• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <stdlib.h>
18 #include <stdio.h>
19 #include <stdint.h>
20 #include <unistd.h>
21 #include <fcntl.h>
22 #include <errno.h>
23 #include <math.h>
24 #include <limits.h>
25 #include <sys/types.h>
26 #include <sys/stat.h>
27 #include <sys/ioctl.h>
28 
29 #include <cutils/log.h>
30 #include <cutils/properties.h>
31 
32 #include <binder/IPCThreadState.h>
33 #include <binder/IServiceManager.h>
34 #include <binder/MemoryHeapBase.h>
35 #include <binder/PermissionCache.h>
36 
37 #include <utils/String8.h>
38 #include <utils/String16.h>
39 #include <utils/StopWatch.h>
40 
41 #include <ui/GraphicBufferAllocator.h>
42 #include <ui/GraphicLog.h>
43 #include <ui/PixelFormat.h>
44 
45 #include <pixelflinger/pixelflinger.h>
46 #include <GLES/gl.h>
47 
48 #include "clz.h"
49 #include "GLExtensions.h"
50 #include "DdmConnection.h"
51 #include "Layer.h"
52 #include "LayerDim.h"
53 #include "LayerScreenshot.h"
54 #include "SurfaceFlinger.h"
55 
56 #include "DisplayHardware/DisplayHardware.h"
57 #include "DisplayHardware/HWComposer.h"
58 
59 #include <private/surfaceflinger/SharedBufferStack.h>
60 
61 /* ideally AID_GRAPHICS would be in a semi-public header
62  * or there would be a way to map a user/group name to its id
63  */
64 #ifndef AID_GRAPHICS
65 #define AID_GRAPHICS 1003
66 #endif
67 
68 #define DISPLAY_COUNT       1
69 
70 namespace android {
71 // ---------------------------------------------------------------------------
72 
73 const String16 sHardwareTest("android.permission.HARDWARE_TEST");
74 const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
75 const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
76 const String16 sDump("android.permission.DUMP");
77 
78 // ---------------------------------------------------------------------------
79 
SurfaceFlinger()80 SurfaceFlinger::SurfaceFlinger()
81     :   BnSurfaceComposer(), Thread(false),
82         mTransactionFlags(0),
83         mResizeTransationPending(false),
84         mLayersRemoved(false),
85         mBootTime(systemTime()),
86         mVisibleRegionsDirty(false),
87         mHwWorkListDirty(false),
88         mFreezeDisplay(false),
89         mElectronBeamAnimationMode(0),
90         mFreezeCount(0),
91         mFreezeDisplayTime(0),
92         mDebugRegion(0),
93         mDebugBackground(0),
94         mDebugDDMS(0),
95         mDebugDisableHWC(0),
96         mDebugDisableTransformHint(0),
97         mDebugInSwapBuffers(0),
98         mLastSwapBufferTime(0),
99         mDebugInTransaction(0),
100         mLastTransactionTime(0),
101         mBootFinished(false),
102         mConsoleSignals(0),
103         mSecureFrameBuffer(0)
104 {
105     init();
106 }
107 
init()108 void SurfaceFlinger::init()
109 {
110     LOGI("SurfaceFlinger is starting");
111 
112     // debugging stuff...
113     char value[PROPERTY_VALUE_MAX];
114 
115     property_get("debug.sf.showupdates", value, "0");
116     mDebugRegion = atoi(value);
117 
118     property_get("debug.sf.showbackground", value, "0");
119     mDebugBackground = atoi(value);
120 
121     property_get("debug.sf.ddms", value, "0");
122     mDebugDDMS = atoi(value);
123     if (mDebugDDMS) {
124         DdmConnection::start(getServiceName());
125     }
126 
127     LOGI_IF(mDebugRegion,       "showupdates enabled");
128     LOGI_IF(mDebugBackground,   "showbackground enabled");
129     LOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
130 }
131 
~SurfaceFlinger()132 SurfaceFlinger::~SurfaceFlinger()
133 {
134     glDeleteTextures(1, &mWormholeTexName);
135 }
136 
getCblk() const137 sp<IMemoryHeap> SurfaceFlinger::getCblk() const
138 {
139     return mServerHeap;
140 }
141 
createConnection()142 sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
143 {
144     sp<ISurfaceComposerClient> bclient;
145     sp<Client> client(new Client(this));
146     status_t err = client->initCheck();
147     if (err == NO_ERROR) {
148         bclient = client;
149     }
150     return bclient;
151 }
152 
createGraphicBufferAlloc()153 sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
154 {
155     sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
156     return gba;
157 }
158 
graphicPlane(int dpy) const159 const GraphicPlane& SurfaceFlinger::graphicPlane(int dpy) const
160 {
161     LOGE_IF(uint32_t(dpy) >= DISPLAY_COUNT, "Invalid DisplayID %d", dpy);
162     const GraphicPlane& plane(mGraphicPlanes[dpy]);
163     return plane;
164 }
165 
graphicPlane(int dpy)166 GraphicPlane& SurfaceFlinger::graphicPlane(int dpy)
167 {
168     return const_cast<GraphicPlane&>(
169         const_cast<SurfaceFlinger const *>(this)->graphicPlane(dpy));
170 }
171 
bootFinished()172 void SurfaceFlinger::bootFinished()
173 {
174     const nsecs_t now = systemTime();
175     const nsecs_t duration = now - mBootTime;
176     LOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
177     mBootFinished = true;
178 
179     // wait patiently for the window manager death
180     const String16 name("window");
181     sp<IBinder> window(defaultServiceManager()->getService(name));
182     if (window != 0) {
183         window->linkToDeath(this);
184     }
185 
186     // stop boot animation
187     property_set("ctl.stop", "bootanim");
188 }
189 
binderDied(const wp<IBinder> & who)190 void SurfaceFlinger::binderDied(const wp<IBinder>& who)
191 {
192     // the window manager died on us. prepare its eulogy.
193 
194     // unfreeze the screen in case it was... frozen
195     mFreezeDisplayTime = 0;
196     mFreezeCount = 0;
197     mFreezeDisplay = false;
198 
199     // reset screen orientation
200     setOrientation(0, eOrientationDefault, 0);
201 
202     // restart the boot-animation
203     property_set("ctl.start", "bootanim");
204 }
205 
onFirstRef()206 void SurfaceFlinger::onFirstRef()
207 {
208     run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
209 
210     // Wait for the main thread to be done with its initialization
211     mReadyToRunBarrier.wait();
212 }
213 
pack565(int r,int g,int b)214 static inline uint16_t pack565(int r, int g, int b) {
215     return (r<<11)|(g<<5)|b;
216 }
217 
readyToRun()218 status_t SurfaceFlinger::readyToRun()
219 {
220     LOGI(   "SurfaceFlinger's main thread ready to run. "
221             "Initializing graphics H/W...");
222 
223     // we only support one display currently
224     int dpy = 0;
225 
226     {
227         // initialize the main display
228         GraphicPlane& plane(graphicPlane(dpy));
229         DisplayHardware* const hw = new DisplayHardware(this, dpy);
230         plane.setDisplayHardware(hw);
231     }
232 
233     // create the shared control-block
234     mServerHeap = new MemoryHeapBase(4096,
235             MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");
236     LOGE_IF(mServerHeap==0, "can't create shared memory dealer");
237 
238     mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());
239     LOGE_IF(mServerCblk==0, "can't get to shared control block's address");
240 
241     new(mServerCblk) surface_flinger_cblk_t;
242 
243     // initialize primary screen
244     // (other display should be initialized in the same manner, but
245     // asynchronously, as they could come and go. None of this is supported
246     // yet).
247     const GraphicPlane& plane(graphicPlane(dpy));
248     const DisplayHardware& hw = plane.displayHardware();
249     const uint32_t w = hw.getWidth();
250     const uint32_t h = hw.getHeight();
251     const uint32_t f = hw.getFormat();
252     hw.makeCurrent();
253 
254     // initialize the shared control block
255     mServerCblk->connected |= 1<<dpy;
256     display_cblk_t* dcblk = mServerCblk->displays + dpy;
257     memset(dcblk, 0, sizeof(display_cblk_t));
258     dcblk->w            = plane.getWidth();
259     dcblk->h            = plane.getHeight();
260     dcblk->format       = f;
261     dcblk->orientation  = ISurfaceComposer::eOrientationDefault;
262     dcblk->xdpi         = hw.getDpiX();
263     dcblk->ydpi         = hw.getDpiY();
264     dcblk->fps          = hw.getRefreshRate();
265     dcblk->density      = hw.getDensity();
266 
267     // Initialize OpenGL|ES
268     glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
269     glPixelStorei(GL_PACK_ALIGNMENT, 4);
270     glEnableClientState(GL_VERTEX_ARRAY);
271     glEnable(GL_SCISSOR_TEST);
272     glShadeModel(GL_FLAT);
273     glDisable(GL_DITHER);
274     glDisable(GL_CULL_FACE);
275 
276     const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
277     const uint16_t g1 = pack565(0x17,0x2f,0x17);
278     const uint16_t wormholeTexData[4] = { g0, g1, g1, g0 };
279     glGenTextures(1, &mWormholeTexName);
280     glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
281     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
282     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
283     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
284     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
285     glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
286             GL_RGB, GL_UNSIGNED_SHORT_5_6_5, wormholeTexData);
287 
288     const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
289     glGenTextures(1, &mProtectedTexName);
290     glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
291     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
292     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
293     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
294     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
295     glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
296             GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
297 
298     glViewport(0, 0, w, h);
299     glMatrixMode(GL_PROJECTION);
300     glLoadIdentity();
301     // put the origin in the left-bottom corner
302     glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
303 
304     mReadyToRunBarrier.open();
305 
306     /*
307      *  We're now ready to accept clients...
308      */
309 
310     // start boot animation
311     property_set("ctl.start", "bootanim");
312 
313     return NO_ERROR;
314 }
315 
316 // ----------------------------------------------------------------------------
317 #if 0
318 #pragma mark -
319 #pragma mark Events Handler
320 #endif
321 
waitForEvent()322 void SurfaceFlinger::waitForEvent()
323 {
324     while (true) {
325         nsecs_t timeout = -1;
326         const nsecs_t freezeDisplayTimeout = ms2ns(5000);
327         if (UNLIKELY(isFrozen())) {
328             // wait 5 seconds
329             const nsecs_t now = systemTime();
330             if (mFreezeDisplayTime == 0) {
331                 mFreezeDisplayTime = now;
332             }
333             nsecs_t waitTime = freezeDisplayTimeout - (now - mFreezeDisplayTime);
334             timeout = waitTime>0 ? waitTime : 0;
335         }
336 
337         sp<MessageBase> msg = mEventQueue.waitMessage(timeout);
338 
339         // see if we timed out
340         if (isFrozen()) {
341             const nsecs_t now = systemTime();
342             nsecs_t frozenTime = (now - mFreezeDisplayTime);
343             if (frozenTime >= freezeDisplayTimeout) {
344                 // we timed out and are still frozen
345                 LOGW("timeout expired mFreezeDisplay=%d, mFreezeCount=%d",
346                         mFreezeDisplay, mFreezeCount);
347                 mFreezeDisplayTime = 0;
348                 mFreezeCount = 0;
349                 mFreezeDisplay = false;
350             }
351         }
352 
353         if (msg != 0) {
354             switch (msg->what) {
355                 case MessageQueue::INVALIDATE:
356                     // invalidate message, just return to the main loop
357                     return;
358             }
359         }
360     }
361 }
362 
signalEvent()363 void SurfaceFlinger::signalEvent() {
364     mEventQueue.invalidate();
365 }
366 
authenticateSurfaceTexture(const sp<ISurfaceTexture> & surfaceTexture) const367 bool SurfaceFlinger::authenticateSurfaceTexture(
368         const sp<ISurfaceTexture>& surfaceTexture) const {
369     Mutex::Autolock _l(mStateLock);
370     sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
371 
372     // Check the visible layer list for the ISurface
373     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
374     size_t count = currentLayers.size();
375     for (size_t i=0 ; i<count ; i++) {
376         const sp<LayerBase>& layer(currentLayers[i]);
377         sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
378         if (lbc != NULL) {
379             wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
380             if (lbcBinder == surfaceTextureBinder) {
381                 return true;
382             }
383         }
384     }
385 
386     // Check the layers in the purgatory.  This check is here so that if a
387     // SurfaceTexture gets destroyed before all the clients are done using it,
388     // the error will not be reported as "surface XYZ is not authenticated", but
389     // will instead fail later on when the client tries to use the surface,
390     // which should be reported as "surface XYZ returned an -ENODEV".  The
391     // purgatorized layers are no less authentic than the visible ones, so this
392     // should not cause any harm.
