result);
5327        return Result;
5328      }
5329    } while ((LDecl = LDecl->getSuperClass()));
5330  
5331    return QualType();
5332  }
5333  
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)5334  bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5335                                           const ObjCObjectType *RHS) {
5336    assert(LHS->getInterface() && "LHS is not an interface type");
5337    assert(RHS->getInterface() && "RHS is not an interface type");
5338  
5339    // Verify that the base decls are compatible: the RHS must be a subclass of
5340    // the LHS.
5341    if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5342      return false;
5343  
5344    // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5345    // protocol qualified at all, then we are good.
5346    if (LHS->getNumProtocols() == 0)
5347      return true;
5348  
5349    // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5350    // more detailed analysis is required.
5351    if (RHS->getNumProtocols() == 0) {
5352      // OK, if LHS is a superclass of RHS *and*
5353      // this superclass is assignment compatible with LHS.
5354      // false otherwise.
5355      bool IsSuperClass =
5356        LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5357      if (IsSuperClass) {
5358        // OK if conversion of LHS to SuperClass results in narrowing of types
5359        // ; i.e., SuperClass may implement at least one of the protocols
5360        // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5361        // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5362        llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5363        CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5364        // If super class has no protocols, it is not a match.
5365        if (SuperClassInheritedProtocols.empty())
5366          return false;
5367  
5368        for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5369             LHSPE = LHS->qual_end();
5370             LHSPI != LHSPE; LHSPI++) {
5371          bool SuperImplementsProtocol = false;
5372          ObjCProtocolDecl *LHSProto = (*LHSPI);
5373  
5374          for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5375               SuperClassInheritedProtocols.begin(),
5376               E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5377            ObjCProtocolDecl *SuperClassProto = (*I);
5378            if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5379              SuperImplementsProtocol = true;
5380              break;
5381            }
5382          }
5383          if (!SuperImplementsProtocol)
5384            return false;
5385        }
5386        return true;
5387      }
5388      return false;
5389    }
5390  
5391    for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5392                                       LHSPE = LHS->qual_end();
5393         LHSPI != LHSPE; LHSPI++) {
5394      bool RHSImplementsProtocol = false;
5395  
5396      // If the RHS doesn't implement the protocol on the left, the types
5397      // are incompatible.
5398      for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5399                                         RHSPE = RHS->qual_end();
5400           RHSPI != RHSPE; RHSPI++) {
5401        if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5402          RHSImplementsProtocol = true;
5403          break;
5404        }
5405      }
5406      // FIXME: For better diagnostics, consider passing back the protocol name.
5407      if (!RHSImplementsProtocol)
5408        return false;
5409    }
5410    // The RHS implements all protocols listed on the LHS.
5411    return true;
5412  }
5413  
areComparableObjCPointerTypes(QualType LHS,QualType RHS)5414  bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5415    // get the "pointed to" types
5416    const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5417    const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5418  
5419    if (!LHSOPT || !RHSOPT)
5420      return false;
5421  
5422    return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5423           canAssignObjCInterfaces(RHSOPT, LHSOPT);
5424  }
5425  
canBindObjCObjectType(QualType To,QualType From)5426  bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5427    return canAssignObjCInterfaces(
5428                  getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5429                  getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5430  }
5431  
5432  /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5433  /// both shall have the identically qualified version of a compatible type.
5434  /// C99 6.2.7p1: Two types have compatible types if their types are the
5435  /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)5436  bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5437                                      bool CompareUnqualified) {
5438    if (getLangOptions().CPlusPlus)
5439      return hasSameType(LHS, RHS);
5440  
5441    return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5442  }
5443  
propertyTypesAreCompatible(QualType LHS,QualType RHS)5444  bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5445    return typesAreCompatible(LHS, RHS);
5446  }
5447  
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)5448  bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5449    return !mergeTypes(LHS, RHS, true).isNull();
5450  }
5451  
5452  /// mergeTransparentUnionType - if T is a transparent union type and a member
5453  /// of T is compatible with SubType, return the merged type, else return
5454  /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)5455  QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5456                                                 bool OfBlockPointer,
5457                                                 bool Unqualified) {
5458    if (const RecordType *UT = T->getAsUnionType()) {
5459      RecordDecl *UD = UT->getDecl();
5460      if (UD->hasAttr<TransparentUnionAttr>()) {
5461        for (RecordDecl::field_iterator it = UD->field_begin(),
5462             itend = UD->field_end(); it != itend; ++it) {
5463          QualType ET = it->getType().getUnqualifiedType();
5464          QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5465          if (!MT.isNull())
5466            return MT;
5467        }
5468      }
5469    }
5470  
5471    return QualType();
5472  }
5473  
5474  /// mergeFunctionArgumentTypes - merge two types which appear as function
5475  /// argument types
mergeFunctionArgumentTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)5476  QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5477                                                  bool OfBlockPointer,
5478                                                  bool Unqualified) {
5479    // GNU extension: two types are compatible if they appear as a function
5480    // argument, one of the types is a transparent union type and the other
5481    // type is compatible with a union member
5482    QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5483                                                Unqualified);
5484    if (!lmerge.isNull())
5485      return lmerge;
5486  
5487    QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5488                                                Unqualified);
5489    if (!rmerge.isNull())
5490      return rmerge;
5491  
5492    return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5493  }
5494  
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)5495  QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5496                                          bool OfBlockPointer,
5497                                          bool Unqualified) {
5498    const FunctionType *lbase = lhs->getAs<FunctionType>();
5499    const FunctionType *rbase = rhs->getAs<FunctionType>();
5500    const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5501    const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5502    bool allLTypes = true;
5503    bool allRTypes = true;
5504  
5505    // Check return type
5506    QualType retType;
5507    if (OfBlockPointer) {
5508      QualType RHS = rbase->getResultType();
5509      QualType LHS = lbase->getResultType();
5510      bool UnqualifiedResult = Unqualified;
5511      if (!UnqualifiedResult)
5512        UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5513      retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5514    }
5515    else
5516      retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5517                           Unqualified);
5518    if (retType.isNull()) return QualType();
5519  
5520    if (Unqualified)
5521      retType = retType.getUnqualifiedType();
5522  
5523    CanQualType LRetType = getCanonicalType(lbase->getResultType());
5524    CanQualType RRetType = getCanonicalType(rbase->getResultType());
5525    if (Unqualified) {
5526      LRetType = LRetType.getUnqualifiedType();
5527      RRetType = RRetType.getUnqualifiedType();
5528    }
5529  
5530    if (getCanonicalType(retType) != LRetType)
5531      allLTypes = false;
5532    if (getCanonicalType(retType) != RRetType)
5533      allRTypes = false;
5534  
5535    // FIXME: double check this
5536    // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5537    //                           rbase->getRegParmAttr() != 0 &&
5538    //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5539    FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5540    FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5541  
5542    // Compatible functions must have compatible calling conventions
5543    if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5544      return QualType();
5545  
5546    // Regparm is part of the calling convention.
5547    if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5548      return QualType();
5549    if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5550      return QualType();
5551  
5552    if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5553      return QualType();
5554  
5555    // It's noreturn if either type is.
5556    // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5557    bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5558    if (NoReturn != lbaseInfo.getNoReturn())
5559      allLTypes = false;
5560    if (NoReturn != rbaseInfo.getNoReturn())
5561      allRTypes = false;
5562  
5563    FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5564  
5565    if (lproto && rproto) { // two C99 style function prototypes
5566      assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5567             "C++ shouldn't be here");
5568      unsigned lproto_nargs = lproto->getNumArgs();
5569      unsigned rproto_nargs = rproto->getNumArgs();
5570  
5571      // Compatible functions must have the same number of arguments
5572      if (lproto_nargs != rproto_nargs)
5573        return QualType();
5574  
5575      // Variadic and non-variadic functions aren't compatible
5576      if (lproto->isVariadic() != rproto->isVariadic())
5577        return QualType();
5578  
5579      if (lproto->getTypeQuals() != rproto->getTypeQuals())
5580        return QualType();
5581  
5582      // Check argument compatibility
5583      llvm::SmallVector<QualType, 10> types;
5584      for (unsigned i = 0; i < lproto_nargs; i++) {
5585        QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5586        QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5587        QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5588                                                      OfBlockPointer,
5589                                                      Unqualified);
5590        if (argtype.isNull()) return QualType();
5591  
5592        if (Unqualified)
5593          argtype = argtype.getUnqualifiedType();
5594  
5595        types.push_back(argtype);
5596        if (Unqualified) {
5597          largtype = largtype.getUnqualifiedType();
5598          rargtype = rargtype.getUnqualifiedType();
5599        }
5600  
5601        if (getCanonicalType(argtype) != getCanonicalType(largtype))
5602          allLTypes = false;
5603        if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5604          allRTypes = false;
5605      }
5606      if (allLTypes) return lhs;
5607      if (allRTypes) return rhs;
5608  
5609      FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5610      EPI.ExtInfo = einfo;
5611      return getFunctionType(retType, types.begin(), types.size(), EPI);
5612    }
5613  
5614    if (lproto) allRTypes = false;
5615    if (rproto) allLTypes = false;
5616  
5617    const FunctionProtoType *proto = lproto ? lproto : rproto;
5618    if (proto) {
5619      assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5620      if (proto->isVariadic()) return QualType();
5621      // Check that the types are compatible with the types that
5622      // would result from default argument promotions (C99 6.7.5.3p15).
5623      // The only types actually affected are promotable integer
5624      // types and floats, which would be passed as a different
5625      // type depending on whether the prototype is visible.
