1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the classes used to represent and build scalar expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPRESSIONS_H 15 #define LLVM_ANALYSIS_SCALAREVOLUTION_EXPRESSIONS_H 16 17 #include "llvm/Analysis/ScalarEvolution.h" 18 #include "llvm/Support/ErrorHandling.h" 19 20 namespace llvm { 21 class ConstantInt; 22 class ConstantRange; 23 class DominatorTree; 24 25 enum SCEVTypes { 26 // These should be ordered in terms of increasing complexity to make the 27 // folders simpler. 28 scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr, 29 scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, 30 scUnknown, scCouldNotCompute 31 }; 32 33 //===--------------------------------------------------------------------===// 34 /// SCEVConstant - This class represents a constant integer value. 35 /// 36 class SCEVConstant : public SCEV { 37 friend class ScalarEvolution; 38 39 ConstantInt *V; SCEVConstant(const FoldingSetNodeIDRef ID,ConstantInt * v)40 SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) : 41 SCEV(ID, scConstant), V(v) {} 42 public: getValue()43 ConstantInt *getValue() const { return V; } 44 getType()45 Type *getType() const { return V->getType(); } 46 47 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVConstant * S)48 static inline bool classof(const SCEVConstant *S) { return true; } classof(const SCEV * S)49 static inline bool classof(const SCEV *S) { 50 return S->getSCEVType() == scConstant; 51 } 52 }; 53 54 //===--------------------------------------------------------------------===// 55 /// SCEVCastExpr - This is the base class for unary cast operator classes. 56 /// 57 class SCEVCastExpr : public SCEV { 58 protected: 59 const SCEV *Op; 60 Type *Ty; 61 62 SCEVCastExpr(const FoldingSetNodeIDRef ID, 63 unsigned SCEVTy, const SCEV *op, Type *ty); 64 65 public: getOperand()66 const SCEV *getOperand() const { return Op; } getType()67 Type *getType() const { return Ty; } 68 69 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVCastExpr * S)70 static inline bool classof(const SCEVCastExpr *S) { return true; } classof(const SCEV * S)71 static inline bool classof(const SCEV *S) { 72 return S->getSCEVType() == scTruncate || 73 S->getSCEVType() == scZeroExtend || 74 S->getSCEVType() == scSignExtend; 75 } 76 }; 77 78 //===--------------------------------------------------------------------===// 79 /// SCEVTruncateExpr - This class represents a truncation of an integer value 80 /// to a smaller integer value. 81 /// 82 class SCEVTruncateExpr : public SCEVCastExpr { 83 friend class ScalarEvolution; 84 85 SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 86 const SCEV *op, Type *ty); 87 88 public: 89 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVTruncateExpr * S)90 static inline bool classof(const SCEVTruncateExpr *S) { return true; } classof(const SCEV * S)91 static inline bool classof(const SCEV *S) { 92 return S->getSCEVType() == scTruncate; 93 } 94 }; 95 96 //===--------------------------------------------------------------------===// 97 /// SCEVZeroExtendExpr - This class represents a zero extension of a small 98 /// integer value to a larger integer value. 99 /// 100 class SCEVZeroExtendExpr : public SCEVCastExpr { 101 friend class ScalarEvolution; 102 103 SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 104 const SCEV *op, Type *ty); 105 106 public: 107 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVZeroExtendExpr * S)108 static inline bool classof(const SCEVZeroExtendExpr *S) { return true; } classof(const SCEV * S)109 static inline bool classof(const SCEV *S) { 110 return S->getSCEVType() == scZeroExtend; 111 } 112 }; 113 114 //===--------------------------------------------------------------------===// 115 /// SCEVSignExtendExpr - This class represents a sign extension of a small 116 /// integer value to a larger integer value. 117 /// 118 class SCEVSignExtendExpr : public SCEVCastExpr { 119 friend class ScalarEvolution; 120 121 SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 122 const SCEV *op, Type *ty); 123 124 public: 125 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVSignExtendExpr * S)126 static inline bool classof(const SCEVSignExtendExpr *S) { return true; } classof(const SCEV * S)127 static inline bool classof(const SCEV *S) { 128 return S->getSCEVType() == scSignExtend; 129 } 130 }; 131 132 133 //===--------------------------------------------------------------------===// 134 /// SCEVNAryExpr - This node is a base class providing common 135 /// functionality for n'ary operators. 136 /// 137 class SCEVNAryExpr : public SCEV { 138 protected: 139 // Since SCEVs are immutable, ScalarEvolution allocates operand 140 // arrays with its SCEVAllocator, so this class just needs a simple 141 // pointer rather than a more elaborate vector-like data structure. 142 // This also avoids the need for a non-trivial destructor. 