1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <stdlib.h>
18 #include <stdio.h>
19 #include <stdint.h>
20 #include <unistd.h>
21 #include <fcntl.h>
22 #include <errno.h>
23 #include <math.h>
24 #include <limits.h>
25 #include <sys/types.h>
26 #include <sys/stat.h>
27 #include <sys/ioctl.h>
28
29 #include <cutils/log.h>
30 #include <cutils/properties.h>
31
32 #include <binder/IPCThreadState.h>
33 #include <binder/IServiceManager.h>
34 #include <binder/MemoryHeapBase.h>
35 #include <binder/PermissionCache.h>
36
37 #include <utils/String8.h>
38 #include <utils/String16.h>
39 #include <utils/StopWatch.h>
40
41 #include <ui/GraphicBufferAllocator.h>
42 #include <ui/GraphicLog.h>
43 #include <ui/PixelFormat.h>
44
45 #include <pixelflinger/pixelflinger.h>
46 #include <GLES/gl.h>
47
48 #include "clz.h"
49 #include "GLExtensions.h"
50 #include "DdmConnection.h"
51 #include "Layer.h"
52 #include "LayerDim.h"
53 #include "LayerScreenshot.h"
54 #include "SurfaceFlinger.h"
55
56 #include "DisplayHardware/DisplayHardware.h"
57 #include "DisplayHardware/HWComposer.h"
58
59 #include <private/surfaceflinger/SharedBufferStack.h>
60
61 /* ideally AID_GRAPHICS would be in a semi-public header
62 * or there would be a way to map a user/group name to its id
63 */
64 #ifndef AID_GRAPHICS
65 #define AID_GRAPHICS 1003
66 #endif
67
68 #define DISPLAY_COUNT 1
69
70 namespace android {
71 // ---------------------------------------------------------------------------
72
73 const String16 sHardwareTest("android.permission.HARDWARE_TEST");
74 const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
75 const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
76 const String16 sDump("android.permission.DUMP");
77
78 // ---------------------------------------------------------------------------
79
SurfaceFlinger()80 SurfaceFlinger::SurfaceFlinger()
81 : BnSurfaceComposer(), Thread(false),
82 mTransactionFlags(0),
83 mResizeTransationPending(false),
84 mLayersRemoved(false),
85 mBootTime(systemTime()),
86 mVisibleRegionsDirty(false),
87 mHwWorkListDirty(false),
88 mFreezeDisplay(false),
89 mElectronBeamAnimationMode(0),
90 mFreezeCount(0),
91 mFreezeDisplayTime(0),
92 mDebugRegion(0),
93 mDebugBackground(0),
94 mDebugDDMS(0),
95 mDebugDisableHWC(0),
96 mDebugDisableTransformHint(0),
97 mDebugInSwapBuffers(0),
98 mLastSwapBufferTime(0),
99 mDebugInTransaction(0),
100 mLastTransactionTime(0),
101 mBootFinished(false),
102 mConsoleSignals(0),
103 mSecureFrameBuffer(0)
104 {
105 init();
106 }
107
init()108 void SurfaceFlinger::init()
109 {
110 LOGI("SurfaceFlinger is starting");
111
112 // debugging stuff...
113 char value[PROPERTY_VALUE_MAX];
114
115 property_get("debug.sf.showupdates", value, "0");
116 mDebugRegion = atoi(value);
117
118 property_get("debug.sf.showbackground", value, "0");
119 mDebugBackground = atoi(value);
120
121 property_get("debug.sf.ddms", value, "0");
122 mDebugDDMS = atoi(value);
123 if (mDebugDDMS) {
124 DdmConnection::start(getServiceName());
125 }
126
127 LOGI_IF(mDebugRegion, "showupdates enabled");
128 LOGI_IF(mDebugBackground, "showbackground enabled");
129 LOGI_IF(mDebugDDMS, "DDMS debugging enabled");
130 }
131
~SurfaceFlinger()132 SurfaceFlinger::~SurfaceFlinger()
133 {
134 glDeleteTextures(1, &mWormholeTexName);
135 }
136
getCblk() const137 sp<IMemoryHeap> SurfaceFlinger::getCblk() const
138 {
139 return mServerHeap;
140 }
141
createConnection()142 sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
143 {
144 sp<ISurfaceComposerClient> bclient;
145 sp<Client> client(new Client(this));
146 status_t err = client->initCheck();
147 if (err == NO_ERROR) {
148 bclient = client;
149 }
150 return bclient;
151 }
152
createGraphicBufferAlloc()153 sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
154 {
155 sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
156 return gba;
157 }
158
graphicPlane(int dpy) const159 const GraphicPlane& SurfaceFlinger::graphicPlane(int dpy) const
160 {
161 LOGE_IF(uint32_t(dpy) >= DISPLAY_COUNT, "Invalid DisplayID %d", dpy);
162 const GraphicPlane& plane(mGraphicPlanes[dpy]);
163 return plane;
164 }
165
graphicPlane(int dpy)166 GraphicPlane& SurfaceFlinger::graphicPlane(int dpy)
167 {
168 return const_cast<GraphicPlane&>(
169 const_cast<SurfaceFlinger const *>(this)->graphicPlane(dpy));
170 }
171
bootFinished()172 void SurfaceFlinger::bootFinished()
173 {
174 const nsecs_t now = systemTime();
175 const nsecs_t duration = now - mBootTime;
176 LOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
177 mBootFinished = true;
178
179 // wait patiently for the window manager death
180 const String16 name("window");
181 sp<IBinder> window(defaultServiceManager()->getService(name));
182 if (window != 0) {
183 window->linkToDeath(this);
184 }
185
186 // stop boot animation
187 property_set("ctl.stop", "bootanim");
188 }
189
binderDied(const wp<IBinder> & who)190 void SurfaceFlinger::binderDied(const wp<IBinder>& who)
191 {
192 // the window manager died on us. prepare its eulogy.
