1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35 #include "v8.h"
36
37 #include "arguments.h"
38 #include "deoptimizer.h"
39 #include "execution.h"
40 #include "ic-inl.h"
41 #include "factory.h"
42 #include "runtime.h"
43 #include "runtime-profiler.h"
44 #include "serialize.h"
45 #include "stub-cache.h"
46 #include "regexp-stack.h"
47 #include "ast.h"
48 #include "regexp-macro-assembler.h"
49 #include "platform.h"
50 // Include native regexp-macro-assembler.
51 #ifndef V8_INTERPRETED_REGEXP
52 #if V8_TARGET_ARCH_IA32
53 #include "ia32/regexp-macro-assembler-ia32.h"
54 #elif V8_TARGET_ARCH_X64
55 #include "x64/regexp-macro-assembler-x64.h"
56 #elif V8_TARGET_ARCH_ARM
57 #include "arm/regexp-macro-assembler-arm.h"
58 #elif V8_TARGET_ARCH_MIPS
59 #include "mips/regexp-macro-assembler-mips.h"
60 #else // Unknown architecture.
61 #error "Unknown architecture."
62 #endif // Target architecture.
63 #endif // V8_INTERPRETED_REGEXP
64
65 namespace v8 {
66 namespace internal {
67
68
69 const double DoubleConstant::min_int = kMinInt;
70 const double DoubleConstant::one_half = 0.5;
71 const double DoubleConstant::minus_zero = -0.0;
72 const double DoubleConstant::nan = OS::nan_value();
73 const double DoubleConstant::negative_infinity = -V8_INFINITY;
74 const char* RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
75
76 // -----------------------------------------------------------------------------
77 // Implementation of AssemblerBase
78
AssemblerBase(Isolate * isolate)79 AssemblerBase::AssemblerBase(Isolate* isolate)
80 : isolate_(isolate),
81 jit_cookie_(0) {
82 if (FLAG_mask_constants_with_cookie && isolate != NULL) {
83 jit_cookie_ = V8::RandomPrivate(isolate);
84 }
85 }
86
87
88 // -----------------------------------------------------------------------------
89 // Implementation of Label
90
pos() const91 int Label::pos() const {
92 if (pos_ < 0) return -pos_ - 1;
93 if (pos_ > 0) return pos_ - 1;
94 UNREACHABLE();
95 return 0;
96 }
97
98
99 // -----------------------------------------------------------------------------
100 // Implementation of RelocInfoWriter and RelocIterator
101 //
102 // Encoding
103 //
104 // The most common modes are given single-byte encodings. Also, it is
105 // easy to identify the type of reloc info and skip unwanted modes in
106 // an iteration.
107 //
108 // The encoding relies on the fact that there are less than 14
109 // different relocation modes.
110 //
111 // embedded_object: [6 bits pc delta] 00
112 //
113 // code_taget: [6 bits pc delta] 01
114 //
115 // position: [6 bits pc delta] 10,
116 // [7 bits signed data delta] 0
117 //
118 // statement_position: [6 bits pc delta] 10,
119 // [7 bits signed data delta] 1
120 //
121 // any nondata mode: 00 [4 bits rmode] 11, // rmode: 0..13 only
122 // 00 [6 bits pc delta]
123 //
124 // pc-jump: 00 1111 11,
125 // 00 [6 bits pc delta]
126 //
127 // pc-jump: 01 1111 11,
128 // (variable length) 7 - 26 bit pc delta, written in chunks of 7
129 // bits, the lowest 7 bits written first.
130 //
131 // data-jump + pos: 00 1110 11,
132 // signed intptr_t, lowest byte written first
133 //
134 // data-jump + st.pos: 01 1110 11,
135 // signed intptr_t, lowest byte written first
136 //
137 // data-jump + comm.: 10 1110 11,
138 // signed intptr_t, lowest byte written first
139 //
140 const int kMaxRelocModes = 14;
141
142 const int kTagBits = 2;
143 const int kTagMask = (1 << kTagBits) - 1;
144 const int kExtraTagBits = 4;
145 const int kPositionTypeTagBits = 1;
146 const int kSmallDataBits = kBitsPerByte - kPositionTypeTagBits;
147
148 const int kEmbeddedObjectTag = 0;
149 const int kCodeTargetTag = 1;
150 const int kPositionTag = 2;
151 const int kDefaultTag = 3;
152
153 const int kPCJumpTag = (1 << kExtraTagBits) - 1;
154
155 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
156 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
157 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
158
159 const int kVariableLengthPCJumpTopTag = 1;
160 const int kChunkBits = 7;
161 const int kChunkMask = (1 << kChunkBits) - 1;
162 const int kLastChunkTagBits = 1;
163 const int kLastChunkTagMask = 1;
164 const int kLastChunkTag = 1;
165
166
167 const int kDataJumpTag = kPCJumpTag - 1;
168
169 const int kNonstatementPositionTag = 0;
170 const int kStatementPositionTag = 1;
171 const int kCommentTag = 2;
172
173
WriteVariableLengthPCJump(uint32_t pc_delta)174 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
175 // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
176 // Otherwise write a variable length PC jump for the bits that do
177 // not fit in the kSmallPCDeltaBits bits.