143 const SCEV *const *Operands; 144 size_t NumOperands; 145 SCEVNAryExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)146 SCEVNAryExpr(const FoldingSetNodeIDRef ID, 147 enum SCEVTypes T, const SCEV *const *O, size_t N) 148 : SCEV(ID, T), Operands(O), NumOperands(N) {} 149 150 public: getNumOperands()151 size_t getNumOperands() const { return NumOperands; } getOperand(unsigned i)152 const SCEV *getOperand(unsigned i) const { 153 assert(i < NumOperands && "Operand index out of range!"); 154 return Operands[i]; 155 } 156 157 typedef const SCEV *const *op_iterator; op_begin()158 op_iterator op_begin() const { return Operands; } op_end()159 op_iterator op_end() const { return Operands + NumOperands; } 160 getType()161 Type *getType() const { return getOperand(0)->getType(); } 162 163 NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { 164 return (NoWrapFlags)(SubclassData & Mask); 165 } 166 167 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVNAryExpr * S)168 static inline bool classof(const SCEVNAryExpr *S) { return true; } classof(const SCEV * S)169 static inline bool classof(const SCEV *S) { 170 return S->getSCEVType() == scAddExpr || 171 S->getSCEVType() == scMulExpr || 172 S->getSCEVType() == scSMaxExpr || 173 S->getSCEVType() == scUMaxExpr || 174 S->getSCEVType() == scAddRecExpr; 175 } 176 }; 177 178 //===--------------------------------------------------------------------===// 179 /// SCEVCommutativeExpr - This node is the base class for n'ary commutative 180 /// operators. 181 /// 182 class SCEVCommutativeExpr : public SCEVNAryExpr { 183 protected: SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)184 SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, 185 enum SCEVTypes T, const SCEV *const *O, size_t N) 186 : SCEVNAryExpr(ID, T, O, N) {} 187 188 public: 189 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVCommutativeExpr * S)190 static inline bool classof(const SCEVCommutativeExpr *S) { return true; } classof(const SCEV * S)191 static inline bool classof(const SCEV *S) { 192 return S->getSCEVType() == scAddExpr || 193 S->getSCEVType() == scMulExpr || 194 S->getSCEVType() == scSMaxExpr || 195 S->getSCEVType() == scUMaxExpr; 196 } 197 198 /// Set flags for a non-recurrence without clearing previously set flags. setNoWrapFlags(NoWrapFlags Flags)199 void setNoWrapFlags(NoWrapFlags Flags) { 200 SubclassData |= Flags; 201 } 202 }; 203 204 205 //===--------------------------------------------------------------------===// 206 /// SCEVAddExpr - This node represents an addition of some number of SCEVs. 207 /// 208 class SCEVAddExpr : public SCEVCommutativeExpr { 209 friend class ScalarEvolution; 210 SCEVAddExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)211 SCEVAddExpr(const FoldingSetNodeIDRef ID, 212 const SCEV *const *O, size_t N) 213 : SCEVCommutativeExpr(ID, scAddExpr, O, N) { 214 } 215 216 public: getType()217 Type *getType() const { 218 // Use the type of the last operand, which is likely to be a pointer 219 // type, if there is one. This doesn't usually matter, but it can help 220 // reduce casts when the expressions are expanded. 221 return getOperand(getNumOperands() - 1)->getType(); 222 } 223 224 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVAddExpr * S)225 static inline bool classof(const SCEVAddExpr *S) { return true; } classof(const SCEV * S)226 static inline bool classof(const SCEV *S) { 227 return S->getSCEVType() == scAddExpr; 228 } 229 }; 230 231 //===--------------------------------------------------------------------===// 232 /// SCEVMulExpr - This node represents multiplication of some number of SCEVs. 233 /// 234 class SCEVMulExpr : public SCEVCommutativeExpr { 235 friend class ScalarEvolution; 236 SCEVMulExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)237 SCEVMulExpr(const FoldingSetNodeIDRef ID, 238 const SCEV *const *O, size_t N) 239 : SCEVCommutativeExpr(ID, scMulExpr, O, N) { 240 } 241 242 public: 243 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVMulExpr * S)244 static inline bool classof(const SCEVMulExpr *S) { return true; } classof(const SCEV * S)245 static inline bool classof(const SCEV *S) { 246 return S->getSCEVType() == scMulExpr; 247 } 248 }; 249 250 251 //===--------------------------------------------------------------------===// 252 /// SCEVUDivExpr - This class represents a binary unsigned division operation. 