• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5  * use this file except in compliance with the License. You may obtain a copy of
6  * the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13  * License for the specific language governing permissions and limitations under
14  * the License.
15  */
16 
17 package com.android.inputmethod.latin;
18 
19 import java.util.ArrayList;
20 import java.util.Arrays;
21 import java.util.Collections;
22 import java.util.Iterator;
23 import java.util.LinkedList;
24 import java.util.List;
25 
26 /**
27  * A dictionary that can fusion heads and tails of words for more compression.
28  */
29 public class FusionDictionary implements Iterable<Word> {
30 
31     /**
32      * A node of the dictionary, containing several CharGroups.
33      *
34      * A node is but an ordered array of CharGroups, which essentially contain all the
35      * real information.
36      * This class also contains fields to cache size and address, to help with binary
37      * generation.
38      */
39     public static class Node {
40         ArrayList<CharGroup> mData;
41         // To help with binary generation
42         int mCachedSize;
43         int mCachedAddress;
Node()44         public Node() {
45             mData = new ArrayList<CharGroup>();
46             mCachedSize = Integer.MIN_VALUE;
47             mCachedAddress = Integer.MIN_VALUE;
48         }
Node(ArrayList<CharGroup> data)49         public Node(ArrayList<CharGroup> data) {
50             mData = data;
51             mCachedSize = Integer.MIN_VALUE;
52             mCachedAddress = Integer.MIN_VALUE;
53         }
54     }
55 
56     /**
57      * A string with a frequency.
58      *
59      * This represents an "attribute", that is either a bigram or a shortcut.
60      */
61     public static class WeightedString {
62         final String mWord;
63         final int mFrequency;
WeightedString(String word, int frequency)64         public WeightedString(String word, int frequency) {
65             mWord = word;
66             mFrequency = frequency;
67         }
68     }
69 
70     /**
71      * A group of characters, with a frequency, shortcuts, bigrams, and children.
72      *
73      * This is the central class of the in-memory representation. A CharGroup is what can
74      * be seen as a traditional "trie node", except it can hold several characters at the
75      * same time. A CharGroup essentially represents one or several characters in the middle
76      * of the trie trie; as such, it can be a terminal, and it can have children.
77      * In this in-memory representation, whether the CharGroup is a terminal or not is represented
78      * in the frequency, where NOT_A_TERMINAL (= -1) means this is not a terminal and any other
79      * value is the frequency of this terminal. A terminal may have non-null shortcuts and/or
80      * bigrams, but a non-terminal may not. Moreover, children, if present, are null.
81      */
82     public static class CharGroup {
83         public static final int NOT_A_TERMINAL = -1;
84         final int mChars[];
85         final ArrayList<WeightedString> mBigrams;
86         final int mFrequency; // NOT_A_TERMINAL == mFrequency indicates this is not a terminal.
87         Node mChildren;
88         // The two following members to help with binary generation
89         int mCachedSize;
90         int mCachedAddress;
91 
CharGroup(final int[] chars, final ArrayList<WeightedString> bigrams, final int frequency)92         public CharGroup(final int[] chars,
93                 final ArrayList<WeightedString> bigrams, final int frequency) {
94             mChars = chars;
95             mFrequency = frequency;
96             mBigrams = bigrams;
97             mChildren = null;
98         }
99 
CharGroup(final int[] chars, final ArrayList<WeightedString> bigrams, final int frequency, final Node children)100         public CharGroup(final int[] chars,
101                 final ArrayList<WeightedString> bigrams, final int frequency, final Node children) {
102             mChars = chars;
103             mFrequency = frequency;
104             mBigrams = bigrams;
105             mChildren = children;
106         }
107 
addChild(CharGroup n)108         public void addChild(CharGroup n) {
109             if (null == mChildren) {
110                 mChildren = new Node();
111             }
112             mChildren.mData.add(n);
113         }
114 
isTerminal()115         public boolean isTerminal() {
116             return NOT_A_TERMINAL != mFrequency;
117         }
118 
hasSeveralChars()119         public boolean hasSeveralChars() {
120             assert(mChars.length > 0);
121             return 1 < mChars.length;
122         }
123     }
124 
125     /**
126      * Options global to the dictionary.
