• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_LITHIUM_ALLOCATOR_H_
29 #define V8_LITHIUM_ALLOCATOR_H_
30 
31 #include "v8.h"
32 
33 #include "data-flow.h"
34 #include "lithium.h"
35 #include "zone.h"
36 
37 namespace v8 {
38 namespace internal {
39 
40 // Forward declarations.
41 class HBasicBlock;
42 class HGraph;
43 class HInstruction;
44 class HPhi;
45 class HTracer;
46 class HValue;
47 class BitVector;
48 class StringStream;
49 
50 class LArgument;
51 class LChunk;
52 class LOperand;
53 class LUnallocated;
54 class LConstantOperand;
55 class LGap;
56 class LParallelMove;
57 class LPointerMap;
58 class LStackSlot;
59 class LRegister;
60 
61 
62 // This class represents a single point of a LOperand's lifetime.
63 // For each lithium instruction there are exactly two lifetime positions:
64 // the beginning and the end of the instruction. Lifetime positions for
65 // different lithium instructions are disjoint.
66 class LifetimePosition {
67  public:
68   // Return the lifetime position that corresponds to the beginning of
69   // the instruction with the given index.
FromInstructionIndex(int index)70   static LifetimePosition FromInstructionIndex(int index) {
71     return LifetimePosition(index * kStep);
72   }
73 
74   // Returns a numeric representation of this lifetime position.
Value()75   int Value() const {
76     return value_;
77   }
78 
79   // Returns the index of the instruction to which this lifetime position
80   // corresponds.
InstructionIndex()81   int InstructionIndex() const {
82     ASSERT(IsValid());
83     return value_ / kStep;
84   }
85 
86   // Returns true if this lifetime position corresponds to the instruction
87   // start.
IsInstructionStart()88   bool IsInstructionStart() const {
89     return (value_ & (kStep - 1)) == 0;
90   }
91 
92   // Returns the lifetime position for the start of the instruction which
93   // corresponds to this lifetime position.
InstructionStart()94   LifetimePosition InstructionStart() const {
95     ASSERT(IsValid());
96     return LifetimePosition(value_ & ~(kStep - 1));
97   }
98 
99   // Returns the lifetime position for the end of the instruction which
100   // corresponds to this lifetime position.
InstructionEnd()101   LifetimePosition InstructionEnd() const {
102     ASSERT(IsValid());
103     return LifetimePosition(InstructionStart().Value() + kStep/2);
104   }
105 
106   // Returns the lifetime position for the beginning of the next instruction.
NextInstruction()107   LifetimePosition NextInstruction() const {
108     ASSERT(IsValid());
109     return LifetimePosition(InstructionStart().Value() + kStep);
110   }
111 
112   // Returns the lifetime position for the beginning of the previous
113   // instruction.
PrevInstruction()114   LifetimePosition PrevInstruction() const {
115     ASSERT(IsValid());
116     ASSERT(value_ > 1);
117     return LifetimePosition(InstructionStart().Value() - kStep);
118   }
119 
120   // Constructs the lifetime position which does not correspond to any
121   // instruction.
LifetimePosition()122   LifetimePosition() : value_(-1) {}
123 
124   // Returns true if this lifetime positions corrensponds to some
125   // instruction.
IsValid()126   bool IsValid() const { return value_ != -1; }
127 
Invalid()128   static inline LifetimePosition Invalid() { return LifetimePosition(); }
129 
MaxPosition()130   static inline LifetimePosition MaxPosition() {
131     // We have to use this kind of getter instead of static member due to
132     // crash bug in GDB.
133     return LifetimePosition(kMaxInt);
134   }
135 
136  private:
137   static const int kStep = 2;
138 
139   // Code relies on kStep being a power of two.
140   STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
141 
LifetimePosition(int value)142   explicit LifetimePosition(int value) : value_(value) { }
143 
144   int value_;
145 };
146 
147 
148 enum RegisterKind {
149   NONE,
150   GENERAL_REGISTERS,
151   DOUBLE_REGISTERS
152 };
153 
154 
155 // A register-allocator view of a Lithium instruction. It contains the id of
156 // the output operand and a list of input operand uses.
157 
158 class LInstruction;
159 class LEnvironment;
160 
161 // Iterator for non-null temp operands.
