1 //===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "dyld"
15 #include "llvm/ADT/OwningPtr.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "RuntimeDyldImpl.h"
19 using namespace llvm;
20 using namespace llvm::object;
21
22 namespace llvm {
23
24 bool RuntimeDyldMachO::
resolveRelocation(uint8_t * Address,uint8_t * Value,bool isPCRel,unsigned Type,unsigned Size)25 resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
26 unsigned Type, unsigned Size) {
27 // This just dispatches to the proper target specific routine.
28 switch (CPUType) {
29 default: assert(0 && "Unsupported CPU type!");
30 case mach::CTM_x86_64:
31 return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value,
32 isPCRel, Type, Size);
33 case mach::CTM_ARM:
34 return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value,
35 isPCRel, Type, Size);
36 }
37 llvm_unreachable("");
38 }
39
40 bool RuntimeDyldMachO::
resolveX86_64Relocation(uintptr_t Address,uintptr_t Value,bool isPCRel,unsigned Type,unsigned Size)41 resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
42 bool isPCRel, unsigned Type,
43 unsigned Size) {
44 // If the relocation is PC-relative, the value to be encoded is the
45 // pointer difference.
46 if (isPCRel)
47 // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
48 // address. Is that expected? Only for branches, perhaps?
49 Value -= Address + 4;
50
51 switch(Type) {
52 default:
53 llvm_unreachable("Invalid relocation type!");
54 case macho::RIT_X86_64_Unsigned:
55 case macho::RIT_X86_64_Branch: {
56 // Mask in the target value a byte at a time (we don't have an alignment
57 // guarantee for the target address, so this is safest).
58 uint8_t *p = (uint8_t*)Address;
59 for (unsigned i = 0; i < Size; ++i) {
60 *p++ = (uint8_t)Value;
61 Value >>= 8;
62 }
63 return false;
64 }
65 case macho::RIT_X86_64_Signed:
66 case macho::RIT_X86_64_GOTLoad:
67 case macho::RIT_X86_64_GOT:
68 case macho::RIT_X86_64_Subtractor:
69 case macho::RIT_X86_64_Signed1:
70 case macho::RIT_X86_64_Signed2:
71 case macho::RIT_X86_64_Signed4:
72 case macho::RIT_X86_64_TLV:
73 return Error("Relocation type not implemented yet!");
74 }
75 return false;
76 }
77
resolveARMRelocation(uintptr_t Address,uintptr_t Value,bool isPCRel,unsigned Type,unsigned Size)78 bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value,
79 bool isPCRel, unsigned Type,
80 unsigned Size) {
81 // If the relocation is PC-relative, the value to be encoded is the
82 // pointer difference.
83 if (isPCRel) {
84 Value -= Address;
85 // ARM PCRel relocations have an effective-PC offset of two instructions
86 // (four bytes in Thumb mode, 8 bytes in ARM mode).
87 // FIXME: For now, assume ARM mode.
88 Value -= 8;
89 }
90
91 switch(Type) {
92 default:
93 llvm_unreachable("Invalid relocation type!");
94 case macho::RIT_Vanilla: {
95 llvm_unreachable("Invalid relocation type!");
96 // Mask in the target value a byte at a time (we don't have an alignment
97 // guarantee for the target address, so this is safest).
98 uint8_t *p = (uint8_t*)Address;
99 for (unsigned i = 0; i < Size; ++i) {
100 *p++ = (uint8_t)Value;
101 Value >>= 8;
102 }
103 break;
104 }
105 case macho::RIT_ARM_Branch24Bit: {
106 // Mask the value into the target address. We know instructions are
107 // 32-bit aligned, so we can do it all at once.
108 uint32_t *p = (uint32_t*)Address;
109 // The low two bits of the value are not encoded.
110 Value >>= 2;
111 // Mask the value to 24 bits.
112 Value &= 0xffffff;
113 // FIXME: If the destination is a Thumb function (and the instruction
114 // is a non-predicated BL instruction), we need to change it to a BLX
115 // instruction instead.