178 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
179 WriteExtraTag(kPCJumpTag, kVariableLengthPCJumpTopTag);
180 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
181 ASSERT(pc_jump > 0);
182 // Write kChunkBits size chunks of the pc_jump.
183 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
184 byte b = pc_jump & kChunkMask;
185 *--pos_ = b << kLastChunkTagBits;
186 }
187 // Tag the last chunk so it can be identified.
188 *pos_ = *pos_ | kLastChunkTag;
189 // Return the remaining kSmallPCDeltaBits of the pc_delta.
190 return pc_delta & kSmallPCDeltaMask;
191 }
192
193
WriteTaggedPC(uint32_t pc_delta,int tag)194 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
195 // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
196 pc_delta = WriteVariableLengthPCJump(pc_delta);
197 *--pos_ = pc_delta << kTagBits | tag;
198 }
199
200
WriteTaggedData(intptr_t data_delta,int tag)201 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
202 *--pos_ = static_cast<byte>(data_delta << kPositionTypeTagBits | tag);
203 }
204
205
WriteExtraTag(int extra_tag,int top_tag)206 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
207 *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
208 extra_tag << kTagBits |
209 kDefaultTag);
210 }
211
212
WriteExtraTaggedPC(uint32_t pc_delta,int extra_tag)213 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
214 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
215 pc_delta = WriteVariableLengthPCJump(pc_delta);
216 WriteExtraTag(extra_tag, 0);
217 *--pos_ = pc_delta;
218 }
219
220
WriteExtraTaggedData(intptr_t data_delta,int top_tag)221 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
222 WriteExtraTag(kDataJumpTag, top_tag);
223 for (int i = 0; i < kIntptrSize; i++) {
224 *--pos_ = static_cast<byte>(data_delta);
225 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
226 data_delta = data_delta >> kBitsPerByte;
227 }
228 }
229
230
Write(const RelocInfo * rinfo)231 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
232 #ifdef DEBUG
233 byte* begin_pos = pos_;
234 #endif
235 ASSERT(rinfo->pc() - last_pc_ >= 0);
236 ASSERT(RelocInfo::NUMBER_OF_MODES <= kMaxRelocModes);
237 // Use unsigned delta-encoding for pc.
238 uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
239 RelocInfo::Mode rmode = rinfo->rmode();
240
241 // The two most common modes are given small tags, and usually fit in a byte.
242 if (rmode == RelocInfo::EMBEDDED_OBJECT) {
243 WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
244 } else if (rmode == RelocInfo::CODE_TARGET) {
245 WriteTaggedPC(pc_delta, kCodeTargetTag);
246 ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
247 } else if (RelocInfo::IsPosition(rmode)) {
248 // Use signed delta-encoding for data.
249 intptr_t data_delta = rinfo->data() - last_data_;
250 int pos_type_tag = rmode == RelocInfo::POSITION ? kNonstatementPositionTag
251 : kStatementPositionTag;
252 // Check if data is small enough to fit in a tagged byte.
253 // We cannot use is_intn because data_delta is not an int32_t.
254 if (data_delta >= -(1 << (kSmallDataBits-1)) &&
255 data_delta < 1 << (kSmallDataBits-1)) {
256 WriteTaggedPC(pc_delta, kPositionTag);
257 WriteTaggedData(data_delta, pos_type_tag);
258 last_data_ = rinfo->data();
259 } else {
260 // Otherwise, use costly encoding.
261 WriteExtraTaggedPC(pc_delta, kPCJumpTag);
262 WriteExtraTaggedData(data_delta, pos_type_tag);
263 last_data_ = rinfo->data();
264 }
265 } else if (RelocInfo::IsComment(rmode)) {
266 // Comments are normally not generated, so we use the costly encoding.
267 WriteExtraTaggedPC(pc_delta, kPCJumpTag);
268 WriteExtraTaggedData(rinfo->data() - last_data_, kCommentTag);
269 last_data_ = rinfo->data();
270 ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize);
271 } else {
272 // For all other modes we simply use the mode as the extra tag.
273 // None of these modes need a data component.