5626      unsigned proto_nargs = proto->getNumArgs();
5627      for (unsigned i = 0; i < proto_nargs; ++i) {
5628        QualType argTy = proto->getArgType(i);
5629  
5630        // Look at the promotion type of enum types, since that is the type used
5631        // to pass enum values.
5632        if (const EnumType *Enum = argTy->getAs<EnumType>())
5633          argTy = Enum->getDecl()->getPromotionType();
5634  
5635        if (argTy->isPromotableIntegerType() ||
5636            getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5637          return QualType();
5638      }
5639  
5640      if (allLTypes) return lhs;
5641      if (allRTypes) return rhs;
5642  
5643      FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5644      EPI.ExtInfo = einfo;
5645      return getFunctionType(retType, proto->arg_type_begin(),
5646                             proto->getNumArgs(), EPI);
5647    }
5648  
5649    if (allLTypes) return lhs;
5650    if (allRTypes) return rhs;
5651    return getFunctionNoProtoType(retType, einfo);
5652  }
5653  
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)5654  QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5655                                  bool OfBlockPointer,
5656                                  bool Unqualified, bool BlockReturnType) {
5657    // C++ [expr]: If an expression initially has the type "reference to T", the
5658    // type is adjusted to "T" prior to any further analysis, the expression
5659    // designates the object or function denoted by the reference, and the
5660    // expression is an lvalue unless the reference is an rvalue reference and
5661    // the expression is a function call (possibly inside parentheses).
5662    assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5663    assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5664  
5665    if (Unqualified) {
5666      LHS = LHS.getUnqualifiedType();
5667      RHS = RHS.getUnqualifiedType();
5668    }
5669  
5670    QualType LHSCan = getCanonicalType(LHS),
5671             RHSCan = getCanonicalType(RHS);
5672  
5673    // If two types are identical, they are compatible.
5674    if (LHSCan == RHSCan)
5675      return LHS;
5676  
5677    // If the qualifiers are different, the types aren't compatible... mostly.
5678    Qualifiers LQuals = LHSCan.getLocalQualifiers();
5679    Qualifiers RQuals = RHSCan.getLocalQualifiers();
5680    if (LQuals != RQuals) {
5681      // If any of these qualifiers are different, we have a type
5682      // mismatch.
5683      if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5684          LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5685          LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5686        return QualType();
5687  
5688      // Exactly one GC qualifier difference is allowed: __strong is
5689      // okay if the other type has no GC qualifier but is an Objective
5690      // C object pointer (i.e. implicitly strong by default).  We fix
5691      // this by pretending that the unqualified type was actually
5692      // qualified __strong.
5693      Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5694      Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5695      assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5696  
5697      if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5698        return QualType();
5699  
5700      if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5701        return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5702      }
5703      if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5704        return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5705      }
5706      return QualType();
5707    }
5708  
5709    // Okay, qualifiers are equal.
5710  
5711    Type::TypeClass LHSClass = LHSCan->getTypeClass();
5712    Type::TypeClass RHSClass = RHSCan->getTypeClass();
5713  
5714    // We want to consider the two function types to be the same for these
5715    // comparisons, just force one to the other.
5716    if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5717    if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5718  
5719    // Same as above for arrays
5720    if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5721      LHSClass = Type::ConstantArray;
5722    if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5723      RHSClass = Type::ConstantArray;
5724  
5725    // ObjCInterfaces are just specialized ObjCObjects.
5726    if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5727    if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5728  
5729    // Canonicalize ExtVector -> Vector.
5730    if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5731    if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5732  
5733    // If the canonical type classes don't match.
5734    if (LHSClass != RHSClass) {
5735      // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5736      // a signed integer type, or an unsigned integer type.
5737      // Compatibility is based on the underlying type, not the promotion
5738      // type.
5739      if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5740        if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5741          return RHS;
5742      }
5743      if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5744        if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5745          return LHS;
5746      }
5747  
5748      return QualType();
5749    }
5750  
5751    // The canonical type classes match.