116
117 // Insert the value into the instruction.
118 *p = (*p & ~0xffffff) | Value;
119 break;
120 }
121 case macho::RIT_ARM_ThumbBranch22Bit:
122 case macho::RIT_ARM_ThumbBranch32Bit:
123 case macho::RIT_ARM_Half:
124 case macho::RIT_ARM_HalfDifference:
125 case macho::RIT_Pair:
126 case macho::RIT_Difference:
127 case macho::RIT_ARM_LocalDifference:
128 case macho::RIT_ARM_PreboundLazyPointer:
129 return Error("Relocation type not implemented yet!");
130 }
131 return false;
132 }
133
134 bool RuntimeDyldMachO::
loadSegment32(const MachOObject * Obj,const MachOObject::LoadCommandInfo * SegmentLCI,const InMemoryStruct<macho::SymtabLoadCommand> & SymtabLC)135 loadSegment32(const MachOObject *Obj,
136 const MachOObject::LoadCommandInfo *SegmentLCI,
137 const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
138 InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
139 Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
140 if (!SegmentLC)
141 return Error("unable to load segment load command");
142
143 for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
144 InMemoryStruct<macho::Section> Sect;
145 Obj->ReadSection(*SegmentLCI, SectNum, Sect);
146 if (!Sect)
147 return Error("unable to load section: '" + Twine(SectNum) + "'");
148
149 // FIXME: For the time being, we're only loading text segments.
150 if (Sect->Flags != 0x80000400)
151 continue;
152
153 // Address and names of symbols in the section.
154 typedef std::pair<uint64_t, StringRef> SymbolEntry;
155 SmallVector<SymbolEntry, 64> Symbols;
156 // Index of all the names, in this section or not. Used when we're
157 // dealing with relocation entries.
158 SmallVector<StringRef, 64> SymbolNames;
159 for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
160 InMemoryStruct<macho::SymbolTableEntry> STE;
161 Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
162 if (!STE)
163 return Error("unable to read symbol: '" + Twine(i) + "'");
164 if (STE->SectionIndex > SegmentLC->NumSections)
165 return Error("invalid section index for symbol: '" + Twine(i) + "'");
166 // Get the symbol name.
167 StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
168 SymbolNames.push_back(Name);
169
170 // Just skip symbols not defined in this section.
171 if ((unsigned)STE->SectionIndex - 1 != SectNum)
172 continue;
173
174 // FIXME: Check the symbol type and flags.
175 if (STE->Type != 0xF) // external, defined in this section.
176 continue;
177 // Flags == 0x8 marks a thumb function for ARM, which is fine as it
178 // doesn't require any special handling here.
179 if (STE->Flags != 0x0 && STE->Flags != 0x8)
180 continue;
181
182 // Remember the symbol.
183 Symbols.push_back(SymbolEntry(STE->Value, Name));
184
185 DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
186 (Sect->Address + STE->Value) << "\n");
187 }
188 // Sort the symbols by address, just in case they didn't come in that way.
189 array_pod_sort(Symbols.begin(), Symbols.end());
190
191 // If there weren't any functions (odd, but just in case...)
192 if (!Symbols.size())
193 continue;
194
195 // Extract the function data.
196 uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
197 SegmentLC->FileSize).data();
198 for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
199 uint64_t StartOffset = Sect->Address + Symbols[i].first;
200 uint64_t EndOffset = Symbols[i + 1].first - 1;
201 DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
202 << " from [" << StartOffset << ", " << EndOffset << "]\n");
203 extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
204 }
205 // The last symbol we do after since the end address is calculated
206 // differently because there is no next symbol to reference.
207 uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
208 uint64_t EndOffset = Sect->Size - 1;
209 DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
210 << " from [" << StartOffset << ", " << EndOffset << "]\n");
211 extractFunction(Symbols[Symbols.size()-1].second,
212 Base + StartOffset, Base + EndOffset);
213
214 // Now extract the relocation information for each function and process it.