274 ASSERT(rmode < kPCJumpTag && rmode < kDataJumpTag);
275 WriteExtraTaggedPC(pc_delta, rmode);
276 }
277 last_pc_ = rinfo->pc();
278 #ifdef DEBUG
279 ASSERT(begin_pos - pos_ <= kMaxSize);
280 #endif
281 }
282
283
AdvanceGetTag()284 inline int RelocIterator::AdvanceGetTag() {
285 return *--pos_ & kTagMask;
286 }
287
288
GetExtraTag()289 inline int RelocIterator::GetExtraTag() {
290 return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
291 }
292
293
GetTopTag()294 inline int RelocIterator::GetTopTag() {
295 return *pos_ >> (kTagBits + kExtraTagBits);
296 }
297
298
ReadTaggedPC()299 inline void RelocIterator::ReadTaggedPC() {
300 rinfo_.pc_ += *pos_ >> kTagBits;
301 }
302
303
AdvanceReadPC()304 inline void RelocIterator::AdvanceReadPC() {
305 rinfo_.pc_ += *--pos_;
306 }
307
308
AdvanceReadData()309 void RelocIterator::AdvanceReadData() {
310 intptr_t x = 0;
311 for (int i = 0; i < kIntptrSize; i++) {
312 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
313 }
314 rinfo_.data_ += x;
315 }
316
317
AdvanceReadVariableLengthPCJump()318 void RelocIterator::AdvanceReadVariableLengthPCJump() {
319 // Read the 32-kSmallPCDeltaBits most significant bits of the
320 // pc jump in kChunkBits bit chunks and shift them into place.
321 // Stop when the last chunk is encountered.
322 uint32_t pc_jump = 0;
323 for (int i = 0; i < kIntSize; i++) {
324 byte pc_jump_part = *--pos_;
325 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
326 if ((pc_jump_part & kLastChunkTagMask) == 1) break;
327 }
328 // The least significant kSmallPCDeltaBits bits will be added
329 // later.
330 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
331 }
332
333
GetPositionTypeTag()334 inline int RelocIterator::GetPositionTypeTag() {
335 return *pos_ & ((1 << kPositionTypeTagBits) - 1);
336 }
337
338
ReadTaggedData()339 inline void RelocIterator::ReadTaggedData() {
340 int8_t signed_b = *pos_;
341 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
342 rinfo_.data_ += signed_b >> kPositionTypeTagBits;
343 }
344
345
DebugInfoModeFromTag(int tag)346 inline RelocInfo::Mode RelocIterator::DebugInfoModeFromTag(int tag) {
347 if (tag == kStatementPositionTag) {
348 return RelocInfo::STATEMENT_POSITION;
349 } else if (tag == kNonstatementPositionTag) {
350 return RelocInfo::POSITION;
351 } else {
352 ASSERT(tag == kCommentTag);
353 return RelocInfo::COMMENT;
354 }
355 }
356
357
next()358 void RelocIterator::next() {
359 ASSERT(!done());
360 // Basically, do the opposite of RelocInfoWriter::Write.
361 // Reading of data is as far as possible avoided for unwanted modes,
362 // but we must always update the pc.
363 //
364 // We exit this loop by returning when we find a mode we want.
365 while (pos_ > end_) {
366 int tag = AdvanceGetTag();
367 if (tag == kEmbeddedObjectTag) {
368 ReadTaggedPC();
369 if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
370 } else if (tag == kCodeTargetTag) {
371 ReadTaggedPC();
372 if (SetMode(RelocInfo::CODE_TARGET)) return;
373 } else if (tag == kPositionTag) {
374 ReadTaggedPC();
375 Advance();
376 // Check if we want source positions.
377 if (mode_mask_ & RelocInfo::kPositionMask) {
378 ReadTaggedData();
379 if (SetMode(DebugInfoModeFromTag(GetPositionTypeTag()))) return;
380 }
381 } else {
382 ASSERT(tag == kDefaultTag);
383 int extra_tag = GetExtraTag();
384 if (extra_tag == kPCJumpTag) {
385 int top_tag = GetTopTag();
386 if (top_tag == kVariableLengthPCJumpTopTag) {
387 AdvanceReadVariableLengthPCJump();
388 } else {
389 AdvanceReadPC();
390 }
391 } else if (extra_tag == kDataJumpTag) {
392 // Check if we want debug modes (the only ones with data).
393 if (mode_mask_ & RelocInfo::kDebugMask) {
394 int top_tag = GetTopTag();
395 AdvanceReadData();
396 if (SetMode(DebugInfoModeFromTag(top_tag))) return;
397 } else {
398 // Otherwise, just skip over the data.
399 Advance(kIntptrSize);
400 }
401 } else {
402 AdvanceReadPC();
403 if (SetMode(static_cast<RelocInfo::Mode>(extra_tag))) return;
404 }
405 }
406 }
407 done_ = true;
408 }
409
410
RelocIterator(Code * code,int mode_mask)411 RelocIterator::RelocIterator(Code* code, int mode_mask) {
412 rinfo_.pc_ = code->instruction_start();
413 rinfo_.data_ = 0;
414 // Relocation info is read backwards.