393     size_t purgatorySize =  mLayerPurgatory.size();
394     for (size_t i=0 ; i<purgatorySize ; i++) {
395         const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
396         sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
397         if (lbc != NULL) {
398             wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
399             if (lbcBinder == surfaceTextureBinder) {
400                 return true;
401             }
402         }
403     }
404 
405     return false;
406 }
407 
postMessageAsync(const sp<MessageBase> & msg,nsecs_t reltime,uint32_t flags)408 status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
409         nsecs_t reltime, uint32_t flags)
410 {
411     return mEventQueue.postMessage(msg, reltime, flags);
412 }
413 
postMessageSync(const sp<MessageBase> & msg,nsecs_t reltime,uint32_t flags)414 status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
415         nsecs_t reltime, uint32_t flags)
416 {
417     status_t res = mEventQueue.postMessage(msg, reltime, flags);
418     if (res == NO_ERROR) {
419         msg->wait();
420     }
421     return res;
422 }
423 
424 // ----------------------------------------------------------------------------
425 #if 0
426 #pragma mark -
427 #pragma mark Main loop
428 #endif
429 
threadLoop()430 bool SurfaceFlinger::threadLoop()
431 {
432     waitForEvent();
433 
434     // check for transactions
435     if (UNLIKELY(mConsoleSignals)) {
436         handleConsoleEvents();
437     }
438 
439     // if we're in a global transaction, don't do anything.
440     const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
441     uint32_t transactionFlags = peekTransactionFlags(mask);
442     if (UNLIKELY(transactionFlags)) {
443         handleTransaction(transactionFlags);
444     }
445 
446     // post surfaces (if needed)
447     handlePageFlip();
448 
449     if (mDirtyRegion.isEmpty()) {
450         // nothing new to do.
451         return true;
452     }
453 
454     if (UNLIKELY(mHwWorkListDirty)) {
455         // build the h/w work list
456         handleWorkList();
457     }
458 
459     const DisplayHardware& hw(graphicPlane(0).displayHardware());
460     if (LIKELY(hw.canDraw())) {
461         // repaint the framebuffer (if needed)
462 
463         const int index = hw.getCurrentBufferIndex();
464         GraphicLog& logger(GraphicLog::getInstance());
465 
466         logger.log(GraphicLog::SF_REPAINT, index);
467         handleRepaint();
468 
469         // inform the h/w that we're done compositing
470         logger.log(GraphicLog::SF_COMPOSITION_COMPLETE, index);
471         hw.compositionComplete();
472 
473         logger.log(GraphicLog::SF_SWAP_BUFFERS, index);
474         postFramebuffer();
475 
476         logger.log(GraphicLog::SF_REPAINT_DONE, index);
477     } else {
478         // pretend we did the post
479         hw.compositionComplete();
480         usleep(16667); // 60 fps period
481     }
482     return true;
483 }
484 
postFramebuffer()485 void SurfaceFlinger::postFramebuffer()
486 {
487     // this should never happen. we do the flip anyways so we don't
488     // risk to cause a deadlock with hwc
489     LOGW_IF(mSwapRegion.isEmpty(), "mSwapRegion is empty");
490     const DisplayHardware& hw(graphicPlane(0).displayHardware());
491     const nsecs_t now = systemTime();
492     mDebugInSwapBuffers = now;
493     hw.flip(mSwapRegion);
494     mLastSwapBufferTime = systemTime() - now;
495     mDebugInSwapBuffers = 0;
496     mSwapRegion.clear();
497 }
498 
handleConsoleEvents()499 void SurfaceFlinger::handleConsoleEvents()
500 {
501     // something to do with the console
502     const DisplayHardware& hw = graphicPlane(0).displayHardware();
503 
504     int what = android_atomic_and(0, &mConsoleSignals);
505     if (what & eConsoleAcquired) {
506         hw.acquireScreen();
507         // this is a temporary work-around, eventually this should be called
508         // by the power-manager
509         SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
510     }
511 
512     if (what & eConsoleReleased) {
513         if (hw.isScreenAcquired()) {
514             hw.releaseScreen();
515         }
516     }
517 
518     mDirtyRegion.set(hw.bounds());
519 }
520 
handleTransaction(uint32_t transactionFlags)521 void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
522 {
523     Mutex::Autolock _l(mStateLock);
524     const nsecs_t now = systemTime();
525     mDebugInTransaction = now;
526 
527     // Here we're guaranteed that some transaction flags are set
528     // so we can call handleTransactionLocked() unconditionally.
529     // We call getTransactionFlags(), which will also clear the flags,
530     // with mStateLock held to guarantee that mCurrentState won't change
531     // until the transaction is committed.
532 
533     const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
534     transactionFlags = getTransactionFlags(mask);
535     handleTransactionLocked(transactionFlags);
536 
537     mLastTransactionTime = systemTime() - now;
538     mDebugInTransaction = 0;
539     invalidateHwcGeometry();
540     // here the transaction has been committed
541 }
542 
handleTransactionLocked(uint32_t transactionFlags)543 void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
544 {
545     const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
546     const size_t count = currentLayers.size();
547 
548     /*
549      * Traversal of the children
550      * (perform the transaction for each of them if needed)
551      */
552 
553     const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
554     if (layersNeedTransaction) {
555         for (size_t i=0 ; i<count ; i++) {
556             const sp<LayerBase>& layer = currentLayers[i];
557             uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
558             if (!trFlags) continue;
559 
560             const uint32_t flags = layer->doTransaction(0);
561             if (flags & Layer::eVisibleRegion)
562                 mVisibleRegionsDirty = true;
563         }
564     }
565 
566     /*
567      * Perform our own transaction if needed
568      */
569 
570     if (transactionFlags & eTransactionNeeded) {
571         if (mCurrentState.orientation != mDrawingState.orientation) {
572             // the orientation has changed, recompute all visible regions
573             // and invalidate everything.
574 
575             const int dpy = 0;
576             const int orientation = mCurrentState.orientation;
577             // Currently unused: const uint32_t flags = mCurrentState.orientationFlags;
578             GraphicPlane& plane(graphicPlane(dpy));
579             plane.setOrientation(orientation);
580 
581             // update the shared control block
582             const DisplayHardware& hw(plane.displayHardware());
583             volatile display_cblk_t* dcblk = mServerCblk->displays + dpy;
584             dcblk->orientation = orientation;
585             dcblk->w = plane.getWidth();
586             dcblk->h = plane.getHeight();
587 
588             mVisibleRegionsDirty = true;
589             mDirtyRegion.set(hw.bounds());
590         }
591 
592         if (mCurrentState.freezeDisplay != mDrawingState.freezeDisplay) {
593             // freezing or unfreezing the display -> trigger animation if needed
594             mFreezeDisplay = mCurrentState.freezeDisplay;
595             if (mFreezeDisplay)
596                  mFreezeDisplayTime = 0;
597         }
598 
599         if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
600             // layers have been added
601             mVisibleRegionsDirty = true;
602         }
603 
604         // some layers might have been removed, so
605         // we need to update the regions they're exposing.
606         if (mLayersRemoved) {
607             mLayersRemoved = false;
608             mVisibleRegionsDirty = true;
609             const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
610             const size_t count = previousLayers.size();
611             for (size_t i=0 ; i<count ; i++) {
612                 const sp<LayerBase>& layer(previousLayers[i]);
613                 if (currentLayers.indexOf( layer ) < 0) {
614                     // this layer is not visible anymore
615                     mDirtyRegionRemovedLayer.orSelf(layer->visibleRegionScreen);
616                 }
617             }
618         }
619     }
620 
621     commitTransaction();
622 }
623 
getFreezeLock() const624 sp<FreezeLock> SurfaceFlinger::getFreezeLock() const
625 {
626     return new FreezeLock(const_cast<SurfaceFlinger *>(this));
627 }
628 
computeVisibleRegions(const LayerVector & currentLayers,Region & dirtyRegion,Region & opaqueRegion)629 void SurfaceFlinger::computeVisibleRegions(
630     const LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
631 {
632     const GraphicPlane& plane(graphicPlane(0));
633     const Transform& planeTransform(plane.transform());
634     const DisplayHardware& hw(plane.displayHardware());
635     const Region screenRegion(hw.bounds());
636 
637     Region aboveOpaqueLayers;
638     Region aboveCoveredLayers;
639     Region dirty;
640 
641     bool secureFrameBuffer = false;
642 
643     size_t i = currentLayers.size();
644     while (i--) {
645         const sp<LayerBase>& layer = currentLayers[i];
646         layer->validateVisibility(planeTransform);
647 
648         // start with the whole surface at its current location
649         const Layer::State& s(layer->drawingState());
650 
651         /*
652          * opaqueRegion: area of a surface that is fully opaque.
653          */
654         Region opaqueRegion;
655 
656         /*
657          * visibleRegion: area of a surface that is visible on screen
658          * and not fully transparent. This is essentially the layer's
659          * footprint minus the opaque regions above it.
660          * Areas covered by a translucent surface are considered visible.
661          */
662         Region visibleRegion;
663 
664         /*
665          * coveredRegion: area of a surface that is covered by all
666          * visible regions above it (which includes the translucent areas).
667          */
668         Region coveredRegion;
669 
670 
671         // handle hidden surfaces by setting the visible region to empty
672         if (LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
673             const bool translucent = !layer->isOpaque();
674             const Rect bounds(layer->visibleBounds());
675             visibleRegion.set(bounds);
676             visibleRegion.andSelf(screenRegion);
677             if (!visibleRegion.isEmpty()) {
678                 // Remove the transparent area from the visible region
679                 if (translucent) {
680                     visibleRegion.subtractSelf(layer->transparentRegionScreen);
681                 }
682 
683                 // compute the opaque region
684                 const int32_t layerOrientation = layer->getOrientation();
685                 if (s.alpha==255 && !translucent &&
686                         ((layerOrientation & Transform::ROT_INVALID) == false)) {
687                     // the opaque region is the layer's footprint
688                     opaqueRegion = visibleRegion;
689                 }
690             }
691         }
692 
693         // Clip the covered region to the visible region
694         coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
695 
696         // Update aboveCoveredLayers for next (lower) layer
697         aboveCoveredLayers.orSelf(visibleRegion);
698 
699         // subtract the opaque region covered by the layers above us
700         visibleRegion.subtractSelf(aboveOpaqueLayers);
701 
702         // compute this layer's dirty region
703         if (layer->contentDirty) {
704             // we need to invalidate the whole region
705             dirty = visibleRegion;
706             // as well, as the old visible region
707             dirty.orSelf(layer->visibleRegionScreen);
708             layer->contentDirty = false;
709         } else {
710             /* compute the exposed region:
711              *   the exposed region consists of two components:
712              *   1) what's VISIBLE now and was COVERED before
713              *   2) what's EXPOSED now less what was EXPOSED before
714              *
715              * note that (1) is conservative, we start with the whole
716              * visible region but only keep what used to be covered by
717              * something -- which mean it may have been exposed.
718              *
719              * (2) handles areas that were not covered by anything but got
720              * exposed because of a resize.
721              */
722             const Region newExposed = visibleRegion - coveredRegion;
723             const Region oldVisibleRegion = layer->visibleRegionScreen;
724             const Region oldCoveredRegion = layer->coveredRegionScreen;
725             const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
726             dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
727         }
728         dirty.subtractSelf(aboveOpaqueLayers);
729 
730         // accumulate to the screen dirty region
731         dirtyRegion.orSelf(dirty);
732 
733         // Update aboveOpaqueLayers for next (lower) layer
734         aboveOpaqueLayers.orSelf(opaqueRegion);
735 
736         // Store the visible region is screen space
737         layer->setVisibleRegion(visibleRegion);
738         layer->setCoveredRegion(coveredRegion);
739 
740         // If a secure layer is partially visible, lock-down the screen!