215 for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
216 InMemoryStruct<macho::RelocationEntry> RE;
217 Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
218 if (RE->Word0 & macho::RF_Scattered)
219 return Error("NOT YET IMPLEMENTED: scattered relocations.");
220 // Word0 of the relocation is the offset into the section where the
221 // relocation should be applied. We need to translate that into an
222 // offset into a function since that's our atom.
223 uint32_t Offset = RE->Word0;
224 // Look for the function containing the address. This is used for JIT
225 // code, so the number of functions in section is almost always going
226 // to be very small (usually just one), so until we have use cases
227 // where that's not true, just use a trivial linear search.
228 unsigned SymbolNum;
229 unsigned NumSymbols = Symbols.size();
230 assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
231 "No symbol containing relocation!");
232 for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
233 if (Symbols[SymbolNum + 1].first > Offset)
234 break;
235 // Adjust the offset to be relative to the symbol.
236 Offset -= Symbols[SymbolNum].first;
237 // Get the name of the symbol containing the relocation.
238 StringRef TargetName = SymbolNames[SymbolNum];
239
240 bool isExtern = (RE->Word1 >> 27) & 1;
241 // Figure out the source symbol of the relocation. If isExtern is true,
242 // this relocation references the symbol table, otherwise it references
243 // a section in the same object, numbered from 1 through NumSections
244 // (SectionBases is [0, NumSections-1]).
245 // FIXME: Some targets (ARM) use internal relocations even for
246 // externally visible symbols, if the definition is in the same
247 // file as the reference. We need to convert those back to by-name
248 // references. We can resolve the address based on the section
249 // offset and see if we have a symbol at that address. If we do,
250 // use that; otherwise, puke.
251 if (!isExtern)
252 return Error("Internal relocations not supported.");
253 uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
254 StringRef SourceName = SymbolNames[SourceNum];
255
256 // FIXME: Get the relocation addend from the target address.
257
258 // Now store the relocation information. Associate it with the source
259 // symbol.
260 Relocations[SourceName].push_back(RelocationEntry(TargetName,
261 Offset,
262 RE->Word1,
263 0 /*Addend*/));
264 DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
265 << " from '" << SourceName << "(Word1: "
266 << format("0x%x", RE->Word1) << ")\n");
267 }
268 }
269 return false;
270 }
271
272
273 bool RuntimeDyldMachO::
loadSegment64(const MachOObject * Obj,const MachOObject::LoadCommandInfo * SegmentLCI,const InMemoryStruct<macho::SymtabLoadCommand> & SymtabLC)274 loadSegment64(const MachOObject *Obj,
275 const MachOObject::LoadCommandInfo *SegmentLCI,
276 const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
277 InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
278 Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
279 if (!Segment64LC)
280 return Error("unable to load segment load command");
281
282 for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
283 InMemoryStruct<macho::Section64> Sect;
284 Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
285 if (!Sect)
286 return Error("unable to load section: '" + Twine(SectNum) + "'");
287
288 // FIXME: For the time being, we're only loading text segments.
289 if (Sect->Flags != 0x80000400)
290 continue;
291
292 // Address and names of symbols in the section.
293 typedef std::pair<uint64_t, StringRef> SymbolEntry;
294 SmallVector<SymbolEntry, 64> Symbols;
295 // Index of all the names, in this section or not. Used when we're
296 // dealing with relocation entries.
297 SmallVector<StringRef, 64> SymbolNames;
298 for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
299 InMemoryStruct<macho::Symbol64TableEntry> STE;
300 Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
301 if (!STE)
302 return Error("unable to read symbol: '" + Twine(i) + "'");
303 if (STE->SectionIndex > Segment64LC->NumSections)
304 return Error("invalid section index for symbol: '" + Twine(i) + "'");
305 // Get the symbol name.
306 StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
307 SymbolNames.push_back(Name);
308
309 // Just skip symbols not defined in this section.