415 pos_ = code->relocation_start() + code->relocation_size();
416 end_ = code->relocation_start();
417 done_ = false;
418 mode_mask_ = mode_mask;
419 if (mode_mask_ == 0) pos_ = end_;
420 next();
421 }
422
423
RelocIterator(const CodeDesc & desc,int mode_mask)424 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
425 rinfo_.pc_ = desc.buffer;
426 rinfo_.data_ = 0;
427 // Relocation info is read backwards.
428 pos_ = desc.buffer + desc.buffer_size;
429 end_ = pos_ - desc.reloc_size;
430 done_ = false;
431 mode_mask_ = mode_mask;
432 if (mode_mask_ == 0) pos_ = end_;
433 next();
434 }
435
436
437 // -----------------------------------------------------------------------------
438 // Implementation of RelocInfo
439
440
441 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)442 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
443 switch (rmode) {
444 case RelocInfo::NONE:
445 return "no reloc";
446 case RelocInfo::EMBEDDED_OBJECT:
447 return "embedded object";
448 case RelocInfo::CONSTRUCT_CALL:
449 return "code target (js construct call)";
450 case RelocInfo::CODE_TARGET_CONTEXT:
451 return "code target (context)";
452 case RelocInfo::DEBUG_BREAK:
453 #ifndef ENABLE_DEBUGGER_SUPPORT
454 UNREACHABLE();
455 #endif
456 return "debug break";
457 case RelocInfo::CODE_TARGET:
458 return "code target";
459 case RelocInfo::GLOBAL_PROPERTY_CELL:
460 return "global property cell";
461 case RelocInfo::RUNTIME_ENTRY:
462 return "runtime entry";
463 case RelocInfo::JS_RETURN:
464 return "js return";
465 case RelocInfo::COMMENT:
466 return "comment";
467 case RelocInfo::POSITION:
468 return "position";
469 case RelocInfo::STATEMENT_POSITION:
470 return "statement position";
471 case RelocInfo::EXTERNAL_REFERENCE:
472 return "external reference";
473 case RelocInfo::INTERNAL_REFERENCE:
474 return "internal reference";
475 case RelocInfo::DEBUG_BREAK_SLOT:
476 #ifndef ENABLE_DEBUGGER_SUPPORT
477 UNREACHABLE();
478 #endif
479 return "debug break slot";
480 case RelocInfo::NUMBER_OF_MODES:
481 UNREACHABLE();
482 return "number_of_modes";
483 }
484 return "unknown relocation type";
485 }
486
487
Print(FILE * out)488 void RelocInfo::Print(FILE* out) {
489 PrintF(out, "%p %s", pc_, RelocModeName(rmode_));
490 if (IsComment(rmode_)) {
491 PrintF(out, " (%s)", reinterpret_cast<char*>(data_));
492 } else if (rmode_ == EMBEDDED_OBJECT) {
493 PrintF(out, " (");
494 target_object()->ShortPrint(out);
495 PrintF(out, ")");
496 } else if (rmode_ == EXTERNAL_REFERENCE) {
497 ExternalReferenceEncoder ref_encoder;
498 PrintF(out, " (%s) (%p)",
499 ref_encoder.NameOfAddress(*target_reference_address()),
500 *target_reference_address());
501 } else if (IsCodeTarget(rmode_)) {
502 Code* code = Code::GetCodeFromTargetAddress(target_address());
503 PrintF(out, " (%s) (%p)", Code::Kind2String(code->kind()),
504 target_address());
505 } else if (IsPosition(rmode_)) {
506 PrintF(out, " (%" V8_PTR_PREFIX "d)", data());
507 } else if (rmode_ == RelocInfo::RUNTIME_ENTRY &&
508 Isolate::Current()->deoptimizer_data() != NULL) {
509 // Depotimization bailouts are stored as runtime entries.
510 int id = Deoptimizer::GetDeoptimizationId(
511 target_address(), Deoptimizer::EAGER);
512 if (id != Deoptimizer::kNotDeoptimizationEntry) {
513 PrintF(out, " (deoptimization bailout %d)", id);
514 }
515 }
516
517 PrintF(out, "\n");
518 }
519 #endif // ENABLE_DISASSEMBLER
520
521
522 #ifdef DEBUG
Verify()523 void RelocInfo::Verify() {
524 switch (rmode_) {
525 case EMBEDDED_OBJECT:
526 Object::VerifyPointer(target_object());
527 break;
528 case GLOBAL_PROPERTY_CELL:
529 Object::VerifyPointer(target_cell());
530 break;
531 case DEBUG_BREAK:
532 #ifndef ENABLE_DEBUGGER_SUPPORT
533 UNREACHABLE();
534 break;
535 #endif
536 case CONSTRUCT_CALL:
537 case CODE_TARGET_CONTEXT:
538 case CODE_TARGET: {
539 // convert inline target address to code object
540 Address addr = target_address();
541 ASSERT(addr != NULL);
542 // Check that we can find the right code object.