741         if (layer->isSecure() && !visibleRegion.isEmpty()) {
742             secureFrameBuffer = true;
743         }
744     }
745 
746     // invalidate the areas where a layer was removed
747     dirtyRegion.orSelf(mDirtyRegionRemovedLayer);
748     mDirtyRegionRemovedLayer.clear();
749 
750     mSecureFrameBuffer = secureFrameBuffer;
751     opaqueRegion = aboveOpaqueLayers;
752 }
753 
754 
commitTransaction()755 void SurfaceFlinger::commitTransaction()
756 {
757     mDrawingState = mCurrentState;
758     mResizeTransationPending = false;
759     mTransactionCV.broadcast();
760 }
761 
handlePageFlip()762 void SurfaceFlinger::handlePageFlip()
763 {
764     bool visibleRegions = mVisibleRegionsDirty;
765     const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
766     visibleRegions |= lockPageFlip(currentLayers);
767 
768         const DisplayHardware& hw = graphicPlane(0).displayHardware();
769         const Region screenRegion(hw.bounds());
770         if (visibleRegions) {
771             Region opaqueRegion;
772             computeVisibleRegions(currentLayers, mDirtyRegion, opaqueRegion);
773 
774             /*
775              *  rebuild the visible layer list
776              */
777             const size_t count = currentLayers.size();
778             mVisibleLayersSortedByZ.clear();
779             mVisibleLayersSortedByZ.setCapacity(count);
780             for (size_t i=0 ; i<count ; i++) {
781                 if (!currentLayers[i]->visibleRegionScreen.isEmpty())
782                     mVisibleLayersSortedByZ.add(currentLayers[i]);
783             }
784 
785             mWormholeRegion = screenRegion.subtract(opaqueRegion);
786             mVisibleRegionsDirty = false;
787             invalidateHwcGeometry();
788         }
789 
790     unlockPageFlip(currentLayers);
791 
792     mDirtyRegion.orSelf(getAndClearInvalidateRegion());
793     mDirtyRegion.andSelf(screenRegion);
794 }
795 
invalidateHwcGeometry()796 void SurfaceFlinger::invalidateHwcGeometry()
797 {
798     mHwWorkListDirty = true;
799 }
800 
lockPageFlip(const LayerVector & currentLayers)801 bool SurfaceFlinger::lockPageFlip(const LayerVector& currentLayers)
802 {
803     bool recomputeVisibleRegions = false;
804     size_t count = currentLayers.size();
805     sp<LayerBase> const* layers = currentLayers.array();
806     for (size_t i=0 ; i<count ; i++) {
807         const sp<LayerBase>& layer(layers[i]);
808         layer->lockPageFlip(recomputeVisibleRegions);
809     }
810     return recomputeVisibleRegions;
811 }
812 
unlockPageFlip(const LayerVector & currentLayers)813 void SurfaceFlinger::unlockPageFlip(const LayerVector& currentLayers)
814 {
815     const GraphicPlane& plane(graphicPlane(0));
816     const Transform& planeTransform(plane.transform());
817     size_t count = currentLayers.size();
818     sp<LayerBase> const* layers = currentLayers.array();
819     for (size_t i=0 ; i<count ; i++) {
820         const sp<LayerBase>& layer(layers[i]);
821         layer->unlockPageFlip(planeTransform, mDirtyRegion);
822     }
823 }
824 
handleWorkList()825 void SurfaceFlinger::handleWorkList()
826 {
827     mHwWorkListDirty = false;
828     HWComposer& hwc(graphicPlane(0).displayHardware().getHwComposer());
829     if (hwc.initCheck() == NO_ERROR) {
830         const Vector< sp<LayerBase> >& currentLayers(mVisibleLayersSortedByZ);
831         const size_t count = currentLayers.size();
832         hwc.createWorkList(count);
833         hwc_layer_t* const cur(hwc.getLayers());
834         for (size_t i=0 ; cur && i<count ; i++) {
835             currentLayers[i]->setGeometry(&cur[i]);
836             if (mDebugDisableHWC || mDebugRegion) {
837                 cur[i].compositionType = HWC_FRAMEBUFFER;
838                 cur[i].flags |= HWC_SKIP_LAYER;
839             }
840         }
841     }
842 }
843 
handleRepaint()844 void SurfaceFlinger::handleRepaint()
845 {
846     // compute the invalid region
847     mSwapRegion.orSelf(mDirtyRegion);
848 
849     if (UNLIKELY(mDebugRegion)) {
850         debugFlashRegions();
851     }
852 
853     // set the frame buffer
854     const DisplayHardware& hw(graphicPlane(0).displayHardware());
855     glMatrixMode(GL_MODELVIEW);
856     glLoadIdentity();
857 
858     uint32_t flags = hw.getFlags();
859     if ((flags & DisplayHardware::SWAP_RECTANGLE) ||
860         (flags & DisplayHardware::BUFFER_PRESERVED))
861     {
862         // we can redraw only what's dirty, but since SWAP_RECTANGLE only
863         // takes a rectangle, we must make sure to update that whole
864         // rectangle in that case
865         if (flags & DisplayHardware::SWAP_RECTANGLE) {
866             // TODO: we really should be able to pass a region to
867             // SWAP_RECTANGLE so that we don't have to redraw all this.
868             mDirtyRegion.set(mSwapRegion.bounds());
869         } else {
870             // in the BUFFER_PRESERVED case, obviously, we can update only
871             // what's needed and nothing more.
872             // NOTE: this is NOT a common case, as preserving the backbuffer
873             // is costly and usually involves copying the whole update back.
874         }
875     } else {
876         if (flags & DisplayHardware::PARTIAL_UPDATES) {
877             // We need to redraw the rectangle that will be updated
878             // (pushed to the framebuffer).
879             // This is needed because PARTIAL_UPDATES only takes one
880             // rectangle instead of a region (see DisplayHardware::flip())
881             mDirtyRegion.set(mSwapRegion.bounds());
882         } else {
883             // we need to redraw everything (the whole screen)
884             mDirtyRegion.set(hw.bounds());
885             mSwapRegion = mDirtyRegion;
886         }
887     }
888 
889     setupHardwareComposer(mDirtyRegion);
890     composeSurfaces(mDirtyRegion);
891 
892     // update the swap region and clear the dirty region
893     mSwapRegion.orSelf(mDirtyRegion);
894     mDirtyRegion.clear();
895 }
896 
setupHardwareComposer(Region & dirtyInOut)897 void SurfaceFlinger::setupHardwareComposer(Region& dirtyInOut)
898 {
899     const DisplayHardware& hw(graphicPlane(0).displayHardware());
900     HWComposer& hwc(hw.getHwComposer());
901     hwc_layer_t* const cur(hwc.getLayers());
902     if (!cur) {
903         return;
904     }
905 
906     const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
907     size_t count = layers.size();
908 
909     LOGE_IF(hwc.getNumLayers() != count,
910             "HAL number of layers (%d) doesn't match surfaceflinger (%d)",
911             hwc.getNumLayers(), count);
912 
913     // just to be extra-safe, use the smallest count
914     if (hwc.initCheck() == NO_ERROR) {
915         count = count < hwc.getNumLayers() ? count : hwc.getNumLayers();
916     }
917 
918     /*
919      *  update the per-frame h/w composer data for each layer
920      *  and build the transparent region of the FB
921      */
922     for (size_t i=0 ; i<count ; i++) {
923         const sp<LayerBase>& layer(layers[i]);
924         layer->setPerFrameData(&cur[i]);
925     }
926     const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
927     status_t err = hwc.prepare();
928     LOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
929 
930     if (err == NO_ERROR) {
931         // what's happening here is tricky.
932         // we want to clear all the layers with the CLEAR_FB flags
933         // that are opaque.
934         // however, since some GPU are efficient at preserving
935         // the backbuffer, we want to take advantage of that so we do the
936         // clear only in the dirty region (other areas will be preserved
937         // on those GPUs).
938         //   NOTE: on non backbuffer preserving GPU, the dirty region
939         //   has already been expanded as needed, so the code is correct
940         //   there too.
941         //
942         // However, the content of the framebuffer cannot be trusted when
943         // we switch to/from FB/OVERLAY, in which case we need to
944         // expand the dirty region to those areas too.
945         //
946         // Note also that there is a special case when switching from
947         // "no layers in FB" to "some layers in FB", where we need to redraw
948         // the entire FB, since some areas might contain uninitialized
949         // data.
950         //
951         // Also we want to make sure to not clear areas that belong to
952         // layers above that won't redraw (we would just be erasing them),
953         // that is, we can't erase anything outside the dirty region.
954 
955         Region transparent;
956 
957         if (!fbLayerCount && hwc.getLayerCount(HWC_FRAMEBUFFER)) {
958             transparent.set(hw.getBounds());
959             dirtyInOut = transparent;
960         } else {
961             for (size_t i=0 ; i<count ; i++) {
962                 const sp<LayerBase>& layer(layers[i]);
963                 if ((cur[i].hints & HWC_HINT_CLEAR_FB) && layer->isOpaque()) {
964                     transparent.orSelf(layer->visibleRegionScreen);
965                 }
966                 bool isOverlay = (cur[i].compositionType != HWC_FRAMEBUFFER);
967                 if (isOverlay != layer->isOverlay()) {
968                     // we transitioned to/from overlay, so add this layer
969                     // to the dirty region so the framebuffer can be either
970                     // cleared or redrawn.
971                     dirtyInOut.orSelf(layer->visibleRegionScreen);
972                 }
973                 layer->setOverlay(isOverlay);
974             }
975             // don't erase stuff outside the dirty region
976             transparent.andSelf(dirtyInOut);
977         }
978 
979         /*
980          *  clear the area of the FB that need to be transparent
981          */
982         if (!transparent.isEmpty()) {
983             glClearColor(0,0,0,0);
984             Region::const_iterator it = transparent.begin();
985             Region::const_iterator const end = transparent.end();
986             const int32_t height = hw.getHeight();
987             while (it != end) {
988                 const Rect& r(*it++);
989                 const GLint sy = height - (r.top + r.height());
990                 glScissor(r.left, sy, r.width(), r.height());
991                 glClear(GL_COLOR_BUFFER_BIT);
992             }
993         }
994     }
995 }
996 
composeSurfaces(const Region & dirty)997 void SurfaceFlinger::composeSurfaces(const Region& dirty)
998 {
999     const DisplayHardware& hw(graphicPlane(0).displayHardware());
1000     HWComposer& hwc(hw.getHwComposer());
1001 
1002     const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
1003     if (UNLIKELY(fbLayerCount && !mWormholeRegion.isEmpty())) {
1004         // should never happen unless the window manager has a bug
1005         // draw something...