193
194 // unfreeze the screen in case it was... frozen
195 mFreezeDisplayTime = 0;
196 mFreezeCount = 0;
197 mFreezeDisplay = false;
198
199 // reset screen orientation
200 setOrientation(0, eOrientationDefault, 0);
201
202 // restart the boot-animation
203 property_set("ctl.start", "bootanim");
204 }
205
onFirstRef()206 void SurfaceFlinger::onFirstRef()
207 {
208 run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
209
210 // Wait for the main thread to be done with its initialization
211 mReadyToRunBarrier.wait();
212 }
213
pack565(int r,int g,int b)214 static inline uint16_t pack565(int r, int g, int b) {
215 return (r<<11)|(g<<5)|b;
216 }
217
readyToRun()218 status_t SurfaceFlinger::readyToRun()
219 {
220 LOGI( "SurfaceFlinger's main thread ready to run. "
221 "Initializing graphics H/W...");
222
223 // we only support one display currently
224 int dpy = 0;
225
226 {
227 // initialize the main display
228 GraphicPlane& plane(graphicPlane(dpy));
229 DisplayHardware* const hw = new DisplayHardware(this, dpy);
230 plane.setDisplayHardware(hw);
231 }
232
233 // create the shared control-block
234 mServerHeap = new MemoryHeapBase(4096,
235 MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");
236 LOGE_IF(mServerHeap==0, "can't create shared memory dealer");
237
238 mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());
239 LOGE_IF(mServerCblk==0, "can't get to shared control block's address");
240
241 new(mServerCblk) surface_flinger_cblk_t;
242
243 // initialize primary screen
244 // (other display should be initialized in the same manner, but
245 // asynchronously, as they could come and go. None of this is supported
246 // yet).
247 const GraphicPlane& plane(graphicPlane(dpy));
248 const DisplayHardware& hw = plane.displayHardware();
249 const uint32_t w = hw.getWidth();
250 const uint32_t h = hw.getHeight();
251 const uint32_t f = hw.getFormat();
252 hw.makeCurrent();
253
254 // initialize the shared control block
255 mServerCblk->connected |= 1<<dpy;
256 display_cblk_t* dcblk = mServerCblk->displays + dpy;
257 memset(dcblk, 0, sizeof(display_cblk_t));
258 dcblk->w = plane.getWidth();
259 dcblk->h = plane.getHeight();
260 dcblk->format = f;
261 dcblk->orientation = ISurfaceComposer::eOrientationDefault;
262 dcblk->xdpi = hw.getDpiX();
263 dcblk->ydpi = hw.getDpiY();
264 dcblk->fps = hw.getRefreshRate();
265 dcblk->density = hw.getDensity();
266
267 // Initialize OpenGL|ES
268 glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
269 glPixelStorei(GL_PACK_ALIGNMENT, 4);
270 glEnableClientState(GL_VERTEX_ARRAY);
271 glEnable(GL_SCISSOR_TEST);
272 glShadeModel(GL_FLAT);
273 glDisable(GL_DITHER);
274 glDisable(GL_CULL_FACE);
275
276 const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
277 const uint16_t g1 = pack565(0x17,0x2f,0x17);
278 const uint16_t wormholeTexData[4] = { g0, g1, g1, g0 };
279 glGenTextures(1, &mWormholeTexName);
280 glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
281 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
282 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
283 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
284 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
285 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
286 GL_RGB, GL_UNSIGNED_SHORT_5_6_5, wormholeTexData);
287
288 const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
289 glGenTextures(1, &mProtectedTexName);
290 glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
291 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
292 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
293 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
294 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
295 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
296 GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
297
298 glViewport(0, 0, w, h);
299 glMatrixMode(GL_PROJECTION);
300 glLoadIdentity();
301 // put the origin in the left-bottom corner
302 glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
303
304 mReadyToRunBarrier.open();
305
306 /*
307 * We're now ready to accept clients...
308 */
309
310 // start boot animation
311 property_set("ctl.start", "bootanim");
312
313 return NO_ERROR;
314 }
315
316 // ----------------------------------------------------------------------------
317 #if 0
318 #pragma mark -
319 #pragma mark Events Handler
320 #endif
321
waitForEvent()322 void SurfaceFlinger::waitForEvent()
323 {
324 while (true) {
325 nsecs_t timeout = -1;
326 const nsecs_t freezeDisplayTimeout = ms2ns(5000);
327 if (UNLIKELY(isFrozen())) {
328 // wait 5 seconds
329 const nsecs_t now = systemTime();
330 if (mFreezeDisplayTime == 0) {
331 mFreezeDisplayTime = now;
332 }
333 nsecs_t waitTime = freezeDisplayTimeout - (now - mFreezeDisplayTime);
334 timeout = waitTime>0 ? waitTime : 0;
335 }
336
337 sp<MessageBase> msg = mEventQueue.waitMessage(timeout);
338
339 // see if we timed out
340 if (isFrozen()) {
341 const nsecs_t now = systemTime();
342 nsecs_t frozenTime = (now - mFreezeDisplayTime);
343 if (frozenTime >= freezeDisplayTimeout) {
344 // we timed out and are still frozen
345 LOGW("timeout expired mFreezeDisplay=%d, mFreezeCount=%d",
346 mFreezeDisplay, mFreezeCount);
347 mFreezeDisplayTime = 0;
348 mFreezeCount = 0;
349 mFreezeDisplay = false;
350 }
351 }
352
353 if (msg != 0) {
354 switch (msg->what) {
355 case MessageQueue::INVALIDATE:
356 // invalidate message, just return to the main loop
357 return;
358 }
359 }
360 }
361 }
362
signalEvent()363 void SurfaceFlinger::signalEvent() {
364 mEventQueue.invalidate();
365 }
366
authenticateSurfaceTexture(const sp<ISurfaceTexture> & surfaceTexture) const367 bool SurfaceFlinger::authenticateSurfaceTexture(
368 const sp<ISurfaceTexture>& surfaceTexture) const {
369 Mutex::Autolock _l(mStateLock);
370 sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
371
372 // Check the visible layer list for the ISurface
373 const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
374 size_t count = currentLayers.size();
375 for (size_t i=0 ; i<count ; i++) {
376 const sp<LayerBase>& layer(currentLayers[i]);
377 sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
378 if (lbc != NULL) {
379 wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
380 if (lbcBinder == surfaceTextureBinder) {
381 return true;
382 }
383 }
384 }
385
386 // Check the layers in the purgatory. This check is here so that if a
387 // SurfaceTexture gets destroyed before all the clients are done using it,
388 // the error will not be reported as "surface XYZ is not authenticated", but
389 // will instead fail later on when the client tries to use the surface,
390 // which should be reported as "surface XYZ returned an -ENODEV". The
391 // purgatorized layers are no less authentic than the visible ones, so this
392 // should not cause any harm.