543 Code* code = Code::GetCodeFromTargetAddress(addr);
544 Object* found = HEAP->FindCodeObject(addr);
545 ASSERT(found->IsCode());
546 ASSERT(code->address() == HeapObject::cast(found)->address());
547 break;
548 }
549 case RUNTIME_ENTRY:
550 case JS_RETURN:
551 case COMMENT:
552 case POSITION:
553 case STATEMENT_POSITION:
554 case EXTERNAL_REFERENCE:
555 case INTERNAL_REFERENCE:
556 case DEBUG_BREAK_SLOT:
557 case NONE:
558 break;
559 case NUMBER_OF_MODES:
560 UNREACHABLE();
561 break;
562 }
563 }
564 #endif // DEBUG
565
566
567 // -----------------------------------------------------------------------------
568 // Implementation of ExternalReference
569
ExternalReference(Builtins::CFunctionId id,Isolate * isolate)570 ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate)
571 : address_(Redirect(isolate, Builtins::c_function_address(id))) {}
572
573
ExternalReference(ApiFunction * fun,Type type=ExternalReference::BUILTIN_CALL,Isolate * isolate=NULL)574 ExternalReference::ExternalReference(
575 ApiFunction* fun,
576 Type type = ExternalReference::BUILTIN_CALL,
577 Isolate* isolate = NULL)
578 : address_(Redirect(isolate, fun->address(), type)) {}
579
580
ExternalReference(Builtins::Name name,Isolate * isolate)581 ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
582 : address_(isolate->builtins()->builtin_address(name)) {}
583
584
ExternalReference(Runtime::FunctionId id,Isolate * isolate)585 ExternalReference::ExternalReference(Runtime::FunctionId id,
586 Isolate* isolate)
587 : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {}
588
589
ExternalReference(const Runtime::Function * f,Isolate * isolate)590 ExternalReference::ExternalReference(const Runtime::Function* f,
591 Isolate* isolate)
592 : address_(Redirect(isolate, f->entry)) {}
593
594
isolate_address()595 ExternalReference ExternalReference::isolate_address() {
596 return ExternalReference(Isolate::Current());
597 }
598
599
ExternalReference(const IC_Utility & ic_utility,Isolate * isolate)600 ExternalReference::ExternalReference(const IC_Utility& ic_utility,
601 Isolate* isolate)
602 : address_(Redirect(isolate, ic_utility.address())) {}
603
604 #ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference(const Debug_Address & debug_address,Isolate * isolate)605 ExternalReference::ExternalReference(const Debug_Address& debug_address,
606 Isolate* isolate)
607 : address_(debug_address.address(isolate)) {}
608 #endif
609
ExternalReference(StatsCounter * counter)610 ExternalReference::ExternalReference(StatsCounter* counter)
611 : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
612
613
ExternalReference(Isolate::AddressId id,Isolate * isolate)614 ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
615 : address_(isolate->get_address_from_id(id)) {}
616
617
ExternalReference(const SCTableReference & table_ref)618 ExternalReference::ExternalReference(const SCTableReference& table_ref)
619 : address_(table_ref.address()) {}
620
621
perform_gc_function(Isolate * isolate)622 ExternalReference ExternalReference::perform_gc_function(Isolate* isolate) {
623 return ExternalReference(Redirect(isolate,
624 FUNCTION_ADDR(Runtime::PerformGC)));
625 }
626
627
fill_heap_number_with_random_function(Isolate * isolate)628 ExternalReference ExternalReference::fill_heap_number_with_random_function(
629 Isolate* isolate) {
630 return ExternalReference(Redirect(
631 isolate,
632 FUNCTION_ADDR(V8::FillHeapNumberWithRandom)));
633 }
634
635
delete_handle_scope_extensions(Isolate * isolate)636 ExternalReference ExternalReference::delete_handle_scope_extensions(
637 Isolate* isolate) {
638 return ExternalReference(Redirect(
639 isolate,
640 FUNCTION_ADDR(HandleScope::DeleteExtensions)));
641 }
642
643
random_uint32_function(Isolate * isolate)644 ExternalReference ExternalReference::random_uint32_function(
645 Isolate* isolate) {
646 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(V8::Random)));
647 }
648
649
transcendental_cache_array_address(Isolate * isolate)650 ExternalReference ExternalReference::transcendental_cache_array_address(
651 Isolate* isolate) {
652 return ExternalReference(
653 isolate->transcendental_cache()->cache_array_address());
654 }
655
656
new_deoptimizer_function(Isolate * isolate)657 ExternalReference ExternalReference::new_deoptimizer_function(
658 Isolate* isolate) {
659 return ExternalReference(
660 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
661 }
662
663
compute_output_frames_function(Isolate * isolate)664 ExternalReference ExternalReference::compute_output_frames_function(
665 Isolate* isolate) {
666 return ExternalReference(
667 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
668 }
669
670
