1 // Copyright 2010 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #ifndef V8_HEAP_H_ 29 #define V8_HEAP_H_ 30 31 #include <math.h> 32 33 #include "globals.h" 34 #include "list.h" 35 #include "mark-compact.h" 36 #include "spaces.h" 37 #include "splay-tree-inl.h" 38 #include "v8-counters.h" 39 40 namespace v8 { 41 namespace internal { 42 43 // TODO(isolates): remove HEAP here 44 #define HEAP (_inline_get_heap_()) 45 class Heap; 46 inline Heap* _inline_get_heap_(); 47 48 49 // Defines all the roots in Heap. 50 #define STRONG_ROOT_LIST(V) \ 51 /* Put the byte array map early. We need it to be in place by the time */ \ 52 /* the deserializer hits the next page, since it wants to put a byte */ \ 53 /* array in the unused space at the end of the page. */ \ 54 V(Map, byte_array_map, ByteArrayMap) \ 55 V(Map, one_pointer_filler_map, OnePointerFillerMap) \ 56 V(Map, two_pointer_filler_map, TwoPointerFillerMap) \ 57 /* Cluster the most popular ones in a few cache lines here at the top. */ \ 58 V(Object, undefined_value, UndefinedValue) \ 59 V(Object, the_hole_value, TheHoleValue) \ 60 V(Object, null_value, NullValue) \ 61 V(Object, true_value, TrueValue) \ 62 V(Object, false_value, FalseValue) \ 63 V(Object, arguments_marker, ArgumentsMarker) \ 64 V(Map, heap_number_map, HeapNumberMap) \ 65 V(Map, global_context_map, GlobalContextMap) \ 66 V(Map, fixed_array_map, FixedArrayMap) \ 67 V(Map, fixed_cow_array_map, FixedCOWArrayMap) \ 68 V(Object, no_interceptor_result_sentinel, NoInterceptorResultSentinel) \ 69 V(Map, meta_map, MetaMap) \ 70 V(Map, hash_table_map, HashTableMap) \ 71 V(Smi, stack_limit, StackLimit) \ 72 V(FixedArray, number_string_cache, NumberStringCache) \ 73 V(Object, instanceof_cache_function, InstanceofCacheFunction) \ 74 V(Object, instanceof_cache_map, InstanceofCacheMap) \ 75 V(Object, instanceof_cache_answer, InstanceofCacheAnswer) \ 76 V(FixedArray, single_character_string_cache, SingleCharacterStringCache) \ 77 V(Object, termination_exception, TerminationException) \ 78 V(FixedArray, empty_fixed_array, EmptyFixedArray) \ 79 V(ByteArray, empty_byte_array, EmptyByteArray) \ 80 V(String, empty_string, EmptyString) \ 81 V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray) \ 82 V(Map, string_map, StringMap) \ 83 V(Map, ascii_string_map, AsciiStringMap) \ 84 V(Map, symbol_map, SymbolMap) \ 85 V(Map, cons_string_map, ConsStringMap) \ 86 V(Map, cons_ascii_string_map, ConsAsciiStringMap) \ 87 V(Map, ascii_symbol_map, AsciiSymbolMap) \ 88 V(Map, cons_symbol_map, ConsSymbolMap) \ 89 V(Map, cons_ascii_symbol_map, ConsAsciiSymbolMap) \ 90 V(Map, external_symbol_map, ExternalSymbolMap) \ 91 V(Map, external_symbol_with_ascii_data_map, ExternalSymbolWithAsciiDataMap) \ 92 V(Map, external_ascii_symbol_map, ExternalAsciiSymbolMap) \ 93 V(Map, external_string_map, ExternalStringMap) \ 94 V(Map, external_string_with_ascii_data_map, ExternalStringWithAsciiDataMap) \ 95 V(Map, external_ascii_string_map, ExternalAsciiStringMap) \ 96 V(Map, undetectable_string_map, UndetectableStringMap) \ 97 V(Map, undetectable_ascii_string_map, UndetectableAsciiStringMap) \ 98 V(Map, external_pixel_array_map, ExternalPixelArrayMap) \ 99 V(Map, external_byte_array_map, ExternalByteArrayMap) \ 100 V(Map, external_unsigned_byte_array_map, ExternalUnsignedByteArrayMap) \ 101 V(Map, external_short_array_map, ExternalShortArrayMap) \ 102 V(Map, external_unsigned_short_array_map, ExternalUnsignedShortArrayMap) \ 103 V(Map, external_int_array_map, ExternalIntArrayMap) \ 104 V(Map, external_unsigned_int_array_map, ExternalUnsignedIntArrayMap) \ 105 V(Map, external_float_array_map, ExternalFloatArrayMap) \ 106 V(Map, context_map, ContextMap) \ 107 V(Map, catch_context_map, CatchContextMap) \ 108 V(Map, code_map, CodeMap) \ 109 V(Map, oddball_map, OddballMap) \ 110 V(Map, global_property_cell_map, GlobalPropertyCellMap) \ 111 V(Map, shared_function_info_map, SharedFunctionInfoMap) \ 112 V(Map, message_object_map, JSMessageObjectMap) \ 113 V(Map, proxy_map, ProxyMap) \ 114 V(Object, nan_value, NanValue) \ 115 V(Object, minus_zero_value, MinusZeroValue) \ 116 V(Map, neander_map, NeanderMap) \ 117 V(JSObject, message_listeners, MessageListeners) \ 118 V(Proxy, prototype_accessors, PrototypeAccessors) \ 119 V(NumberDictionary, code_stubs, CodeStubs) \ 120 V(NumberDictionary, non_monomorphic_cache, NonMonomorphicCache) \ 121 V(Code, js_entry_code, JsEntryCode) \ 122 V(Code, js_construct_entry_code, JsConstructEntryCode) \ 123 V(FixedArray, natives_source_cache, NativesSourceCache) \ 124 V(Object, last_script_id, LastScriptId) \ 125 V(Script, empty_script, EmptyScript) \ 126 V(Smi, real_stack_limit, RealStackLimit) \ 127 V(StringDictionary, intrinsic_function_names, IntrinsicFunctionNames) \ 128 129 #define ROOT_LIST(V) \ 130 STRONG_ROOT_LIST(V) \ 131 V(SymbolTable, symbol_table, SymbolTable) 132 133 #define SYMBOL_LIST(V) \ 134 V(Array_symbol, "Array") \ 135 V(Object_symbol, "Object") \ 136 V(Proto_symbol, "__proto__") \ 137 V(StringImpl_symbol, "StringImpl") \ 138 V(arguments_symbol, "arguments") \ 139 V(Arguments_symbol, "Arguments") \ 140 V(arguments_shadow_symbol, ".arguments") \ 141 V(call_symbol, "call") \ 142 V(apply_symbol, "apply") \ 143 V(caller_symbol, "caller") \ 144 V(boolean_symbol, "boolean") \ 145 V(Boolean_symbol, "Boolean") \ 146 V(callee_symbol, "callee") \ 147 V(constructor_symbol, "constructor") \ 148 V(code_symbol, ".code") \ 149 V(result_symbol, ".result") \ 150 V(catch_var_symbol, ".catch-var") \ 151 V(empty_symbol, "") \ 152 V(eval_symbol, "eval") \ 153 V(function_symbol, "function") \ 154 V(length_symbol, "length") \ 155 V(name_symbol, "name") \ 156 V(number_symbol, "number") \ 157 V(Number_symbol, "Number") \ 158 V(nan_symbol, "NaN") \ 159 V(RegExp_symbol, "RegExp") \ 160 V(source_symbol, "source") \ 161 V(global_symbol, "global") \ 162 V(ignore_case_symbol, "ignoreCase") \ 163 V(multiline_symbol, "multiline") \ 164 V(input_symbol, "input") \ 165 V(index_symbol, "index") \ 166 V(last_index_symbol, "lastIndex") \ 167 V(object_symbol, "object") \ 168 V(prototype_symbol, "prototype") \ 169 V(string_symbol, "string") \ 170 V(String_symbol, "String") \ 171 V(Date_symbol, "Date") \ 172 V(this_symbol, "this") \ 173 V(to_string_symbol, "toString") \ 174 V(char_at_symbol, "CharAt") \ 175 V(undefined_symbol, "undefined") \ 176 V(value_of_symbol, "valueOf") \ 177 V(InitializeVarGlobal_symbol, "InitializeVarGlobal") \ 178 V(InitializeConstGlobal_symbol, "InitializeConstGlobal") \ 179 V(KeyedLoadSpecialized_symbol, "KeyedLoadSpecialized") \ 180 V(KeyedStoreSpecialized_symbol, "KeyedStoreSpecialized") \ 181 V(stack_overflow_symbol, "kStackOverflowBoilerplate") \ 182 V(illegal_access_symbol, "illegal access") \ 183 V(out_of_memory_symbol, "out-of-memory") \ 184 V(illegal_execution_state_symbol, "illegal execution state") \ 185 V(get_symbol, "get") \ 186 V(set_symbol, "set") \ 187 V(function_class_symbol, "Function") \ 188 V(illegal_argument_symbol, "illegal argument") \ 189 V(MakeReferenceError_symbol, "MakeReferenceError") \ 190 V(MakeSyntaxError_symbol, "MakeSyntaxError") \ 191 V(MakeTypeError_symbol, "MakeTypeError") \ 192 V(invalid_lhs_in_assignment_symbol, "invalid_lhs_in_assignment") \ 193 V(invalid_lhs_in_for_in_symbol, "invalid_lhs_in_for_in") \ 194 V(invalid_lhs_in_postfix_op_symbol, "invalid_lhs_in_postfix_op") \ 195 V(invalid_lhs_in_prefix_op_symbol, "invalid_lhs_in_prefix_op") \ 196 V(illegal_return_symbol, "illegal_return") \ 197 V(illegal_break_symbol, "illegal_break") \ 198 V(illegal_continue_symbol, "illegal_continue") \ 199 V(unknown_label_symbol, "unknown_label") \ 200 V(redeclaration_symbol, "redeclaration") \ 201 V(failure_symbol, "<failure>") \ 202 V(space_symbol, " ") \ 203 V(exec_symbol, "exec") \ 204 V(zero_symbol, "0") \ 205 V(global_eval_symbol, "GlobalEval") \ 206 V(identity_hash_symbol, "v8::IdentityHash") \ 207 V(closure_symbol, "(closure)") \ 208 V(use_strict, "use strict") \ 209 V(KeyedLoadExternalByteArray_symbol, "KeyedLoadExternalByteArray") \ 210 V(KeyedLoadExternalUnsignedByteArray_symbol, \ 211 "KeyedLoadExternalUnsignedByteArray") \ 212 V(KeyedLoadExternalShortArray_symbol, \ 213 "KeyedLoadExternalShortArray") \ 214 V(KeyedLoadExternalUnsignedShortArray_symbol, \ 215 "KeyedLoadExternalUnsignedShortArray") \ 216 V(KeyedLoadExternalIntArray_symbol, "KeyedLoadExternalIntArray") \ 217 V(KeyedLoadExternalUnsignedIntArray_symbol, \ 218 "KeyedLoadExternalUnsignedIntArray") \ 219 V(KeyedLoadExternalFloatArray_symbol, "KeyedLoadExternalFloatArray") \ 220 V(KeyedLoadExternalPixelArray_symbol, "KeyedLoadExternalPixelArray") \ 221 V(KeyedStoreExternalByteArray_symbol, "KeyedStoreExternalByteArray") \ 222 V(KeyedStoreExternalUnsignedByteArray_symbol, \ 223 "KeyedStoreExternalUnsignedByteArray") \ 224 V(KeyedStoreExternalShortArray_symbol, "KeyedStoreExternalShortArray") \ 225 V(KeyedStoreExternalUnsignedShortArray_symbol, \ 226 "KeyedStoreExternalUnsignedShortArray") \ 227 V(KeyedStoreExternalIntArray_symbol, "KeyedStoreExternalIntArray") \ 228 V(KeyedStoreExternalUnsignedIntArray_symbol, \ 229 "KeyedStoreExternalUnsignedIntArray") \ 230 V(KeyedStoreExternalFloatArray_symbol, "KeyedStoreExternalFloatArray") \ 231 V(KeyedStoreExternalPixelArray_symbol, "KeyedStoreExternalPixelArray") 232 233 // Forward declarations. 234 class GCTracer; 235 class HeapStats; 236 class Isolate; 237 class WeakObjectRetainer; 238 239 240 typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap, 241 Object** pointer); 242 243 typedef bool (*DirtyRegionCallback)(Heap* heap, 244 Address start, 245 Address end, 246 ObjectSlotCallback copy_object_func); 247 248 249 // The all static Heap captures the interface to the global object heap. 250 // All JavaScript contexts by this process share the same object heap. 251 252 #ifdef DEBUG 253 class HeapDebugUtils; 254 #endif 255 256 257 // A queue of objects promoted during scavenge. Each object is accompanied 258 // by it's size to avoid dereferencing a map pointer for scanning. 259 class PromotionQueue { 260 public: PromotionQueue()261 PromotionQueue() : front_(NULL), rear_(NULL) { } 262 Initialize(Address start_address)263 void Initialize(Address start_address) { 264 front_ = rear_ = reinterpret_cast<intptr_t*>(start_address); 265 } 266 is_empty()267 bool is_empty() { return front_ <= rear_; } 268 269 inline void insert(HeapObject* target, int size); 270 remove(HeapObject ** target,int * size)271 void remove(HeapObject** target, int* size) { 272 *target = reinterpret_cast<HeapObject*>(*(--front_)); 273 *size = static_cast<int>(*(--front_)); 274 // Assert no underflow. 