393 size_t purgatorySize = mLayerPurgatory.size();
394 for (size_t i=0 ; i<purgatorySize ; i++) {
395 const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
396 sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
397 if (lbc != NULL) {
398 wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
399 if (lbcBinder == surfaceTextureBinder) {
400 return true;
401 }
402 }
403 }
404
405 return false;
406 }
407
postMessageAsync(const sp<MessageBase> & msg,nsecs_t reltime,uint32_t flags)408 status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
409 nsecs_t reltime, uint32_t flags)
410 {
411 return mEventQueue.postMessage(msg, reltime, flags);
412 }
413
postMessageSync(const sp<MessageBase> & msg,nsecs_t reltime,uint32_t flags)414 status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
415 nsecs_t reltime, uint32_t flags)
416 {
417 status_t res = mEventQueue.postMessage(msg, reltime, flags);
418 if (res == NO_ERROR) {
419 msg->wait();
420 }
421 return res;
422 }
423
424 // ----------------------------------------------------------------------------
425 #if 0
426 #pragma mark -
427 #pragma mark Main loop
428 #endif
429
threadLoop()430 bool SurfaceFlinger::threadLoop()
431 {
432 waitForEvent();
433
434 // check for transactions
435 if (UNLIKELY(mConsoleSignals)) {
436 handleConsoleEvents();
437 }
438
439 // if we're in a global transaction, don't do anything.
440 const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
441 uint32_t transactionFlags = peekTransactionFlags(mask);
442 if (UNLIKELY(transactionFlags)) {
443 handleTransaction(transactionFlags);
444 }
445
446 // post surfaces (if needed)
447 handlePageFlip();
448
449 if (mDirtyRegion.isEmpty()) {
450 // nothing new to do.
451 return true;
452 }
453
454 if (UNLIKELY(mHwWorkListDirty)) {
455 // build the h/w work list
456 handleWorkList();
457 }
458
459 const DisplayHardware& hw(graphicPlane(0).displayHardware());
460 if (LIKELY(hw.canDraw())) {
461 // repaint the framebuffer (if needed)
462
463 const int index = hw.getCurrentBufferIndex();
464 GraphicLog& logger(GraphicLog::getInstance());
465
466 logger.log(GraphicLog::SF_REPAINT, index);
467 handleRepaint();
468
469 // inform the h/w that we're done compositing
470 logger.log(GraphicLog::SF_COMPOSITION_COMPLETE, index);
471 hw.compositionComplete();
472
473 logger.log(GraphicLog::SF_SWAP_BUFFERS, index);
474 postFramebuffer();
475
476 logger.log(GraphicLog::SF_REPAINT_DONE, index);
477 } else {
478 // pretend we did the post
479 hw.compositionComplete();
480 usleep(16667); // 60 fps period
481 }
482 return true;
483 }
484
postFramebuffer()485 void SurfaceFlinger::postFramebuffer()
486 {
487 // this should never happen. we do the flip anyways so we don't
488 // risk to cause a deadlock with hwc
489 LOGW_IF(mSwapRegion.isEmpty(), "mSwapRegion is empty");
490 const DisplayHardware& hw(graphicPlane(0).displayHardware());
491 const nsecs_t now = systemTime();
492 mDebugInSwapBuffers = now;
493 hw.flip(mSwapRegion);
494 mLastSwapBufferTime = systemTime() - now;
495 mDebugInSwapBuffers = 0;
496 mSwapRegion.clear();
497 }
498
handleConsoleEvents()499 void SurfaceFlinger::handleConsoleEvents()
500 {
501 // something to do with the console
502 const DisplayHardware& hw = graphicPlane(0).displayHardware();
503
504 int what = android_atomic_and(0, &mConsoleSignals);
505 if (what & eConsoleAcquired) {
506 hw.acquireScreen();
507 // this is a temporary work-around, eventually this should be called
508 // by the power-manager
509 SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
510 }
511
512 if (what & eConsoleReleased) {
513 if (hw.isScreenAcquired()) {
514 hw.releaseScreen();
515 }
516 }
517
518 mDirtyRegion.set(hw.bounds());
519 }
520
handleTransaction(uint32_t transactionFlags)521 void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
522 {
523 Mutex::Autolock _l(mStateLock);
524 const nsecs_t now = systemTime();
525 mDebugInTransaction = now;
526
527 // Here we're guaranteed that some transaction flags are set
528 // so we can call handleTransactionLocked() unconditionally.
529 // We call getTransactionFlags(), which will also clear the flags,
530 // with mStateLock held to guarantee that mCurrentState won't change
531 // until the transaction is committed.
532
533 const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
534 transactionFlags = getTransactionFlags(mask);
535 handleTransactionLocked(transactionFlags);
536
537 mLastTransactionTime = systemTime() - now;
538 mDebugInTransaction = 0;
539 invalidateHwcGeometry();
540 // here the transaction has been committed
541 }
542
handleTransactionLocked(uint32_t transactionFlags)543 void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
544 {
545 const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
546 const size_t count = currentLayers.size();
547
548 /*
549 * Traversal of the children
550 * (perform the transaction for each of them if needed)
551 */
552
553 const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
554 if (layersNeedTransaction) {
555 for (size_t i=0 ; i<count ; i++) {
556 const sp<LayerBase>& layer = currentLayers[i];
557 uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
558 if (!trFlags) continue;
559
560 const uint32_t flags = layer->doTransaction(0);
561 if (flags & Layer::eVisibleRegion)
562 mVisibleRegionsDirty = true;
563 }
564 }
565
566 /*
567 * Perform our own transaction if needed
568 */
569
570 if (transactionFlags & eTransactionNeeded) {
571 if (mCurrentState.orientation != mDrawingState.orientation) {
572 // the orientation has changed, recompute all visible regions
573 // and invalidate everything.
574
575 const int dpy = 0;
576 const int orientation = mCurrentState.orientation;
577 // Currently unused: const uint32_t flags = mCurrentState.orientationFlags;
578 GraphicPlane& plane(graphicPlane(dpy));
579 plane.setOrientation(orientation);
580
581 // update the shared control block
582 const DisplayHardware& hw(plane.displayHardware());
583 volatile display_cblk_t* dcblk = mServerCblk->displays + dpy;
584 dcblk->orientation = orientation;
585 dcblk->w = plane.getWidth();
586 dcblk->h = plane.getHeight();
587
588 mVisibleRegionsDirty = true;
589 mDirtyRegion.set(hw.bounds());
590 }
591
592 if (mCurrentState.freezeDisplay != mDrawingState.freezeDisplay) {
593 // freezing or unfreezing the display -> trigger animation if needed
594 mFreezeDisplay = mCurrentState.freezeDisplay;
595 if (mFreezeDisplay)
596 mFreezeDisplayTime = 0;
597 }
598
599 if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
600 // layers have been added
601 mVisibleRegionsDirty = true;
602 }
603
604 // some layers might have been removed, so
605 // we need to update the regions they're exposing.