127      *
128      * There are no options at the moment, so this class is empty.
129      */
130     public static class DictionaryOptions {
131     }
132 
133 
134     public final DictionaryOptions mOptions;
135     public final Node mRoot;
136 
FusionDictionary()137     public FusionDictionary() {
138         mOptions = new DictionaryOptions();
139         mRoot = new Node();
140     }
141 
FusionDictionary(final Node root, final DictionaryOptions options)142     public FusionDictionary(final Node root, final DictionaryOptions options) {
143         mRoot = root;
144         mOptions = options;
145     }
146 
147     /**
148      * Helper method to convert a String to an int array.
149      */
getCodePoints(String word)150     static private int[] getCodePoints(String word) {
151         final int wordLength = word.length();
152         int[] array = new int[word.codePointCount(0, wordLength)];
153         for (int i = 0; i < wordLength; ++i) {
154             array[i] = word.codePointAt(i);
155         }
156         return array;
157     }
158 
159     /**
160      * Helper method to add a word as a string.
161      *
162      * This method adds a word to the dictionary with the given frequency. Optional
163      * lists of bigrams and shortcuts can be passed here. For each word inside,
164      * they will be added to the dictionary as necessary.
165      *
166      * @param word the word to add.
167      * @param frequency the frequency of the word, in the range [0..255].
168      * @param bigrams a list of bigrams, or null.
169      */
add(String word, int frequency, ArrayList<WeightedString> bigrams)170     public void add(String word, int frequency, ArrayList<WeightedString> bigrams) {
171         if (null != bigrams) {
172             for (WeightedString bigram : bigrams) {
173                 final CharGroup t = findWordInTree(mRoot, bigram.mWord);
174                 if (null == t) {
175                     add(getCodePoints(bigram.mWord), 0, null);
176                 }
177             }
178         }
179         add(getCodePoints(word), frequency, bigrams);
180     }
181 
182     /**
183      * Sanity check for a node.
184      *
185      * This method checks that all CharGroups in a node are ordered as expected.
186      * If they are, nothing happens. If they aren't, an exception is thrown.
187      */
checkStack(Node node)188     private void checkStack(Node node) {
189         ArrayList<CharGroup> stack = node.mData;
190         int lastValue = -1;
191         for (int i = 0; i < stack.size(); ++i) {
192             int currentValue = stack.get(i).mChars[0];
193             if (currentValue <= lastValue)
194                 throw new RuntimeException("Invalid stack");
195             else
196                 lastValue = currentValue;
197         }
198     }
199 
200     /**
201      * Add a word to this dictionary.
202      *
203      * The bigrams, if any, have to be in the dictionary already. If they aren't,
204      * an exception is thrown.
205      *
206      * @param word the word, as an int array.
207      * @param frequency the frequency of the word, in the range [0..255].
208      * @param bigrams an optional list of bigrams for this word (null if none).
209      */
add(int[] word, int frequency, ArrayList<WeightedString> bigrams)210     private void add(int[] word, int frequency, ArrayList<WeightedString> bigrams) {
211         assert(frequency >= 0 && frequency <= 255);
212         Node currentNode = mRoot;
213         int charIndex = 0;
214 
215         CharGroup currentGroup = null;
216         int differentCharIndex = 0; // Set by the loop to the index of the char that differs
217         int nodeIndex = findIndexOfChar(mRoot, word[charIndex]);
218         while (CHARACTER_NOT_FOUND != nodeIndex) {
219             currentGroup = currentNode.mData.get(nodeIndex);
220             differentCharIndex = compareArrays(currentGroup.mChars, word, charIndex);
221             if (ARRAYS_ARE_EQUAL != differentCharIndex
222                     && differentCharIndex < currentGroup.mChars.length) break;
223             if (null == currentGroup.mChildren) break;
224             charIndex += currentGroup.mChars.length;
225             if (charIndex >= word.length) break;
226             currentNode = currentGroup.mChildren;
227             nodeIndex = findIndexOfChar(currentNode, word[charIndex]);
228         }
229 
230         if (-1 == nodeIndex) {
231             // No node at this point to accept the word. Create one.