275 ASSERT(front_ >= rear_); 276 } 277 278 private: 279 // The front of the queue is higher in memory than the rear. 280 intptr_t* front_; 281 intptr_t* rear_; 282 283 DISALLOW_COPY_AND_ASSIGN(PromotionQueue); 284 }; 285 286 287 // External strings table is a place where all external strings are 288 // registered. We need to keep track of such strings to properly 289 // finalize them. 290 class ExternalStringTable { 291 public: 292 // Registers an external string. 293 inline void AddString(String* string); 294 295 inline void Iterate(ObjectVisitor* v); 296 297 // Restores internal invariant and gets rid of collected strings. 298 // Must be called after each Iterate() that modified the strings. 299 void CleanUp(); 300 301 // Destroys all allocated memory. 302 void TearDown(); 303 304 private: ExternalStringTable()305 ExternalStringTable() { } 306 307 friend class Heap; 308 309 inline void Verify(); 310 311 inline void AddOldString(String* string); 312 313 // Notifies the table that only a prefix of the new list is valid. 314 inline void ShrinkNewStrings(int position); 315 316 // To speed up scavenge collections new space string are kept 317 // separate from old space strings. 318 List<Object*> new_space_strings_; 319 List<Object*> old_space_strings_; 320 321 Heap* heap_; 322 323 DISALLOW_COPY_AND_ASSIGN(ExternalStringTable); 324 }; 325 326 327 class Heap { 328 public: 329 // Configure heap size before setup. Return false if the heap has been 330 // setup already. 331 bool ConfigureHeap(int max_semispace_size, 332 int max_old_gen_size, 333 int max_executable_size); 334 bool ConfigureHeapDefault(); 335 336 // Initializes the global object heap. If create_heap_objects is true, 337 // also creates the basic non-mutable objects. 338 // Returns whether it succeeded. 339 bool Setup(bool create_heap_objects); 340 341 // Destroys all memory allocated by the heap. 342 void TearDown(); 343 344 // Set the stack limit in the roots_ array. Some architectures generate 345 // code that looks here, because it is faster than loading from the static 346 // jslimit_/real_jslimit_ variable in the StackGuard. 347 void SetStackLimits(); 348 349 // Returns whether Setup has been called. 350 bool HasBeenSetup(); 351 352 // Returns the maximum amount of memory reserved for the heap. For 353 // the young generation, we reserve 4 times the amount needed for a 354 // semi space. The young generation consists of two semi spaces and 355 // we reserve twice the amount needed for those in order to ensure 356 // that new space can be aligned to its size. MaxReserved()357 intptr_t MaxReserved() { 358 return 4 * reserved_semispace_size_ + max_old_generation_size_; 359 } MaxSemiSpaceSize()360 int MaxSemiSpaceSize() { return max_semispace_size_; } ReservedSemiSpaceSize()361 int ReservedSemiSpaceSize() { return reserved_semispace_size_; } InitialSemiSpaceSize()362 int InitialSemiSpaceSize() { return initial_semispace_size_; } MaxOldGenerationSize()363 intptr_t MaxOldGenerationSize() { return max_old_generation_size_; } MaxExecutableSize()364 intptr_t MaxExecutableSize() { return max_executable_size_; } 365 366 // Returns the capacity of the heap in bytes w/o growing. Heap grows when 367 // more spaces are needed until it reaches the limit. 368 intptr_t Capacity(); 369 370 // Returns the amount of memory currently committed for the heap. 371 intptr_t CommittedMemory(); 372 373 // Returns the amount of executable memory currently committed for the heap. 374 intptr_t CommittedMemoryExecutable(); 375 376 // Returns the available bytes in space w/o growing. 377 // Heap doesn't guarantee that it can allocate an object that requires 378 // all available bytes. Check MaxHeapObjectSize() instead. 379 intptr_t Available(); 380 381 // Returns the maximum object size in paged space. 382 inline int MaxObjectSizeInPagedSpace(); 383 384 // Returns of size of all objects residing in the heap. 385 intptr_t SizeOfObjects(); 386 387 // Return the starting address and a mask for the new space. And-masking an 388 // address with the mask will result in the start address of the new space 389 // for all addresses in either semispace. NewSpaceStart()390 Address NewSpaceStart() { return new_space_.start(); } NewSpaceMask()391 uintptr_t NewSpaceMask() { return new_space_.mask(); } NewSpaceTop()392 Address NewSpaceTop() { return new_space_.top(); } 393 new_space()394 NewSpace* new_space() { return &new_space_; } old_pointer_space()395 OldSpace* old_pointer_space() { return old_pointer_space_; } old_data_space()396 OldSpace* old_data_space() { return old_data_space_; } code_space()397 OldSpace* code_space() { return code_space_; } map_space()398 MapSpace* map_space() { return map_space_; } cell_space()399 CellSpace* cell_space() { return cell_space_; } lo_space()400 LargeObjectSpace* lo_space() { return lo_space_; } 401 always_allocate()402 bool always_allocate() { return always_allocate_scope_depth_ != 0; } always_allocate_scope_depth_address()403 Address always_allocate_scope_depth_address() { 404 return reinterpret_cast<Address>(&always_allocate_scope_depth_); 405 } linear_allocation()406 bool linear_allocation() { 407 return linear_allocation_scope_depth_ != 0; 408 } 409 NewSpaceAllocationTopAddress()410 Address* NewSpaceAllocationTopAddress() { 411 return new_space_.allocation_top_address(); 412 } NewSpaceAllocationLimitAddress()413 Address* NewSpaceAllocationLimitAddress() { 414 return new_space_.allocation_limit_address(); 415 } 416 417 // Uncommit unused semi space. UncommitFromSpace()418 bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); } 419 420 #ifdef ENABLE_HEAP_PROTECTION 421 // Protect/unprotect the heap by marking all spaces read-only/writable. 422 void Protect(); 423 void Unprotect(); 424 #endif 425 426 // Allocates and initializes a new JavaScript object based on a 427 // constructor. 428 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 429 // failed. 430 // Please note this does not perform a garbage collection. 431 MUST_USE_RESULT MaybeObject* AllocateJSObject( 432 JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED); 433 434 // Allocates and initializes a new global object based on a constructor. 435 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 436 // failed. 437 // Please note this does not perform a garbage collection. 438 MUST_USE_RESULT MaybeObject* AllocateGlobalObject(JSFunction* constructor); 439 440 // Returns a deep copy of the JavaScript object. 441 // Properties and elements are copied too. 442 // Returns failure if allocation failed. 443 MUST_USE_RESULT MaybeObject* CopyJSObject(JSObject* source); 444 445 // Allocates the function prototype. 446 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 447 // failed. 448 // Please note this does not perform a garbage collection. 449 MUST_USE_RESULT MaybeObject* AllocateFunctionPrototype(JSFunction* function); 450 451 // Reinitialize an JSGlobalProxy based on a constructor. The object 452 // must have the same size as objects allocated using the 453 // constructor. The object is reinitialized and behaves as an 454 // object that has been freshly allocated using the constructor. 455 MUST_USE_RESULT MaybeObject* ReinitializeJSGlobalProxy( 456 JSFunction* constructor, JSGlobalProxy* global); 457 458 // Allocates and initializes a new JavaScript object based on a map. 459 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 460 // failed. 461 // Please note this does not perform a garbage collection. 462 MUST_USE_RESULT MaybeObject* AllocateJSObjectFromMap( 463 Map* map, PretenureFlag pretenure = NOT_TENURED); 464 465 // Allocates a heap object based on the map. 466 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 467 // failed. 468 // Please note this function does not perform a garbage collection. 469 MUST_USE_RESULT MaybeObject* Allocate(Map* map, AllocationSpace space); 470 471 // Allocates a JS Map in the heap. 472 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 473 // failed. 474 // Please note this function does not perform a garbage collection. 475 MUST_USE_RESULT MaybeObject* AllocateMap(InstanceType instance_type, 476 int instance_size); 477 478 // Allocates a partial map for bootstrapping. 479 MUST_USE_RESULT MaybeObject* AllocatePartialMap(InstanceType instance_type, 480 int instance_size); 481 482 // Allocate a map for the specified function 483 MUST_USE_RESULT MaybeObject* AllocateInitialMap(JSFunction* fun); 484 485 // Allocates an empty code cache. 486 MUST_USE_RESULT MaybeObject* AllocateCodeCache(); 487 488 // Clear the Instanceof cache (used when a prototype changes). 489 inline void ClearInstanceofCache(); 490 491 // Allocates and fully initializes a String. There are two String 492 // encodings: ASCII and two byte. One should choose between the three string 493 // allocation functions based on the encoding of the string buffer used to 494 // initialized the string. 495 // - ...FromAscii initializes the string from a buffer that is ASCII 496 // encoded (it does not check that the buffer is ASCII encoded) and the 497 // result will be ASCII encoded. 498 // - ...FromUTF8 initializes the string from a buffer that is UTF-8 499 // encoded. If the characters are all single-byte characters, the 500 // result will be ASCII encoded, otherwise it will converted to two 501 // byte. 502 // - ...FromTwoByte initializes the string from a buffer that is two-byte 503 // encoded. If the characters are all single-byte characters, the 504 // result will be converted to ASCII, otherwise it will be left as 505 // two-byte. 506 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 507 // failed. 508 // Please note this does not perform a garbage collection. 509 MUST_USE_RESULT MaybeObject* AllocateStringFromAscii( 510 Vector<const char> str, 511 PretenureFlag pretenure = NOT_TENURED); 512 MUST_USE_RESULT inline MaybeObject* AllocateStringFromUtf8( 513 Vector<const char> str, 514 PretenureFlag pretenure = NOT_TENURED); 515 MUST_USE_RESULT MaybeObject* AllocateStringFromUtf8Slow( 516 Vector<const char> str, 517 PretenureFlag pretenure = NOT_TENURED); 518 MUST_USE_RESULT MaybeObject* AllocateStringFromTwoByte( 519 Vector<const uc16> str, 520 PretenureFlag pretenure = NOT_TENURED); 521 522 // Allocates a symbol in old space based on the character stream. 523 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 524 // failed. 525 // Please note this function does not perform a garbage collection. 