606 if (mLayersRemoved) {
607 mLayersRemoved = false;
608 mVisibleRegionsDirty = true;
609 const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
610 const size_t count = previousLayers.size();
611 for (size_t i=0 ; i<count ; i++) {
612 const sp<LayerBase>& layer(previousLayers[i]);
613 if (currentLayers.indexOf( layer ) < 0) {
614 // this layer is not visible anymore
615 mDirtyRegionRemovedLayer.orSelf(layer->visibleRegionScreen);
616 }
617 }
618 }
619 }
620
621 commitTransaction();
622 }
623
getFreezeLock() const624 sp<FreezeLock> SurfaceFlinger::getFreezeLock() const
625 {
626 return new FreezeLock(const_cast<SurfaceFlinger *>(this));
627 }
628
computeVisibleRegions(const LayerVector & currentLayers,Region & dirtyRegion,Region & opaqueRegion)629 void SurfaceFlinger::computeVisibleRegions(
630 const LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
631 {
632 const GraphicPlane& plane(graphicPlane(0));
633 const Transform& planeTransform(plane.transform());
634 const DisplayHardware& hw(plane.displayHardware());
635 const Region screenRegion(hw.bounds());
636
637 Region aboveOpaqueLayers;
638 Region aboveCoveredLayers;
639 Region dirty;
640
641 bool secureFrameBuffer = false;
642
643 size_t i = currentLayers.size();
644 while (i--) {
645 const sp<LayerBase>& layer = currentLayers[i];
646 layer->validateVisibility(planeTransform);
647
648 // start with the whole surface at its current location
649 const Layer::State& s(layer->drawingState());
650
651 /*
652 * opaqueRegion: area of a surface that is fully opaque.
653 */
654 Region opaqueRegion;
655
656 /*
657 * visibleRegion: area of a surface that is visible on screen
658 * and not fully transparent. This is essentially the layer's
659 * footprint minus the opaque regions above it.
660 * Areas covered by a translucent surface are considered visible.
661 */
662 Region visibleRegion;
663
664 /*
665 * coveredRegion: area of a surface that is covered by all
666 * visible regions above it (which includes the translucent areas).
667 */
668 Region coveredRegion;
669
670
671 // handle hidden surfaces by setting the visible region to empty
672 if (LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
673 const bool translucent = !layer->isOpaque();
674 const Rect bounds(layer->visibleBounds());
675 visibleRegion.set(bounds);
676 visibleRegion.andSelf(screenRegion);
677 if (!visibleRegion.isEmpty()) {
678 // Remove the transparent area from the visible region
679 if (translucent) {
680 visibleRegion.subtractSelf(layer->transparentRegionScreen);
681 }
682
683 // compute the opaque region
684 const int32_t layerOrientation = layer->getOrientation();
685 if (s.alpha==255 && !translucent &&
686 ((layerOrientation & Transform::ROT_INVALID) == false)) {
687 // the opaque region is the layer's footprint
688 opaqueRegion = visibleRegion;
689 }
690 }
691 }
692
693 // Clip the covered region to the visible region
694 coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
695
696 // Update aboveCoveredLayers for next (lower) layer
697 aboveCoveredLayers.orSelf(visibleRegion);
698
699 // subtract the opaque region covered by the layers above us
700 visibleRegion.subtractSelf(aboveOpaqueLayers);
701
702 // compute this layer's dirty region
703 if (layer->contentDirty) {
704 // we need to invalidate the whole region
705 dirty = visibleRegion;
706 // as well, as the old visible region
707 dirty.orSelf(layer->visibleRegionScreen);
708 layer->contentDirty = false;
709 } else {
710 /* compute the exposed region:
711 * the exposed region consists of two components:
712 * 1) what's VISIBLE now and was COVERED before
713 * 2) what's EXPOSED now less what was EXPOSED before
714 *
715 * note that (1) is conservative, we start with the whole
716 * visible region but only keep what used to be covered by
717 * something -- which mean it may have been exposed.
718 *
719 * (2) handles areas that were not covered by anything but got
720 * exposed because of a resize.
721 */
722 const Region newExposed = visibleRegion - coveredRegion;
723 const Region oldVisibleRegion = layer->visibleRegionScreen;
724 const Region oldCoveredRegion = layer->coveredRegionScreen;
725 const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
726 dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
727 }
728 dirty.subtractSelf(aboveOpaqueLayers);
729
730 // accumulate to the screen dirty region
731 dirtyRegion.orSelf(dirty);
732
733 // Update aboveOpaqueLayers for next (lower) layer
734 aboveOpaqueLayers.orSelf(opaqueRegion);
735
736 // Store the visible region is screen space
737 layer->setVisibleRegion(visibleRegion);
738 layer->setCoveredRegion(coveredRegion);
739
740 // If a secure layer is partially visible, lock-down the screen!