162 class TempIterator BASE_EMBEDDED {
163  public:
164   inline explicit TempIterator(LInstruction* instr);
165   inline bool HasNext();
166   inline LOperand* Next();
167   inline void Advance();
168 
169  private:
170   inline int AdvanceToNext(int start);
171   LInstruction* instr_;
172   int limit_;
173   int current_;
174 };
175 
176 
177 // Iterator for non-constant input operands.
178 class InputIterator BASE_EMBEDDED {
179  public:
180   inline explicit InputIterator(LInstruction* instr);
181   inline bool HasNext();
182   inline LOperand* Next();
183   inline void Advance();
184 
185  private:
186   inline int AdvanceToNext(int start);
187   LInstruction* instr_;
188   int limit_;
189   int current_;
190 };
191 
192 
193 class UseIterator BASE_EMBEDDED {
194  public:
195   inline explicit UseIterator(LInstruction* instr);
196   inline bool HasNext();
197   inline LOperand* Next();
198   inline void Advance();
199 
200  private:
201   InputIterator input_iterator_;
202   DeepIterator env_iterator_;
203 };
204 
205 
206 // Representation of the non-empty interval [start,end[.
207 class UseInterval: public ZoneObject {
208  public:
UseInterval(LifetimePosition start,LifetimePosition end)209   UseInterval(LifetimePosition start, LifetimePosition end)
210       : start_(start), end_(end), next_(NULL) {
211     ASSERT(start.Value() < end.Value());
212   }
213 
start()214   LifetimePosition start() const { return start_; }
end()215   LifetimePosition end() const { return end_; }
next()216   UseInterval* next() const { return next_; }
217 
218   // Split this interval at the given position without effecting the
219   // live range that owns it. The interval must contain the position.
220   void SplitAt(LifetimePosition pos);
221 
222   // If this interval intersects with other return smallest position
223   // that belongs to both of them.
Intersect(const UseInterval * other)224   LifetimePosition Intersect(const UseInterval* other) const {
225     if (other->start().Value() < start_.Value()) return other->Intersect(this);
226     if (other->start().Value() < end_.Value()) return other->start();
227     return LifetimePosition::Invalid();
228   }
229 
Contains(LifetimePosition point)230   bool Contains(LifetimePosition point) const {
231     return start_.Value() <= point.Value() && point.Value() < end_.Value();
232   }
233 
234  private:
set_start(LifetimePosition start)235   void set_start(LifetimePosition start) { start_ = start; }
set_next(UseInterval * next)236   void set_next(UseInterval* next) { next_ = next; }
237 
238   LifetimePosition start_;
239   LifetimePosition end_;
240   UseInterval* next_;
241 
242   friend class LiveRange;  // Assigns to start_.
243 };
244 
245 // Representation of a use position.
246 class UsePosition: public ZoneObject {
247  public:
248   UsePosition(LifetimePosition pos, LOperand* operand);
249 
operand()250   LOperand* operand() const { return operand_; }
HasOperand()251   bool HasOperand() const { return operand_ != NULL; }
252 
hint()253   LOperand* hint() const { return hint_; }
set_hint(LOperand * hint)254   void set_hint(LOperand* hint) { hint_ = hint; }
255   bool HasHint() const;
256   bool RequiresRegister() const;
257   bool RegisterIsBeneficial() const;
258 
pos()259   LifetimePosition pos() const { return pos_; }
next()260   UsePosition* next() const { return next_; }
261 
262  private:
set_next(UsePosition * next)263   void set_next(UsePosition* next) { next_ = next; }
264 
265   LOperand* operand_;
266   LOperand* hint_;
267   LifetimePosition pos_;
268   UsePosition* next_;
269   bool requires_reg_;
270   bool register_beneficial_;
271 
272   friend class LiveRange;
273 };
274 
275 // Representation of SSA values' live ranges as a collection of (continuous)
276 // intervals over the instruction ordering.