526 MUST_USE_RESULT inline MaybeObject* AllocateSymbol(Vector<const char> str, 527 int chars, 528 uint32_t hash_field); 529 530 MUST_USE_RESULT inline MaybeObject* AllocateAsciiSymbol( 531 Vector<const char> str, 532 uint32_t hash_field); 533 534 MUST_USE_RESULT inline MaybeObject* AllocateTwoByteSymbol( 535 Vector<const uc16> str, 536 uint32_t hash_field); 537 538 MUST_USE_RESULT MaybeObject* AllocateInternalSymbol( 539 unibrow::CharacterStream* buffer, int chars, uint32_t hash_field); 540 541 MUST_USE_RESULT MaybeObject* AllocateExternalSymbol( 542 Vector<const char> str, 543 int chars); 544 545 // Allocates and partially initializes a String. There are two String 546 // encodings: ASCII and two byte. These functions allocate a string of the 547 // given length and set its map and length fields. The characters of the 548 // string are uninitialized. 549 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 550 // failed. 551 // Please note this does not perform a garbage collection. 552 MUST_USE_RESULT MaybeObject* AllocateRawAsciiString( 553 int length, 554 PretenureFlag pretenure = NOT_TENURED); 555 MUST_USE_RESULT MaybeObject* AllocateRawTwoByteString( 556 int length, 557 PretenureFlag pretenure = NOT_TENURED); 558 559 // Computes a single character string where the character has code. 560 // A cache is used for ascii codes. 561 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 562 // failed. Please note this does not perform a garbage collection. 563 MUST_USE_RESULT MaybeObject* LookupSingleCharacterStringFromCode( 564 uint16_t code); 565 566 // Allocate a byte array of the specified length 567 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 568 // failed. 569 // Please note this does not perform a garbage collection. 570 MUST_USE_RESULT MaybeObject* AllocateByteArray(int length, 571 PretenureFlag pretenure); 572 573 // Allocate a non-tenured byte array of the specified length 574 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 575 // failed. 576 // Please note this does not perform a garbage collection. 577 MUST_USE_RESULT MaybeObject* AllocateByteArray(int length); 578 579 // Allocates an external array of the specified length and type. 580 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 581 // failed. 582 // Please note this does not perform a garbage collection. 583 MUST_USE_RESULT MaybeObject* AllocateExternalArray( 584 int length, 585 ExternalArrayType array_type, 586 void* external_pointer, 587 PretenureFlag pretenure); 588 589 // Allocate a tenured JS global property cell. 590 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 591 // failed. 592 // Please note this does not perform a garbage collection. 593 MUST_USE_RESULT MaybeObject* AllocateJSGlobalPropertyCell(Object* value); 594 595 // Allocates a fixed array initialized with undefined values 596 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 597 // failed. 598 // Please note this does not perform a garbage collection. 599 MUST_USE_RESULT MaybeObject* AllocateFixedArray(int length, 600 PretenureFlag pretenure); 601 // Allocates a fixed array initialized with undefined values 602 MUST_USE_RESULT MaybeObject* AllocateFixedArray(int length); 603 604 // Allocates an uninitialized fixed array. It must be filled by the caller. 605 // 606 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 607 // failed. 608 // Please note this does not perform a garbage collection. 609 MUST_USE_RESULT MaybeObject* AllocateUninitializedFixedArray(int length); 610 611 // Make a copy of src and return it. Returns 612 // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed. 613 MUST_USE_RESULT inline MaybeObject* CopyFixedArray(FixedArray* src); 614 615 // Make a copy of src, set the map, and return the copy. Returns 616 // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed. 617 MUST_USE_RESULT MaybeObject* CopyFixedArrayWithMap(FixedArray* src, Map* map); 618 619 // Allocates a fixed array initialized with the hole values. 620 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 621 // failed. 622 // Please note this does not perform a garbage collection. 623 MUST_USE_RESULT MaybeObject* AllocateFixedArrayWithHoles( 624 int length, 625 PretenureFlag pretenure = NOT_TENURED); 626 627 // AllocateHashTable is identical to AllocateFixedArray except 628 // that the resulting object has hash_table_map as map. 629 MUST_USE_RESULT MaybeObject* AllocateHashTable( 630 int length, PretenureFlag pretenure = NOT_TENURED); 631 632 // Allocate a global (but otherwise uninitialized) context. 633 MUST_USE_RESULT MaybeObject* AllocateGlobalContext(); 634 635 // Allocate a function context. 636 MUST_USE_RESULT MaybeObject* AllocateFunctionContext(int length, 637 JSFunction* closure); 638 639 // Allocate a 'with' context. 640 MUST_USE_RESULT MaybeObject* AllocateWithContext(Context* previous, 641 JSObject* extension, 642 bool is_catch_context); 643 644 // Allocates a new utility object in the old generation. 645 MUST_USE_RESULT MaybeObject* AllocateStruct(InstanceType type); 646 647 // Allocates a function initialized with a shared part. 648 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 649 // failed. 650 // Please note this does not perform a garbage collection. 651 MUST_USE_RESULT MaybeObject* AllocateFunction( 652 Map* function_map, 653 SharedFunctionInfo* shared, 654 Object* prototype, 655 PretenureFlag pretenure = TENURED); 656 657 // Arguments object size. 658 static const int kArgumentsObjectSize = 659 JSObject::kHeaderSize + 2 * kPointerSize; 660 // Strict mode arguments has no callee so it is smaller. 661 static const int kArgumentsObjectSizeStrict = 662 JSObject::kHeaderSize + 1 * kPointerSize; 663 // Indicies for direct access into argument objects. 664 static const int kArgumentsLengthIndex = 0; 665 // callee is only valid in non-strict mode. 666 static const int kArgumentsCalleeIndex = 1; 667 668 // Allocates an arguments object - optionally with an elements array. 669 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 670 // failed. 671 // Please note this does not perform a garbage collection. 672 MUST_USE_RESULT MaybeObject* AllocateArgumentsObject( 673 Object* callee, int length); 674 675 // Same as NewNumberFromDouble, but may return a preallocated/immutable 676 // number object (e.g., minus_zero_value_, nan_value_) 677 MUST_USE_RESULT MaybeObject* NumberFromDouble( 678 double value, PretenureFlag pretenure = NOT_TENURED); 679 680 // Allocated a HeapNumber from value. 681 MUST_USE_RESULT MaybeObject* AllocateHeapNumber( 682 double value, 683 PretenureFlag pretenure); 684 // pretenure = NOT_TENURED 685 MUST_USE_RESULT MaybeObject* AllocateHeapNumber(double value); 686 687 // Converts an int into either a Smi or a HeapNumber object. 688 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 689 // failed. 690 // Please note this does not perform a garbage collection. 691 MUST_USE_RESULT inline MaybeObject* NumberFromInt32(int32_t value); 692 693 // Converts an int into either a Smi or a HeapNumber object. 694 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 695 // failed. 696 // Please note this does not perform a garbage collection. 697 MUST_USE_RESULT inline MaybeObject* NumberFromUint32(uint32_t value); 698 699 // Allocates a new proxy object. 700 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 701 // failed. 702 // Please note this does not perform a garbage collection. 703 MUST_USE_RESULT MaybeObject* AllocateProxy( 704 Address proxy, PretenureFlag pretenure = NOT_TENURED); 705 706 // Allocates a new SharedFunctionInfo object. 707 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 708 // failed. 709 // Please note this does not perform a garbage collection. 710 MUST_USE_RESULT MaybeObject* AllocateSharedFunctionInfo(Object* name); 711 712 // Allocates a new JSMessageObject object. 713 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 714 // failed. 715 // Please note that this does not perform a garbage collection. 716 MUST_USE_RESULT MaybeObject* AllocateJSMessageObject( 717 String* type, 718 JSArray* arguments, 719 int start_position, 720 int end_position, 721 Object* script, 722 Object* stack_trace, 723 Object* stack_frames); 724 725 // Allocates a new cons string object. 726 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 727 // failed. 728 // Please note this does not perform a garbage collection. 729 MUST_USE_RESULT MaybeObject* AllocateConsString(String* first, 730 String* second); 731 732 // Allocates a new sub string object which is a substring of an underlying 733 // string buffer stretching from the index start (inclusive) to the index 734 // end (exclusive). 735 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 736 // failed. 737 // Please note this does not perform a garbage collection. 738 MUST_USE_RESULT MaybeObject* AllocateSubString( 739 String* buffer, 740 int start, 741 int end, 742 PretenureFlag pretenure = NOT_TENURED); 743 744 // Allocate a new external string object, which is backed by a string 745 // resource that resides outside the V8 heap. 746 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 747 // failed. 748 // Please note this does not perform a garbage collection. 749 MUST_USE_RESULT MaybeObject* AllocateExternalStringFromAscii( 750 ExternalAsciiString::Resource* resource); 751 MUST_USE_RESULT MaybeObject* AllocateExternalStringFromTwoByte( 752 ExternalTwoByteString::Resource* resource); 753 754 // Finalizes an external string by deleting the associated external 755 // data and clearing the resource pointer. 756 inline void FinalizeExternalString(String* string); 757 758 // Allocates an uninitialized object. The memory is non-executable if the 759 // hardware and OS allow. 760 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 761 // failed. 762 // Please note this function does not perform a garbage collection. 763 MUST_USE_RESULT inline MaybeObject* AllocateRaw(int size_in_bytes, 764 AllocationSpace space, 765 AllocationSpace retry_space); 766 767 // Initialize a filler object to keep the ability to iterate over the heap 768 // when shortening objects. 769 void CreateFillerObjectAt(Address addr, int size); 770 771 // Makes a new native code object 772 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 773 // failed. On success, the pointer to the Code object is stored in the 774 // self_reference. This allows generated code to reference its own Code 775 // object by containing this pointer. 776 // Please note this function does not perform a garbage collection. 777 MUST_USE_RESULT MaybeObject* CreateCode(const CodeDesc& desc, 778 Code::Flags flags, 779 Handle<Object> self_reference, 780 bool immovable = false); 781 782 MUST_USE_RESULT MaybeObject* CopyCode(Code* code); 783 784 // Copy the code and scope info part of the code object, but insert 785 // the provided data as the relocation information. 