1006         drawWormhole();
1007     }
1008 
1009     /*
1010      * and then, render the layers targeted at the framebuffer
1011      */
1012     hwc_layer_t* const cur(hwc.getLayers());
1013     const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
1014     size_t count = layers.size();
1015     for (size_t i=0 ; i<count ; i++) {
1016         if (cur && (cur[i].compositionType != HWC_FRAMEBUFFER)) {
1017             continue;
1018         }
1019         const sp<LayerBase>& layer(layers[i]);
1020         const Region clip(dirty.intersect(layer->visibleRegionScreen));
1021         if (!clip.isEmpty()) {
1022             layer->draw(clip);
1023         }
1024     }
1025 }
1026 
debugFlashRegions()1027 void SurfaceFlinger::debugFlashRegions()
1028 {
1029     const DisplayHardware& hw(graphicPlane(0).displayHardware());
1030     const uint32_t flags = hw.getFlags();
1031     const int32_t height = hw.getHeight();
1032     if (mSwapRegion.isEmpty()) {
1033         return;
1034     }
1035 
1036     if (!((flags & DisplayHardware::SWAP_RECTANGLE) ||
1037             (flags & DisplayHardware::BUFFER_PRESERVED))) {
1038         const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
1039                 mDirtyRegion.bounds() : hw.bounds());
1040         composeSurfaces(repaint);
1041     }
1042 
1043     glDisable(GL_TEXTURE_EXTERNAL_OES);
1044     glDisable(GL_TEXTURE_2D);
1045     glDisable(GL_BLEND);
1046     glDisable(GL_SCISSOR_TEST);
1047 
1048     static int toggle = 0;
1049     toggle = 1 - toggle;
1050     if (toggle) {
1051         glColor4f(1, 0, 1, 1);
1052     } else {
1053         glColor4f(1, 1, 0, 1);
1054     }
1055 
1056     Region::const_iterator it = mDirtyRegion.begin();
1057     Region::const_iterator const end = mDirtyRegion.end();
1058     while (it != end) {
1059         const Rect& r = *it++;
1060         GLfloat vertices[][2] = {
1061                 { r.left,  height - r.top },
1062                 { r.left,  height - r.bottom },
1063                 { r.right, height - r.bottom },
1064                 { r.right, height - r.top }
1065         };
1066         glVertexPointer(2, GL_FLOAT, 0, vertices);
1067         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1068     }
1069 
1070     hw.flip(mSwapRegion);
1071 
1072     if (mDebugRegion > 1)
1073         usleep(mDebugRegion * 1000);
1074 
1075     glEnable(GL_SCISSOR_TEST);
1076 }
1077 
drawWormhole() const1078 void SurfaceFlinger::drawWormhole() const
1079 {
1080     const Region region(mWormholeRegion.intersect(mDirtyRegion));
1081     if (region.isEmpty())
1082         return;
1083 
1084     const DisplayHardware& hw(graphicPlane(0).displayHardware());
1085     const int32_t width = hw.getWidth();
1086     const int32_t height = hw.getHeight();
1087 
1088     if (LIKELY(!mDebugBackground)) {
1089         glClearColor(0,0,0,0);
1090         Region::const_iterator it = region.begin();
1091         Region::const_iterator const end = region.end();
1092         while (it != end) {
1093             const Rect& r = *it++;
1094             const GLint sy = height - (r.top + r.height());
1095             glScissor(r.left, sy, r.width(), r.height());
1096             glClear(GL_COLOR_BUFFER_BIT);
1097         }
1098     } else {
1099         const GLshort vertices[][2] = { { 0, 0 }, { width, 0 },
1100                 { width, height }, { 0, height }  };
1101         const GLshort tcoords[][2] = { { 0, 0 }, { 1, 0 },  { 1, 1 }, { 0, 1 } };
1102 
1103         glVertexPointer(2, GL_SHORT, 0, vertices);
1104         glTexCoordPointer(2, GL_SHORT, 0, tcoords);
1105         glEnableClientState(GL_TEXTURE_COORD_ARRAY);
1106 
1107         glDisable(GL_TEXTURE_EXTERNAL_OES);
1108         glEnable(GL_TEXTURE_2D);
1109         glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
1110         glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
1111         glMatrixMode(GL_TEXTURE);
1112         glLoadIdentity();
1113 
1114         glDisable(GL_BLEND);
1115 
1116         glScalef(width*(1.0f/32.0f), height*(1.0f/32.0f), 1);
1117         Region::const_iterator it = region.begin();
1118         Region::const_iterator const end = region.end();
1119         while (it != end) {
1120             const Rect& r = *it++;
1121             const GLint sy = height - (r.top + r.height());
1122             glScissor(r.left, sy, r.width(), r.height());
1123             glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1124         }
1125         glDisableClientState(GL_TEXTURE_COORD_ARRAY);
1126         glDisable(GL_TEXTURE_2D);
1127         glLoadIdentity();
1128         glMatrixMode(GL_MODELVIEW);
1129     }
1130 }
1131 
debugShowFPS() const1132 void SurfaceFlinger::debugShowFPS() const
1133 {
1134     static int mFrameCount;
1135     static int mLastFrameCount = 0;
1136     static nsecs_t mLastFpsTime = 0;
1137     static float mFps = 0;
1138     mFrameCount++;
1139     nsecs_t now = systemTime();
1140     nsecs_t diff = now - mLastFpsTime;
1141     if (diff > ms2ns(250)) {
1142         mFps =  ((mFrameCount - mLastFrameCount) * float(s2ns(1))) / diff;
1143         mLastFpsTime = now;
1144         mLastFrameCount = mFrameCount;
1145     }
1146     // XXX: mFPS has the value we want
1147  }
1148 
addLayer(const sp<LayerBase> & layer)1149 status_t SurfaceFlinger::addLayer(const sp<LayerBase>& layer)
1150 {
1151     Mutex::Autolock _l(mStateLock);
1152     addLayer_l(layer);
1153     setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1154     return NO_ERROR;
1155 }
1156 
addLayer_l(const sp<LayerBase> & layer)1157 status_t SurfaceFlinger::addLayer_l(const sp<LayerBase>& layer)
1158 {
1159     ssize_t i = mCurrentState.layersSortedByZ.add(layer);
1160     return (i < 0) ? status_t(i) : status_t(NO_ERROR);
1161 }
1162 
addClientLayer(const sp<Client> & client,const sp<LayerBaseClient> & lbc)1163 ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1164         const sp<LayerBaseClient>& lbc)
1165 {
1166     // attach this layer to the client
1167     size_t name = client->attachLayer(lbc);
1168 
1169     Mutex::Autolock _l(mStateLock);
1170 
1171     // add this layer to the current state list
1172     addLayer_l(lbc);
1173 
1174     return ssize_t(name);
1175 }
1176 
removeLayer(const sp<LayerBase> & layer)1177 status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1178 {
1179     Mutex::Autolock _l(mStateLock);
1180     status_t err = purgatorizeLayer_l(layer);
1181     if (err == NO_ERROR)
1182         setTransactionFlags(eTransactionNeeded);
1183     return err;
1184 }
1185 
removeLayer_l(const sp<LayerBase> & layerBase)1186 status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1187 {
1188     sp<LayerBaseClient> lbc(layerBase->getLayerBaseClient());
1189     if (lbc != 0) {
1190         mLayerMap.removeItem( lbc->getSurfaceBinder() );
1191     }
1192     ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1193     if (index >= 0) {
1194         mLayersRemoved = true;
1195         return NO_ERROR;
1196     }
1197     return status_t(index);
1198 }
1199 
purgatorizeLayer_l(const sp<LayerBase> & layerBase)1200 status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1201 {
1202     // First add the layer to the purgatory list, which makes sure it won't
1203     // go away, then remove it from the main list (through a transaction).
1204     ssize_t err = removeLayer_l(layerBase);
1205     if (err >= 0) {
1206         mLayerPurgatory.add(layerBase);
1207     }
1208 
1209     layerBase->onRemoved();
1210 
1211     // it's possible that we don't find a layer, because it might
1212     // have been destroyed already -- this is not technically an error
1213     // from the user because there is a race between Client::destroySurface(),
1214     // ~Client() and ~ISurface().
1215     return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1216 }
1217 
invalidateLayerVisibility(const sp<LayerBase> & layer)1218 status_t SurfaceFlinger::invalidateLayerVisibility(const sp<LayerBase>& layer)
1219 {
1220     layer->forceVisibilityTransaction();
1221     setTransactionFlags(eTraversalNeeded);
1222     return NO_ERROR;
1223 }
1224 
peekTransactionFlags(uint32_t flags)1225 uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1226 {
1227     return android_atomic_release_load(&mTransactionFlags);
1228 }
1229 
getTransactionFlags(uint32_t flags)1230 uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1231 {
1232     return android_atomic_and(~flags, &mTransactionFlags) & flags;
1233 }
1234 
setTransactionFlags(uint32_t flags)1235 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1236 {
1237     uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1238     if ((old & flags)==0) { // wake the server up
1239         signalEvent();
1240     }
1241     return old;
1242 }
1243 
1244 
setTransactionState(const Vector<ComposerState> & state,int orientation)1245 void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& state,
1246         int orientation) {
1247     Mutex::Autolock _l(mStateLock);
1248 
1249     uint32_t flags = 0;
1250     if (mCurrentState.orientation != orientation) {
1251         if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1252             mCurrentState.orientation = orientation;
1253             flags |= eTransactionNeeded;
1254             mResizeTransationPending = true;
1255         } else if (orientation != eOrientationUnchanged) {
1256             LOGW("setTransactionState: ignoring unrecognized orientation: %d",
1257                     orientation);
1258         }
1259     }
1260 
1261     const size_t count = state.size();
1262     for (size_t i=0 ; i<count ; i++) {
1263         const ComposerState& s(state[i]);
1264         sp<Client> client( static_cast<Client *>(s.client.get()) );
1265         flags |= setClientStateLocked(client, s.state);
1266     }
1267     if (flags) {
1268         setTransactionFlags(flags);
1269     }
1270 
1271     signalEvent();
1272 
1273     // if there is a transaction with a resize, wait for it to
1274     // take effect before returning.
1275     while (mResizeTransationPending) {
1276         status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1277         if (CC_UNLIKELY(err != NO_ERROR)) {
1278             // just in case something goes wrong in SF, return to the
1279             // called after a few seconds.
1280             LOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1281             mResizeTransationPending = false;
1282             break;
1283         }
1284     }
1285 }
1286 
freezeDisplay(DisplayID dpy,uint32_t flags)1287 status_t SurfaceFlinger::freezeDisplay(DisplayID dpy, uint32_t flags)
1288 {
1289     if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
1290         return BAD_VALUE;
1291 
1292     Mutex::Autolock _l(mStateLock);
1293     mCurrentState.freezeDisplay = 1;
1294     setTransactionFlags(eTransactionNeeded);
1295 
1296     // flags is intended to communicate some sort of animation behavior
1297     // (for instance fading)
1298     return NO_ERROR;
1299 }
1300 
unfreezeDisplay(DisplayID dpy,uint32_t flags)1301 status_t SurfaceFlinger::unfreezeDisplay(DisplayID dpy, uint32_t flags)
1302 {
1303     if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
1304         return BAD_VALUE;
1305 
1306     Mutex::Autolock _l(mStateLock);
1307     mCurrentState.freezeDisplay = 0;
1308     setTransactionFlags(eTransactionNeeded);
1309 
1310     // flags is intended to communicate some sort of animation behavior
1311     // (for instance fading)
1312     return NO_ERROR;
1313 }
1314 
setOrientation(DisplayID dpy,int orientation,uint32_t flags)1315 int SurfaceFlinger::setOrientation(DisplayID dpy,
1316         int orientation, uint32_t flags)
1317 {
1318     if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
1319         return BAD_VALUE;
1320 
1321     Mutex::Autolock _l(mStateLock);
1322     if (mCurrentState.orientation != orientation) {
1323         if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1324             mCurrentState.orientationFlags = flags;
1325             mCurrentState.orientation = orientation;
1326             setTransactionFlags(eTransactionNeeded);
1327             mTransactionCV.wait(mStateLock);
1328         } else {
1329             orientation = BAD_VALUE;
1330         }
1331     }
1332     return orientation;
1333 }
1334 
createSurface(ISurfaceComposerClient::surface_data_t * params,const String8 & name,const sp<Client> & client,DisplayID d,uint32_t w,uint32_t h,PixelFormat format,uint32_t flags)1335 sp<ISurface> SurfaceFlinger::createSurface(
1336         ISurfaceComposerClient::surface_data_t* params,
1337         const String8& name,
1338         const sp<Client>& client,
1339         DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1340         uint32_t flags)
1341 {
1342     sp<LayerBaseClient> layer;
1343     sp<ISurface> surfaceHandle;
1344 
1345     if (int32_t(w|h) < 0) {
1346         LOGE("createSurface() failed, w or h is negative (w=%d, h=%d)",
1347                 int(w), int(h));
1348         return surfaceHandle;
1349     }
1350 
1351     //LOGD("createSurface for pid %d (%d x %d)", pid, w, h);
1352     sp<Layer> normalLayer;
1353     switch (flags & eFXSurfaceMask) {
1354         case eFXSurfaceNormal:
1355             normalLayer = createNormalSurface(client, d, w, h, flags, format);
1356             layer = normalLayer;
1357             break;
1358         case eFXSurfaceBlur:
1359             // for now we treat Blur as Dim, until we can implement it
1360             // efficiently.