253 /// 254 class SCEVUDivExpr : public SCEV { 255 friend class ScalarEvolution; 256 257 const SCEV *LHS; 258 const SCEV *RHS; SCEVUDivExpr(const FoldingSetNodeIDRef ID,const SCEV * lhs,const SCEV * rhs)259 SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) 260 : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {} 261 262 public: getLHS()263 const SCEV *getLHS() const { return LHS; } getRHS()264 const SCEV *getRHS() const { return RHS; } 265 getType()266 Type *getType() const { 267 // In most cases the types of LHS and RHS will be the same, but in some 268 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 269 // depend on the type for correctness, but handling types carefully can 270 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 271 // a pointer type than the RHS, so use the RHS' type here. 272 return getRHS()->getType(); 273 } 274 275 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVUDivExpr * S)276 static inline bool classof(const SCEVUDivExpr *S) { return true; } classof(const SCEV * S)277 static inline bool classof(const SCEV *S) { 278 return S->getSCEVType() == scUDivExpr; 279 } 280 }; 281 282 283 //===--------------------------------------------------------------------===// 284 /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip 285 /// count of the specified loop. This is the primary focus of the 286 /// ScalarEvolution framework; all the other SCEV subclasses are mostly just 287 /// supporting infrastructure to allow SCEVAddRecExpr expressions to be 288 /// created and analyzed. 289 /// 290 /// All operands of an AddRec are required to be loop invariant. 291 /// 292 class SCEVAddRecExpr : public SCEVNAryExpr { 293 friend class ScalarEvolution; 294 295 const Loop *L; 296 SCEVAddRecExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N,const Loop * l)297 SCEVAddRecExpr(const FoldingSetNodeIDRef ID, 298 const SCEV *const *O, size_t N, const Loop *l) 299 : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {} 300 301 public: getStart()302 const SCEV *getStart() const { return Operands[0]; } getLoop()303 const Loop *getLoop() const { return L; } 304 305 /// getStepRecurrence - This method constructs and returns the recurrence 306 /// indicating how much this expression steps by. If this is a polynomial 307 /// of degree N, it returns a chrec of degree N-1. 308 /// We cannot determine whether the step recurrence has self-wraparound. getStepRecurrence(ScalarEvolution & SE)309 const SCEV *getStepRecurrence(ScalarEvolution &SE) const { 310 if (isAffine()) return getOperand(1); 311 return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1, 312 op_end()), 313 getLoop(), FlagAnyWrap); 314 } 315 316 /// isAffine - Return true if this is an affine AddRec (i.e., it represents 317 /// an expressions A+B*x where A and B are loop invariant values. isAffine()318 bool isAffine() const { 319 // We know that the start value is invariant. This expression is thus 320 // affine iff the step is also invariant. 321 return getNumOperands() == 2; 322 } 323 324 /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it 325 /// represents an expressions A+B*x+C*x^2 where A, B and C are loop 326 /// invariant values. This corresponds to an addrec of the form {L,+,M,+,N} isQuadratic()327 bool isQuadratic() const { 328 return getNumOperands() == 3; 329 } 330 331 /// Set flags for a recurrence without clearing any previously set flags. 332 /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here 333 /// to make it easier to propagate flags. setNoWrapFlags(NoWrapFlags Flags)334 void setNoWrapFlags(NoWrapFlags Flags) { 335 if (Flags & (FlagNUW | FlagNSW)) 336 Flags = ScalarEvolution::setFlags(Flags, FlagNW); 337 SubclassData |= Flags; 338 } 339 340 /// evaluateAtIteration - Return the value of this chain of recurrences at 341 /// the specified iteration number. 342 const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const; 343 344 /// getNumIterationsInRange - Return the number of iterations of this loop 345 /// that produce values in the specified constant range. Another way of 346 /// looking at this is that it returns the first iteration number where the 347 /// value is not in the condition, thus computing the exit count. If the 348 /// iteration count can't be computed, an instance of SCEVCouldNotCompute is 349 /// returned. 350 const SCEV *getNumIterationsInRange(ConstantRange Range, 351 ScalarEvolution &SE) const; 352 353 /// getPostIncExpr - Return an expression representing the value of 354 /// this expression one iteration of the loop ahead. getPostIncExpr(ScalarEvolution & SE)355 const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const { 356 return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE))); 357 } 358 359 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVAddRecExpr * S)360 static inline bool classof(const SCEVAddRecExpr *S) { return true; } classof(const SCEV * S)361 static inline bool classof(const SCEV *S) { 362 return S->getSCEVType() == scAddRecExpr; 363 } 364 }; 365 366 367 //===--------------------------------------------------------------------===// 368 /// SCEVSMaxExpr - This class represents a signed maximum selection. 369 /// 370 class SCEVSMaxExpr : public SCEVCommutativeExpr { 371 friend class ScalarEvolution; 372 SCEVSMaxExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)373 SCEVSMaxExpr(const FoldingSetNodeIDRef ID, 374 const SCEV *const *O, size_t N) 375 : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) { 376 // Max never overflows. 