277 class LiveRange: public ZoneObject {
278  public:
279   static const int kInvalidAssignment = 0x7fffffff;
280 
281   explicit LiveRange(int id);
282 
first_interval()283   UseInterval* first_interval() const { return first_interval_; }
first_pos()284   UsePosition* first_pos() const { return first_pos_; }
parent()285   LiveRange* parent() const { return parent_; }
TopLevel()286   LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
next()287   LiveRange* next() const { return next_; }
IsChild()288   bool IsChild() const { return parent() != NULL; }
id()289   int id() const { return id_; }
IsFixed()290   bool IsFixed() const { return id_ < 0; }
IsEmpty()291   bool IsEmpty() const { return first_interval() == NULL; }
292   LOperand* CreateAssignedOperand();
assigned_register()293   int assigned_register() const { return assigned_register_; }
spill_start_index()294   int spill_start_index() const { return spill_start_index_; }
295   void set_assigned_register(int reg, RegisterKind register_kind);
296   void MakeSpilled();
297 
298   // Returns use position in this live range that follows both start
299   // and last processed use position.
300   // Modifies internal state of live range!
301   UsePosition* NextUsePosition(LifetimePosition start);
302 
303   // Returns use position for which register is required in this live
304   // range and which follows both start and last processed use position
305   // Modifies internal state of live range!
306   UsePosition* NextRegisterPosition(LifetimePosition start);
307 
308   // Returns use position for which register is beneficial in this live
309   // range and which follows both start and last processed use position
310   // Modifies internal state of live range!
311   UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
312 
313   // Can this live range be spilled at this position.
314   bool CanBeSpilled(LifetimePosition pos);
315 
316   // Split this live range at the given position which must follow the start of
317   // the range.
318   // All uses following the given position will be moved from this
319   // live range to the result live range.
320   void SplitAt(LifetimePosition position, LiveRange* result);
321 
IsDouble()322   bool IsDouble() const { return assigned_register_kind_ == DOUBLE_REGISTERS; }
HasRegisterAssigned()323   bool HasRegisterAssigned() const {
324     return assigned_register_ != kInvalidAssignment;
325   }
IsSpilled()326   bool IsSpilled() const { return spilled_; }
327   UsePosition* FirstPosWithHint() const;
328 
FirstHint()329   LOperand* FirstHint() const {
330     UsePosition* pos = FirstPosWithHint();
331     if (pos != NULL) return pos->hint();
332     return NULL;
333   }
334 
Start()335   LifetimePosition Start() const {
336     ASSERT(!IsEmpty());
337     return first_interval()->start();
338   }
339 
End()340   LifetimePosition End() const {
341     ASSERT(!IsEmpty());
342     return last_interval_->end();
343   }
344 
345   bool HasAllocatedSpillOperand() const;
GetSpillOperand()346   LOperand* GetSpillOperand() const { return spill_operand_; }
347   void SetSpillOperand(LOperand* operand);
348 
SetSpillStartIndex(int start)349   void SetSpillStartIndex(int start) {
350     spill_start_index_ = Min(start, spill_start_index_);
351   }
352 
353   bool ShouldBeAllocatedBefore(const LiveRange* other) const;
354   bool CanCover(LifetimePosition position) const;
355   bool Covers(LifetimePosition position);
356   LifetimePosition FirstIntersection(LiveRange* other);
357 
358   // Add a new interval or a new use position to this live range.
359   void EnsureInterval(LifetimePosition start, LifetimePosition end);
360   void AddUseInterval(LifetimePosition start, LifetimePosition end);
361   UsePosition* AddUsePosition(LifetimePosition pos, LOperand* operand);
362 
363   // Shorten the most recently added interval by setting a new start.
364   void ShortenTo(LifetimePosition start);
365 
366 #ifdef DEBUG
367   // True if target overlaps an existing interval.
368   bool HasOverlap(UseInterval* target) const;
369   void Verify() const;
370 #endif
371 
372  private:
373   void ConvertOperands();
374   UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
375   void AdvanceLastProcessedMarker(UseInterval* to_start_of,
376                                   LifetimePosition but_not_past) const;
377 
378   int id_;
379   bool spilled_;
380   int assigned_register_;
381   RegisterKind assigned_register_kind_;
382   UseInterval* last_interval_;
383   UseInterval* first_interval_;
384   UsePosition* first_pos_;
385   LiveRange* parent_;
386   LiveRange* next_;
387   // This is used as a cache, it doesn't affect correctness.