310 if ((unsigned)STE->SectionIndex - 1 != SectNum)
311 continue;
312
313 // FIXME: Check the symbol type and flags.
314 if (STE->Type != 0xF) // external, defined in this section.
315 continue;
316 if (STE->Flags != 0x0)
317 continue;
318
319 // Remember the symbol.
320 Symbols.push_back(SymbolEntry(STE->Value, Name));
321
322 DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
323 (Sect->Address + STE->Value) << "\n");
324 }
325 // Sort the symbols by address, just in case they didn't come in that way.
326 array_pod_sort(Symbols.begin(), Symbols.end());
327
328 // If there weren't any functions (odd, but just in case...)
329 if (!Symbols.size())
330 continue;
331
332 // Extract the function data.
333 uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
334 Segment64LC->FileSize).data();
335 for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
336 uint64_t StartOffset = Sect->Address + Symbols[i].first;
337 uint64_t EndOffset = Symbols[i + 1].first - 1;
338 DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
339 << " from [" << StartOffset << ", " << EndOffset << "]\n");
340 extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
341 }
342 // The last symbol we do after since the end address is calculated
343 // differently because there is no next symbol to reference.
344 uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
345 uint64_t EndOffset = Sect->Size - 1;
346 DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
347 << " from [" << StartOffset << ", " << EndOffset << "]\n");
348 extractFunction(Symbols[Symbols.size()-1].second,
349 Base + StartOffset, Base + EndOffset);
350
351 // Now extract the relocation information for each function and process it.
352 for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
353 InMemoryStruct<macho::RelocationEntry> RE;
354 Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
355 if (RE->Word0 & macho::RF_Scattered)
356 return Error("NOT YET IMPLEMENTED: scattered relocations.");
357 // Word0 of the relocation is the offset into the section where the
358 // relocation should be applied. We need to translate that into an
359 // offset into a function since that's our atom.
360 uint32_t Offset = RE->Word0;
361 // Look for the function containing the address. This is used for JIT
362 // code, so the number of functions in section is almost always going
363 // to be very small (usually just one), so until we have use cases
364 // where that's not true, just use a trivial linear search.
365 unsigned SymbolNum;
366 unsigned NumSymbols = Symbols.size();
367 assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
368 "No symbol containing relocation!");
369 for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
370 if (Symbols[SymbolNum + 1].first > Offset)
371 break;
372 // Adjust the offset to be relative to the symbol.
373 Offset -= Symbols[SymbolNum].first;
374 // Get the name of the symbol containing the relocation.
375 StringRef TargetName = SymbolNames[SymbolNum];
376
377 bool isExtern = (RE->Word1 >> 27) & 1;
378 // Figure out the source symbol of the relocation. If isExtern is true,
379 // this relocation references the symbol table, otherwise it references
380 // a section in the same object, numbered from 1 through NumSections
381 // (SectionBases is [0, NumSections-1]).
382 if (!isExtern)
383 return Error("Internal relocations not supported.");
384 uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
385 StringRef SourceName = SymbolNames[SourceNum];
386
387 // FIXME: Get the relocation addend from the target address.
388
389 // Now store the relocation information. Associate it with the source
390 // symbol.
391 Relocations[SourceName].push_back(RelocationEntry(TargetName,
392 Offset,
393 RE->Word1,
394 0 /*Addend*/));
395 DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
396 << " from '" << SourceName << "(Word1: "
397 << format("0x%x", RE->Word1) << ")\n");
398 }
399 }
400 return false;
401 }
402
loadObject(MemoryBuffer * InputBuffer)403 bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
404 // If the linker is in an error state, don't do anything.
405 if (hasError())
406 return true;
407 // Load the Mach-O wrapper object.
408 std::string ErrorStr;
409 OwningPtr<MachOObject> Obj(
410 MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
411 if (!Obj)
412 return Error("unable to load object: '" + ErrorStr + "'");
413
414 // Get the CPU type information from the header.