741 if (layer->isSecure() && !visibleRegion.isEmpty()) {
742 secureFrameBuffer = true;
743 }
744 }
745
746 // invalidate the areas where a layer was removed
747 dirtyRegion.orSelf(mDirtyRegionRemovedLayer);
748 mDirtyRegionRemovedLayer.clear();
749
750 mSecureFrameBuffer = secureFrameBuffer;
751 opaqueRegion = aboveOpaqueLayers;
752 }
753
754
commitTransaction()755 void SurfaceFlinger::commitTransaction()
756 {
757 mDrawingState = mCurrentState;
758 mResizeTransationPending = false;
759 mTransactionCV.broadcast();
760 }
761
handlePageFlip()762 void SurfaceFlinger::handlePageFlip()
763 {
764 bool visibleRegions = mVisibleRegionsDirty;
765 const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
766 visibleRegions |= lockPageFlip(currentLayers);
767
768 const DisplayHardware& hw = graphicPlane(0).displayHardware();
769 const Region screenRegion(hw.bounds());
770 if (visibleRegions) {
771 Region opaqueRegion;
772 computeVisibleRegions(currentLayers, mDirtyRegion, opaqueRegion);
773
774 /*
775 * rebuild the visible layer list
776 */
777 const size_t count = currentLayers.size();
778 mVisibleLayersSortedByZ.clear();
779 mVisibleLayersSortedByZ.setCapacity(count);
780 for (size_t i=0 ; i<count ; i++) {
781 if (!currentLayers[i]->visibleRegionScreen.isEmpty())
782 mVisibleLayersSortedByZ.add(currentLayers[i]);
783 }
784
785 mWormholeRegion = screenRegion.subtract(opaqueRegion);
786 mVisibleRegionsDirty = false;
787 invalidateHwcGeometry();
788 }
789
790 unlockPageFlip(currentLayers);
791
792 mDirtyRegion.orSelf(getAndClearInvalidateRegion());
793 mDirtyRegion.andSelf(screenRegion);
794 }
795
invalidateHwcGeometry()796 void SurfaceFlinger::invalidateHwcGeometry()
797 {
798 mHwWorkListDirty = true;
799 }
800
lockPageFlip(const LayerVector & currentLayers)801 bool SurfaceFlinger::lockPageFlip(const LayerVector& currentLayers)
802 {
803 bool recomputeVisibleRegions = false;
804 size_t count = currentLayers.size();
805 sp<LayerBase> const* layers = currentLayers.array();
806 for (size_t i=0 ; i<count ; i++) {
807 const sp<LayerBase>& layer(layers[i]);
808 layer->lockPageFlip(recomputeVisibleRegions);
809 }
810 return recomputeVisibleRegions;
811 }
812
unlockPageFlip(const LayerVector & currentLayers)813 void SurfaceFlinger::unlockPageFlip(const LayerVector& currentLayers)
814 {
815 const GraphicPlane& plane(graphicPlane(0));
816 const Transform& planeTransform(plane.transform());
817 size_t count = currentLayers.size();
818 sp<LayerBase> const* layers = currentLayers.array();
819 for (size_t i=0 ; i<count ; i++) {
820 const sp<LayerBase>& layer(layers[i]);
821 layer->unlockPageFlip(planeTransform, mDirtyRegion);
822 }
823 }
824
handleWorkList()825 void SurfaceFlinger::handleWorkList()
826 {
827 mHwWorkListDirty = false;
828 HWComposer& hwc(graphicPlane(0).displayHardware().getHwComposer());
829 if (hwc.initCheck() == NO_ERROR) {
830 const Vector< sp<LayerBase> >& currentLayers(mVisibleLayersSortedByZ);
831 const size_t count = currentLayers.size();
832 hwc.createWorkList(count);
833 hwc_layer_t* const cur(hwc.getLayers());
834 for (size_t i=0 ; cur && i<count ; i++) {
835 currentLayers[i]->setGeometry(&cur[i]);
836 if (mDebugDisableHWC || mDebugRegion) {
837 cur[i].compositionType = HWC_FRAMEBUFFER;
838 cur[i].flags |= HWC_SKIP_LAYER;
839 }
840 }
841 }
842 }
843
handleRepaint()844 void SurfaceFlinger::handleRepaint()
845 {
846 // compute the invalid region
847 mSwapRegion.orSelf(mDirtyRegion);
848
849 if (UNLIKELY(mDebugRegion)) {
850 debugFlashRegions();
851 }
852
853 // set the frame buffer
854 const DisplayHardware& hw(graphicPlane(0).displayHardware());
855 glMatrixMode(GL_MODELVIEW);
856 glLoadIdentity();
857
858 uint32_t flags = hw.getFlags();
859 if ((flags & DisplayHardware::SWAP_RECTANGLE) ||
860 (flags & DisplayHardware::BUFFER_PRESERVED))
861 {
862 // we can redraw only what's dirty, but since SWAP_RECTANGLE only
863 // takes a rectangle, we must make sure to update that whole
864 // rectangle in that case
865 if (flags & DisplayHardware::SWAP_RECTANGLE) {
866 // TODO: we really should be able to pass a region to
867 // SWAP_RECTANGLE so that we don't have to redraw all this.
868 mDirtyRegion.set(mSwapRegion.bounds());
869 } else {
870 // in the BUFFER_PRESERVED case, obviously, we can update only
871 // what's needed and nothing more.
872 // NOTE: this is NOT a common case, as preserving the backbuffer
873 // is costly and usually involves copying the whole update back.
874 }
875 } else {
876 if (flags & DisplayHardware::PARTIAL_UPDATES) {
877 // We need to redraw the rectangle that will be updated
878 // (pushed to the framebuffer).
879 // This is needed because PARTIAL_UPDATES only takes one
880 // rectangle instead of a region (see DisplayHardware::flip())
881 mDirtyRegion.set(mSwapRegion.bounds());
882 } else {
883 // we need to redraw everything (the whole screen)
884 mDirtyRegion.set(hw.bounds());
885 mSwapRegion = mDirtyRegion;
886 }
887 }
888
889 setupHardwareComposer(mDirtyRegion);
890 composeSurfaces(mDirtyRegion);
891
892 // update the swap region and clear the dirty region
893 mSwapRegion.orSelf(mDirtyRegion);
894 mDirtyRegion.clear();
895 }
896
setupHardwareComposer(Region & dirtyInOut)897 void SurfaceFlinger::setupHardwareComposer(Region& dirtyInOut)
898 {
899 const DisplayHardware& hw(graphicPlane(0).displayHardware());
900 HWComposer& hwc(hw.getHwComposer());
901 hwc_layer_t* const cur(hwc.getLayers());
902 if (!cur) {
903 return;
904 }
905
906 const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
907 size_t count = layers.size();
908
909 LOGE_IF(hwc.getNumLayers() != count,
910 "HAL number of layers (%d) doesn't match surfaceflinger (%d)",
911 hwc.getNumLayers(), count);
912
913 // just to be extra-safe, use the smallest count
914 if (hwc.initCheck() == NO_ERROR) {
915 count = count < hwc.getNumLayers() ? count : hwc.getNumLayers();
916 }
917
918 /*
919 * update the per-frame h/w composer data for each layer
920 * and build the transparent region of the FB
921 */
922 for (size_t i=0 ; i<count ; i++) {
923 const sp<LayerBase>& layer(layers[i]);
924 layer->setPerFrameData(&cur[i]);
925 }
926 const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
927 status_t err = hwc.prepare();
928 LOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
929
930 if (err == NO_ERROR) {
931 // what's happening here is tricky.
932 // we want to clear all the layers with the CLEAR_FB flags
933 // that are opaque.
934 // however, since some GPU are efficient at preserving
935 // the backbuffer, we want to take advantage of that so we do the
936 // clear only in the dirty region (other areas will be preserved
937 // on those GPUs).
938 // NOTE: on non backbuffer preserving GPU, the dirty region
939 // has already been expanded as needed, so the code is correct
940 // there too.
941 //
942 // However, the content of the framebuffer cannot be trusted when
943 // we switch to/from FB/OVERLAY, in which case we need to
944 // expand the dirty region to those areas too.
945 //
946 // Note also that there is a special case when switching from
947 // "no layers in FB" to "some layers in FB", where we need to redraw
948 // the entire FB, since some areas might contain uninitialized
949 // data.