5752    switch (LHSClass) {
5753  #define TYPE(Class, Base)
5754  #define ABSTRACT_TYPE(Class, Base)
5755  #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5756  #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5757  #define DEPENDENT_TYPE(Class, Base) case Type::Class:
5758  #include "clang/AST/TypeNodes.def"
5759      assert(false && "Non-canonical and dependent types shouldn't get here");
5760      return QualType();
5761  
5762    case Type::LValueReference:
5763    case Type::RValueReference:
5764    case Type::MemberPointer:
5765      assert(false && "C++ should never be in mergeTypes");
5766      return QualType();
5767  
5768    case Type::ObjCInterface:
5769    case Type::IncompleteArray:
5770    case Type::VariableArray:
5771    case Type::FunctionProto:
5772    case Type::ExtVector:
5773      assert(false && "Types are eliminated above");
5774      return QualType();
5775  
5776    case Type::Pointer:
5777    {
5778      // Merge two pointer types, while trying to preserve typedef info
5779      QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5780      QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5781      if (Unqualified) {
5782        LHSPointee = LHSPointee.getUnqualifiedType();
5783        RHSPointee = RHSPointee.getUnqualifiedType();
5784      }
5785      QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5786                                       Unqualified);
5787      if (ResultType.isNull()) return QualType();
5788      if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5789        return LHS;
5790      if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5791        return RHS;
5792      return getPointerType(ResultType);
5793    }
5794    case Type::BlockPointer:
5795    {
5796      // Merge two block pointer types, while trying to preserve typedef info
5797      QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5798      QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5799      if (Unqualified) {
5800        LHSPointee = LHSPointee.getUnqualifiedType();
5801        RHSPointee = RHSPointee.getUnqualifiedType();
5802      }
5803      QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5804                                       Unqualified);
5805      if (ResultType.isNull()) return QualType();
5806      if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5807        return LHS;
5808      if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5809        return RHS;
5810      return getBlockPointerType(ResultType);
5811    }
5812    case Type::ConstantArray:
5813    {
5814      const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5815      const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5816      if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5817        return QualType();
5818  
5819      QualType LHSElem = getAsArrayType(LHS)->getElementType();
5820      QualType RHSElem = getAsArrayType(RHS)->getElementType();
5821      if (Unqualified) {
5822        LHSElem = LHSElem.getUnqualifiedType();
5823        RHSElem = RHSElem.getUnqualifiedType();
5824      }
5825  
5826      QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5827      if (ResultType.isNull()) return QualType();
5828      if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5829        return LHS;
5830      if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5831        return RHS;
5832      if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5833                                            ArrayType::ArraySizeModifier(), 0);
5834      if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5835                                            ArrayType::ArraySizeModifier(), 0);
5836      const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5837      const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5838      if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5839        return LHS;
5840      if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5841        return RHS;
5842      if (LVAT) {
5843        // FIXME: This isn't correct! But tricky to implement because
5844        // the array's size has to be the size of LHS, but the type
5845        // has to be different.
5846        return LHS;
5847      }
5848      if (RVAT) {
5849        // FIXME: This isn't correct! But tricky to implement because
5850        // the array's size has to be the size of RHS, but the type
5851        // has to be different.
5852        return RHS;
5853      }
5854      if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5855      if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5856      return getIncompleteArrayType(ResultType,
5857                                    ArrayType::ArraySizeModifier(), 0);
5858    }
5859    case Type::FunctionNoProto:
5860      return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5861    case Type::Record:
5862    case Type::Enum:
5863      return QualType();
5864    case Type::Builtin:
5865      // Only exactly equal builtin types are compatible, which is tested above.
5866      return QualType();
5867    case Type::Complex:
5868      // Distinct complex types are incompatible.
5869      return QualType();
5870    case Type::Vector:
5871      // FIXME: The merged type should be an ExtVector!
5872      if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5873                               RHSCan->getAs<VectorType>()))
5874        return LHS;
5875      return QualType();
5876    case Type::ObjCObject: {
5877      // Check if the types are assignment compatible.
5878      // FIXME: This should be type compatibility, e.g. whether
5879      // "LHS x; RHS x;" at global scope is legal.
5880      const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5881      const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5882      if (canAssignObjCInterfaces(LHSIface, RHSIface))
5883        return LHS;
5884  
5885      return QualType();
5886    }
5887    case Type::ObjCObjectPointer: {
5888      if (OfBlockPointer) {
5889        if (canAssignObjCInterfacesInBlockPointer(
5890                                            LHS->getAs<ObjCObjectPointerType>(),
5891                                            RHS->getAs<ObjCObjectPointerType>(),
5892                                            BlockReturnType))
5893        return LHS;
5894        return QualType();
5895      }
5896      if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5897                                  RHS->getAs<ObjCObjectPointerType>()))
5898        return LHS;
5899  
5900      return QualType();
5901      }
5902    }
5903  
5904    return QualType();
5905  }
5906  
5907  /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5908  /// 'RHS' attributes and returns the merged version; including for function
5909  /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)5910  QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5911    QualType LHSCan = getCanonicalType(LHS),
5912    RHSCan = getCanonicalType(RHS);
5913    // If two types are identical, they are compatible.
5914    if (LHSCan == RHSCan)
5915      return LHS;
5916    if (RHSCan->isFunctionType()) {
5917      if (!LHSCan->isFunctionType())
5918        return QualType();
5919      QualType OldReturnType =
5920        cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5921      QualType NewReturnType =
5922        cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5923      QualType ResReturnType =
5924        mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5925      if (ResReturnType.isNull())
5926        return QualType();
5927      if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5928        // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5929        // In either case, use OldReturnType to build the new function type.