232             final int insertionIndex = findInsertionIndex(currentNode, word[charIndex]);
233             final CharGroup newGroup = new CharGroup(
234                     Arrays.copyOfRange(word, charIndex, word.length), bigrams, frequency);
235             currentNode.mData.add(insertionIndex, newGroup);
236             checkStack(currentNode);
237         } else {
238             // There is a word with a common prefix.
239             if (differentCharIndex == currentGroup.mChars.length) {
240                 if (charIndex + differentCharIndex >= word.length) {
241                     // The new word is a prefix of an existing word, but the node on which it
242                     // should end already exists as is.
243                     if (currentGroup.mFrequency > 0) {
244                         throw new RuntimeException("Such a word already exists in the dictionary : "
245                                 + new String(word, 0, word.length));
246                     } else {
247                         final CharGroup newNode = new CharGroup(currentGroup.mChars,
248                                 bigrams, frequency, currentGroup.mChildren);
249                         currentNode.mData.set(nodeIndex, newNode);
250                         checkStack(currentNode);
251                     }
252                 } else {
253                     // The new word matches the full old word and extends past it.
254                     // We only have to create a new node and add it to the end of this.
255                     final CharGroup newNode = new CharGroup(
256                             Arrays.copyOfRange(word, charIndex + differentCharIndex, word.length),
257                                     bigrams, frequency);
258                     currentGroup.mChildren = new Node();
259                     currentGroup.mChildren.mData.add(newNode);
260                 }
261             } else {
262                 if (0 == differentCharIndex) {
263                     // Exact same word. Check the frequency is 0 or -1, and update.
264                     if (0 != frequency) {
265                         if (0 < currentGroup.mFrequency) {
266                             throw new RuntimeException("This word already exists with frequency "
267                                     + currentGroup.mFrequency + " : "
268                                     + new String(word, 0, word.length));
269                         }
270                         final CharGroup newGroup = new CharGroup(word,
271                                 currentGroup.mBigrams, frequency, currentGroup.mChildren);
272                         currentNode.mData.set(nodeIndex, newGroup);
273                     }
274                 } else {
275                     // Partial prefix match only. We have to replace the current node with a node
276                     // containing the current prefix and create two new ones for the tails.
277                     Node newChildren = new Node();
278                     final CharGroup newOldWord = new CharGroup(
279                             Arrays.copyOfRange(currentGroup.mChars, differentCharIndex,
280                                     currentGroup.mChars.length),
281                             currentGroup.mBigrams, currentGroup.mFrequency, currentGroup.mChildren);
282                     newChildren.mData.add(newOldWord);
283 
284                     final CharGroup newParent;
285                     if (charIndex + differentCharIndex >= word.length) {
286                         newParent = new CharGroup(
287                                 Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
288                                         bigrams, frequency, newChildren);
289                     } else {
290                         newParent = new CharGroup(
291                                 Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
292                                         null, -1, newChildren);
293                         final CharGroup newWord = new CharGroup(
294                                 Arrays.copyOfRange(word, charIndex + differentCharIndex,
295                                         word.length), bigrams, frequency);
296                         final int addIndex = word[charIndex + differentCharIndex]
297                                 > currentGroup.mChars[differentCharIndex] ? 1 : 0;
298                         newChildren.mData.add(addIndex, newWord);
299                     }
300                     currentNode.mData.set(nodeIndex, newParent);
301                 }
302                 checkStack(currentNode);
303             }
304         }
305     }
306 
307     /**
308      * Custom comparison of two int arrays taken to contain character codes.
309      *
310      * This method compares the two arrays passed as an argument in a lexicographic way,
311      * with an offset in the dst string.