global_contexts_list(Isolate * isolate)671 ExternalReference ExternalReference::global_contexts_list(Isolate* isolate) {
672 return ExternalReference(isolate->heap()->global_contexts_list_address());
673 }
674
675
keyed_lookup_cache_keys(Isolate * isolate)676 ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) {
677 return ExternalReference(isolate->keyed_lookup_cache()->keys_address());
678 }
679
680
keyed_lookup_cache_field_offsets(Isolate * isolate)681 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets(
682 Isolate* isolate) {
683 return ExternalReference(
684 isolate->keyed_lookup_cache()->field_offsets_address());
685 }
686
687
the_hole_value_location(Isolate * isolate)688 ExternalReference ExternalReference::the_hole_value_location(Isolate* isolate) {
689 return ExternalReference(isolate->factory()->the_hole_value().location());
690 }
691
692
arguments_marker_location(Isolate * isolate)693 ExternalReference ExternalReference::arguments_marker_location(
694 Isolate* isolate) {
695 return ExternalReference(isolate->factory()->arguments_marker().location());
696 }
697
698
roots_address(Isolate * isolate)699 ExternalReference ExternalReference::roots_address(Isolate* isolate) {
700 return ExternalReference(isolate->heap()->roots_address());
701 }
702
703
address_of_stack_limit(Isolate * isolate)704 ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
705 return ExternalReference(isolate->stack_guard()->address_of_jslimit());
706 }
707
708
address_of_real_stack_limit(Isolate * isolate)709 ExternalReference ExternalReference::address_of_real_stack_limit(
710 Isolate* isolate) {
711 return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
712 }
713
714
address_of_regexp_stack_limit(Isolate * isolate)715 ExternalReference ExternalReference::address_of_regexp_stack_limit(
716 Isolate* isolate) {
717 return ExternalReference(isolate->regexp_stack()->limit_address());
718 }
719
720
new_space_start(Isolate * isolate)721 ExternalReference ExternalReference::new_space_start(Isolate* isolate) {
722 return ExternalReference(isolate->heap()->NewSpaceStart());
723 }
724
725
new_space_mask(Isolate * isolate)726 ExternalReference ExternalReference::new_space_mask(Isolate* isolate) {
727 Address mask = reinterpret_cast<Address>(isolate->heap()->NewSpaceMask());
728 return ExternalReference(mask);
729 }
730
731
new_space_allocation_top_address(Isolate * isolate)732 ExternalReference ExternalReference::new_space_allocation_top_address(
733 Isolate* isolate) {
734 return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
735 }
736
737
heap_always_allocate_scope_depth(Isolate * isolate)738 ExternalReference ExternalReference::heap_always_allocate_scope_depth(
739 Isolate* isolate) {
740 Heap* heap = isolate->heap();
741 return ExternalReference(heap->always_allocate_scope_depth_address());
742 }
743
744
new_space_allocation_limit_address(Isolate * isolate)745 ExternalReference ExternalReference::new_space_allocation_limit_address(
746 Isolate* isolate) {
747 return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
748 }
749
750
handle_scope_level_address()751 ExternalReference ExternalReference::handle_scope_level_address() {
752 return ExternalReference(HandleScope::current_level_address());
753 }
754
755
handle_scope_next_address()756 ExternalReference ExternalReference::handle_scope_next_address() {
757 return ExternalReference(HandleScope::current_next_address());
758 }
759
760
handle_scope_limit_address()761 ExternalReference ExternalReference::handle_scope_limit_address() {
762 return ExternalReference(HandleScope::current_limit_address());
763 }
764
765
scheduled_exception_address(Isolate * isolate)766 ExternalReference ExternalReference::scheduled_exception_address(
767 Isolate* isolate) {
768 return ExternalReference(isolate->scheduled_exception_address());
769 }
770
771
address_of_min_int()772 ExternalReference ExternalReference::address_of_min_int() {
773 return ExternalReference(reinterpret_cast<void*>(
774 const_cast<double*>(&DoubleConstant::min_int)));
775 }
776
777
address_of_one_half()778 ExternalReference ExternalReference::address_of_one_half() {
779 return ExternalReference(reinterpret_cast<void*>(
780 const_cast<double*>(&DoubleConstant::one_half)));
781 }
782
783
address_of_minus_zero()784 ExternalReference ExternalReference::address_of_minus_zero() {
785 return ExternalReference(reinterpret_cast<void*>(
786 const_cast<double*>(&DoubleConstant::minus_zero)));
787 }
788
789
address_of_negative_infinity()790 ExternalReference ExternalReference::address_of_negative_infinity() {
791 return ExternalReference(reinterpret_cast<void*>(
792 const_cast<double*>(&DoubleConstant::negative_infinity)));
793 }
794
795