5930        const FunctionType *F = LHS->getAs<FunctionType>();
5931        if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5932          FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5933          EPI.ExtInfo = getFunctionExtInfo(LHS);
5934          QualType ResultType
5935            = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5936                              FPT->getNumArgs(), EPI);
5937          return ResultType;
5938        }
5939      }
5940      return QualType();
5941    }
5942  
5943    // If the qualifiers are different, the types can still be merged.
5944    Qualifiers LQuals = LHSCan.getLocalQualifiers();
5945    Qualifiers RQuals = RHSCan.getLocalQualifiers();
5946    if (LQuals != RQuals) {
5947      // If any of these qualifiers are different, we have a type mismatch.
5948      if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5949          LQuals.getAddressSpace() != RQuals.getAddressSpace())
5950        return QualType();
5951  
5952      // Exactly one GC qualifier difference is allowed: __strong is
5953      // okay if the other type has no GC qualifier but is an Objective
5954      // C object pointer (i.e. implicitly strong by default).  We fix
5955      // this by pretending that the unqualified type was actually
5956      // qualified __strong.
5957      Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5958      Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5959      assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5960  
5961      if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5962        return QualType();
5963  
5964      if (GC_L == Qualifiers::Strong)
5965        return LHS;
5966      if (GC_R == Qualifiers::Strong)
5967        return RHS;
5968      return QualType();
5969    }
5970  
5971    if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5972      QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5973      QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5974      QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5975      if (ResQT == LHSBaseQT)
5976        return LHS;
5977      if (ResQT == RHSBaseQT)
5978        return RHS;
5979    }
5980    return QualType();
5981  }
5982  
5983  //===----------------------------------------------------------------------===//
5984  //                         Integer Predicates
5985  //===----------------------------------------------------------------------===//
5986  
getIntWidth(QualType T) const5987  unsigned ASTContext::getIntWidth(QualType T) const {
5988    if (const EnumType *ET = dyn_cast<EnumType>(T))
5989      T = ET->getDecl()->getIntegerType();
5990    if (T->isBooleanType())
5991      return 1;
5992    // For builtin types, just use the standard type sizing method
5993    return (unsigned)getTypeSize(T);
5994  }
5995  
getCorrespondingUnsignedType(QualType T)5996  QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5997    assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5998  
5999    // Turn <4 x signed int> -> <4 x unsigned int>
6000    if (const VectorType *VTy = T->getAs<VectorType>())
6001      return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6002                           VTy->getNumElements(), VTy->getVectorKind());
6003  
6004    // For enums, we return the unsigned version of the base type.
6005    if (const EnumType *ETy = T->getAs<EnumType>())
6006      T = ETy->getDecl()->getIntegerType();
6007  
6008    const BuiltinType *BTy = T->getAs<BuiltinType>();
6009    assert(BTy && "Unexpected signed integer type");
6010    switch (BTy->getKind()) {
6011    case BuiltinType::Char_S:
6012    case BuiltinType::SChar:
6013      return UnsignedCharTy;
6014    case BuiltinType::Short:
6015      return UnsignedShortTy;
6016    case BuiltinType::Int:
6017      return UnsignedIntTy;
6018    case BuiltinType::Long:
6019      return UnsignedLongTy;
6020    case BuiltinType::LongLong:
6021      return UnsignedLongLongTy;
6022    case BuiltinType::Int128:
6023      return UnsignedInt128Ty;
6024    default:
6025      assert(0 && "Unexpected signed integer type");
6026      return QualType();
6027    }
6028  }
6029  
~ASTMutationListener()6030  ASTMutationListener::~ASTMutationListener() { }
6031  
6032  
6033  //===----------------------------------------------------------------------===//
6034  //                          Builtin Type Computation
6035  //===----------------------------------------------------------------------===//
6036  
6037  /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6038  /// pointer over the consumed characters.  This returns the resultant type.  If
6039  /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6040  /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6041  /// a vector of "i*".
6042  ///
6043  /// RequiresICE is filled in on return to indicate whether the value is required
6044  /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)6045  static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6046                                    ASTContext::GetBuiltinTypeError &Error,
6047                                    bool &RequiresICE,
6048                                    bool AllowTypeModifiers) {
6049    // Modifiers.
6050    int HowLong = 0;
6051    bool Signed = false, Unsigned = false;
6052    RequiresICE = false;
6053  
6054    // Read the prefixed modifiers first.
6055    bool Done = false;
6056    while (!Done) {
6057      switch (*Str++) {
6058      default: Done = true; --Str; break;
6059      case 'I':
6060        RequiresICE = true;
6061        break;
6062      case 'S':
6063        assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6064        assert(!Signed && "Can't use 'S' modifier multiple times!");
6065        Signed = true;
6066        break;
6067      case 'U':
6068        assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6069        assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6070        Unsigned = true;
6071        break;
6072      case 'L':
6073        assert(HowLong <= 2 && "Can't have LLLL modifier");
6074        ++HowLong;
6075        break;
6076      }
6077    }
6078  
6079    QualType Type;
6080  
6081    // Read the base type.