786 MUST_USE_RESULT MaybeObject* CopyCode(Code* code, Vector<byte> reloc_info); 787 788 // Finds the symbol for string in the symbol table. 789 // If not found, a new symbol is added to the table and returned. 790 // Returns Failure::RetryAfterGC(requested_bytes, space) if allocation 791 // failed. 792 // Please note this function does not perform a garbage collection. 793 MUST_USE_RESULT MaybeObject* LookupSymbol(Vector<const char> str); 794 MUST_USE_RESULT MaybeObject* LookupAsciiSymbol(Vector<const char> str); 795 MUST_USE_RESULT MaybeObject* LookupTwoByteSymbol( 796 Vector<const uc16> str); LookupAsciiSymbol(const char * str)797 MUST_USE_RESULT MaybeObject* LookupAsciiSymbol(const char* str) { 798 return LookupSymbol(CStrVector(str)); 799 } 800 MUST_USE_RESULT MaybeObject* LookupSymbol(String* str); 801 bool LookupSymbolIfExists(String* str, String** symbol); 802 bool LookupTwoCharsSymbolIfExists(String* str, String** symbol); 803 804 // Compute the matching symbol map for a string if possible. 805 // NULL is returned if string is in new space or not flattened. 806 Map* SymbolMapForString(String* str); 807 808 // Tries to flatten a string before compare operation. 809 // 810 // Returns a failure in case it was decided that flattening was 811 // necessary and failed. Note, if flattening is not necessary the 812 // string might stay non-flat even when not a failure is returned. 813 // 814 // Please note this function does not perform a garbage collection. 815 MUST_USE_RESULT inline MaybeObject* PrepareForCompare(String* str); 816 817 // Converts the given boolean condition to JavaScript boolean value. 818 inline Object* ToBoolean(bool condition); 819 820 // Code that should be run before and after each GC. Includes some 821 // reporting/verification activities when compiled with DEBUG set. 822 void GarbageCollectionPrologue(); 823 void GarbageCollectionEpilogue(); 824 825 // Performs garbage collection operation. 826 // Returns whether there is a chance that another major GC could 827 // collect more garbage. 828 bool CollectGarbage(AllocationSpace space, GarbageCollector collector); 829 830 // Performs garbage collection operation. 831 // Returns whether there is a chance that another major GC could 832 // collect more garbage. 833 inline bool CollectGarbage(AllocationSpace space); 834 835 // Performs a full garbage collection. Force compaction if the 836 // parameter is true. 837 void CollectAllGarbage(bool force_compaction); 838 839 // Last hope GC, should try to squeeze as much as possible. 840 void CollectAllAvailableGarbage(); 841 842 // Notify the heap that a context has been disposed. NotifyContextDisposed()843 int NotifyContextDisposed() { return ++contexts_disposed_; } 844 845 // Utility to invoke the scavenger. This is needed in test code to 846 // ensure correct callback for weak global handles. 847 void PerformScavenge(); 848 promotion_queue()849 PromotionQueue* promotion_queue() { return &promotion_queue_; } 850 851 #ifdef DEBUG 852 // Utility used with flag gc-greedy. 853 void GarbageCollectionGreedyCheck(); 854 #endif 855 856 void AddGCPrologueCallback( 857 GCEpilogueCallback callback, GCType gc_type_filter); 858 void RemoveGCPrologueCallback(GCEpilogueCallback callback); 859 860 void AddGCEpilogueCallback( 861 GCEpilogueCallback callback, GCType gc_type_filter); 862 void RemoveGCEpilogueCallback(GCEpilogueCallback callback); 863 SetGlobalGCPrologueCallback(GCCallback callback)864 void SetGlobalGCPrologueCallback(GCCallback callback) { 865 ASSERT((callback == NULL) ^ (global_gc_prologue_callback_ == NULL)); 866 global_gc_prologue_callback_ = callback; 867 } SetGlobalGCEpilogueCallback(GCCallback callback)868 void SetGlobalGCEpilogueCallback(GCCallback callback) { 869 ASSERT((callback == NULL) ^ (global_gc_epilogue_callback_ == NULL)); 870 global_gc_epilogue_callback_ = callback; 871 } 872 873 // Heap root getters. We have versions with and without type::cast() here. 874 // You can't use type::cast during GC because the assert fails. 875 #define ROOT_ACCESSOR(type, name, camel_name) \ 876 type* name() { \ 877 return type::cast(roots_[k##camel_name##RootIndex]); \ 878 } \ 879 type* raw_unchecked_##name() { \ 880 return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]); \ 881 } 882 ROOT_LIST(ROOT_ACCESSOR) 883 #undef ROOT_ACCESSOR 884 885 // Utility type maps 886 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \ 887 Map* name##_map() { \ 888 return Map::cast(roots_[k##Name##MapRootIndex]); \ 889 } STRUCT_LIST(STRUCT_MAP_ACCESSOR)890 STRUCT_LIST(STRUCT_MAP_ACCESSOR) 891 #undef STRUCT_MAP_ACCESSOR 892 893 #define SYMBOL_ACCESSOR(name, str) String* name() { \ 894 return String::cast(roots_[k##name##RootIndex]); \ 895 } 896 SYMBOL_LIST(SYMBOL_ACCESSOR) 897 #undef SYMBOL_ACCESSOR 898 899 // The hidden_symbol is special because it is the empty string, but does 900 // not match the empty string. 901 String* hidden_symbol() { return hidden_symbol_; } 902 set_global_contexts_list(Object * object)903 void set_global_contexts_list(Object* object) { 904 global_contexts_list_ = object; 905 } global_contexts_list()906 Object* global_contexts_list() { return global_contexts_list_; } 907 908 // Iterates over all roots in the heap. 909 void IterateRoots(ObjectVisitor* v, VisitMode mode); 910 // Iterates over all strong roots in the heap. 911 void IterateStrongRoots(ObjectVisitor* v, VisitMode mode); 912 // Iterates over all the other roots in the heap. 913 void IterateWeakRoots(ObjectVisitor* v, VisitMode mode); 914 915 enum ExpectedPageWatermarkState { 916 WATERMARK_SHOULD_BE_VALID, 917 WATERMARK_CAN_BE_INVALID 918 }; 919 920 // For each dirty region on a page in use from an old space call 921 // visit_dirty_region callback. 922 // If either visit_dirty_region or callback can cause an allocation 923 // in old space and changes in allocation watermark then 924 // can_preallocate_during_iteration should be set to true. 925 // All pages will be marked as having invalid watermark upon 926 // iteration completion. 927 void IterateDirtyRegions( 928 PagedSpace* space, 929 DirtyRegionCallback visit_dirty_region, 930 ObjectSlotCallback callback, 931 ExpectedPageWatermarkState expected_page_watermark_state); 932 933 // Interpret marks as a bitvector of dirty marks for regions of size 934 // Page::kRegionSize aligned by Page::kRegionAlignmentMask and covering 935 // memory interval from start to top. For each dirty region call a 936 // visit_dirty_region callback. Return updated bitvector of dirty marks. 937 uint32_t IterateDirtyRegions(uint32_t marks, 938 Address start, 939 Address end, 940 DirtyRegionCallback visit_dirty_region, 941 ObjectSlotCallback callback); 942 943 // Iterate pointers to from semispace of new space found in memory interval 944 // from start to end. 945 // Update dirty marks for page containing start address. 946 void IterateAndMarkPointersToFromSpace(Address start, 947 Address end, 948 ObjectSlotCallback callback); 949 950 // Iterate pointers to new space found in memory interval from start to end. 951 // Return true if pointers to new space was found. 952 static bool IteratePointersInDirtyRegion(Heap* heap, 953 Address start, 954 Address end, 955 ObjectSlotCallback callback); 956 957 958 // Iterate pointers to new space found in memory interval from start to end. 959 // This interval is considered to belong to the map space. 960 // Return true if pointers to new space was found. 961 static bool IteratePointersInDirtyMapsRegion(Heap* heap, 962 Address start, 963 Address end, 964 ObjectSlotCallback callback); 965 966 967 // Returns whether the object resides in new space. 968 inline bool InNewSpace(Object* object); 969 inline bool InFromSpace(Object* object); 970 inline bool InToSpace(Object* object); 971 972 // Checks whether an address/object in the heap (including auxiliary 973 // area and unused area). 974 bool Contains(Address addr); 975 bool Contains(HeapObject* value); 976 977 // Checks whether an address/object in a space. 978 // Currently used by tests, serialization and heap verification only. 979 bool InSpace(Address addr, AllocationSpace space); 980 bool InSpace(HeapObject* value, AllocationSpace space); 981 982 // Finds out which space an object should get promoted to based on its type. 983 inline OldSpace* TargetSpace(HeapObject* object); 984 inline AllocationSpace TargetSpaceId(InstanceType type); 985 986 // Sets the stub_cache_ (only used when expanding the dictionary). public_set_code_stubs(NumberDictionary * value)987 void public_set_code_stubs(NumberDictionary* value) { 988 roots_[kCodeStubsRootIndex] = value; 989 } 990 991 // Support for computing object sizes for old objects during GCs. Returns 992 // a function that is guaranteed to be safe for computing object sizes in 993 // the current GC phase. GcSafeSizeOfOldObjectFunction()994 HeapObjectCallback GcSafeSizeOfOldObjectFunction() { 995 return gc_safe_size_of_old_object_; 996 } 997 998 // Sets the non_monomorphic_cache_ (only used when expanding the dictionary). public_set_non_monomorphic_cache(NumberDictionary * value)999 void public_set_non_monomorphic_cache(NumberDictionary* value) { 1000 roots_[kNonMonomorphicCacheRootIndex] = value; 1001 } 1002 public_set_empty_script(Script * script)1003 void public_set_empty_script(Script* script) { 1004 roots_[kEmptyScriptRootIndex] = script; 1005 } 1006 1007 // Update the next script id. 1008 inline void SetLastScriptId(Object* last_script_id); 1009 1010 // Generated code can embed this address to get access to the roots. roots_address()1011 Object** roots_address() { return roots_; } 1012 1013 // Get address of global contexts list for serialization support. global_contexts_list_address()1014 Object** global_contexts_list_address() { 1015 return &global_contexts_list_; 1016 } 1017 1018 #ifdef DEBUG 1019 void Print(); 1020 void PrintHandles(); 1021 1022 // Verify the heap is in its normal state before or after a GC. 1023 void Verify(); 1024 1025 // Report heap statistics. 1026 void ReportHeapStatistics(const char* title); 1027 void ReportCodeStatistics(const char* title); 1028 1029 // Fill in bogus values in from space 1030 void ZapFromSpace(); 1031 #endif 1032 1033 #if defined(ENABLE_LOGGING_AND_PROFILING) 1034 // Print short heap statistics. 1035 void PrintShortHeapStatistics(); 1036 #endif 1037 1038 // Makes a new symbol object 1039 // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation 1040 // failed. 