1361         case eFXSurfaceDim:
1362             layer = createDimSurface(client, d, w, h, flags);
1363             break;
1364         case eFXSurfaceScreenshot:
1365             layer = createScreenshotSurface(client, d, w, h, flags);
1366             break;
1367     }
1368 
1369     if (layer != 0) {
1370         layer->initStates(w, h, flags);
1371         layer->setName(name);
1372         ssize_t token = addClientLayer(client, layer);
1373 
1374         surfaceHandle = layer->getSurface();
1375         if (surfaceHandle != 0) {
1376             params->token = token;
1377             params->identity = layer->getIdentity();
1378             if (normalLayer != 0) {
1379                 Mutex::Autolock _l(mStateLock);
1380                 mLayerMap.add(layer->getSurfaceBinder(), normalLayer);
1381             }
1382         }
1383 
1384         setTransactionFlags(eTransactionNeeded);
1385     }
1386 
1387     return surfaceHandle;
1388 }
1389 
createNormalSurface(const sp<Client> & client,DisplayID display,uint32_t w,uint32_t h,uint32_t flags,PixelFormat & format)1390 sp<Layer> SurfaceFlinger::createNormalSurface(
1391         const sp<Client>& client, DisplayID display,
1392         uint32_t w, uint32_t h, uint32_t flags,
1393         PixelFormat& format)
1394 {
1395     // initialize the surfaces
1396     switch (format) { // TODO: take h/w into account
1397     case PIXEL_FORMAT_TRANSPARENT:
1398     case PIXEL_FORMAT_TRANSLUCENT:
1399         format = PIXEL_FORMAT_RGBA_8888;
1400         break;
1401     case PIXEL_FORMAT_OPAQUE:
1402 #ifdef NO_RGBX_8888
1403         format = PIXEL_FORMAT_RGB_565;
1404 #else
1405         format = PIXEL_FORMAT_RGBX_8888;
1406 #endif
1407         break;
1408     }
1409 
1410 #ifdef NO_RGBX_8888
1411     if (format == PIXEL_FORMAT_RGBX_8888)
1412         format = PIXEL_FORMAT_RGBA_8888;
1413 #endif
1414 
1415     sp<Layer> layer = new Layer(this, display, client);
1416     status_t err = layer->setBuffers(w, h, format, flags);
1417     if (LIKELY(err != NO_ERROR)) {
1418         LOGE("createNormalSurfaceLocked() failed (%s)", strerror(-err));
1419         layer.clear();
1420     }
1421     return layer;
1422 }
1423 
createDimSurface(const sp<Client> & client,DisplayID display,uint32_t w,uint32_t h,uint32_t flags)1424 sp<LayerDim> SurfaceFlinger::createDimSurface(
1425         const sp<Client>& client, DisplayID display,
1426         uint32_t w, uint32_t h, uint32_t flags)
1427 {
1428     sp<LayerDim> layer = new LayerDim(this, display, client);
1429     return layer;
1430 }
1431 
createScreenshotSurface(const sp<Client> & client,DisplayID display,uint32_t w,uint32_t h,uint32_t flags)1432 sp<LayerScreenshot> SurfaceFlinger::createScreenshotSurface(
1433         const sp<Client>& client, DisplayID display,
1434         uint32_t w, uint32_t h, uint32_t flags)
1435 {
1436     sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1437     status_t err = layer->capture();
1438     if (err != NO_ERROR) {
1439         layer.clear();
1440         LOGW("createScreenshotSurface failed (%s)", strerror(-err));
1441     }
1442     return layer;
1443 }
1444 
removeSurface(const sp<Client> & client,SurfaceID sid)1445 status_t SurfaceFlinger::removeSurface(const sp<Client>& client, SurfaceID sid)
1446 {
1447     /*
1448      * called by the window manager, when a surface should be marked for
1449      * destruction.
1450      *
1451      * The surface is removed from the current and drawing lists, but placed
1452      * in the purgatory queue, so it's not destroyed right-away (we need
1453      * to wait for all client's references to go away first).
1454      */
1455 
1456     status_t err = NAME_NOT_FOUND;
1457     Mutex::Autolock _l(mStateLock);
1458     sp<LayerBaseClient> layer = client->getLayerUser(sid);
1459     if (layer != 0) {
1460         err = purgatorizeLayer_l(layer);
1461         if (err == NO_ERROR) {
1462             setTransactionFlags(eTransactionNeeded);
1463         }
1464     }
1465     return err;
1466 }
1467 
destroySurface(const wp<LayerBaseClient> & layer)1468 status_t SurfaceFlinger::destroySurface(const wp<LayerBaseClient>& layer)
1469 {
1470     // called by ~ISurface() when all references are gone
1471     status_t err = NO_ERROR;
1472     sp<LayerBaseClient> l(layer.promote());
1473     if (l != NULL) {
1474         Mutex::Autolock _l(mStateLock);
1475         err = removeLayer_l(l);
1476         if (err == NAME_NOT_FOUND) {
1477             // The surface wasn't in the current list, which means it was
1478             // removed already, which means it is in the purgatory,
1479             // and need to be removed from there.
1480             ssize_t idx = mLayerPurgatory.remove(l);
1481             LOGE_IF(idx < 0,
1482                     "layer=%p is not in the purgatory list", l.get());
1483         }
1484         LOGE_IF(err<0 && err != NAME_NOT_FOUND,
1485                 "error removing layer=%p (%s)", l.get(), strerror(-err));
1486     }
1487     return err;
1488 }
1489 
setClientStateLocked(const sp<Client> & client,const layer_state_t & s)1490 uint32_t SurfaceFlinger::setClientStateLocked(
1491         const sp<Client>& client,
1492         const layer_state_t& s)
1493 {
1494     uint32_t flags = 0;
1495     sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1496     if (layer != 0) {
1497         const uint32_t what = s.what;
1498         if (what & ePositionChanged) {
1499             if (layer->setPosition(s.x, s.y))
1500                 flags |= eTraversalNeeded;
1501         }
1502         if (what & eLayerChanged) {
1503             ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1504             if (layer->setLayer(s.z)) {
1505                 mCurrentState.layersSortedByZ.removeAt(idx);
1506                 mCurrentState.layersSortedByZ.add(layer);
1507                 // we need traversal (state changed)
1508                 // AND transaction (list changed)
1509                 flags |= eTransactionNeeded|eTraversalNeeded;
1510             }
1511         }
1512         if (what & eSizeChanged) {
1513             if (layer->setSize(s.w, s.h)) {
1514                 flags |= eTraversalNeeded;
1515                 mResizeTransationPending = true;
1516             }
1517         }
1518         if (what & eAlphaChanged) {
1519             if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1520                 flags |= eTraversalNeeded;
1521         }
1522         if (what & eMatrixChanged) {
1523             if (layer->setMatrix(s.matrix))
1524                 flags |= eTraversalNeeded;
1525         }
1526         if (what & eTransparentRegionChanged) {
1527             if (layer->setTransparentRegionHint(s.transparentRegion))
1528                 flags |= eTraversalNeeded;
1529         }
1530         if (what & eVisibilityChanged) {
1531             if (layer->setFlags(s.flags, s.mask))
1532                 flags |= eTraversalNeeded;
1533         }
1534     }
1535     return flags;
1536 }
1537 
screenReleased(int dpy)1538 void SurfaceFlinger::screenReleased(int dpy)
1539 {
1540     // this may be called by a signal handler, we can't do too much in here
1541     android_atomic_or(eConsoleReleased, &mConsoleSignals);
1542     signalEvent();
1543 }
1544 
screenAcquired(int dpy)1545 void SurfaceFlinger::screenAcquired(int dpy)
1546 {
1547     // this may be called by a signal handler, we can't do too much in here
1548     android_atomic_or(eConsoleAcquired, &mConsoleSignals);
1549     signalEvent();
1550 }
1551 
dump(int fd,const Vector<String16> & args)1552 status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1553 {
1554     const size_t SIZE = 4096;
1555     char buffer[SIZE];
1556     String8 result;
1557 
1558     if (!PermissionCache::checkCallingPermission(sDump)) {
1559         snprintf(buffer, SIZE, "Permission Denial: "
1560                 "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1561                 IPCThreadState::self()->getCallingPid(),
1562                 IPCThreadState::self()->getCallingUid());
1563         result.append(buffer);
1564     } else {
1565 
1566         // figure out if we're stuck somewhere
1567         const nsecs_t now = systemTime();
1568         const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1569         const nsecs_t inTransaction(mDebugInTransaction);
1570         nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1571         nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1572 
1573         // Try to get the main lock, but don't insist if we can't
1574         // (this would indicate SF is stuck, but we want to be able to
1575         // print something in dumpsys).
1576         int retry = 3;
1577         while (mStateLock.tryLock()<0 && --retry>=0) {
1578             usleep(1000000);
1579         }
1580         const bool locked(retry >= 0);
1581         if (!locked) {
1582             snprintf(buffer, SIZE,
1583                     "SurfaceFlinger appears to be unresponsive, "
1584                     "dumping anyways (no locks held)\n");
1585             result.append(buffer);
1586         }
1587 
1588         /*
1589          * Dump the visible layer list
1590          */
1591         const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1592         const size_t count = currentLayers.size();
1593         snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1594         result.append(buffer);
1595         for (size_t i=0 ; i<count ; i++) {
1596             const sp<LayerBase>& layer(currentLayers[i]);
1597             layer->dump(result, buffer, SIZE);
1598             const Layer::State& s(layer->drawingState());
1599             s.transparentRegion.dump(result, "transparentRegion");
1600             layer->transparentRegionScreen.dump(result, "transparentRegionScreen");
1601             layer->visibleRegionScreen.dump(result, "visibleRegionScreen");
1602         }
1603 
1604         /*
1605          * Dump the layers in the purgatory
1606          */
1607 
1608         const size_t purgatorySize =  mLayerPurgatory.size();
1609         snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1610         result.append(buffer);
1611         for (size_t i=0 ; i<purgatorySize ; i++) {
1612             const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1613             layer->shortDump(result, buffer, SIZE);
1614         }
1615 
1616         /*
1617          * Dump SurfaceFlinger global state
1618          */
1619 
1620         snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1621         result.append(buffer);
1622 
1623         const GLExtensions& extensions(GLExtensions::getInstance());
1624         snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1625                 extensions.getVendor(),
1626                 extensions.getRenderer(),
1627                 extensions.getVersion());
1628         result.append(buffer);
1629         snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1630         result.append(buffer);
1631 
1632         mWormholeRegion.dump(result, "WormholeRegion");
1633         const DisplayHardware& hw(graphicPlane(0).displayHardware());
1634         snprintf(buffer, SIZE,
1635                 "  display frozen: %s, freezeCount=%d, orientation=%d, canDraw=%d\n",
1636                 mFreezeDisplay?"yes":"no", mFreezeCount,
1637                 mCurrentState.orientation, hw.canDraw());
1638         result.append(buffer);
1639         snprintf(buffer, SIZE,
1640                 "  last eglSwapBuffers() time: %f us\n"
1641                 "  last transaction time     : %f us\n"
1642                 "  refresh-rate              : %f fps\n"
1643                 "  x-dpi                     : %f\n"
1644                 "  y-dpi                     : %f\n",
1645                 mLastSwapBufferTime/1000.0,
1646                 mLastTransactionTime/1000.0,
1647                 hw.getRefreshRate(),
1648                 hw.getDpiX(),
1649                 hw.getDpiY());
1650         result.append(buffer);
1651 
1652         if (inSwapBuffersDuration || !locked) {
1653             snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1654                     inSwapBuffersDuration/1000.0);
1655             result.append(buffer);
1656         }
1657 
1658         if (inTransactionDuration || !locked) {
1659             snprintf(buffer, SIZE, "  transaction time: %f us\n",
1660                     inTransactionDuration/1000.0);
1661             result.append(buffer);
1662         }
1663 
1664         /*
1665          * Dump HWComposer state
1666          */
1667         HWComposer& hwc(hw.getHwComposer());
1668         snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1669                 hwc.initCheck()==NO_ERROR ? "present" : "not present",
1670                 (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1671         result.append(buffer);
1672         hwc.dump(result, buffer, SIZE, mVisibleLayersSortedByZ);
1673 
1674         /*
1675          * Dump gralloc state
1676          */
1677         const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1678         alloc.dump(result);
1679         hw.dump(result);
1680 
1681         if (locked) {
1682             mStateLock.unlock();
1683         }
1684     }
1685     write(fd, result.string(), result.size());
1686     return NO_ERROR;
1687 }
1688 
onTransact(uint32_t code,const Parcel & data,Parcel * reply,uint32_t flags)1689 status_t SurfaceFlinger::onTransact(
1690     uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1691 {
1692     switch (code) {
1693         case CREATE_CONNECTION:
1694         case SET_TRANSACTION_STATE:
1695         case SET_ORIENTATION:
1696         case FREEZE_DISPLAY:
1697         case UNFREEZE_DISPLAY:
1698         case BOOT_FINISHED:
1699         case TURN_ELECTRON_BEAM_OFF:
1700         case TURN_ELECTRON_BEAM_ON:
1701         {
1702             // codes that require permission check
1703             IPCThreadState* ipc = IPCThreadState::self();
1704             const int pid = ipc->getCallingPid();
1705             const int uid = ipc->getCallingUid();
1706             if ((uid != AID_GRAPHICS) &&
1707                     !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1708                 LOGE("Permission Denial: "
1709                         "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1710                 return PERMISSION_DENIED;
1711             }
1712             break;
1713         }
1714         case CAPTURE_SCREEN:
1715         {
1716             // codes that require permission check
1717             IPCThreadState* ipc = IPCThreadState::self();
1718             const int pid = ipc->getCallingPid();
1719             const int uid = ipc->getCallingUid();
1720             if ((uid != AID_GRAPHICS) &&
1721                     !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1722                 LOGE("Permission Denial: "
1723                         "can't read framebuffer pid=%d, uid=%d", pid, uid);
1724                 return PERMISSION_DENIED;
1725             }
1726             break;
1727         }
1728     }
1729 
1730     status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1731     if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1732         CHECK_INTERFACE(ISurfaceComposer, data, reply);
1733         if (UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1734             IPCThreadState* ipc = IPCThreadState::self();
1735             const int pid = ipc->getCallingPid();
1736             const int uid = ipc->getCallingUid();
1737             LOGE("Permission Denial: "
1738                     "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1739             return PERMISSION_DENIED;
1740         }
1741         int n;
1742         switch (code) {
1743             case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1744             case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1745                 return NO_ERROR;
1746             case 1002:  // SHOW_UPDATES
1747                 n = data.readInt32();
1748                 mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1749                 invalidateHwcGeometry();
1750                 repaintEverything();
1751                 return NO_ERROR;
1752             case 1003:  // SHOW_BACKGROUND
1753                 n = data.readInt32();
1754                 mDebugBackground = n ? 1 : 0;
1755                 return NO_ERROR;
1756             case 1004:{ // repaint everything
1757                 repaintEverything();
1758                 return NO_ERROR;
1759             }
1760             case 1005:{ // force transaction
1761                 setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1762                 return NO_ERROR;
1763             }
1764             case 1006:{ // enable/disable GraphicLog
1765                 int enabled = data.readInt32();
1766                 GraphicLog::getInstance().setEnabled(enabled);
1767                 return NO_ERROR;
1768             }
1769             case 1007: // set mFreezeCount
1770                 mFreezeCount = data.readInt32();
1771                 mFreezeDisplayTime = 0;
1772                 return NO_ERROR;
1773             case 1008:  // toggle use of hw composer
1774                 n = data.readInt32();
1775                 mDebugDisableHWC = n ? 1 : 0;
1776                 invalidateHwcGeometry();
1777                 repaintEverything();
1778                 return NO_ERROR;
1779             case 1009:  // toggle use of transform hint
1780                 n = data.readInt32();
1781                 mDebugDisableTransformHint = n ? 1 : 0;
1782                 invalidateHwcGeometry();
1783                 repaintEverything();
1784                 return NO_ERROR;
1785             case 1010:  // interrogate.