388   mutable UseInterval* current_interval_;
389   UsePosition* last_processed_use_;
390   LOperand* spill_operand_;
391   int spill_start_index_;
392 };
393 
394 
395 class GrowableBitVector BASE_EMBEDDED {
396  public:
GrowableBitVector()397   GrowableBitVector() : bits_(NULL) { }
398 
Contains(int value)399   bool Contains(int value) const {
400     if (!InBitsRange(value)) return false;
401     return bits_->Contains(value);
402   }
403 
Add(int value)404   void Add(int value) {
405     EnsureCapacity(value);
406     bits_->Add(value);
407   }
408 
409  private:
410   static const int kInitialLength = 1024;
411 
InBitsRange(int value)412   bool InBitsRange(int value) const {
413     return bits_ != NULL && bits_->length() > value;
414   }
415 
EnsureCapacity(int value)416   void EnsureCapacity(int value) {
417     if (InBitsRange(value)) return;
418     int new_length = bits_ == NULL ? kInitialLength : bits_->length();
419     while (new_length <= value) new_length *= 2;
420     BitVector* new_bits = new BitVector(new_length);
421     if (bits_ != NULL) new_bits->CopyFrom(*bits_);
422     bits_ = new_bits;
423   }
424 
425   BitVector* bits_;
426 };
427 
428 
429 class LAllocator BASE_EMBEDDED {
430  public:
431   LAllocator(int first_virtual_register, HGraph* graph);
432 
433   static void TraceAlloc(const char* msg, ...);
434 
435   // Lithium translation support.
436   // Record a use of an input operand in the current instruction.
437   void RecordUse(HValue* value, LUnallocated* operand);
438   // Record the definition of the output operand.
439   void RecordDefinition(HInstruction* instr, LUnallocated* operand);
440   // Record a temporary operand.
441   void RecordTemporary(LUnallocated* operand);
442 
443   // Checks whether the value of a given virtual register is tagged.
444   bool HasTaggedValue(int virtual_register) const;
445 
446   // Returns the register kind required by the given virtual register.
447   RegisterKind RequiredRegisterKind(int virtual_register) const;
448 
449   // Control max function size.
450   static int max_initial_value_ids();
451 
452   void Allocate(LChunk* chunk);
453 
live_ranges()454   const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
fixed_live_ranges()455   const Vector<LiveRange*>* fixed_live_ranges() const {
456     return &fixed_live_ranges_;
457   }
fixed_double_live_ranges()458   const Vector<LiveRange*>* fixed_double_live_ranges() const {
459     return &fixed_double_live_ranges_;
460   }
461 
chunk()462   LChunk* chunk() const { return chunk_; }
graph()463   HGraph* graph() const { return graph_; }
464 
MarkAsOsrEntry()465   void MarkAsOsrEntry() {
466     // There can be only one.
467     ASSERT(!has_osr_entry_);
468     // Simply set a flag to find and process instruction later.
469     has_osr_entry_ = true;
470   }
471 
472 #ifdef DEBUG
473   void Verify() const;
474 #endif
475 
476  private:
477   void MeetRegisterConstraints();
478   void ResolvePhis();
479   void BuildLiveRanges();
480   void AllocateGeneralRegisters();
481   void AllocateDoubleRegisters();
482   void ConnectRanges();
483   void ResolveControlFlow();
484   void PopulatePointerMaps();
485   void ProcessOsrEntry();
486   void AllocateRegisters();
487   bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
488   inline bool SafePointsAreInOrder() const;
489 
490   // Liveness analysis support.
491   void InitializeLivenessAnalysis();
492   BitVector* ComputeLiveOut(HBasicBlock* block);
493   void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
494   void ProcessInstructions(HBasicBlock* block, BitVector* live);
495   void MeetRegisterConstraints(HBasicBlock* block);
496   void MeetConstraintsBetween(LInstruction* first,
497                               LInstruction* second,
498                               int gap_index);
499   void ResolvePhis(HBasicBlock* block);
500 
501   // Helper methods for building intervals.
502   LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
503   LiveRange* LiveRangeFor(LOperand* operand);
504   void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
505   void Use(LifetimePosition block_start,
506            LifetimePosition position,
507            LOperand* operand,
508            LOperand* hint);
509   void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
510 
511   // Helper methods for updating the life range lists.
512   void AddToActive(LiveRange* range);
513   void AddToInactive(LiveRange* range);
514   void AddToUnhandledSorted(LiveRange* range);
515   void AddToUnhandledUnsorted(LiveRange* range);
516   void SortUnhandled();
517   bool UnhandledIsSorted();
518   void ActiveToHandled(LiveRange* range);
519   void ActiveToInactive(LiveRange* range);
520   void InactiveToHandled(LiveRange* range);
521   void InactiveToActive(LiveRange* range);
522   void FreeSpillSlot(LiveRange* range);
523   LOperand* TryReuseSpillSlot(LiveRange* range);
524 
525   // Helper methods for allocating registers.