address_of_nan()796 ExternalReference ExternalReference::address_of_nan() {
797 return ExternalReference(reinterpret_cast<void*>(
798 const_cast<double*>(&DoubleConstant::nan)));
799 }
800
801
802 #ifndef V8_INTERPRETED_REGEXP
803
re_check_stack_guard_state(Isolate * isolate)804 ExternalReference ExternalReference::re_check_stack_guard_state(
805 Isolate* isolate) {
806 Address function;
807 #ifdef V8_TARGET_ARCH_X64
808 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
809 #elif V8_TARGET_ARCH_IA32
810 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
811 #elif V8_TARGET_ARCH_ARM
812 function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
813 #elif V8_TARGET_ARCH_MIPS
814 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
815 #else
816 UNREACHABLE();
817 #endif
818 return ExternalReference(Redirect(isolate, function));
819 }
820
re_grow_stack(Isolate * isolate)821 ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
822 return ExternalReference(
823 Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
824 }
825
re_case_insensitive_compare_uc16(Isolate * isolate)826 ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
827 Isolate* isolate) {
828 return ExternalReference(Redirect(
829 isolate,
830 FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
831 }
832
re_word_character_map()833 ExternalReference ExternalReference::re_word_character_map() {
834 return ExternalReference(
835 NativeRegExpMacroAssembler::word_character_map_address());
836 }
837
address_of_static_offsets_vector(Isolate * isolate)838 ExternalReference ExternalReference::address_of_static_offsets_vector(
839 Isolate* isolate) {
840 return ExternalReference(
841 OffsetsVector::static_offsets_vector_address(isolate));
842 }
843
address_of_regexp_stack_memory_address(Isolate * isolate)844 ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
845 Isolate* isolate) {
846 return ExternalReference(
847 isolate->regexp_stack()->memory_address());
848 }
849
address_of_regexp_stack_memory_size(Isolate * isolate)850 ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
851 Isolate* isolate) {
852 return ExternalReference(isolate->regexp_stack()->memory_size_address());
853 }
854
855 #endif // V8_INTERPRETED_REGEXP
856
857
add_two_doubles(double x,double y)858 static double add_two_doubles(double x, double y) {
859 return x + y;
860 }
861
862
sub_two_doubles(double x,double y)863 static double sub_two_doubles(double x, double y) {
864 return x - y;
865 }
866
867
mul_two_doubles(double x,double y)868 static double mul_two_doubles(double x, double y) {
869 return x * y;
870 }
871
872
div_two_doubles(double x,double y)873 static double div_two_doubles(double x, double y) {
874 return x / y;
875 }
876
877
mod_two_doubles(double x,double y)878 static double mod_two_doubles(double x, double y) {
879 return modulo(x, y);
880 }
881
882
math_sin_double(double x)883 static double math_sin_double(double x) {
884 return sin(x);
885 }
886
887
math_cos_double(double x)888 static double math_cos_double(double x) {
889 return cos(x);
890 }
891
892
math_log_double(double x)893 static double math_log_double(double x) {
894 return log(x);
895 }
896
897
math_sin_double_function(Isolate * isolate)898 ExternalReference ExternalReference::math_sin_double_function(
899 Isolate* isolate) {
900 return ExternalReference(Redirect(isolate,
901 FUNCTION_ADDR(math_sin_double),
902 FP_RETURN_CALL));
903 }
904
905
math_cos_double_function(Isolate * isolate)906 ExternalReference ExternalReference::math_cos_double_function(
907 Isolate* isolate) {
908 return ExternalReference(Redirect(isolate,
909 FUNCTION_ADDR(math_cos_double),
910 FP_RETURN_CALL));
911 }
912
913
math_log_double_function(Isolate * isolate)914 ExternalReference ExternalReference::math_log_double_function(
915 Isolate* isolate) {
916 return ExternalReference(Redirect(isolate,
917 FUNCTION_ADDR(math_log_double),
918 FP_RETURN_CALL));
919 }
920
921
922 // Helper function to compute x^y, where y is known to be an
923 // integer. Uses binary decomposition to limit the number of
924 // multiplications; see the discussion in "Hacker's Delight" by Henry
925 // S. Warren, Jr., figure 11-6, page 213.
power_double_int(double x,int y)926 double power_double_int(double x, int y) {
927 double m = (y < 0) ? 1 / x : x;
928 unsigned n = (y < 0) ? -y : y;
929 double p = 1;
930 while (n != 0) {
931 if ((n & 1) != 0) p *= m;
932 m *= m;
933 if ((n & 2) != 0) p *= m;
934 m *= m;
935 n >>= 2;
936 }
937 return p;
938 }
939
940
power_double_double(double x,double y)941 double power_double_double(double x, double y) {
942 int y_int = static_cast<int>(y);
943 if (y == y_int) {
944 return power_double_int(x, y_int); // Returns 1.0 for exponent 0.