1041 // Please note this function does not perform a garbage collection. 1042 MUST_USE_RESULT MaybeObject* CreateSymbol( 1043 const char* str, int length, int hash); 1044 MUST_USE_RESULT MaybeObject* CreateSymbol(String* str); 1045 1046 // Write barrier support for address[offset] = o. 1047 inline void RecordWrite(Address address, int offset); 1048 1049 // Write barrier support for address[start : start + len[ = o. 1050 inline void RecordWrites(Address address, int start, int len); 1051 1052 // Given an address occupied by a live code object, return that object. 1053 Object* FindCodeObject(Address a); 1054 1055 // Invoke Shrink on shrinkable spaces. 1056 void Shrink(); 1057 1058 enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT }; gc_state()1059 inline HeapState gc_state() { return gc_state_; } 1060 1061 #ifdef DEBUG IsAllocationAllowed()1062 bool IsAllocationAllowed() { return allocation_allowed_; } 1063 inline bool allow_allocation(bool enable); 1064 disallow_allocation_failure()1065 bool disallow_allocation_failure() { 1066 return disallow_allocation_failure_; 1067 } 1068 1069 void TracePathToObject(Object* target); 1070 void TracePathToGlobal(); 1071 #endif 1072 1073 // Callback function passed to Heap::Iterate etc. Copies an object if 1074 // necessary, the object might be promoted to an old space. The caller must 1075 // ensure the precondition that the object is (a) a heap object and (b) in 1076 // the heap's from space. 1077 static inline void ScavengePointer(HeapObject** p); 1078 static inline void ScavengeObject(HeapObject** p, HeapObject* object); 1079 1080 // Commits from space if it is uncommitted. 1081 void EnsureFromSpaceIsCommitted(); 1082 1083 // Support for partial snapshots. After calling this we can allocate a 1084 // certain number of bytes using only linear allocation (with a 1085 // LinearAllocationScope and an AlwaysAllocateScope) without using freelists 1086 // or causing a GC. It returns true of space was reserved or false if a GC is 1087 // needed. For paged spaces the space requested must include the space wasted 1088 // at the end of each page when allocating linearly. 1089 void ReserveSpace( 1090 int new_space_size, 1091 int pointer_space_size, 1092 int data_space_size, 1093 int code_space_size, 1094 int map_space_size, 1095 int cell_space_size, 1096 int large_object_size); 1097 1098 // 1099 // Support for the API. 1100 // 1101 1102 bool CreateApiObjects(); 1103 1104 // Attempt to find the number in a small cache. If we finds it, return 1105 // the string representation of the number. Otherwise return undefined. 1106 Object* GetNumberStringCache(Object* number); 1107 1108 // Update the cache with a new number-string pair. 1109 void SetNumberStringCache(Object* number, String* str); 1110 1111 // Adjusts the amount of registered external memory. 1112 // Returns the adjusted value. 1113 inline int AdjustAmountOfExternalAllocatedMemory(int change_in_bytes); 1114 1115 // Allocate uninitialized fixed array. 1116 MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(int length); 1117 MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(int length, 1118 PretenureFlag pretenure); 1119 1120 // True if we have reached the allocation limit in the old generation that 1121 // should force the next GC (caused normally) to be a full one. OldGenerationPromotionLimitReached()1122 bool OldGenerationPromotionLimitReached() { 1123 return (PromotedSpaceSize() + PromotedExternalMemorySize()) 1124 > old_gen_promotion_limit_; 1125 } 1126 OldGenerationSpaceAvailable()1127 intptr_t OldGenerationSpaceAvailable() { 1128 return old_gen_allocation_limit_ - 1129 (PromotedSpaceSize() + PromotedExternalMemorySize()); 1130 } 1131 1132 // True if we have reached the allocation limit in the old generation that 1133 // should artificially cause a GC right now. OldGenerationAllocationLimitReached()1134 bool OldGenerationAllocationLimitReached() { 1135 return OldGenerationSpaceAvailable() < 0; 1136 } 1137 1138 // Can be called when the embedding application is idle. 1139 bool IdleNotification(); 1140 1141 // Declare all the root indices. 1142 enum RootListIndex { 1143 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex, 1144 STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION) 1145 #undef ROOT_INDEX_DECLARATION 1146 1147 // Utility type maps 1148 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex, 1149 STRUCT_LIST(DECLARE_STRUCT_MAP) 1150 #undef DECLARE_STRUCT_MAP 1151 1152 #define SYMBOL_INDEX_DECLARATION(name, str) k##name##RootIndex, 1153 SYMBOL_LIST(SYMBOL_INDEX_DECLARATION) 1154 #undef SYMBOL_DECLARATION 1155 1156 kSymbolTableRootIndex, 1157 kStrongRootListLength = kSymbolTableRootIndex, 1158 kRootListLength 1159 }; 1160 1161 MUST_USE_RESULT MaybeObject* NumberToString( 1162 Object* number, bool check_number_string_cache = true); 1163 1164 Map* MapForExternalArrayType(ExternalArrayType array_type); 1165 RootListIndex RootIndexForExternalArrayType( 1166 ExternalArrayType array_type); 1167 1168 void RecordStats(HeapStats* stats, bool take_snapshot = false); 1169 1170 // Copy block of memory from src to dst. Size of block should be aligned 1171 // by pointer size. 1172 static inline void CopyBlock(Address dst, Address src, int byte_size); 1173 1174 inline void CopyBlockToOldSpaceAndUpdateRegionMarks(Address dst, 1175 Address src, 1176 int byte_size); 1177 1178 // Optimized version of memmove for blocks with pointer size aligned sizes and 1179 // pointer size aligned addresses. 1180 static inline void MoveBlock(Address dst, Address src, int byte_size); 1181 1182 inline void MoveBlockToOldSpaceAndUpdateRegionMarks(Address dst, 1183 Address src, 1184 int byte_size); 1185 1186 // Check new space expansion criteria and expand semispaces if it was hit. 1187 void CheckNewSpaceExpansionCriteria(); 1188 IncrementYoungSurvivorsCounter(int survived)1189 inline void IncrementYoungSurvivorsCounter(int survived) { 1190 young_survivors_after_last_gc_ = survived; 1191 survived_since_last_expansion_ += survived; 1192 } 1193 1194 void UpdateNewSpaceReferencesInExternalStringTable( 1195 ExternalStringTableUpdaterCallback updater_func); 1196 1197 void ProcessWeakReferences(WeakObjectRetainer* retainer); 1198 1199 // Helper function that governs the promotion policy from new space to 1200 // old. If the object's old address lies below the new space's age 1201 // mark or if we've already filled the bottom 1/16th of the to space, 1202 // we try to promote this object. 1203 inline bool ShouldBePromoted(Address old_address, int object_size); 1204 MaxObjectSizeInNewSpace()1205 int MaxObjectSizeInNewSpace() { return kMaxObjectSizeInNewSpace; } 1206 1207 void ClearJSFunctionResultCaches(); 1208 1209 void ClearNormalizedMapCaches(); 1210 tracer()1211 GCTracer* tracer() { return tracer_; } 1212 total_regexp_code_generated()1213 double total_regexp_code_generated() { return total_regexp_code_generated_; } IncreaseTotalRegexpCodeGenerated(int size)1214 void IncreaseTotalRegexpCodeGenerated(int size) { 1215 total_regexp_code_generated_ += size; 1216 } 1217 1218 // Returns maximum GC pause. get_max_gc_pause()1219 int get_max_gc_pause() { return max_gc_pause_; } 1220 1221 // Returns maximum size of objects alive after GC. get_max_alive_after_gc()1222 intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; } 1223 1224 // Returns minimal interval between two subsequent collections. get_min_in_mutator()1225 int get_min_in_mutator() { return min_in_mutator_; } 1226 mark_compact_collector()1227 MarkCompactCollector* mark_compact_collector() { 1228 return &mark_compact_collector_; 1229 } 1230 external_string_table()1231 ExternalStringTable* external_string_table() { 1232 return &external_string_table_; 1233 } 1234 1235 inline Isolate* isolate(); is_safe_to_read_maps()1236 bool is_safe_to_read_maps() { return is_safe_to_read_maps_; } 1237 CallGlobalGCPrologueCallback()1238 void CallGlobalGCPrologueCallback() { 1239 if (global_gc_prologue_callback_ != NULL) global_gc_prologue_callback_(); 1240 } 1241 CallGlobalGCEpilogueCallback()1242 void CallGlobalGCEpilogueCallback() { 1243 if (global_gc_epilogue_callback_ != NULL) global_gc_epilogue_callback_(); 1244 } 1245 1246 private: 1247 Heap(); 1248 1249 // This can be calculated directly from a pointer to the heap; however, it is 1250 // more expedient to get at the isolate directly from within Heap methods. 1251 Isolate* isolate_; 1252 1253 int reserved_semispace_size_; 1254 int max_semispace_size_; 1255 int initial_semispace_size_; 1256 intptr_t max_old_generation_size_; 1257 intptr_t max_executable_size_; 1258 intptr_t code_range_size_; 1259 1260 // For keeping track of how much data has survived 1261 // scavenge since last new space expansion. 1262 int survived_since_last_expansion_; 1263 1264 int always_allocate_scope_depth_; 1265 int linear_allocation_scope_depth_; 1266 1267 // For keeping track of context disposals. 1268 int contexts_disposed_; 1269 1270 #if defined(V8_TARGET_ARCH_X64) 1271 static const int kMaxObjectSizeInNewSpace = 1024*KB; 1272 #else 1273 static const int kMaxObjectSizeInNewSpace = 512*KB; 1274 #endif 1275 1276 NewSpace new_space_; 1277 OldSpace* old_pointer_space_; 1278 OldSpace* old_data_space_; 1279 OldSpace* code_space_; 1280 MapSpace* map_space_; 1281 CellSpace* cell_space_; 1282 LargeObjectSpace* lo_space_; 1283 HeapState gc_state_; 1284 1285 // Returns the size of object residing in non new spaces. 1286 intptr_t PromotedSpaceSize(); 1287 1288 // Returns the amount of external memory registered since last global gc. 1289 int PromotedExternalMemorySize(); 1290 1291 int mc_count_; // how many mark-compact collections happened 1292 int ms_count_; // how many mark-sweep collections happened 1293 unsigned int gc_count_; // how many gc happened 1294 1295 // Total length of the strings we failed to flatten since the last GC. 1296 int unflattened_strings_length_; 1297 1298 #define ROOT_ACCESSOR(type, name, camel_name) \ 1299 inline void set_##name(type* value) { \ 1300 roots_[k##camel_name##RootIndex] = value; \ 1301 } 1302 ROOT_LIST(ROOT_ACCESSOR) 1303 #undef ROOT_ACCESSOR 1304 1305 #ifdef DEBUG 1306 bool allocation_allowed_; 1307 1308 // If the --gc-interval flag is set to a positive value, this 1309 // variable holds the value indicating the number of allocations 1310 // remain until the next failure and garbage collection. 1311 int allocation_timeout_; 1312 1313 // Do we expect to be able to handle allocation failure at this 1314 // time? 1315 bool disallow_allocation_failure_; 1316 1317 HeapDebugUtils* debug_utils_; 1318 #endif // DEBUG 1319 1320 // Limit that triggers a global GC on the next (normally caused) GC. This 1321 // is checked when we have already decided to do a GC to help determine 1322 // which collector to invoke. 