6082    switch (*Str++) {
6083    default: assert(0 && "Unknown builtin type letter!");
6084    case 'v':
6085      assert(HowLong == 0 && !Signed && !Unsigned &&
6086             "Bad modifiers used with 'v'!");
6087      Type = Context.VoidTy;
6088      break;
6089    case 'f':
6090      assert(HowLong == 0 && !Signed && !Unsigned &&
6091             "Bad modifiers used with 'f'!");
6092      Type = Context.FloatTy;
6093      break;
6094    case 'd':
6095      assert(HowLong < 2 && !Signed && !Unsigned &&
6096             "Bad modifiers used with 'd'!");
6097      if (HowLong)
6098        Type = Context.LongDoubleTy;
6099      else
6100        Type = Context.DoubleTy;
6101      break;
6102    case 's':
6103      assert(HowLong == 0 && "Bad modifiers used with 's'!");
6104      if (Unsigned)
6105        Type = Context.UnsignedShortTy;
6106      else
6107        Type = Context.ShortTy;
6108      break;
6109    case 'i':
6110      if (HowLong == 3)
6111        Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6112      else if (HowLong == 2)
6113        Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6114      else if (HowLong == 1)
6115        Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6116      else
6117        Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6118      break;
6119    case 'c':
6120      assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6121      if (Signed)
6122        Type = Context.SignedCharTy;
6123      else if (Unsigned)
6124        Type = Context.UnsignedCharTy;
6125      else
6126        Type = Context.CharTy;
6127      break;
6128    case 'b': // boolean
6129      assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6130      Type = Context.BoolTy;
6131      break;
6132    case 'z':  // size_t.
6133      assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6134      Type = Context.getSizeType();
6135      break;
6136    case 'F':
6137      Type = Context.getCFConstantStringType();
6138      break;
6139    case 'G':
6140      Type = Context.getObjCIdType();
6141      break;
6142    case 'H':
6143      Type = Context.getObjCSelType();
6144      break;
6145    case 'a':
6146      Type = Context.getBuiltinVaListType();
6147      assert(!Type.isNull() && "builtin va list type not initialized!");
6148      break;
6149    case 'A':
6150      // This is a "reference" to a va_list; however, what exactly
6151      // this means depends on how va_list is defined. There are two
6152      // different kinds of va_list: ones passed by value, and ones
6153      // passed by reference.  An example of a by-value va_list is
6154      // x86, where va_list is a char*. An example of by-ref va_list
6155      // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6156      // we want this argument to be a char*&; for x86-64, we want
6157      // it to be a __va_list_tag*.
6158      Type = Context.getBuiltinVaListType();
6159      assert(!Type.isNull() && "builtin va list type not initialized!");
6160      if (Type->isArrayType())
6161        Type = Context.getArrayDecayedType(Type);
6162      else
6163        Type = Context.getLValueReferenceType(Type);
6164      break;
6165    case 'V': {
6166      char *End;
6167      unsigned NumElements = strtoul(Str, &End, 10);
6168      assert(End != Str && "Missing vector size");
6169      Str = End;
6170  
6171      QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6172                                               RequiresICE, false);
6173      assert(!RequiresICE && "Can't require vector ICE");
6174  
6175      // TODO: No way to make AltiVec vectors in builtins yet.
6176      Type = Context.getVectorType(ElementType, NumElements,
6177                                   VectorType::GenericVector);
6178      break;
6179    }
6180    case 'X': {
6181      QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6182                                               false);
6183      assert(!RequiresICE && "Can't require complex ICE");
6184      Type = Context.getComplexType(ElementType);
6185      break;
6186    }
6187    case 'P':
6188      Type = Context.getFILEType();
6189      if (Type.isNull()) {
6190        Error = ASTContext::GE_Missing_stdio;
6191        return QualType();
6192      }
6193      break;
6194    case 'J':
6195      if (Signed)
6196        Type = Context.getsigjmp_bufType();
6197      else
6198        Type = Context.getjmp_bufType();
6199  
6200      if (Type.isNull()) {
6201        Error = ASTContext::GE_Missing_setjmp;
6202        return QualType();
6203      }
6204      break;
6205    }
6206  
6207    // If there are modifiers and if we're allowed to parse them, go for it.
6208    Done = !AllowTypeModifiers;
6209    while (!Done) {
6210      switch (char c = *Str++) {
6211      default: Done = true; --Str; break;
6212      case '*':
6213      case '&': {
6214        // Both pointers and references can have their pointee types
6215        // qualified with an address space.
6216        char *End;
6217        unsigned AddrSpace = strtoul(Str, &End, 10);
6218        if (End != Str && AddrSpace != 0) {
6219          Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6220          Str = End;
6221        }
6222        if (c == '*')
6223          Type = Context.getPointerType(Type);
6224        else
6225          Type = Context.getLValueReferenceType(Type);
6226        break;
6227      }
6228      // FIXME: There's no way to have a built-in with an rvalue ref arg.