377 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); 378 } 379 380 public: 381 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVSMaxExpr * S)382 static inline bool classof(const SCEVSMaxExpr *S) { return true; } classof(const SCEV * S)383 static inline bool classof(const SCEV *S) { 384 return S->getSCEVType() == scSMaxExpr; 385 } 386 }; 387 388 389 //===--------------------------------------------------------------------===// 390 /// SCEVUMaxExpr - This class represents an unsigned maximum selection. 391 /// 392 class SCEVUMaxExpr : public SCEVCommutativeExpr { 393 friend class ScalarEvolution; 394 SCEVUMaxExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)395 SCEVUMaxExpr(const FoldingSetNodeIDRef ID, 396 const SCEV *const *O, size_t N) 397 : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) { 398 // Max never overflows. 399 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); 400 } 401 402 public: 403 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVUMaxExpr * S)404 static inline bool classof(const SCEVUMaxExpr *S) { return true; } classof(const SCEV * S)405 static inline bool classof(const SCEV *S) { 406 return S->getSCEVType() == scUMaxExpr; 407 } 408 }; 409 410 //===--------------------------------------------------------------------===// 411 /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV 412 /// value, and only represent it as its LLVM Value. This is the "bottom" 413 /// value for the analysis. 414 /// 415 class SCEVUnknown : public SCEV, private CallbackVH { 416 friend class ScalarEvolution; 417 418 // Implement CallbackVH. 419 virtual void deleted(); 420 virtual void allUsesReplacedWith(Value *New); 421 422 /// SE - The parent ScalarEvolution value. This is used to update 423 /// the parent's maps when the value associated with a SCEVUnknown 424 /// is deleted or RAUW'd. 425 ScalarEvolution *SE; 426 427 /// Next - The next pointer in the linked list of all 428 /// SCEVUnknown instances owned by a ScalarEvolution. 429 SCEVUnknown *Next; 430 SCEVUnknown(const FoldingSetNodeIDRef ID,Value * V,ScalarEvolution * se,SCEVUnknown * next)431 SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, 432 ScalarEvolution *se, SCEVUnknown *next) : 433 SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {} 434 435 public: getValue()436 Value *getValue() const { return getValPtr(); } 437 438 /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special 439 /// constant representing a type size, alignment, or field offset in 440 /// a target-independent manner, and hasn't happened to have been 441 /// folded with other operations into something unrecognizable. This 442 /// is mainly only useful for pretty-printing and other situations 443 /// where it isn't absolutely required for these to succeed. 444 bool isSizeOf(Type *&AllocTy) const; 445 bool isAlignOf(Type *&AllocTy) const; 446 bool isOffsetOf(Type *&STy, Constant *&FieldNo) const; 447 getType()448 Type *getType() const { return getValPtr()->getType(); } 449 450 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEVUnknown * S)451 static inline bool classof(const SCEVUnknown *S) { return true; } classof(const SCEV * S)452 static inline bool classof(const SCEV *S) { 453 return S->getSCEVType() == scUnknown; 454 } 455 }; 456 457 /// SCEVVisitor - This class defines a simple visitor class that may be used 458 /// for various SCEV analysis purposes. 459 template<typename SC, typename RetVal=void> 460 struct SCEVVisitor { visitSCEVVisitor461 RetVal visit(const SCEV *S) { 462 switch (S->getSCEVType()) { 463 case scConstant: 464 return ((SC*)this)->visitConstant((const SCEVConstant*)S); 465 case scTruncate: 466 return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S); 467 case scZeroExtend: 468 return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S); 469 case scSignExtend: 470 return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S); 471 case scAddExpr: 472 return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S); 473 case scMulExpr: 474 return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S); 475 case scUDivExpr: 476 return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S); 477 case scAddRecExpr: 478 return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S); 479 case scSMaxExpr: 480 return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S); 481 case scUMaxExpr: 482 return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S); 483 case scUnknown: 484 return ((SC*)this)->visitUnknown((const SCEVUnknown*)S); 485 case scCouldNotCompute: 486 return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S); 487 default: 488 llvm_unreachable("Unknown SCEV type!"); 489 } 490 } 491 visitCouldNotComputeSCEVVisitor492 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { 493 llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); 494 return RetVal(); 495 } 496 }; 497 } 498 499 #endif 500