1786                 reply->writeInt32(0);
1787                 reply->writeInt32(0);
1788                 reply->writeInt32(mDebugRegion);
1789                 reply->writeInt32(mDebugBackground);
1790                 return NO_ERROR;
1791             case 1013: {
1792                 Mutex::Autolock _l(mStateLock);
1793                 const DisplayHardware& hw(graphicPlane(0).displayHardware());
1794                 reply->writeInt32(hw.getPageFlipCount());
1795             }
1796             return NO_ERROR;
1797         }
1798     }
1799     return err;
1800 }
1801 
repaintEverything()1802 void SurfaceFlinger::repaintEverything() {
1803     const DisplayHardware& hw(graphicPlane(0).displayHardware());
1804     const Rect bounds(hw.getBounds());
1805     setInvalidateRegion(Region(bounds));
1806     signalEvent();
1807 }
1808 
setInvalidateRegion(const Region & reg)1809 void SurfaceFlinger::setInvalidateRegion(const Region& reg) {
1810     Mutex::Autolock _l(mInvalidateLock);
1811     mInvalidateRegion = reg;
1812 }
1813 
getAndClearInvalidateRegion()1814 Region SurfaceFlinger::getAndClearInvalidateRegion() {
1815     Mutex::Autolock _l(mInvalidateLock);
1816     Region reg(mInvalidateRegion);
1817     mInvalidateRegion.clear();
1818     return reg;
1819 }
1820 
1821 // ---------------------------------------------------------------------------
1822 
renderScreenToTexture(DisplayID dpy,GLuint * textureName,GLfloat * uOut,GLfloat * vOut)1823 status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
1824         GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1825 {
1826     Mutex::Autolock _l(mStateLock);
1827     return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
1828 }
1829 
renderScreenToTextureLocked(DisplayID dpy,GLuint * textureName,GLfloat * uOut,GLfloat * vOut)1830 status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
1831         GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1832 {
1833     if (!GLExtensions::getInstance().haveFramebufferObject())
1834         return INVALID_OPERATION;
1835 
1836     // get screen geometry
1837     const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
1838     const uint32_t hw_w = hw.getWidth();
1839     const uint32_t hw_h = hw.getHeight();
1840     GLfloat u = 1;
1841     GLfloat v = 1;
1842 
1843     // make sure to clear all GL error flags
1844     while ( glGetError() != GL_NO_ERROR ) ;
1845 
1846     // create a FBO
1847     GLuint name, tname;
1848     glGenTextures(1, &tname);
1849     glBindTexture(GL_TEXTURE_2D, tname);
1850     glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1851             hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1852     if (glGetError() != GL_NO_ERROR) {
1853         while ( glGetError() != GL_NO_ERROR ) ;
1854         GLint tw = (2 << (31 - clz(hw_w)));
1855         GLint th = (2 << (31 - clz(hw_h)));
1856         glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1857                 tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1858         u = GLfloat(hw_w) / tw;
1859         v = GLfloat(hw_h) / th;
1860     }
1861     glGenFramebuffersOES(1, &name);
1862     glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
1863     glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
1864             GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
1865 
1866     // redraw the screen entirely...
1867     glDisable(GL_TEXTURE_EXTERNAL_OES);
1868     glDisable(GL_TEXTURE_2D);
1869     glClearColor(0,0,0,1);
1870     glClear(GL_COLOR_BUFFER_BIT);
1871     glMatrixMode(GL_MODELVIEW);
1872     glLoadIdentity();
1873     const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
1874     const size_t count = layers.size();
1875     for (size_t i=0 ; i<count ; ++i) {
1876         const sp<LayerBase>& layer(layers[i]);
1877         layer->drawForSreenShot();
1878     }
1879 
1880     hw.compositionComplete();
1881 
1882     // back to main framebuffer
1883     glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
1884     glDisable(GL_SCISSOR_TEST);
1885     glDeleteFramebuffersOES(1, &name);
1886 
1887     *textureName = tname;
1888     *uOut = u;
1889     *vOut = v;
1890     return NO_ERROR;
1891 }
1892 
1893 // ---------------------------------------------------------------------------
1894 
electronBeamOffAnimationImplLocked()1895 status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
1896 {
1897     // get screen geometry
1898     const DisplayHardware& hw(graphicPlane(0).displayHardware());
1899     const uint32_t hw_w = hw.getWidth();
1900     const uint32_t hw_h = hw.getHeight();
1901     const Region screenBounds(hw.getBounds());
1902 
1903     GLfloat u, v;
1904     GLuint tname;
1905     status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
1906     if (result != NO_ERROR) {
1907         return result;
1908     }
1909 
1910     GLfloat vtx[8];
1911     const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
1912     glBindTexture(GL_TEXTURE_2D, tname);
1913     glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
1914     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1915     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1916     glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
1917     glEnableClientState(GL_TEXTURE_COORD_ARRAY);
1918     glVertexPointer(2, GL_FLOAT, 0, vtx);
1919 
1920     /*
1921      * Texture coordinate mapping
1922      *
1923      *                 u
1924      *    1 +----------+---+
1925      *      |     |    |   |  image is inverted
1926      *      |     V    |   |  w.r.t. the texture
1927      *  1-v +----------+   |  coordinates
1928      *      |              |
1929      *      |              |
1930      *      |              |
1931      *    0 +--------------+
1932      *      0              1
1933      *
1934      */
1935 
1936     class s_curve_interpolator {
1937         const float nbFrames, s, v;
1938     public:
1939         s_curve_interpolator(int nbFrames, float s)
1940         : nbFrames(1.0f / (nbFrames-1)), s(s),
1941           v(1.0f + expf(-s + 0.5f*s)) {
1942         }
1943         float operator()(int f) {
1944             const float x = f * nbFrames;
1945             return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
1946         }
1947     };
1948 
1949     class v_stretch {
1950         const GLfloat hw_w, hw_h;
1951     public:
1952         v_stretch(uint32_t hw_w, uint32_t hw_h)
1953         : hw_w(hw_w), hw_h(hw_h) {
1954         }
1955         void operator()(GLfloat* vtx, float v) {
1956             const GLfloat w = hw_w + (hw_w * v);
1957             const GLfloat h = hw_h - (hw_h * v);
1958             const GLfloat x = (hw_w - w) * 0.5f;
1959             const GLfloat y = (hw_h - h) * 0.5f;
1960             vtx[0] = x;         vtx[1] = y;
1961             vtx[2] = x;         vtx[3] = y + h;
1962             vtx[4] = x + w;     vtx[5] = y + h;
1963             vtx[6] = x + w;     vtx[7] = y;
1964         }
1965     };
1966 
1967     class h_stretch {
1968         const GLfloat hw_w, hw_h;
1969     public:
1970         h_stretch(uint32_t hw_w, uint32_t hw_h)
1971         : hw_w(hw_w), hw_h(hw_h) {
1972         }
1973         void operator()(GLfloat* vtx, float v) {
1974             const GLfloat w = hw_w - (hw_w * v);
1975             const GLfloat h = 1.0f;
1976             const GLfloat x = (hw_w - w) * 0.5f;
1977             const GLfloat y = (hw_h - h) * 0.5f;
1978             vtx[0] = x;         vtx[1] = y;
1979             vtx[2] = x;         vtx[3] = y + h;
1980             vtx[4] = x + w;     vtx[5] = y + h;
1981             vtx[6] = x + w;     vtx[7] = y;
1982         }
1983     };
1984 
1985     // the full animation is 24 frames
1986     char value[PROPERTY_VALUE_MAX];
1987     property_get("debug.sf.electron_frames", value, "24");
1988     int nbFrames = (atoi(value) + 1) >> 1;
1989     if (nbFrames <= 0) // just in case
1990         nbFrames = 24;
1991 
1992     s_curve_interpolator itr(nbFrames, 7.5f);
1993     s_curve_interpolator itg(nbFrames, 8.0f);
1994     s_curve_interpolator itb(nbFrames, 8.5f);
1995 
1996     v_stretch vverts(hw_w, hw_h);
1997 
1998     glMatrixMode(GL_TEXTURE);
1999     glLoadIdentity();
2000     glMatrixMode(GL_MODELVIEW);
2001     glLoadIdentity();
2002 
2003     glEnable(GL_BLEND);
2004     glBlendFunc(GL_ONE, GL_ONE);
2005     for (int i=0 ; i<nbFrames ; i++) {
2006         float x, y, w, h;
2007         const float vr = itr(i);
2008         const float vg = itg(i);
2009         const float vb = itb(i);
2010 
2011         // clear screen
2012         glColorMask(1,1,1,1);
2013         glClear(GL_COLOR_BUFFER_BIT);
2014         glEnable(GL_TEXTURE_2D);
2015 
2016         // draw the red plane
2017         vverts(vtx, vr);
2018         glColorMask(1,0,0,1);
2019         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2020 
2021         // draw the green plane
2022         vverts(vtx, vg);
2023         glColorMask(0,1,0,1);
2024         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2025 
2026         // draw the blue plane
2027         vverts(vtx, vb);
2028         glColorMask(0,0,1,1);
2029         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2030 
2031         // draw the white highlight (we use the last vertices)
2032         glDisable(GL_TEXTURE_2D);
2033         glColorMask(1,1,1,1);
2034         glColor4f(vg, vg, vg, 1);
2035         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2036         hw.flip(screenBounds);
2037     }
2038 
2039     h_stretch hverts(hw_w, hw_h);
2040     glDisable(GL_BLEND);
2041     glDisable(GL_TEXTURE_2D);
2042     glColorMask(1,1,1,1);
2043     for (int i=0 ; i<nbFrames ; i++) {
2044         const float v = itg(i);
2045         hverts(vtx, v);
2046         glClear(GL_COLOR_BUFFER_BIT);
2047         glColor4f(1-v, 1-v, 1-v, 1);
2048         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2049         hw.flip(screenBounds);
2050     }
2051 
2052     glColorMask(1,1,1,1);
2053     glEnable(GL_SCISSOR_TEST);
2054     glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2055     glDeleteTextures(1, &tname);
2056     glDisable(GL_TEXTURE_2D);
2057     glDisable(GL_BLEND);
2058     return NO_ERROR;
2059 }
2060 
electronBeamOnAnimationImplLocked()2061 status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
2062 {
2063     status_t result = PERMISSION_DENIED;
2064 
2065     if (!GLExtensions::getInstance().haveFramebufferObject())
2066         return INVALID_OPERATION;
2067 
2068 
2069     // get screen geometry
2070     const DisplayHardware& hw(graphicPlane(0).displayHardware());
2071     const uint32_t hw_w = hw.getWidth();
2072     const uint32_t hw_h = hw.getHeight();
2073     const Region screenBounds(hw.bounds());
2074 
2075     GLfloat u, v;
2076     GLuint tname;