950 //
951 // Also we want to make sure to not clear areas that belong to
952 // layers above that won't redraw (we would just be erasing them),
953 // that is, we can't erase anything outside the dirty region.
954
955 Region transparent;
956
957 if (!fbLayerCount && hwc.getLayerCount(HWC_FRAMEBUFFER)) {
958 transparent.set(hw.getBounds());
959 dirtyInOut = transparent;
960 } else {
961 for (size_t i=0 ; i<count ; i++) {
962 const sp<LayerBase>& layer(layers[i]);
963 if ((cur[i].hints & HWC_HINT_CLEAR_FB) && layer->isOpaque()) {
964 transparent.orSelf(layer->visibleRegionScreen);
965 }
966 bool isOverlay = (cur[i].compositionType != HWC_FRAMEBUFFER);
967 if (isOverlay != layer->isOverlay()) {
968 // we transitioned to/from overlay, so add this layer
969 // to the dirty region so the framebuffer can be either
970 // cleared or redrawn.
971 dirtyInOut.orSelf(layer->visibleRegionScreen);
972 }
973 layer->setOverlay(isOverlay);
974 }
975 // don't erase stuff outside the dirty region
976 transparent.andSelf(dirtyInOut);
977 }
978
979 /*
980 * clear the area of the FB that need to be transparent
981 */
982 if (!transparent.isEmpty()) {
983 glClearColor(0,0,0,0);
984 Region::const_iterator it = transparent.begin();
985 Region::const_iterator const end = transparent.end();
986 const int32_t height = hw.getHeight();
987 while (it != end) {
988 const Rect& r(*it++);
989 const GLint sy = height - (r.top + r.height());
990 glScissor(r.left, sy, r.width(), r.height());
991 glClear(GL_COLOR_BUFFER_BIT);
992 }
993 }
994 }
995 }
996
composeSurfaces(const Region & dirty)997 void SurfaceFlinger::composeSurfaces(const Region& dirty)
998 {
999 const DisplayHardware& hw(graphicPlane(0).displayHardware());
1000 HWComposer& hwc(hw.getHwComposer());
1001
1002 const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
1003 if (UNLIKELY(fbLayerCount && !mWormholeRegion.isEmpty())) {
1004 // should never happen unless the window manager has a bug
1005 // draw something...
1006 drawWormhole();
1007 }
1008
1009 /*
1010 * and then, render the layers targeted at the framebuffer
1011 */
1012 hwc_layer_t* const cur(hwc.getLayers());
1013 const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
1014 size_t count = layers.size();
1015 for (size_t i=0 ; i<count ; i++) {
1016 if (cur && (cur[i].compositionType != HWC_FRAMEBUFFER)) {
1017 continue;
1018 }
1019 const sp<LayerBase>& layer(layers[i]);
1020 const Region clip(dirty.intersect(layer->visibleRegionScreen));
1021 if (!clip.isEmpty()) {
1022 layer->draw(clip);
1023 }
1024 }
1025 }
1026
debugFlashRegions()1027 void SurfaceFlinger::debugFlashRegions()
1028 {
1029 const DisplayHardware& hw(graphicPlane(0).displayHardware());
1030 const uint32_t flags = hw.getFlags();
1031 const int32_t height = hw.getHeight();
1032 if (mSwapRegion.isEmpty()) {
1033 return;
1034 }
1035
1036 if (!((flags & DisplayHardware::SWAP_RECTANGLE) ||
1037 (flags & DisplayHardware::BUFFER_PRESERVED))) {
1038 const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
1039 mDirtyRegion.bounds() : hw.bounds());
1040 composeSurfaces(repaint);
1041 }
1042
1043 glDisable(GL_TEXTURE_EXTERNAL_OES);
1044 glDisable(GL_TEXTURE_2D);
1045 glDisable(GL_BLEND);
1046 glDisable(GL_SCISSOR_TEST);
1047
1048 static int toggle = 0;
1049 toggle = 1 - toggle;
1050 if (toggle) {
1051 glColor4f(1, 0, 1, 1);
1052 } else {
1053 glColor4f(1, 1, 0, 1);
1054 }
1055
1056 Region::const_iterator it = mDirtyRegion.begin();
1057 Region::const_iterator const end = mDirtyRegion.end();
1058 while (it != end) {
1059 const Rect& r = *it++;
1060 GLfloat vertices[][2] = {
1061 { r.left, height - r.top },
1062 { r.left, height - r.bottom },
1063 { r.right, height - r.bottom },
1064 { r.right, height - r.top }
1065 };
1066 glVertexPointer(2, GL_FLOAT, 0, vertices);
1067 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1068 }
1069
1070 hw.flip(mSwapRegion);
1071
1072 if (mDebugRegion > 1)
1073 usleep(mDebugRegion * 1000);
1074
1075 glEnable(GL_SCISSOR_TEST);
1076 }
1077
drawWormhole() const1078 void SurfaceFlinger::drawWormhole() const
1079 {
1080 const Region region(mWormholeRegion.intersect(mDirtyRegion));
1081 if (region.isEmpty())
1082 return;
1083
1084 const DisplayHardware& hw(graphicPlane(0).displayHardware());
1085 const int32_t width = hw.getWidth();
1086 const int32_t height = hw.getHeight();
1087
1088 if (LIKELY(!mDebugBackground)) {
1089 glClearColor(0,0,0,0);
1090 Region::const_iterator it = region.begin();
1091 Region::const_iterator const end = region.end();
1092 while (it != end) {
1093 const Rect& r = *it++;
1094 const GLint sy = height - (r.top + r.height());
1095 glScissor(r.left, sy, r.width(), r.height());
1096 glClear(GL_COLOR_BUFFER_BIT);
1097 }
1098 } else {
1099 const GLshort vertices[][2] = { { 0, 0 }, { width, 0 },
1100 { width, height }, { 0, height } };
1101 const GLshort tcoords[][2] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 } };
1102
1103 glVertexPointer(2, GL_SHORT, 0, vertices);
1104 glTexCoordPointer(2, GL_SHORT, 0, tcoords);
1105 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
1106
1107 glDisable(GL_TEXTURE_EXTERNAL_OES);
1108 glEnable(GL_TEXTURE_2D);
1109 glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
1110 glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
1111 glMatrixMode(GL_TEXTURE);
1112 glLoadIdentity();
1113
1114 glDisable(GL_BLEND);
1115
1116 glScalef(width*(1.0f/32.0f), height*(1.0f/32.0f), 1);
1117 Region::const_iterator it = region.begin();
1118 Region::const_iterator const end = region.end();