415 const macho::Header &Header = Obj->getHeader();
416
417 // FIXME: Error checking that the loaded object is compatible with
418 // the system we're running on.
419 CPUType = Header.CPUType;
420 CPUSubtype = Header.CPUSubtype;
421
422 // Validate that the load commands match what we expect.
423 const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
424 *DysymtabLCI = 0;
425 for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
426 const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
427 switch (LCI.Command.Type) {
428 case macho::LCT_Segment:
429 case macho::LCT_Segment64:
430 if (SegmentLCI)
431 return Error("unexpected input object (multiple segments)");
432 SegmentLCI = &LCI;
433 break;
434 case macho::LCT_Symtab:
435 if (SymtabLCI)
436 return Error("unexpected input object (multiple symbol tables)");
437 SymtabLCI = &LCI;
438 break;
439 case macho::LCT_Dysymtab:
440 if (DysymtabLCI)
441 return Error("unexpected input object (multiple symbol tables)");
442 DysymtabLCI = &LCI;
443 break;
444 default:
445 return Error("unexpected input object (unexpected load command");
446 }
447 }
448
449 if (!SymtabLCI)
450 return Error("no symbol table found in object");
451 if (!SegmentLCI)
452 return Error("no symbol table found in object");
453
454 // Read and register the symbol table data.
455 InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
456 Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
457 if (!SymtabLC)
458 return Error("unable to load symbol table load command");
459 Obj->RegisterStringTable(*SymtabLC);
460
461 // Read the dynamic link-edit information, if present (not present in static
462 // objects).
463 if (DysymtabLCI) {
464 InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
465 Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
466 if (!DysymtabLC)
467 return Error("unable to load dynamic link-exit load command");
468
469 // FIXME: We don't support anything interesting yet.
470 // if (DysymtabLC->LocalSymbolsIndex != 0)
471 // return Error("NOT YET IMPLEMENTED: local symbol entries");
472 // if (DysymtabLC->ExternalSymbolsIndex != 0)
473 // return Error("NOT YET IMPLEMENTED: non-external symbol entries");
474 // if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
475 // return Error("NOT YET IMPLEMENTED: undefined symbol entries");
476 }
477
478 // Load the segment load command.
479 if (SegmentLCI->Command.Type == macho::LCT_Segment) {
480 if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
481 return true;
482 } else {
483 if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
484 return true;
485 }
486
487 return false;
488 }
489
490 // Assign an address to a symbol name and resolve all the relocations
491 // associated with it.
reassignSymbolAddress(StringRef Name,uint8_t * Addr)492 void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
493 // Assign the address in our symbol table.
494 SymbolTable[Name] = Addr;
495
496 RelocationList &Relocs = Relocations[Name];
497 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
498 RelocationEntry &RE = Relocs[i];
499 uint8_t *Target = SymbolTable[RE.Target] + RE.Offset;
500 bool isPCRel = (RE.Data >> 24) & 1;
501 unsigned Type = (RE.Data >> 28) & 0xf;
502 unsigned Size = 1 << ((RE.Data >> 25) & 3);
503
504 DEBUG(dbgs() << "Resolving relocation at '" << RE.Target
505 << "' + " << RE.Offset << " (" << format("%p", Target) << ")"
506 << " from '" << Name << " (" << format("%p", Addr) << ")"
507 << "(" << (isPCRel ? "pcrel" : "absolute")
508 << ", type: " << Type << ", Size: " << Size << ").\n");
509
510 resolveRelocation(Target, Addr, isPCRel, Type, Size);
511 RE.isResolved = true;
512 }
513 }
514
isKnownFormat(const MemoryBuffer * InputBuffer)515 bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) {
516 StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
517 if (Magic == "\xFE\xED\xFA\xCE") return true;
518 if (Magic == "\xCE\xFA\xED\xFE") return true;
519 if (Magic == "\xFE\xED\xFA\xCF") return true;
520 if (Magic == "\xCF\xFA\xED\xFE") return true;
521 return false;
522 }
523
524 } // end namespace llvm
525