2077     result = renderScreenToTextureLocked(0, &tname, &u, &v);
2078     if (result != NO_ERROR) {
2079         return result;
2080     }
2081 
2082     GLfloat vtx[8];
2083     const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2084     glBindTexture(GL_TEXTURE_2D, tname);
2085     glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2086     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2087     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2088     glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2089     glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2090     glVertexPointer(2, GL_FLOAT, 0, vtx);
2091 
2092     class s_curve_interpolator {
2093         const float nbFrames, s, v;
2094     public:
2095         s_curve_interpolator(int nbFrames, float s)
2096         : nbFrames(1.0f / (nbFrames-1)), s(s),
2097           v(1.0f + expf(-s + 0.5f*s)) {
2098         }
2099         float operator()(int f) {
2100             const float x = f * nbFrames;
2101             return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2102         }
2103     };
2104 
2105     class v_stretch {
2106         const GLfloat hw_w, hw_h;
2107     public:
2108         v_stretch(uint32_t hw_w, uint32_t hw_h)
2109         : hw_w(hw_w), hw_h(hw_h) {
2110         }
2111         void operator()(GLfloat* vtx, float v) {
2112             const GLfloat w = hw_w + (hw_w * v);
2113             const GLfloat h = hw_h - (hw_h * v);
2114             const GLfloat x = (hw_w - w) * 0.5f;
2115             const GLfloat y = (hw_h - h) * 0.5f;
2116             vtx[0] = x;         vtx[1] = y;
2117             vtx[2] = x;         vtx[3] = y + h;
2118             vtx[4] = x + w;     vtx[5] = y + h;
2119             vtx[6] = x + w;     vtx[7] = y;
2120         }
2121     };
2122 
2123     class h_stretch {
2124         const GLfloat hw_w, hw_h;
2125     public:
2126         h_stretch(uint32_t hw_w, uint32_t hw_h)
2127         : hw_w(hw_w), hw_h(hw_h) {
2128         }
2129         void operator()(GLfloat* vtx, float v) {
2130             const GLfloat w = hw_w - (hw_w * v);
2131             const GLfloat h = 1.0f;
2132             const GLfloat x = (hw_w - w) * 0.5f;
2133             const GLfloat y = (hw_h - h) * 0.5f;
2134             vtx[0] = x;         vtx[1] = y;
2135             vtx[2] = x;         vtx[3] = y + h;
2136             vtx[4] = x + w;     vtx[5] = y + h;
2137             vtx[6] = x + w;     vtx[7] = y;
2138         }
2139     };
2140 
2141     // the full animation is 12 frames
2142     int nbFrames = 8;
2143     s_curve_interpolator itr(nbFrames, 7.5f);
2144     s_curve_interpolator itg(nbFrames, 8.0f);
2145     s_curve_interpolator itb(nbFrames, 8.5f);
2146 
2147     h_stretch hverts(hw_w, hw_h);
2148     glDisable(GL_BLEND);
2149     glDisable(GL_TEXTURE_2D);
2150     glColorMask(1,1,1,1);
2151     for (int i=nbFrames-1 ; i>=0 ; i--) {
2152         const float v = itg(i);
2153         hverts(vtx, v);
2154         glClear(GL_COLOR_BUFFER_BIT);
2155         glColor4f(1-v, 1-v, 1-v, 1);
2156         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2157         hw.flip(screenBounds);
2158     }
2159 
2160     nbFrames = 4;
2161     v_stretch vverts(hw_w, hw_h);
2162     glEnable(GL_BLEND);
2163     glBlendFunc(GL_ONE, GL_ONE);
2164     for (int i=nbFrames-1 ; i>=0 ; i--) {
2165         float x, y, w, h;
2166         const float vr = itr(i);
2167         const float vg = itg(i);
2168         const float vb = itb(i);
2169 
2170         // clear screen
2171         glColorMask(1,1,1,1);
2172         glClear(GL_COLOR_BUFFER_BIT);
2173         glEnable(GL_TEXTURE_2D);
2174 
2175         // draw the red plane
2176         vverts(vtx, vr);
2177         glColorMask(1,0,0,1);
2178         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2179 
2180         // draw the green plane
2181         vverts(vtx, vg);
2182         glColorMask(0,1,0,1);
2183         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2184 
2185         // draw the blue plane
2186         vverts(vtx, vb);
2187         glColorMask(0,0,1,1);
2188         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2189 
2190         hw.flip(screenBounds);
2191     }
2192 
2193     glColorMask(1,1,1,1);
2194     glEnable(GL_SCISSOR_TEST);
2195     glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2196     glDeleteTextures(1, &tname);
2197     glDisable(GL_TEXTURE_2D);
2198     glDisable(GL_BLEND);
2199 
2200     return NO_ERROR;
2201 }
2202 
2203 // ---------------------------------------------------------------------------
2204 
turnElectronBeamOffImplLocked(int32_t mode)2205 status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2206 {
2207     DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
2208     if (!hw.canDraw()) {
2209         // we're already off
2210         return NO_ERROR;
2211     }
2212 
2213     // turn off hwc while we're doing the animation
2214     hw.getHwComposer().disable();
2215     // and make sure to turn it back on (if needed) next time we compose
2216     invalidateHwcGeometry();
2217 
2218     if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2219         electronBeamOffAnimationImplLocked();
2220     }
2221 
2222     // always clear the whole screen at the end of the animation
2223     glClearColor(0,0,0,1);
2224     glDisable(GL_SCISSOR_TEST);
2225     glClear(GL_COLOR_BUFFER_BIT);
2226     glEnable(GL_SCISSOR_TEST);
2227     hw.flip( Region(hw.bounds()) );
2228 
2229     return NO_ERROR;
2230 }
2231 
turnElectronBeamOff(int32_t mode)2232 status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2233 {
2234     class MessageTurnElectronBeamOff : public MessageBase {
2235         SurfaceFlinger* flinger;
2236         int32_t mode;
2237         status_t result;
2238     public:
2239         MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2240             : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2241         }
2242         status_t getResult() const {
2243             return result;
2244         }
2245         virtual bool handler() {
2246             Mutex::Autolock _l(flinger->mStateLock);
2247             result = flinger->turnElectronBeamOffImplLocked(mode);
2248             return true;
2249         }
2250     };
2251 
2252     sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2253     status_t res = postMessageSync(msg);
2254     if (res == NO_ERROR) {
2255         res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2256 
2257         // work-around: when the power-manager calls us we activate the
2258         // animation. eventually, the "on" animation will be called
2259         // by the power-manager itself
2260         mElectronBeamAnimationMode = mode;
2261     }
2262     return res;
2263 }
2264 
2265 // ---------------------------------------------------------------------------
2266 
turnElectronBeamOnImplLocked(int32_t mode)2267 status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2268 {
2269     DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
2270     if (hw.canDraw()) {
2271         // we're already on
2272         return NO_ERROR;
2273     }
2274     if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2275         electronBeamOnAnimationImplLocked();
2276     }
2277 
2278     // make sure to redraw the whole screen when the animation is done
2279     mDirtyRegion.set(hw.bounds());
2280     signalEvent();
2281 
2282     return NO_ERROR;
2283 }
2284 
turnElectronBeamOn(int32_t mode)2285 status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2286 {
2287     class MessageTurnElectronBeamOn : public MessageBase {
2288         SurfaceFlinger* flinger;
2289         int32_t mode;
2290         status_t result;
2291     public:
2292         MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2293             : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2294         }
2295         status_t getResult() const {
2296             return result;
2297         }
2298         virtual bool handler() {
2299             Mutex::Autolock _l(flinger->mStateLock);
2300             result = flinger->turnElectronBeamOnImplLocked(mode);
2301             return true;
2302         }
2303     };
2304 
2305     postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2306     return NO_ERROR;
2307 }
2308 
2309 // ---------------------------------------------------------------------------
2310 
captureScreenImplLocked(DisplayID dpy,sp<IMemoryHeap> * heap,uint32_t * w,uint32_t * h,PixelFormat * f,uint32_t sw,uint32_t sh,uint32_t minLayerZ,uint32_t maxLayerZ)2311 status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2312         sp<IMemoryHeap>* heap,
2313         uint32_t* w, uint32_t* h, PixelFormat* f,
2314         uint32_t sw, uint32_t sh,
2315         uint32_t minLayerZ, uint32_t maxLayerZ)
2316 {
2317     status_t result = PERMISSION_DENIED;
2318 
2319     // only one display supported for now
2320     if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2321         return BAD_VALUE;
2322 
2323     if (!GLExtensions::getInstance().haveFramebufferObject())
2324         return INVALID_OPERATION;
2325 
2326     // get screen geometry
2327     const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
2328     const uint32_t hw_w = hw.getWidth();
2329     const uint32_t hw_h = hw.getHeight();
2330 
2331     if ((sw > hw_w) || (sh > hw_h))
2332         return BAD_VALUE;
2333 
2334     sw = (!sw) ? hw_w : sw;
2335     sh = (!sh) ? hw_h : sh;
2336     const size_t size = sw * sh * 4;
2337 
2338     //LOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2339     //        sw, sh, minLayerZ, maxLayerZ);
2340 
2341     // make sure to clear all GL error flags
2342     while ( glGetError() != GL_NO_ERROR ) ;
2343 
2344     // create a FBO
2345     GLuint name, tname;
2346     glGenRenderbuffersOES(1, &tname);
2347     glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2348     glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2349     glGenFramebuffersOES(1, &name);
2350     glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2351     glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2352             GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2353 
2354     GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2355 
2356     if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2357 
2358         // invert everything, b/c glReadPixel() below will invert the FB
2359         glViewport(0, 0, sw, sh);
2360         glScissor(0, 0, sw, sh);
2361         glEnable(GL_SCISSOR_TEST);
2362         glMatrixMode(GL_PROJECTION);
2363         glPushMatrix();
2364         glLoadIdentity();
2365         glOrthof(0, hw_w, hw_h, 0, 0, 1);
2366         glMatrixMode(GL_MODELVIEW);
2367 
2368         // redraw the screen entirely...