312      * This method does NOT test for the first character. It is taken to be equal.
313      * I repeat: this method starts the comparison at 1 <> dstOffset + 1.
314      * The index where the strings differ is returned. ARRAYS_ARE_EQUAL = 0 is returned if the
315      * strings are equal. This works BECAUSE we don't look at the first character.
316      *
317      * @param src the left-hand side string of the comparison.
318      * @param dst the right-hand side string of the comparison.
319      * @param dstOffset the offset in the right-hand side string.
320      * @return the index at which the strings differ, or ARRAYS_ARE_EQUAL = 0 if they don't.
321      */
322     private static int ARRAYS_ARE_EQUAL = 0;
compareArrays(final int[] src, final int[] dst, int dstOffset)323     private static int compareArrays(final int[] src, final int[] dst, int dstOffset) {
324         // We do NOT test the first char, because we come from a method that already
325         // tested it.
326         for (int i = 1; i < src.length; ++i) {
327             if (dstOffset + i >= dst.length) return i;
328             if (src[i] != dst[dstOffset + i]) return i;
329         }
330         if (dst.length > src.length) return src.length;
331         return ARRAYS_ARE_EQUAL;
332     }
333 
334     /**
335      * Helper class that compares and sorts two chargroups according to their
336      * first element only. I repeat: ONLY the first element is considered, the rest
337      * is ignored.
338      * This comparator imposes orderings that are inconsistent with equals.
339      */
340     static private class CharGroupComparator implements java.util.Comparator {
compare(Object o1, Object o2)341         public int compare(Object o1, Object o2) {
342             final CharGroup c1 = (CharGroup)o1;
343             final CharGroup c2 = (CharGroup)o2;
344             if (c1.mChars[0] == c2.mChars[0]) return 0;
345             return c1.mChars[0] < c2.mChars[0] ? -1 : 1;
346         }
equals(Object o)347         public boolean equals(Object o) {
348             return o instanceof CharGroupComparator;
349         }
350     }
351     final static private CharGroupComparator CHARGROUP_COMPARATOR = new CharGroupComparator();
352 
353     /**
354      * Finds the insertion index of a character within a node.
355      */
findInsertionIndex(final Node node, int character)356     private static int findInsertionIndex(final Node node, int character) {
357         final List data = node.mData;
358         final CharGroup reference = new CharGroup(new int[] { character }, null, 0);
359         int result = Collections.binarySearch(data, reference, CHARGROUP_COMPARATOR);
360         return result >= 0 ? result : -result - 1;
361     }
362 
363     /**
364      * Find the index of a char in a node, if it exists.
365      *
366      * @param node the node to search in.
367      * @param character the character to search for.
368      * @return the position of the character if it's there, or CHARACTER_NOT_FOUND = -1 else.
369      */
370     private static int CHARACTER_NOT_FOUND = -1;
findIndexOfChar(final Node node, int character)371     private static int findIndexOfChar(final Node node, int character) {
372         final int insertionIndex = findInsertionIndex(node, character);
373         if (node.mData.size() <= insertionIndex) return CHARACTER_NOT_FOUND;
374         return character == node.mData.get(insertionIndex).mChars[0] ? insertionIndex
375                 : CHARACTER_NOT_FOUND;
376     }
377 
378     /**
379      * Helper method to find a word in a given branch.
380      */
findWordInTree(Node node, final String s)381     public static CharGroup findWordInTree(Node node, final String s) {
382         int index = 0;
383         final StringBuilder checker = new StringBuilder();
384 
385         CharGroup currentGroup;
386         do {
387             int indexOfGroup = findIndexOfChar(node, s.codePointAt(index));
388             if (CHARACTER_NOT_FOUND == indexOfGroup) return null;
389             currentGroup = node.mData.get(indexOfGroup);
390             checker.append(new String(currentGroup.mChars, 0, currentGroup.mChars.length));
391             index += currentGroup.mChars.length;
392             if (index < s.length()) {
393                 node = currentGroup.mChildren;
394             }
395         } while (null != node && index < s.length());
396 
397         if (!s.equals(checker.toString())) return null;
398         return currentGroup;
399     }
400 
401     /**
402      * Recursively count the number of character groups in a given branch of the trie.