1119 while (it != end) {
1120 const Rect& r = *it++;
1121 const GLint sy = height - (r.top + r.height());
1122 glScissor(r.left, sy, r.width(), r.height());
1123 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1124 }
1125 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
1126 glDisable(GL_TEXTURE_2D);
1127 glLoadIdentity();
1128 glMatrixMode(GL_MODELVIEW);
1129 }
1130 }
1131
debugShowFPS() const1132 void SurfaceFlinger::debugShowFPS() const
1133 {
1134 static int mFrameCount;
1135 static int mLastFrameCount = 0;
1136 static nsecs_t mLastFpsTime = 0;
1137 static float mFps = 0;
1138 mFrameCount++;
1139 nsecs_t now = systemTime();
1140 nsecs_t diff = now - mLastFpsTime;
1141 if (diff > ms2ns(250)) {
1142 mFps = ((mFrameCount - mLastFrameCount) * float(s2ns(1))) / diff;
1143 mLastFpsTime = now;
1144 mLastFrameCount = mFrameCount;
1145 }
1146 // XXX: mFPS has the value we want
1147 }
1148
addLayer(const sp<LayerBase> & layer)1149 status_t SurfaceFlinger::addLayer(const sp<LayerBase>& layer)
1150 {
1151 Mutex::Autolock _l(mStateLock);
1152 addLayer_l(layer);
1153 setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1154 return NO_ERROR;
1155 }
1156
addLayer_l(const sp<LayerBase> & layer)1157 status_t SurfaceFlinger::addLayer_l(const sp<LayerBase>& layer)
1158 {
1159 ssize_t i = mCurrentState.layersSortedByZ.add(layer);
1160 return (i < 0) ? status_t(i) : status_t(NO_ERROR);
1161 }
1162
addClientLayer(const sp<Client> & client,const sp<LayerBaseClient> & lbc)1163 ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1164 const sp<LayerBaseClient>& lbc)
1165 {
1166 // attach this layer to the client
1167 size_t name = client->attachLayer(lbc);
1168
1169 Mutex::Autolock _l(mStateLock);
1170
1171 // add this layer to the current state list
1172 addLayer_l(lbc);
1173
1174 return ssize_t(name);
1175 }
1176
removeLayer(const sp<LayerBase> & layer)1177 status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1178 {
1179 Mutex::Autolock _l(mStateLock);
1180 status_t err = purgatorizeLayer_l(layer);
1181 if (err == NO_ERROR)
1182 setTransactionFlags(eTransactionNeeded);
1183 return err;
1184 }
1185
removeLayer_l(const sp<LayerBase> & layerBase)1186 status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1187 {
1188 sp<LayerBaseClient> lbc(layerBase->getLayerBaseClient());
1189 if (lbc != 0) {
1190 mLayerMap.removeItem( lbc->getSurfaceBinder() );
1191 }
1192 ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1193 if (index >= 0) {
1194 mLayersRemoved = true;
1195 return NO_ERROR;
1196 }
1197 return status_t(index);
1198 }
1199
purgatorizeLayer_l(const sp<LayerBase> & layerBase)1200 status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1201 {
1202 // First add the layer to the purgatory list, which makes sure it won't
1203 // go away, then remove it from the main list (through a transaction).
1204 ssize_t err = removeLayer_l(layerBase);
1205 if (err >= 0) {
1206 mLayerPurgatory.add(layerBase);
1207 }
1208
1209 layerBase->onRemoved();
1210
1211 // it's possible that we don't find a layer, because it might
1212 // have been destroyed already -- this is not technically an error
1213 // from the user because there is a race between Client::destroySurface(),
1214 // ~Client() and ~ISurface().
1215 return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1216 }
1217
invalidateLayerVisibility(const sp<LayerBase> & layer)1218 status_t SurfaceFlinger::invalidateLayerVisibility(const sp<LayerBase>& layer)
1219 {
1220 layer->forceVisibilityTransaction();
1221 setTransactionFlags(eTraversalNeeded);
1222 return NO_ERROR;
1223 }
1224
peekTransactionFlags(uint32_t flags)1225 uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1226 {
1227 return android_atomic_release_load(&mTransactionFlags);
1228 }
1229
getTransactionFlags(uint32_t flags)1230 uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1231 {
1232 return android_atomic_and(~flags, &mTransactionFlags) & flags;
1233 }
1234
setTransactionFlags(uint32_t flags)1235 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1236 {
1237 uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1238 if ((old & flags)==0) { // wake the server up
1239 signalEvent();
1240 }
1241 return old;
1242 }
1243
1244
setTransactionState(const Vector<ComposerState> & state,int orientation)1245 void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& state,
1246 int orientation) {
1247 Mutex::Autolock _l(mStateLock);
1248
1249 uint32_t flags = 0;
1250 if (mCurrentState.orientation != orientation) {
1251 if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1252 mCurrentState.orientation = orientation;
1253 flags |= eTransactionNeeded;
1254 mResizeTransationPending = true;
1255 } else if (orientation != eOrientationUnchanged) {
1256 LOGW("setTransactionState: ignoring unrecognized orientation: %d",
1257 orientation);
1258 }
1259 }
1260
1261 const size_t count = state.size();
1262 for (size_t i=0 ; i<count ; i++) {
1263 const ComposerState& s(state[i]);
1264 sp<Client> client( static_cast<Client *>(s.client.get()) );
1265 flags |= setClientStateLocked(client, s.state);
1266 }
1267 if (flags) {
1268 setTransactionFlags(flags);
1269 }
1270
1271 signalEvent();
1272
1273 // if there is a transaction with a resize, wait for it to
1274 // take effect before returning.
1275 while (mResizeTransationPending) {
1276 status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1277 if (CC_UNLIKELY(err != NO_ERROR)) {
1278 // just in case something goes wrong in SF, return to the
1279 // called after a few seconds.