6229      case 'C':
6230        Type = Type.withConst();
6231        break;
6232      case 'D':
6233        Type = Context.getVolatileType(Type);
6234        break;
6235      }
6236    }
6237  
6238    assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6239           "Integer constant 'I' type must be an integer");
6240  
6241    return Type;
6242  }
6243  
6244  /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const6245  QualType ASTContext::GetBuiltinType(unsigned Id,
6246                                      GetBuiltinTypeError &Error,
6247                                      unsigned *IntegerConstantArgs) const {
6248    const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6249  
6250    llvm::SmallVector<QualType, 8> ArgTypes;
6251  
6252    bool RequiresICE = false;
6253    Error = GE_None;
6254    QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6255                                         RequiresICE, true);
6256    if (Error != GE_None)
6257      return QualType();
6258  
6259    assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6260  
6261    while (TypeStr[0] && TypeStr[0] != '.') {
6262      QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6263      if (Error != GE_None)
6264        return QualType();
6265  
6266      // If this argument is required to be an IntegerConstantExpression and the
6267      // caller cares, fill in the bitmask we return.
6268      if (RequiresICE && IntegerConstantArgs)
6269        *IntegerConstantArgs |= 1 << ArgTypes.size();
6270  
6271      // Do array -> pointer decay.  The builtin should use the decayed type.
6272      if (Ty->isArrayType())
6273        Ty = getArrayDecayedType(Ty);
6274  
6275      ArgTypes.push_back(Ty);
6276    }
6277  
6278    assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6279           "'.' should only occur at end of builtin type list!");
6280  
6281    FunctionType::ExtInfo EI;
6282    if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6283  
6284    bool Variadic = (TypeStr[0] == '.');
6285  
6286    // We really shouldn't be making a no-proto type here, especially in C++.
6287    if (ArgTypes.empty() && Variadic)
6288      return getFunctionNoProtoType(ResType, EI);
6289  
6290    FunctionProtoType::ExtProtoInfo EPI;
6291    EPI.ExtInfo = EI;
6292    EPI.Variadic = Variadic;
6293  
6294    return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6295  }
6296  
GetGVALinkageForFunction(const FunctionDecl * FD)6297  GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6298    GVALinkage External = GVA_StrongExternal;
6299  
6300    Linkage L = FD->getLinkage();
6301    switch (L) {
6302    case NoLinkage:
6303    case InternalLinkage:
6304    case UniqueExternalLinkage:
6305      return GVA_Internal;
6306  
6307    case ExternalLinkage:
6308      switch (FD->getTemplateSpecializationKind()) {
6309      case TSK_Undeclared:
6310      case TSK_ExplicitSpecialization:
6311        External = GVA_StrongExternal;
6312        break;
6313  
6314      case TSK_ExplicitInstantiationDefinition:
6315        return GVA_ExplicitTemplateInstantiation;
6316  
6317      case TSK_ExplicitInstantiationDeclaration:
6318      case TSK_ImplicitInstantiation:
6319        External = GVA_TemplateInstantiation;
6320        break;
6321      }
6322    }
6323  
6324    if (!FD->isInlined())
6325      return External;
6326  
6327    if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6328      // GNU or C99 inline semantics. Determine whether this symbol should be
6329      // externally visible.
6330      if (FD->isInlineDefinitionExternallyVisible())
6331        return External;
6332  
6333      // C99 inline semantics, where the symbol is not externally visible.
6334      return GVA_C99Inline;
6335    }
6336  
6337    // C++0x [temp.explicit]p9:
6338    //   [ Note: The intent is that an inline function that is the subject of
6339    //   an explicit instantiation declaration will still be implicitly
6340    //   instantiated when used so that the body can be considered for
6341    //   inlining, but that no out-of-line copy of the inline function would be
6342    //   generated in the translation unit. -- end note ]
6343    if (FD->getTemplateSpecializationKind()
6344                                         == TSK_ExplicitInstantiationDeclaration)
6345      return GVA_C99Inline;
6346  
6347    return GVA_CXXInline;
6348  }
6349  
GetGVALinkageForVariable(const VarDecl * VD)6350  GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6351    // If this is a static data member, compute the kind of template
6352    // specialization. Otherwise, this variable is not part of a
6353    // template.