1323 intptr_t old_gen_promotion_limit_; 1324 1325 // Limit that triggers a global GC as soon as is reasonable. This is 1326 // checked before expanding a paged space in the old generation and on 1327 // every allocation in large object space. 1328 intptr_t old_gen_allocation_limit_; 1329 1330 // Limit on the amount of externally allocated memory allowed 1331 // between global GCs. If reached a global GC is forced. 1332 intptr_t external_allocation_limit_; 1333 1334 // The amount of external memory registered through the API kept alive 1335 // by global handles 1336 int amount_of_external_allocated_memory_; 1337 1338 // Caches the amount of external memory registered at the last global gc. 1339 int amount_of_external_allocated_memory_at_last_global_gc_; 1340 1341 // Indicates that an allocation has failed in the old generation since the 1342 // last GC. 1343 int old_gen_exhausted_; 1344 1345 Object* roots_[kRootListLength]; 1346 1347 Object* global_contexts_list_; 1348 1349 struct StringTypeTable { 1350 InstanceType type; 1351 int size; 1352 RootListIndex index; 1353 }; 1354 1355 struct ConstantSymbolTable { 1356 const char* contents; 1357 RootListIndex index; 1358 }; 1359 1360 struct StructTable { 1361 InstanceType type; 1362 int size; 1363 RootListIndex index; 1364 }; 1365 1366 static const StringTypeTable string_type_table[]; 1367 static const ConstantSymbolTable constant_symbol_table[]; 1368 static const StructTable struct_table[]; 1369 1370 // The special hidden symbol which is an empty string, but does not match 1371 // any string when looked up in properties. 1372 String* hidden_symbol_; 1373 1374 // GC callback function, called before and after mark-compact GC. 1375 // Allocations in the callback function are disallowed. 1376 struct GCPrologueCallbackPair { GCPrologueCallbackPairGCPrologueCallbackPair1377 GCPrologueCallbackPair(GCPrologueCallback callback, GCType gc_type) 1378 : callback(callback), gc_type(gc_type) { 1379 } 1380 bool operator==(const GCPrologueCallbackPair& pair) const { 1381 return pair.callback == callback; 1382 } 1383 GCPrologueCallback callback; 1384 GCType gc_type; 1385 }; 1386 List<GCPrologueCallbackPair> gc_prologue_callbacks_; 1387 1388 struct GCEpilogueCallbackPair { GCEpilogueCallbackPairGCEpilogueCallbackPair1389 GCEpilogueCallbackPair(GCEpilogueCallback callback, GCType gc_type) 1390 : callback(callback), gc_type(gc_type) { 1391 } 1392 bool operator==(const GCEpilogueCallbackPair& pair) const { 1393 return pair.callback == callback; 1394 } 1395 GCEpilogueCallback callback; 1396 GCType gc_type; 1397 }; 1398 List<GCEpilogueCallbackPair> gc_epilogue_callbacks_; 1399 1400 GCCallback global_gc_prologue_callback_; 1401 GCCallback global_gc_epilogue_callback_; 1402 1403 // Support for computing object sizes during GC. 1404 HeapObjectCallback gc_safe_size_of_old_object_; 1405 static int GcSafeSizeOfOldObject(HeapObject* object); 1406 static int GcSafeSizeOfOldObjectWithEncodedMap(HeapObject* object); 1407 1408 // Update the GC state. Called from the mark-compact collector. MarkMapPointersAsEncoded(bool encoded)1409 void MarkMapPointersAsEncoded(bool encoded) { 1410 gc_safe_size_of_old_object_ = encoded 1411 ? &GcSafeSizeOfOldObjectWithEncodedMap 1412 : &GcSafeSizeOfOldObject; 1413 } 1414 1415 // Checks whether a global GC is necessary 1416 GarbageCollector SelectGarbageCollector(AllocationSpace space); 1417 1418 // Performs garbage collection 1419 // Returns whether there is a chance another major GC could 1420 // collect more garbage. 1421 bool PerformGarbageCollection(GarbageCollector collector, 1422 GCTracer* tracer); 1423 1424 static const intptr_t kMinimumPromotionLimit = 2 * MB; 1425 static const intptr_t kMinimumAllocationLimit = 8 * MB; 1426 1427 inline void UpdateOldSpaceLimits(); 1428 1429 // Allocate an uninitialized object in map space. The behavior is identical 1430 // to Heap::AllocateRaw(size_in_bytes, MAP_SPACE), except that (a) it doesn't 1431 // have to test the allocation space argument and (b) can reduce code size 1432 // (since both AllocateRaw and AllocateRawMap are inlined). 1433 MUST_USE_RESULT inline MaybeObject* AllocateRawMap(); 1434 1435 // Allocate an uninitialized object in the global property cell space. 1436 MUST_USE_RESULT inline MaybeObject* AllocateRawCell(); 1437 1438 // Initializes a JSObject based on its map. 1439 void InitializeJSObjectFromMap(JSObject* obj, 1440 FixedArray* properties, 1441 Map* map); 1442 1443 bool CreateInitialMaps(); 1444 bool CreateInitialObjects(); 1445 1446 // These five Create*EntryStub functions are here and forced to not be inlined 1447 // because of a gcc-4.4 bug that assigns wrong vtable entries. 1448 NO_INLINE(void CreateJSEntryStub()); 1449 NO_INLINE(void CreateJSConstructEntryStub()); 1450 1451 void CreateFixedStubs(); 1452 1453 MaybeObject* CreateOddball(const char* to_string, 1454 Object* to_number, 1455 byte kind); 1456 1457 // Allocate empty fixed array. 1458 MUST_USE_RESULT MaybeObject* AllocateEmptyFixedArray(); 1459 1460 void SwitchScavengingVisitorsTableIfProfilingWasEnabled(); 1461 1462 // Performs a minor collection in new generation. 1463 void Scavenge(); 1464 1465 static String* UpdateNewSpaceReferenceInExternalStringTableEntry( 1466 Heap* heap, 1467 Object** pointer); 1468 1469 Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front); 1470 1471 // Performs a major collection in the whole heap. 1472 void MarkCompact(GCTracer* tracer); 1473 1474 // Code to be run before and after mark-compact. 1475 void MarkCompactPrologue(bool is_compacting); 1476 1477 // Completely clear the Instanceof cache (to stop it keeping objects alive 1478 // around a GC). 1479 inline void CompletelyClearInstanceofCache(); 1480 1481 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) 1482 // Record statistics before and after garbage collection. 1483 void ReportStatisticsBeforeGC(); 1484 void ReportStatisticsAfterGC(); 1485 #endif 1486 1487 // Slow part of scavenge object. 1488 static void ScavengeObjectSlow(HeapObject** p, HeapObject* object); 1489 1490 // Initializes a function with a shared part and prototype. 1491 // Returns the function. 1492 // Note: this code was factored out of AllocateFunction such that 1493 // other parts of the VM could use it. Specifically, a function that creates 1494 // instances of type JS_FUNCTION_TYPE benefit from the use of this function. 1495 // Please note this does not perform a garbage collection. 1496 MUST_USE_RESULT inline MaybeObject* InitializeFunction( 1497 JSFunction* function, 1498 SharedFunctionInfo* shared, 1499 Object* prototype); 1500 1501 // Total RegExp code ever generated 1502 double total_regexp_code_generated_; 1503 1504 GCTracer* tracer_; 1505 1506 1507 // Initializes the number to string cache based on the max semispace size. 1508 MUST_USE_RESULT MaybeObject* InitializeNumberStringCache(); 1509 // Flush the number to string cache. 1510 void FlushNumberStringCache(); 1511 1512 void UpdateSurvivalRateTrend(int start_new_space_size); 1513 1514 enum SurvivalRateTrend { INCREASING, STABLE, DECREASING, FLUCTUATING }; 1515 1516 static const int kYoungSurvivalRateThreshold = 90; 1517 static const int kYoungSurvivalRateAllowedDeviation = 15; 1518 1519 int young_survivors_after_last_gc_; 1520 int high_survival_rate_period_length_; 1521 double survival_rate_; 1522 SurvivalRateTrend previous_survival_rate_trend_; 1523 SurvivalRateTrend survival_rate_trend_; 1524 set_survival_rate_trend(SurvivalRateTrend survival_rate_trend)1525 void set_survival_rate_trend(SurvivalRateTrend survival_rate_trend) { 1526 ASSERT(survival_rate_trend != FLUCTUATING); 1527 previous_survival_rate_trend_ = survival_rate_trend_; 1528 survival_rate_trend_ = survival_rate_trend; 1529 } 1530 survival_rate_trend()1531 SurvivalRateTrend survival_rate_trend() { 1532 if (survival_rate_trend_ == STABLE) { 1533 return STABLE; 1534 } else if (previous_survival_rate_trend_ == STABLE) { 1535 return survival_rate_trend_; 1536 } else if (survival_rate_trend_ != previous_survival_rate_trend_) { 1537 return FLUCTUATING; 1538 } else { 1539 return survival_rate_trend_; 1540 } 1541 } 1542 IsStableOrIncreasingSurvivalTrend()1543 bool IsStableOrIncreasingSurvivalTrend() { 1544 switch (survival_rate_trend()) { 1545 case STABLE: 1546 case INCREASING: 1547 return true; 1548 default: 1549 return false; 1550 } 1551 } 1552 IsIncreasingSurvivalTrend()1553 bool IsIncreasingSurvivalTrend() { 1554 return survival_rate_trend() == INCREASING; 1555 } 1556 IsHighSurvivalRate()1557 bool IsHighSurvivalRate() { 1558 return high_survival_rate_period_length_ > 0; 1559 } 1560 1561 static const int kInitialSymbolTableSize = 2048; 1562 static const int kInitialEvalCacheSize = 64; 1563 1564 // Maximum GC pause. 1565 int max_gc_pause_; 1566 1567 // Maximum size of objects alive after GC. 1568 intptr_t max_alive_after_gc_; 1569 1570 // Minimal interval between two subsequent collections. 1571 int min_in_mutator_; 1572 1573 // Size of objects alive after last GC. 1574 intptr_t alive_after_last_gc_; 1575 1576 double last_gc_end_timestamp_; 1577 1578 MarkCompactCollector mark_compact_collector_; 1579 1580 // This field contains the meaning of the WATERMARK_INVALIDATED flag. 1581 // Instead of clearing this flag from all pages we just flip 1582 // its meaning at the beginning of a scavenge. 1583 intptr_t page_watermark_invalidated_mark_; 1584 1585 int number_idle_notifications_; 1586 unsigned int last_idle_notification_gc_count_; 1587 bool last_idle_notification_gc_count_init_; 1588 1589 // Shared state read by the scavenge collector and set by ScavengeObject. 1590 PromotionQueue promotion_queue_; 1591 1592 // Flag is set when the heap has been configured. The heap can be repeatedly 1593 // configured through the API until it is setup. 