526   bool TryAllocateFreeReg(LiveRange* range);
527   void AllocateBlockedReg(LiveRange* range);
528 
529   // Live range splitting helpers.
530 
531   // Split the given range at the given position.
532   // If range starts at or after the given position then the
533   // original range is returned.
534   // Otherwise returns the live range that starts at pos and contains
535   // all uses from the original range that follow pos. Uses at pos will
536   // still be owned by the original range after splitting.
537   LiveRange* SplitAt(LiveRange* range, LifetimePosition pos);
538 
539   // Split the given range in a position from the interval [start, end].
540   LiveRange* SplitBetween(LiveRange* range,
541                           LifetimePosition start,
542                           LifetimePosition end);
543 
544   // Find a lifetime position in the interval [start, end] which
545   // is optimal for splitting: it is either header of the outermost
546   // loop covered by this interval or the latest possible position.
547   LifetimePosition FindOptimalSplitPos(LifetimePosition start,
548                                        LifetimePosition end);
549 
550   // Spill the given life range after position pos.
551   void SpillAfter(LiveRange* range, LifetimePosition pos);
552 
553   // Spill the given life range after position start and up to position end.
554   void SpillBetween(LiveRange* range,
555                     LifetimePosition start,
556                     LifetimePosition end);
557 
558   void SplitAndSpillIntersecting(LiveRange* range);
559 
560   void Spill(LiveRange* range);
561   bool IsBlockBoundary(LifetimePosition pos);
562 
563   // Helper methods for resolving control flow.
564   void ResolveControlFlow(LiveRange* range,
565                           HBasicBlock* block,
566                           HBasicBlock* pred);
567 
568   // Return parallel move that should be used to connect ranges split at the
569   // given position.
570   LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
571 
572   // Return the block which contains give lifetime position.
573   HBasicBlock* GetBlock(LifetimePosition pos);
574 
575   // Helper methods for the fixed registers.
576   int RegisterCount() const;
FixedLiveRangeID(int index)577   static int FixedLiveRangeID(int index) { return -index - 1; }
578   static int FixedDoubleLiveRangeID(int index);
579   LiveRange* FixedLiveRangeFor(int index);
580   LiveRange* FixedDoubleLiveRangeFor(int index);
581   LiveRange* LiveRangeFor(int index);
582   HPhi* LookupPhi(LOperand* operand) const;
583   LGap* GetLastGap(HBasicBlock* block);
584 
585   const char* RegisterName(int allocation_index);
586 
587   inline bool IsGapAt(int index);
588 
589   inline LInstruction* InstructionAt(int index);
590 
591   inline LGap* GapAt(int index);
592 
593   LChunk* chunk_;
594 
595   // During liveness analysis keep a mapping from block id to live_in sets
596   // for blocks already analyzed.
597   ZoneList<BitVector*> live_in_sets_;
598 
599   // Liveness analysis results.
600   ZoneList<LiveRange*> live_ranges_;
601 
602   // Lists of live ranges
603   EmbeddedVector<LiveRange*, Register::kNumAllocatableRegisters>
604       fixed_live_ranges_;
605   EmbeddedVector<LiveRange*, DoubleRegister::kNumAllocatableRegisters>
606       fixed_double_live_ranges_;
607   ZoneList<LiveRange*> unhandled_live_ranges_;
608   ZoneList<LiveRange*> active_live_ranges_;
609   ZoneList<LiveRange*> inactive_live_ranges_;
610   ZoneList<LiveRange*> reusable_slots_;
611 
612   // Next virtual register number to be assigned to temporaries.
613   int next_virtual_register_;
614   int first_artificial_register_;
615   GrowableBitVector double_artificial_registers_;
616 
617   RegisterKind mode_;
618   int num_registers_;
619 
620   HGraph* graph_;
621 
622   bool has_osr_entry_;
623 
624   DISALLOW_COPY_AND_ASSIGN(LAllocator);
625 };
626 
627 
628 } }  // namespace v8::internal
629 
630 #endif  // V8_LITHIUM_ALLOCATOR_H_
631