945 }
946 if (!isinf(x)) {
947 if (y == 0.5) return sqrt(x + 0.0); // -0 must be converted to +0.
948 if (y == -0.5) return 1.0 / sqrt(x + 0.0);
949 }
950 if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) {
951 return OS::nan_value();
952 }
953 return pow(x, y);
954 }
955
956
power_double_double_function(Isolate * isolate)957 ExternalReference ExternalReference::power_double_double_function(
958 Isolate* isolate) {
959 return ExternalReference(Redirect(isolate,
960 FUNCTION_ADDR(power_double_double),
961 FP_RETURN_CALL));
962 }
963
964
power_double_int_function(Isolate * isolate)965 ExternalReference ExternalReference::power_double_int_function(
966 Isolate* isolate) {
967 return ExternalReference(Redirect(isolate,
968 FUNCTION_ADDR(power_double_int),
969 FP_RETURN_CALL));
970 }
971
972
native_compare_doubles(double y,double x)973 static int native_compare_doubles(double y, double x) {
974 if (x == y) return EQUAL;
975 return x < y ? LESS : GREATER;
976 }
977
978
double_fp_operation(Token::Value operation,Isolate * isolate)979 ExternalReference ExternalReference::double_fp_operation(
980 Token::Value operation, Isolate* isolate) {
981 typedef double BinaryFPOperation(double x, double y);
982 BinaryFPOperation* function = NULL;
983 switch (operation) {
984 case Token::ADD:
985 function = &add_two_doubles;
986 break;
987 case Token::SUB:
988 function = &sub_two_doubles;
989 break;
990 case Token::MUL:
991 function = &mul_two_doubles;
992 break;
993 case Token::DIV:
994 function = &div_two_doubles;
995 break;
996 case Token::MOD:
997 function = &mod_two_doubles;
998 break;
999 default:
1000 UNREACHABLE();
1001 }
1002 // Passing true as 2nd parameter indicates that they return an fp value.
1003 return ExternalReference(Redirect(isolate,
1004 FUNCTION_ADDR(function),
1005 FP_RETURN_CALL));
1006 }
1007
1008
compare_doubles(Isolate * isolate)1009 ExternalReference ExternalReference::compare_doubles(Isolate* isolate) {
1010 return ExternalReference(Redirect(isolate,
1011 FUNCTION_ADDR(native_compare_doubles),
1012 BUILTIN_CALL));
1013 }
1014
1015
1016 #ifdef ENABLE_DEBUGGER_SUPPORT
debug_break(Isolate * isolate)1017 ExternalReference ExternalReference::debug_break(Isolate* isolate) {
1018 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break)));
1019 }
1020
1021
debug_step_in_fp_address(Isolate * isolate)1022 ExternalReference ExternalReference::debug_step_in_fp_address(
1023 Isolate* isolate) {
1024 return ExternalReference(isolate->debug()->step_in_fp_addr());
1025 }
1026 #endif
1027
1028
RecordPosition(int pos)1029 void PositionsRecorder::RecordPosition(int pos) {
1030 ASSERT(pos != RelocInfo::kNoPosition);
1031 ASSERT(pos >= 0);
1032 state_.current_position = pos;
1033 #ifdef ENABLE_GDB_JIT_INTERFACE
1034 if (gdbjit_lineinfo_ != NULL) {
1035 gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false);
1036 }
1037 #endif
1038 }
1039
1040
RecordStatementPosition(int pos)1041 void PositionsRecorder::RecordStatementPosition(int pos) {
1042 ASSERT(pos != RelocInfo::kNoPosition);
1043 ASSERT(pos >= 0);
1044 state_.current_statement_position = pos;
1045 #ifdef ENABLE_GDB_JIT_INTERFACE
1046 if (gdbjit_lineinfo_ != NULL) {
1047 gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true);
1048 }
1049 #endif
1050 }
1051
1052
WriteRecordedPositions()1053 bool PositionsRecorder::WriteRecordedPositions() {
1054 bool written = false;
1055
1056 // Write the statement position if it is different from what was written last
1057 // time.
1058 if (state_.current_statement_position != state_.written_statement_position) {
1059 EnsureSpace ensure_space(assembler_);
1060 assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION,
1061 state_.current_statement_position);
1062 state_.written_statement_position = state_.current_statement_position;
1063 written = true;
1064 }
1065
1066 // Write the position if it is different from what was written last time and
1067 // also different from the written statement position.
1068 if (state_.current_position != state_.written_position &&
1069 state_.current_position != state_.written_statement_position) {
1070 EnsureSpace ensure_space(assembler_);
1071 assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position);
1072 state_.written_position = state_.current_position;
1073 written = true;
1074 }
1075
1076 // Return whether something was written.
1077 return written;
1078 }
1079
1080 } } // namespace v8::internal
1081