1594 bool configured_; 1595 1596 ExternalStringTable external_string_table_; 1597 1598 bool is_safe_to_read_maps_; 1599 1600 friend class Factory; 1601 friend class GCTracer; 1602 friend class DisallowAllocationFailure; 1603 friend class AlwaysAllocateScope; 1604 friend class LinearAllocationScope; 1605 friend class Page; 1606 friend class Isolate; 1607 friend class MarkCompactCollector; 1608 friend class MapCompact; 1609 1610 DISALLOW_COPY_AND_ASSIGN(Heap); 1611 }; 1612 1613 1614 class HeapStats { 1615 public: 1616 static const int kStartMarker = 0xDECADE00; 1617 static const int kEndMarker = 0xDECADE01; 1618 1619 int* start_marker; // 0 1620 int* new_space_size; // 1 1621 int* new_space_capacity; // 2 1622 intptr_t* old_pointer_space_size; // 3 1623 intptr_t* old_pointer_space_capacity; // 4 1624 intptr_t* old_data_space_size; // 5 1625 intptr_t* old_data_space_capacity; // 6 1626 intptr_t* code_space_size; // 7 1627 intptr_t* code_space_capacity; // 8 1628 intptr_t* map_space_size; // 9 1629 intptr_t* map_space_capacity; // 10 1630 intptr_t* cell_space_size; // 11 1631 intptr_t* cell_space_capacity; // 12 1632 intptr_t* lo_space_size; // 13 1633 int* global_handle_count; // 14 1634 int* weak_global_handle_count; // 15 1635 int* pending_global_handle_count; // 16 1636 int* near_death_global_handle_count; // 17 1637 int* destroyed_global_handle_count; // 18 1638 intptr_t* memory_allocator_size; // 19 1639 intptr_t* memory_allocator_capacity; // 20 1640 int* objects_per_type; // 21 1641 int* size_per_type; // 22 1642 int* os_error; // 23 1643 int* end_marker; // 24 1644 }; 1645 1646 1647 class AlwaysAllocateScope { 1648 public: AlwaysAllocateScope()1649 AlwaysAllocateScope() { 1650 // We shouldn't hit any nested scopes, because that requires 1651 // non-handle code to call handle code. The code still works but 1652 // performance will degrade, so we want to catch this situation 1653 // in debug mode. 1654 ASSERT(HEAP->always_allocate_scope_depth_ == 0); 1655 HEAP->always_allocate_scope_depth_++; 1656 } 1657 ~AlwaysAllocateScope()1658 ~AlwaysAllocateScope() { 1659 HEAP->always_allocate_scope_depth_--; 1660 ASSERT(HEAP->always_allocate_scope_depth_ == 0); 1661 } 1662 }; 1663 1664 1665 class LinearAllocationScope { 1666 public: LinearAllocationScope()1667 LinearAllocationScope() { 1668 HEAP->linear_allocation_scope_depth_++; 1669 } 1670 ~LinearAllocationScope()1671 ~LinearAllocationScope() { 1672 HEAP->linear_allocation_scope_depth_--; 1673 ASSERT(HEAP->linear_allocation_scope_depth_ >= 0); 1674 } 1675 }; 1676 1677 1678 #ifdef DEBUG 1679 // Visitor class to verify interior pointers in spaces that do not contain 1680 // or care about intergenerational references. All heap object pointers have to 1681 // point into the heap to a location that has a map pointer at its first word. 1682 // Caveat: Heap::Contains is an approximation because it can return true for 1683 // objects in a heap space but above the allocation pointer. 1684 class VerifyPointersVisitor: public ObjectVisitor { 1685 public: VisitPointers(Object ** start,Object ** end)1686 void VisitPointers(Object** start, Object** end) { 1687 for (Object** current = start; current < end; current++) { 1688 if ((*current)->IsHeapObject()) { 1689 HeapObject* object = HeapObject::cast(*current); 1690 ASSERT(HEAP->Contains(object)); 1691 ASSERT(object->map()->IsMap()); 1692 } 1693 } 1694 } 1695 }; 1696 1697 1698 // Visitor class to verify interior pointers in spaces that use region marks 1699 // to keep track of intergenerational references. 1700 // As VerifyPointersVisitor but also checks that dirty marks are set 1701 // for regions covering intergenerational references. 1702 class VerifyPointersAndDirtyRegionsVisitor: public ObjectVisitor { 1703 public: VisitPointers(Object ** start,Object ** end)1704 void VisitPointers(Object** start, Object** end) { 1705 for (Object** current = start; current < end; current++) { 1706 if ((*current)->IsHeapObject()) { 1707 HeapObject* object = HeapObject::cast(*current); 1708 ASSERT(HEAP->Contains(object)); 1709 ASSERT(object->map()->IsMap()); 1710 if (HEAP->InNewSpace(object)) { 1711 ASSERT(HEAP->InToSpace(object)); 1712 Address addr = reinterpret_cast<Address>(current); 1713 ASSERT(Page::FromAddress(addr)->IsRegionDirty(addr)); 1714 } 1715 } 1716 } 1717 } 1718 }; 1719 #endif 1720 1721 1722 // Space iterator for iterating over all spaces of the heap. 1723 // Returns each space in turn, and null when it is done. 1724 class AllSpaces BASE_EMBEDDED { 1725 public: 1726 Space* next(); AllSpaces()1727 AllSpaces() { counter_ = FIRST_SPACE; } 1728 private: 1729 int counter_; 1730 }; 1731 1732 1733 // Space iterator for iterating over all old spaces of the heap: Old pointer 1734 // space, old data space and code space. 1735 // Returns each space in turn, and null when it is done. 1736 class OldSpaces BASE_EMBEDDED { 1737 public: 1738 OldSpace* next(); OldSpaces()1739 OldSpaces() { counter_ = OLD_POINTER_SPACE; } 1740 private: 1741 int counter_; 1742 }; 1743 1744 1745 // Space iterator for iterating over all the paged spaces of the heap: 1746 // Map space, old pointer space, old data space, code space and cell space. 1747 // Returns each space in turn, and null when it is done. 1748 class PagedSpaces BASE_EMBEDDED { 1749 public: 1750 PagedSpace* next(); PagedSpaces()1751 PagedSpaces() { counter_ = OLD_POINTER_SPACE; } 1752 private: 1753 int counter_; 1754 }; 1755 1756 1757 // Space iterator for iterating over all spaces of the heap. 1758 // For each space an object iterator is provided. The deallocation of the 1759 // returned object iterators is handled by the space iterator. 1760 class SpaceIterator : public Malloced { 1761 public: 1762 SpaceIterator(); 1763 explicit SpaceIterator(HeapObjectCallback size_func); 1764 virtual ~SpaceIterator(); 1765 1766 bool has_next(); 1767 ObjectIterator* next(); 1768 1769 private: 1770 ObjectIterator* CreateIterator(); 1771 1772 int current_space_; // from enum AllocationSpace. 1773 ObjectIterator* iterator_; // object iterator for the current space. 1774 HeapObjectCallback size_func_; 1775 }; 1776 1777 1778 // A HeapIterator provides iteration over the whole heap. It 1779 // aggregates the specific iterators for the different spaces as 1780 // these can only iterate over one space only. 1781 // 1782 // HeapIterator can skip free list nodes (that is, de-allocated heap 1783 // objects that still remain in the heap). As implementation of free 1784 // nodes filtering uses GC marks, it can't be used during MS/MC GC 1785 // phases. Also, it is forbidden to interrupt iteration in this mode, 1786 // as this will leave heap objects marked (and thus, unusable). 1787 class HeapObjectsFilter; 1788 1789 class HeapIterator BASE_EMBEDDED { 1790 public: 1791 enum HeapObjectsFiltering { 1792 kNoFiltering, 1793 kFilterFreeListNodes, 1794 kFilterUnreachable 1795 }; 1796 1797 HeapIterator(); 1798 explicit HeapIterator(HeapObjectsFiltering filtering); 1799 ~HeapIterator(); 1800 1801 HeapObject* next(); 1802 void reset(); 1803 1804 private: 1805 // Perform the initialization. 1806 void Init(); 1807 // Perform all necessary shutdown (destruction) work. 1808 void Shutdown(); 1809 HeapObject* NextObject(); 1810 1811 HeapObjectsFiltering filtering_; 1812 HeapObjectsFilter* filter_; 1813 // Space iterator for iterating all the spaces. 1814 SpaceIterator* space_iterator_; 1815 // Object iterator for the space currently being iterated. 1816 ObjectIterator* object_iterator_; 1817 }; 1818 1819 1820 // Cache for mapping (map, property name) into field offset. 1821 // Cleared at startup and prior to mark sweep collection. 1822 class KeyedLookupCache { 1823 public: 1824 // Lookup field offset for (map, name). If absent, -1 is returned. 1825 int Lookup(Map* map, String* name); 1826 1827 // Update an element in the cache. 1828 void Update(Map* map, String* name, int field_offset); 1829 1830 // Clear the cache. 1831 void Clear(); 1832 1833 static const int kLength = 64; 1834 static const int kCapacityMask = kLength - 1; 1835 static const int kMapHashShift = 2; 1836 static const int kNotFound = -1; 1837 1838 private: KeyedLookupCache()1839 KeyedLookupCache() { 1840 for (int i = 0; i < kLength; ++i) { 1841 keys_[i].map = NULL; 1842 keys_[i].name = NULL; 1843 field_offsets_[i] = kNotFound; 1844 } 1845 } 1846 1847 static inline int Hash(Map* map, String* name); 1848 1849 // Get the address of the keys and field_offsets arrays. Used in 1850 // generated code to perform cache lookups. keys_address()1851 Address keys_address() { 1852 return reinterpret_cast<Address>(&keys_); 1853 } 1854 field_offsets_address()1855 Address field_offsets_address() { 1856 return reinterpret_cast<Address>(&field_offsets_); 1857 } 1858 1859 struct Key { 1860 Map* map; 1861 String* name; 1862 }; 1863 1864 Key keys_[kLength]; 1865 int field_offsets_[kLength]; 1866 1867 friend class ExternalReference; 1868 friend class Isolate; 1869 DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache); 1870 }; 1871 1872 1873 // Cache for mapping (array, property name) into descriptor index. 1874 // The cache contains both positive and negative results. 1875 // Descriptor index equals kNotFound means the property is absent. 1876 // Cleared at startup and prior to any gc. 1877 class DescriptorLookupCache { 1878 public: 1879 // Lookup descriptor index for (map, name). 1880 // If absent, kAbsent is returned. Lookup(DescriptorArray * array,String * name)1881 int Lookup(DescriptorArray* array, String* name) { 1882 if (!StringShape(name).IsSymbol()) return kAbsent; 1883 int index = Hash(array, name); 1884 Key& key = keys_[index]; 1885 if ((key.array == array) && (key.name == name)) return results_[index]; 1886 return kAbsent; 1887 } 1888 1889 // Update an element in the cache. Update(DescriptorArray * array,String * name,int result)1890 void Update(DescriptorArray* array, String* name, int result) { 1891 ASSERT(result != kAbsent); 1892 if (StringShape(name).IsSymbol()) { 1893 int index = Hash(array, name); 1894 Key& key = keys_[index]; 1895 key.array = array; 1896 key.name = name; 1897 results_[index] = result; 1898 } 1899 } 1900 1901 // Clear the cache. 1902 void Clear(); 1903 1904 static const int kAbsent = -2; 1905 private: DescriptorLookupCache()1906 DescriptorLookupCache() { 1907 for (int i = 0; i < kLength; ++i) { 1908 keys_[i].array = NULL; 1909 keys_[i].name = NULL; 1910 results_[i] = kAbsent; 1911 } 1912 } 1913 Hash(DescriptorArray * array,String * name)1914 static int Hash(DescriptorArray* array, String* name) { 1915 // Uses only lower 32 bits if pointers are larger. 1916 uint32_t array_hash = 1917 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(array)) >> 2; 1918 uint32_t name_hash = 1919 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)) >> 2; 1920 return (array_hash ^ name_hash) % kLength; 1921 } 1922 1923 static const int kLength = 64; 1924 struct Key { 1925 DescriptorArray* array; 1926 String* name; 1927 }; 1928 1929 Key keys_[kLength]; 1930 int results_[kLength]; 1931 1932 friend class Isolate; 1933 DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache); 1934 }; 1935 1936 1937 // A helper class to document/test C++ scopes where we do not 1938 // expect a GC. Usage: 1939 // 1940 // /* Allocation not allowed: we cannot handle a GC in this scope. */ 1941 // { AssertNoAllocation nogc; 1942 // ... 