2369         glClearColor(0,0,0,1);
2370         glClear(GL_COLOR_BUFFER_BIT);
2371 
2372         const LayerVector& layers(mDrawingState.layersSortedByZ);
2373         const size_t count = layers.size();
2374         for (size_t i=0 ; i<count ; ++i) {
2375             const sp<LayerBase>& layer(layers[i]);
2376             const uint32_t flags = layer->drawingState().flags;
2377             if (!(flags & ISurfaceComposer::eLayerHidden)) {
2378                 const uint32_t z = layer->drawingState().z;
2379                 if (z >= minLayerZ && z <= maxLayerZ) {
2380                     layer->drawForSreenShot();
2381                 }
2382             }
2383         }
2384 
2385         // XXX: this is needed on tegra
2386         glEnable(GL_SCISSOR_TEST);
2387         glScissor(0, 0, sw, sh);
2388 
2389         // check for errors and return screen capture
2390         if (glGetError() != GL_NO_ERROR) {
2391             // error while rendering
2392             result = INVALID_OPERATION;
2393         } else {
2394             // allocate shared memory large enough to hold the
2395             // screen capture
2396             sp<MemoryHeapBase> base(
2397                     new MemoryHeapBase(size, 0, "screen-capture") );
2398             void* const ptr = base->getBase();
2399             if (ptr) {
2400                 // capture the screen with glReadPixels()
2401                 glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2402                 if (glGetError() == GL_NO_ERROR) {
2403                     *heap = base;
2404                     *w = sw;
2405                     *h = sh;
2406                     *f = PIXEL_FORMAT_RGBA_8888;
2407                     result = NO_ERROR;
2408                 }
2409             } else {
2410                 result = NO_MEMORY;
2411             }
2412         }
2413         glEnable(GL_SCISSOR_TEST);
2414         glViewport(0, 0, hw_w, hw_h);
2415         glMatrixMode(GL_PROJECTION);
2416         glPopMatrix();
2417         glMatrixMode(GL_MODELVIEW);
2418     } else {
2419         result = BAD_VALUE;
2420     }
2421 
2422     // release FBO resources
2423     glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2424     glDeleteRenderbuffersOES(1, &tname);
2425     glDeleteFramebuffersOES(1, &name);
2426 
2427     hw.compositionComplete();
2428 
2429     // LOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2430 
2431     return result;
2432 }
2433 
2434 
captureScreen(DisplayID dpy,sp<IMemoryHeap> * heap,uint32_t * width,uint32_t * height,PixelFormat * format,uint32_t sw,uint32_t sh,uint32_t minLayerZ,uint32_t maxLayerZ)2435 status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2436         sp<IMemoryHeap>* heap,
2437         uint32_t* width, uint32_t* height, PixelFormat* format,
2438         uint32_t sw, uint32_t sh,
2439         uint32_t minLayerZ, uint32_t maxLayerZ)
2440 {
2441     // only one display supported for now
2442     if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2443         return BAD_VALUE;
2444 
2445     if (!GLExtensions::getInstance().haveFramebufferObject())
2446         return INVALID_OPERATION;
2447 
2448     class MessageCaptureScreen : public MessageBase {
2449         SurfaceFlinger* flinger;
2450         DisplayID dpy;
2451         sp<IMemoryHeap>* heap;
2452         uint32_t* w;
2453         uint32_t* h;
2454         PixelFormat* f;
2455         uint32_t sw;
2456         uint32_t sh;
2457         uint32_t minLayerZ;
2458         uint32_t maxLayerZ;
2459         status_t result;
2460     public:
2461         MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2462                 sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2463                 uint32_t sw, uint32_t sh,
2464                 uint32_t minLayerZ, uint32_t maxLayerZ)
2465             : flinger(flinger), dpy(dpy),
2466               heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2467               minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2468               result(PERMISSION_DENIED)
2469         {
2470         }
2471         status_t getResult() const {
2472             return result;
2473         }
2474         virtual bool handler() {
2475             Mutex::Autolock _l(flinger->mStateLock);
2476 
2477             // if we have secure windows, never allow the screen capture
2478             if (flinger->mSecureFrameBuffer)
2479                 return true;
2480 
2481             result = flinger->captureScreenImplLocked(dpy,
2482                     heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2483 
2484             return true;
2485         }
2486     };
2487 
2488     sp<MessageBase> msg = new MessageCaptureScreen(this,
2489             dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2490     status_t res = postMessageSync(msg);
2491     if (res == NO_ERROR) {
2492         res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2493     }
2494     return res;
2495 }
2496 
2497 // ---------------------------------------------------------------------------
2498 
getLayer(const sp<ISurface> & sur) const2499 sp<Layer> SurfaceFlinger::getLayer(const sp<ISurface>& sur) const
2500 {
2501     sp<Layer> result;
2502     Mutex::Autolock _l(mStateLock);
2503     result = mLayerMap.valueFor( sur->asBinder() ).promote();
2504     return result;
2505 }
2506 
2507 // ---------------------------------------------------------------------------
2508 
Client(const sp<SurfaceFlinger> & flinger)2509 Client::Client(const sp<SurfaceFlinger>& flinger)
2510     : mFlinger(flinger), mNameGenerator(1)
2511 {
2512 }
2513 
~Client()2514 Client::~Client()
2515 {
2516     const size_t count = mLayers.size();
2517     for (size_t i=0 ; i<count ; i++) {
2518         sp<LayerBaseClient> layer(mLayers.valueAt(i).promote());
2519         if (layer != 0) {
2520             mFlinger->removeLayer(layer);
2521         }
2522     }
2523 }
2524 
initCheck() const2525 status_t Client::initCheck() const {
2526     return NO_ERROR;
2527 }
2528 
attachLayer(const sp<LayerBaseClient> & layer)2529 size_t Client::attachLayer(const sp<LayerBaseClient>& layer)
2530 {
2531     Mutex::Autolock _l(mLock);
2532     size_t name = mNameGenerator++;
2533     mLayers.add(name, layer);
2534     return name;
2535 }
2536 
detachLayer(const LayerBaseClient * layer)2537 void Client::detachLayer(const LayerBaseClient* layer)
2538 {
2539     Mutex::Autolock _l(mLock);
2540     // we do a linear search here, because this doesn't happen often
2541     const size_t count = mLayers.size();
2542     for (size_t i=0 ; i<count ; i++) {
2543         if (mLayers.valueAt(i) == layer) {
2544             mLayers.removeItemsAt(i, 1);
2545             break;
2546         }
2547     }
2548 }
getLayerUser(int32_t i) const2549 sp<LayerBaseClient> Client::getLayerUser(int32_t i) const
2550 {
2551     Mutex::Autolock _l(mLock);
2552     sp<LayerBaseClient> lbc;
2553     wp<LayerBaseClient> layer(mLayers.valueFor(i));
2554     if (layer != 0) {
2555         lbc = layer.promote();
2556         LOGE_IF(lbc==0, "getLayerUser(name=%d) is dead", int(i));
2557     }
2558     return lbc;
2559 }
2560 
2561 
onTransact(uint32_t code,const Parcel & data,Parcel * reply,uint32_t flags)2562 status_t Client::onTransact(
2563     uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2564 {
2565     // these must be checked
2566      IPCThreadState* ipc = IPCThreadState::self();
2567      const int pid = ipc->getCallingPid();
2568      const int uid = ipc->getCallingUid();
2569      const int self_pid = getpid();
2570      if (UNLIKELY(pid != self_pid && uid != AID_GRAPHICS && uid != 0)) {
2571          // we're called from a different process, do the real check
2572          if (!PermissionCache::checkCallingPermission(sAccessSurfaceFlinger))
2573          {
2574              LOGE("Permission Denial: "
2575                      "can't openGlobalTransaction pid=%d, uid=%d", pid, uid);
2576              return PERMISSION_DENIED;
2577          }
2578      }
2579      return BnSurfaceComposerClient::onTransact(code, data, reply, flags);
2580 }
2581 
2582 
createSurface(ISurfaceComposerClient::surface_data_t * params,const String8 & name,DisplayID display,uint32_t w,uint32_t h,PixelFormat format,uint32_t flags)2583 sp<ISurface> Client::createSurface(
2584         ISurfaceComposerClient::surface_data_t* params,
2585         const String8& name,
2586         DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
2587         uint32_t flags)
2588 {
2589     /*
2590      * createSurface must be called from the GL thread so that it can
2591      * have access to the GL context.
2592      */
2593 
2594     class MessageCreateSurface : public MessageBase {
2595         sp<ISurface> result;
2596         SurfaceFlinger* flinger;
2597         ISurfaceComposerClient::surface_data_t* params;
2598         Client* client;
2599         const String8& name;
2600         DisplayID display;
2601         uint32_t w, h;
2602         PixelFormat format;
2603         uint32_t flags;
2604     public:
2605         MessageCreateSurface(SurfaceFlinger* flinger,
2606                 ISurfaceComposerClient::surface_data_t* params,
2607                 const String8& name, Client* client,
2608                 DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
2609                 uint32_t flags)
2610             : flinger(flinger), params(params), client(client), name(name),
2611               display(display), w(w), h(h), format(format), flags(flags)
2612         {
2613         }
2614         sp<ISurface> getResult() const { return result; }
2615         virtual bool handler() {
2616             result = flinger->createSurface(params, name, client,
2617                     display, w, h, format, flags);
2618             return true;
2619         }
2620     };
2621 
2622     sp<MessageBase> msg = new MessageCreateSurface(mFlinger.get(),
2623             params, name, this, display, w, h, format, flags);
2624     mFlinger->postMessageSync(msg);
2625     return static_cast<MessageCreateSurface*>( msg.get() )->getResult();
2626 }
destroySurface(SurfaceID sid)2627 status_t Client::destroySurface(SurfaceID sid) {
2628     return mFlinger->removeSurface(this, sid);
2629 }
2630 
2631 // ---------------------------------------------------------------------------
2632 
GraphicBufferAlloc()2633 GraphicBufferAlloc::GraphicBufferAlloc() {}
2634 
~GraphicBufferAlloc()2635 GraphicBufferAlloc::~GraphicBufferAlloc() {}
2636 
createGraphicBuffer(uint32_t w,uint32_t h,PixelFormat format,uint32_t usage,status_t * error)2637 sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2638         PixelFormat format, uint32_t usage, status_t* error) {
2639     sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2640     status_t err = graphicBuffer->initCheck();
2641     *error = err;
2642     if (err != 0 || graphicBuffer->handle == 0) {
2643         if (err == NO_MEMORY) {
2644             GraphicBuffer::dumpAllocationsToSystemLog();
2645         }
2646         LOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2647              "failed (%s), handle=%p",
2648                 w, h, strerror(-err), graphicBuffer->handle);
2649         return 0;
2650     }
2651     return graphicBuffer;
2652 }
2653 
2654 // ---------------------------------------------------------------------------
2655 
GraphicPlane()2656 GraphicPlane::GraphicPlane()
2657     : mHw(0)
2658 {
2659 }
2660 
~GraphicPlane()2661 GraphicPlane::~GraphicPlane() {
2662     delete mHw;
2663 }
2664 
initialized() const2665 bool GraphicPlane::initialized() const {
2666     return mHw ? true : false;
2667 }
2668 
getWidth() const2669 int GraphicPlane::getWidth() const {
2670     return mWidth;
2671 }
2672 
getHeight() const2673 int GraphicPlane::getHeight() const {
2674     return mHeight;
2675 }
2676 
setDisplayHardware(DisplayHardware * hw)2677 void GraphicPlane::setDisplayHardware(DisplayHardware *hw)
2678 {
2679     mHw = hw;
2680 
2681     // initialize the display orientation transform.
2682     // it's a constant that should come from the display driver.
2683     int displayOrientation = ISurfaceComposer::eOrientationDefault;
2684     char property[PROPERTY_VALUE_MAX];
2685     if (property_get("ro.sf.hwrotation", property, NULL) > 0) {
2686         //displayOrientation
2687         switch (atoi(property)) {
2688         case 90:
2689             displayOrientation = ISurfaceComposer::eOrientation90;
2690             break;
2691         case 270:
2692             displayOrientation = ISurfaceComposer::eOrientation270;
2693             break;
2694         }
2695     }
2696 
2697     const float w = hw->getWidth();
2698     const float h = hw->getHeight();
2699     GraphicPlane::orientationToTransfrom(displayOrientation, w, h,
2700             &mDisplayTransform);
2701     if (displayOrientation & ISurfaceComposer::eOrientationSwapMask) {
2702         mDisplayWidth = h;
2703         mDisplayHeight = w;
2704     } else {
2705         mDisplayWidth = w;
2706         mDisplayHeight = h;
2707     }
2708 
2709     setOrientation(ISurfaceComposer::eOrientationDefault);
2710 }
2711 
orientationToTransfrom(int orientation,int w,int h,Transform * tr)2712 status_t GraphicPlane::orientationToTransfrom(
2713         int orientation, int w, int h, Transform* tr)
2714 {
2715     uint32_t flags = 0;
2716     switch (orientation) {
2717     case ISurfaceComposer::eOrientationDefault:
2718         flags = Transform::ROT_0;
2719         break;
2720     case ISurfaceComposer::eOrientation90:
2721         flags = Transform::ROT_90;
2722         break;
2723     case ISurfaceComposer::eOrientation180:
2724         flags = Transform::ROT_180;
2725         break;
2726     case ISurfaceComposer::eOrientation270:
2727         flags = Transform::ROT_270;
2728         break;
2729     default:
2730         return BAD_VALUE;
2731     }
2732     tr->set(flags, w, h);
2733     return NO_ERROR;
2734 }
2735 
setOrientation(int orientation)2736 status_t GraphicPlane::setOrientation(int orientation)
2737 {
2738     // If the rotation can be handled in hardware, this is where
2739     // the magic should happen.
2740 
2741     const DisplayHardware& hw(displayHardware());
2742     const float w = mDisplayWidth;
2743     const float h = mDisplayHeight;
2744     mWidth = int(w);
2745     mHeight = int(h);
2746 
2747     Transform orientationTransform;
2748     GraphicPlane::orientationToTransfrom(orientation, w, h,
2749             &orientationTransform);
2750     if (orientation & ISurfaceComposer::eOrientationSwapMask) {
2751         mWidth = int(h);
2752         mHeight = int(w);
2753     }
2754 
2755     mOrientation = orientation;
2756     mGlobalTransform = mDisplayTransform * orientationTransform;
2757     return NO_ERROR;
2758 }
2759 
displayHardware() const2760 const DisplayHardware& GraphicPlane::displayHardware() const {
2761     return *mHw;
2762 }
2763 
editDisplayHardware()2764 DisplayHardware& GraphicPlane::editDisplayHardware() {
2765     return *mHw;
2766 }
2767 
transform() const2768 const Transform& GraphicPlane::transform() const {
2769     return mGlobalTransform;
2770 }
2771 
getEGLDisplay() const2772 EGLDisplay GraphicPlane::getEGLDisplay() const {
2773     return mHw->getEGLDisplay();
2774 }
2775 
2776 // ---------------------------------------------------------------------------
2777 
2778 }; // namespace android
2779