403      *
404      * @param node the parent node.
405      * @return the number of char groups in all the branch under this node.
406      */
countCharGroups(final Node node)407     public static int countCharGroups(final Node node) {
408         final int nodeSize = node.mData.size();
409         int size = nodeSize;
410         for (int i = nodeSize - 1; i >= 0; --i) {
411             CharGroup group = node.mData.get(i);
412             if (null != group.mChildren)
413                 size += countCharGroups(group.mChildren);
414         }
415         return size;
416     }
417 
418     /**
419      * Recursively count the number of nodes in a given branch of the trie.
420      *
421      * @param node the node to count.
422      * @result the number of nodes in this branch.
423      */
countNodes(final Node node)424     public static int countNodes(final Node node) {
425         int size = 1;
426         for (int i = node.mData.size() - 1; i >= 0; --i) {
427             CharGroup group = node.mData.get(i);
428             if (null != group.mChildren)
429                 size += countNodes(group.mChildren);
430         }
431         return size;
432     }
433 
434     // Historically, the tails of the words were going to be merged to save space.
435     // However, that would prevent the code to search for a specific address in log(n)
436     // time so this was abandoned.
437     // The code is still of interest as it does add some compression to any dictionary
438     // that has no need for attributes. Implementations that does not read attributes should be
439     // able to read a dictionary with merged tails.
440     // Also, the following code does support frequencies, as in, it will only merges
441     // tails that share the same frequency. Though it would result in the above loss of
442     // performance while searching by address, it is still technically possible to merge
443     // tails that contain attributes, but this code does not take that into account - it does
444     // not compare attributes and will merge terminals with different attributes regardless.
mergeTails()445     public void mergeTails() {
446         MakedictLog.i("Do not merge tails");
447         return;
448 
449 //        MakedictLog.i("Merging nodes. Number of nodes : " + countNodes(root));
450 //        MakedictLog.i("Number of groups : " + countCharGroups(root));
451 //
452 //        final HashMap<String, ArrayList<Node>> repository =
453 //                  new HashMap<String, ArrayList<Node>>();
454 //        mergeTailsInner(repository, root);
455 //
456 //        MakedictLog.i("Number of different pseudohashes : " + repository.size());
457 //        int size = 0;
458 //        for (ArrayList<Node> a : repository.values()) {
459 //            size += a.size();
460 //        }
461 //        MakedictLog.i("Number of nodes after merge : " + (1 + size));
462 //        MakedictLog.i("Recursively seen nodes : " + countNodes(root));
463     }
464 
465     // The following methods are used by the deactivated mergeTails()
466 //   private static boolean isEqual(Node a, Node b) {
467 //       if (null == a && null == b) return true;
468 //       if (null == a || null == b) return false;
469 //       if (a.data.size() != b.data.size()) return false;
470 //       final int size = a.data.size();
471 //       for (int i = size - 1; i >= 0; --i) {
472 //           CharGroup aGroup = a.data.get(i);
473 //           CharGroup bGroup = b.data.get(i);
474 //           if (aGroup.frequency != bGroup.frequency) return false;
475 //           if (aGroup.alternates == null && bGroup.alternates != null) return false;
476 //           if (aGroup.alternates != null && !aGroup.equals(bGroup.alternates)) return false;
477 //           if (!Arrays.equals(aGroup.chars, bGroup.chars)) return false;
478 //           if (!isEqual(aGroup.children, bGroup.children)) return false;
479 //       }
480 //       return true;
481 //   }
482 
483 //   static private HashMap<String, ArrayList<Node>> mergeTailsInner(
484 //           final HashMap<String, ArrayList<Node>> map, final Node node) {
485 //       final ArrayList<CharGroup> branches = node.data;
486 //       final int nodeSize = branches.size();
487 //       for (int i = 0; i < nodeSize; ++i) {
488 //           CharGroup group = branches.get(i);
489 //           if (null != group.children) {