1943 // } 1944 1945 #ifdef DEBUG 1946 1947 class DisallowAllocationFailure { 1948 public: DisallowAllocationFailure()1949 DisallowAllocationFailure() { 1950 old_state_ = HEAP->disallow_allocation_failure_; 1951 HEAP->disallow_allocation_failure_ = true; 1952 } ~DisallowAllocationFailure()1953 ~DisallowAllocationFailure() { 1954 HEAP->disallow_allocation_failure_ = old_state_; 1955 } 1956 private: 1957 bool old_state_; 1958 }; 1959 1960 class AssertNoAllocation { 1961 public: AssertNoAllocation()1962 AssertNoAllocation() { 1963 old_state_ = HEAP->allow_allocation(false); 1964 } 1965 ~AssertNoAllocation()1966 ~AssertNoAllocation() { 1967 HEAP->allow_allocation(old_state_); 1968 } 1969 1970 private: 1971 bool old_state_; 1972 }; 1973 1974 class DisableAssertNoAllocation { 1975 public: DisableAssertNoAllocation()1976 DisableAssertNoAllocation() { 1977 old_state_ = HEAP->allow_allocation(true); 1978 } 1979 ~DisableAssertNoAllocation()1980 ~DisableAssertNoAllocation() { 1981 HEAP->allow_allocation(old_state_); 1982 } 1983 1984 private: 1985 bool old_state_; 1986 }; 1987 1988 #else // ndef DEBUG 1989 1990 class AssertNoAllocation { 1991 public: AssertNoAllocation()1992 AssertNoAllocation() { } ~AssertNoAllocation()1993 ~AssertNoAllocation() { } 1994 }; 1995 1996 class DisableAssertNoAllocation { 1997 public: DisableAssertNoAllocation()1998 DisableAssertNoAllocation() { } ~DisableAssertNoAllocation()1999 ~DisableAssertNoAllocation() { } 2000 }; 2001 2002 #endif 2003 2004 // GCTracer collects and prints ONE line after each garbage collector 2005 // invocation IFF --trace_gc is used. 2006 2007 class GCTracer BASE_EMBEDDED { 2008 public: 2009 class Scope BASE_EMBEDDED { 2010 public: 2011 enum ScopeId { 2012 EXTERNAL, 2013 MC_MARK, 2014 MC_SWEEP, 2015 MC_SWEEP_NEWSPACE, 2016 MC_COMPACT, 2017 MC_FLUSH_CODE, 2018 kNumberOfScopes 2019 }; 2020 Scope(GCTracer * tracer,ScopeId scope)2021 Scope(GCTracer* tracer, ScopeId scope) 2022 : tracer_(tracer), 2023 scope_(scope) { 2024 start_time_ = OS::TimeCurrentMillis(); 2025 } 2026 ~Scope()2027 ~Scope() { 2028 ASSERT(scope_ < kNumberOfScopes); // scope_ is unsigned. 2029 tracer_->scopes_[scope_] += OS::TimeCurrentMillis() - start_time_; 2030 } 2031 2032 private: 2033 GCTracer* tracer_; 2034 ScopeId scope_; 2035 double start_time_; 2036 }; 2037 2038 explicit GCTracer(Heap* heap); 2039 ~GCTracer(); 2040 2041 // Sets the collector. set_collector(GarbageCollector collector)2042 void set_collector(GarbageCollector collector) { collector_ = collector; } 2043 2044 // Sets the GC count. set_gc_count(unsigned int count)2045 void set_gc_count(unsigned int count) { gc_count_ = count; } 2046 2047 // Sets the full GC count. set_full_gc_count(int count)2048 void set_full_gc_count(int count) { full_gc_count_ = count; } 2049 2050 // Sets the flag that this is a compacting full GC. set_is_compacting()2051 void set_is_compacting() { is_compacting_ = true; } is_compacting()2052 bool is_compacting() const { return is_compacting_; } 2053 2054 // Increment and decrement the count of marked objects. increment_marked_count()2055 void increment_marked_count() { ++marked_count_; } decrement_marked_count()2056 void decrement_marked_count() { --marked_count_; } 2057 marked_count()2058 int marked_count() { return marked_count_; } 2059 increment_promoted_objects_size(int object_size)2060 void increment_promoted_objects_size(int object_size) { 2061 promoted_objects_size_ += object_size; 2062 } 2063 2064 private: 2065 // Returns a string matching the collector. 2066 const char* CollectorString(); 2067 2068 // Returns size of object in heap (in MB). SizeOfHeapObjects()2069 double SizeOfHeapObjects() { 2070 return (static_cast<double>(HEAP->SizeOfObjects())) / MB; 2071 } 2072 2073 double start_time_; // Timestamp set in the constructor. 2074 intptr_t start_size_; // Size of objects in heap set in constructor. 2075 GarbageCollector collector_; // Type of collector. 2076 2077 // A count (including this one, eg, the first collection is 1) of the 2078 // number of garbage collections. 2079 unsigned int gc_count_; 2080 2081 // A count (including this one) of the number of full garbage collections. 2082 int full_gc_count_; 2083 2084 // True if the current GC is a compacting full collection, false 2085 // otherwise. 2086 bool is_compacting_; 2087 2088 // True if the *previous* full GC cwas a compacting collection (will be 2089 // false if there has not been a previous full GC). 2090 bool previous_has_compacted_; 2091 2092 // On a full GC, a count of the number of marked objects. Incremented 2093 // when an object is marked and decremented when an object's mark bit is 2094 // cleared. Will be zero on a scavenge collection. 2095 int marked_count_; 2096 2097 // The count from the end of the previous full GC. Will be zero if there 2098 // was no previous full GC. 2099 int previous_marked_count_; 2100 2101 // Amounts of time spent in different scopes during GC. 2102 double scopes_[Scope::kNumberOfScopes]; 2103 2104 // Total amount of space either wasted or contained in one of free lists 2105 // before the current GC. 2106 intptr_t in_free_list_or_wasted_before_gc_; 2107 2108 // Difference between space used in the heap at the beginning of the current 2109 // collection and the end of the previous collection. 2110 intptr_t allocated_since_last_gc_; 2111 2112 // Amount of time spent in mutator that is time elapsed between end of the 2113 // previous collection and the beginning of the current one. 2114 double spent_in_mutator_; 2115 2116 // Size of objects promoted during the current collection. 2117 intptr_t promoted_objects_size_; 2118 2119 Heap* heap_; 2120 }; 2121 2122 2123 class TranscendentalCache { 2124 public: 2125 enum Type {ACOS, ASIN, ATAN, COS, EXP, LOG, SIN, TAN, kNumberOfCaches}; 2126 static const int kTranscendentalTypeBits = 3; 2127 STATIC_ASSERT((1 << kTranscendentalTypeBits) >= kNumberOfCaches); 2128 2129 // Returns a heap number with f(input), where f is a math function specified 2130 // by the 'type' argument. 2131 MUST_USE_RESULT inline MaybeObject* Get(Type type, double input); 2132 2133 // The cache contains raw Object pointers. This method disposes of 2134 // them before a garbage collection. 2135 void Clear(); 2136 2137 private: 2138 class SubCache { 2139 static const int kCacheSize = 512; 2140 2141 explicit SubCache(Type t); 2142 2143 MUST_USE_RESULT inline MaybeObject* Get(double input); 2144 2145 inline double Calculate(double input); 2146 2147 struct Element { 2148 uint32_t in[2]; 2149 Object* output; 2150 }; 2151 2152 union Converter { 2153 double dbl; 2154 uint32_t integers[2]; 2155 }; 2156 Hash(const Converter & c)2157 inline static int Hash(const Converter& c) { 2158 uint32_t hash = (c.integers[0] ^ c.integers[1]); 2159 hash ^= static_cast<int32_t>(hash) >> 16; 2160 hash ^= static_cast<int32_t>(hash) >> 8; 2161 return (hash & (kCacheSize - 1)); 2162 } 2163 2164 Element elements_[kCacheSize]; 2165 Type type_; 2166 Isolate* isolate_; 2167 2168 // Allow access to the caches_ array as an ExternalReference. 2169 friend class ExternalReference; 2170 // Inline implementation of the cache. 2171 friend class TranscendentalCacheStub; 2172 // For evaluating value. 2173 friend class TranscendentalCache; 2174 2175 DISALLOW_COPY_AND_ASSIGN(SubCache); 2176 }; 2177 TranscendentalCache()2178 TranscendentalCache() { 2179 for (int i = 0; i < kNumberOfCaches; ++i) caches_[i] = NULL; 2180 } 2181 2182 // Used to create an external reference. 2183 inline Address cache_array_address(); 2184 2185 // Instantiation 2186 friend class Isolate; 2187 // Inline implementation of the caching. 2188 friend class TranscendentalCacheStub; 2189 // Allow access to the caches_ array as an ExternalReference. 2190 friend class ExternalReference; 2191 2192 SubCache* caches_[kNumberOfCaches]; 2193 DISALLOW_COPY_AND_ASSIGN(TranscendentalCache); 2194 }; 2195 2196 2197 // Abstract base class for checking whether a weak object should be retained. 2198 class WeakObjectRetainer { 2199 public: ~WeakObjectRetainer()2200 virtual ~WeakObjectRetainer() {} 2201 2202 // Return whether this object should be retained. If NULL is returned the 2203 // object has no references. Otherwise the address of the retained object 2204 // should be returned as in some GC situations the object has been moved. 2205 virtual Object* RetainAs(Object* object) = 0; 2206 }; 2207 2208 2209 #if defined(DEBUG) || defined(LIVE_OBJECT_LIST) 2210 // Helper class for tracing paths to a search target Object from all roots. 2211 // The TracePathFrom() method can be used to trace paths from a specific 2212 // object to the search target object. 2213 class PathTracer : public ObjectVisitor { 2214 public: 2215 enum WhatToFind { 2216 FIND_ALL, // Will find all matches. 2217 FIND_FIRST // Will stop the search after first match. 2218 }; 2219 2220 // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop 2221 // after the first match. If FIND_ALL is specified, then tracing will be 2222 // done for all matches. PathTracer(Object * search_target,WhatToFind what_to_find,VisitMode visit_mode)2223 PathTracer(Object* search_target, 2224 WhatToFind what_to_find, 2225 VisitMode visit_mode) 2226 : search_target_(search_target), 2227 found_target_(false), 2228 found_target_in_trace_(false), 2229 what_to_find_(what_to_find), 2230 visit_mode_(visit_mode), 2231 object_stack_(20), 2232 no_alloc() {} 2233 2234 virtual void VisitPointers(Object** start, Object** end); 2235 2236 void Reset(); 2237 void TracePathFrom(Object** root); 2238 found()2239 bool found() const { return found_target_; } 2240 2241 static Object* const kAnyGlobalObject; 2242 2243 protected: 2244 class MarkVisitor; 2245 class UnmarkVisitor; 2246 2247 void MarkRecursively(Object** p, MarkVisitor* mark_visitor); 2248 void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor); 2249 virtual void ProcessResults(); 2250 2251 // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject. 2252 static const int kMarkTag = 2; 2253 2254 Object* search_target_; 2255 bool found_target_; 2256 bool found_target_in_trace_; 2257 WhatToFind what_to_find_; 2258 VisitMode visit_mode_; 2259 List<Object*> object_stack_; 2260 2261 AssertNoAllocation no_alloc; // i.e. no gc allowed. 2262 2263 DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer); 2264 }; 2265 #endif // DEBUG || LIVE_OBJECT_LIST 2266 2267 2268 } } // namespace v8::internal 2269 2270 #undef HEAP 2271 2272 #endif // V8_HEAP_H_ 2273