6354    TemplateSpecializationKind TSK = TSK_Undeclared;
6355    if (VD->isStaticDataMember())
6356      TSK = VD->getTemplateSpecializationKind();
6357  
6358    Linkage L = VD->getLinkage();
6359    if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6360        VD->getType()->getLinkage() == UniqueExternalLinkage)
6361      L = UniqueExternalLinkage;
6362  
6363    switch (L) {
6364    case NoLinkage:
6365    case InternalLinkage:
6366    case UniqueExternalLinkage:
6367      return GVA_Internal;
6368  
6369    case ExternalLinkage:
6370      switch (TSK) {
6371      case TSK_Undeclared:
6372      case TSK_ExplicitSpecialization:
6373        return GVA_StrongExternal;
6374  
6375      case TSK_ExplicitInstantiationDeclaration:
6376        llvm_unreachable("Variable should not be instantiated");
6377        // Fall through to treat this like any other instantiation.
6378  
6379      case TSK_ExplicitInstantiationDefinition:
6380        return GVA_ExplicitTemplateInstantiation;
6381  
6382      case TSK_ImplicitInstantiation:
6383        return GVA_TemplateInstantiation;
6384      }
6385    }
6386  
6387    return GVA_StrongExternal;
6388  }
6389  
DeclMustBeEmitted(const Decl * D)6390  bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6391    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6392      if (!VD->isFileVarDecl())
6393        return false;
6394    } else if (!isa<FunctionDecl>(D))
6395      return false;
6396  
6397    // Weak references don't produce any output by themselves.
6398    if (D->hasAttr<WeakRefAttr>())
6399      return false;
6400  
6401    // Aliases and used decls are required.
6402    if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6403      return true;
6404  
6405    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6406      // Forward declarations aren't required.
6407      if (!FD->doesThisDeclarationHaveABody())
6408        return FD->doesDeclarationForceExternallyVisibleDefinition();
6409  
6410      // Constructors and destructors are required.
6411      if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6412        return true;
6413  
6414      // The key function for a class is required.
6415      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6416        const CXXRecordDecl *RD = MD->getParent();
6417        if (MD->isOutOfLine() && RD->isDynamicClass()) {
6418          const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6419          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6420            return true;
6421        }
6422      }
6423  
6424      GVALinkage Linkage = GetGVALinkageForFunction(FD);
6425  
6426      // static, static inline, always_inline, and extern inline functions can
6427      // always be deferred.  Normal inline functions can be deferred in C99/C++.
6428      // Implicit template instantiations can also be deferred in C++.
6429      if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6430          Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6431        return false;
6432      return true;
6433    }
6434  
6435    const VarDecl *VD = cast<VarDecl>(D);
6436    assert(VD->isFileVarDecl() && "Expected file scoped var");
6437  
6438    if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6439      return false;
6440  
6441    // Structs that have non-trivial constructors or destructors are required.
6442  
6443    // FIXME: Handle references.
6444    // FIXME: Be more selective about which constructors we care about.
6445    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6446      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6447        if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6448                                     RD->hasTrivialCopyConstructor() &&
6449                                     RD->hasTrivialMoveConstructor() &&
6450                                     RD->hasTrivialDestructor()))
6451          return true;
6452      }
6453    }
6454  
6455    GVALinkage L = GetGVALinkageForVariable(VD);
6456    if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6457      if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6458        return false;
6459    }
6460  
6461    return true;
6462  }
6463  
getDefaultMethodCallConv()6464  CallingConv ASTContext::getDefaultMethodCallConv() {
6465    // Pass through to the C++ ABI object
6466    return ABI->getDefaultMethodCallConv();
6467  }
6468  
isNearlyEmpty(const CXXRecordDecl * RD) const6469  bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6470    // Pass through to the C++ ABI object
6471    return ABI->isNearlyEmpty(RD);
6472  }
6473  
createMangleContext()6474  MangleContext *ASTContext::createMangleContext() {
6475    switch (Target.getCXXABI()) {
6476    case CXXABI_ARM:
6477    case CXXABI_Itanium:
6478      return createItaniumMangleContext(*this, getDiagnostics());
6479    case CXXABI_Microsoft:
6480      return createMicrosoftMangleContext(*this, getDiagnostics());
6481    }
6482    assert(0 && "Unsupported ABI");
6483    return 0;
6484  }
6485  
~CXXABI()6486  CXXABI::~CXXABI() {}
6487  
getSideTableAllocatedMemory() const6488  size_t ASTContext::getSideTableAllocatedMemory() const {
6489    size_t bytes = 0;
6490    bytes += ASTRecordLayouts.getMemorySize();
6491    bytes += ObjCLayouts.getMemorySize();
6492    bytes += KeyFunctions.getMemorySize();
6493    bytes += ObjCImpls.getMemorySize();
6494    bytes += BlockVarCopyInits.getMemorySize();
6495    bytes += DeclAttrs.getMemorySize();
6496    bytes += InstantiatedFromStaticDataMember.getMemorySize();
6497    bytes += InstantiatedFromUsingDecl.getMemorySize();
6498    bytes += InstantiatedFromUsingShadowDecl.getMemorySize();
6499    bytes += InstantiatedFromUnnamedFieldDecl.getMemorySize();
6500    return bytes;
6501  }
6502