490 //               String pseudoHash = getPseudoHash(group.children);
491 //               ArrayList<Node> similarList = map.get(pseudoHash);
492 //               if (null == similarList) {
493 //                   similarList = new ArrayList<Node>();
494 //                   map.put(pseudoHash, similarList);
495 //               }
496 //               boolean merged = false;
497 //               for (Node similar : similarList) {
498 //                   if (isEqual(group.children, similar)) {
499 //                       group.children = similar;
500 //                       merged = true;
501 //                       break;
502 //                   }
503 //               }
504 //               if (!merged) {
505 //                   similarList.add(group.children);
506 //               }
507 //               mergeTailsInner(map, group.children);
508 //           }
509 //       }
510 //       return map;
511 //   }
512 
513 //  private static String getPseudoHash(final Node node) {
514 //      StringBuilder s = new StringBuilder();
515 //      for (CharGroup g : node.data) {
516 //          s.append(g.frequency);
517 //          for (int ch : g.chars){
518 //              s.append(Character.toChars(ch));
519 //          }
520 //      }
521 //      return s.toString();
522 //  }
523 
524     /**
525      * Iterator to walk through a dictionary.
526      *
527      * This is purely for convenience.
528      */
529     public static class DictionaryIterator implements Iterator<Word> {
530 
531         private static class Position {
532             public Iterator<CharGroup> pos;
533             public int length;
Position(ArrayList<CharGroup> groups)534             public Position(ArrayList<CharGroup> groups) {
535                 pos = groups.iterator();
536                 length = 0;
537             }
538         }
539         final StringBuilder mCurrentString;
540         final LinkedList<Position> mPositions;
541 
DictionaryIterator(ArrayList<CharGroup> root)542         public DictionaryIterator(ArrayList<CharGroup> root) {
543             mCurrentString = new StringBuilder();
544             mPositions = new LinkedList<Position>();
545             final Position rootPos = new Position(root);
546             mPositions.add(rootPos);
547         }
548 
549         @Override
hasNext()550         public boolean hasNext() {
551             for (Position p : mPositions) {
552                 if (p.pos.hasNext()) {
553                     return true;
554                 }
555             }
556             return false;
557         }
558 
559         @Override
next()560         public Word next() {
561             Position currentPos = mPositions.getLast();
562             mCurrentString.setLength(mCurrentString.length() - currentPos.length);
563 
564             do {
565                 if (currentPos.pos.hasNext()) {
566                     final CharGroup currentGroup = currentPos.pos.next();
567                     currentPos.length = currentGroup.mChars.length;
568                     for (int i : currentGroup.mChars)
569                         mCurrentString.append(Character.toChars(i));
570                     if (null != currentGroup.mChildren) {
571                         currentPos = new Position(currentGroup.mChildren.mData);
572                         mPositions.addLast(currentPos);
573                     }
574                     if (currentGroup.mFrequency >= 0)
575                         return new Word(mCurrentString.toString(), currentGroup.mFrequency,
576                                 currentGroup.mBigrams);
577                 } else {
578                     mPositions.removeLast();
579                     currentPos = mPositions.getLast();
580                     mCurrentString.setLength(mCurrentString.length() - mPositions.getLast().length);
581                 }
582             } while(true);
583         }
584 
585         @Override
remove()586         public void remove() {
587             throw new UnsupportedOperationException("Unsupported yet");
588         }
589 
590     }
591 
592     /**
593      * Method to return an iterator.
594      *
595      * This method enables Java's enhanced for loop. With this you can have a FusionDictionary x
596      * and say : for (Word w : x) {}
597      */
598     @Override
iterator()599     public Iterator<Word> iterator() {
600         return new DictionaryIterator(mRoot.mData);
601     }
602 }
603