1280 LOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1281 mResizeTransationPending = false;
1282 break;
1283 }
1284 }
1285 }
1286
freezeDisplay(DisplayID dpy,uint32_t flags)1287 status_t SurfaceFlinger::freezeDisplay(DisplayID dpy, uint32_t flags)
1288 {
1289 if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
1290 return BAD_VALUE;
1291
1292 Mutex::Autolock _l(mStateLock);
1293 mCurrentState.freezeDisplay = 1;
1294 setTransactionFlags(eTransactionNeeded);
1295
1296 // flags is intended to communicate some sort of animation behavior
1297 // (for instance fading)
1298 return NO_ERROR;
1299 }
1300
unfreezeDisplay(DisplayID dpy,uint32_t flags)1301 status_t SurfaceFlinger::unfreezeDisplay(DisplayID dpy, uint32_t flags)
1302 {
1303 if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
1304 return BAD_VALUE;
1305
1306 Mutex::Autolock _l(mStateLock);
1307 mCurrentState.freezeDisplay = 0;
1308 setTransactionFlags(eTransactionNeeded);
1309
1310 // flags is intended to communicate some sort of animation behavior
1311 // (for instance fading)
1312 return NO_ERROR;
1313 }
1314
setOrientation(DisplayID dpy,int orientation,uint32_t flags)1315 int SurfaceFlinger::setOrientation(DisplayID dpy,
1316 int orientation, uint32_t flags)
1317 {
1318 if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
1319 return BAD_VALUE;
1320
1321 Mutex::Autolock _l(mStateLock);
1322 if (mCurrentState.orientation != orientation) {
1323 if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1324 mCurrentState.orientationFlags = flags;
1325 mCurrentState.orientation = orientation;
1326 setTransactionFlags(eTransactionNeeded);
1327 mTransactionCV.wait(mStateLock);
1328 } else {
1329 orientation = BAD_VALUE;
1330 }
1331 }
1332 return orientation;
1333 }
1334
createSurface(ISurfaceComposerClient::surface_data_t * params,const String8 & name,const sp<Client> & client,DisplayID d,uint32_t w,uint32_t h,PixelFormat format,uint32_t flags)1335 sp<ISurface> SurfaceFlinger::createSurface(
1336 ISurfaceComposerClient::surface_data_t* params,
1337 const String8& name,
1338 const sp<Client>& client,
1339 DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1340 uint32_t flags)
1341 {
1342 sp<LayerBaseClient> layer;
1343 sp<ISurface> surfaceHandle;
1344
1345 if (int32_t(w|h) < 0) {
1346 LOGE("createSurface() failed, w or h is negative (w=%d, h=%d)",
1347 int(w), int(h));
1348 return surfaceHandle;
1349 }
1350
1351 //LOGD("createSurface for pid %d (%d x %d)", pid, w, h);
1352 sp<Layer> normalLayer;
1353 switch (flags & eFXSurfaceMask) {
1354 case eFXSurfaceNormal:
1355 normalLayer = createNormalSurface(client, d, w, h, flags, format);
1356 layer = normalLayer;
1357 break;
1358 case eFXSurfaceBlur:
1359 // for now we treat Blur as Dim, until we can implement it
1360 // efficiently.
1361 case eFXSurfaceDim:
1362 layer = createDimSurface(client, d, w, h, flags);
1363 break;
1364 case eFXSurfaceScreenshot:
1365 layer = createScreenshotSurface(client, d, w, h, flags);
1366 break;
1367 }
1368
1369 if (layer != 0) {
1370 layer->initStates(w, h, flags);
1371 layer->setName(name);
1372 ssize_t token = addClientLayer(client, layer);
1373
1374 surfaceHandle = layer->getSurface();
1375 if (surfaceHandle != 0) {
1376 params->token = token;
1377 params->identity = layer->getIdentity();
1378 if (normalLayer != 0) {
1379 Mutex::Autolock _l(mStateLock);
1380 mLayerMap.add(layer->getSurfaceBinder(), normalLayer);
1381 }
1382 }
1383
1384 setTransactionFlags(eTransactionNeeded);
1385 }
1386
1387 return surfaceHandle;
1388 }
1389
createNormalSurface(const sp<Client> & client,DisplayID display,uint32_t w,uint32_t h,uint32_t flags,PixelFormat & format)1390 sp<Layer> SurfaceFlinger::createNormalSurface(
1391 const sp<Client>& client, DisplayID display,
1392 uint32_t w, uint32_t h, uint32_t flags,
1393 PixelFormat& format)
1394 {
1395 // initialize the surfaces
1396 switch (format) { // TODO: take h/w into account
1397 case PIXEL_FORMAT_TRANSPARENT:
1398 case PIXEL_FORMAT_TRANSLUCENT:
1399 format = PIXEL_FORMAT_RGBA_8888;
1400 break;
1401 case PIXEL_FORMAT_OPAQUE:
1402 #ifdef NO_RGBX_8888
1403 format = PIXEL_FORMAT_RGB_565;
1404 #else
1405 format = PIXEL_FORMAT_RGBX_8888;
1406 #endif
1407 break;
1408 }
1409
1410 #ifdef NO_RGBX_8888
1411 if (format == PIXEL_FORMAT_RGBX_8888)
1412 format = PIXEL_FORMAT_RGBA_8888;
1413 #endif
1414
1415 sp<Layer> layer = new Layer(this, display, client);
1416 status_t err = layer->setBuffers(w, h, format, flags);
1417 if (LIKELY(err != NO_ERROR)) {
1418 LOGE("createNormalSurfaceLocked() failed (%s)", strerror(-err));
1419 layer.clear();
1420 }
1421 return layer;
1422 }
1423
createDimSurface(const sp<Client> & client,DisplayID display,uint32_t w,uint32_t h,uint32_t flags)1424 sp<LayerDim> SurfaceFlinger::createDimSurface(
1425 const sp<Client>& client, DisplayID display,
1426 uint32_t w, uint32_t h, uint32_t flags)
1427 {
1428 sp<LayerDim> layer = new LayerDim(this, display, client);
1429 return layer;
1430 }
1431
createScreenshotSurface(const sp<Client> & client,DisplayID display,uint32_t w,uint32_t h,uint32_t flags)1432 sp<LayerScreenshot> SurfaceFlinger::createScreenshotSurface(
1433 const sp<Client>& client, DisplayID display,
1434 uint32_t w, uint32_t h, uint32_t flags)
1435 {
1436 sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1437 status_t err = layer->capture();
1438 if (err != NO_ERROR) {
1439 layer.clear();
1440 LOGW("createScreenshotSurface failed (%s)", strerror(-err));
1441 }
1442 return layer;
1443 }
1444
removeSurface(const sp<Client> & client,SurfaceID sid)1445 status_t SurfaceFlinger::removeSurface(const sp<Client>& client, SurfaceID sid)
1446 {
1447 /*
1448 * called by the window manager, when a surface should be marked for
1449 * destruction.
1450 *
1451 * The surface is removed from the current and drawing lists, but placed
1452 * in the purgatory queue, so it's not destroyed right-away (we need
1453 * to wait for all client's references to go away first).
1454 */
1455
1456 status_t err = NAME_NOT_FOUND;
1457 Mutex::Autolock _l(mStateLock);
1458 sp<LayerBaseClient> layer = client->getLayerUser(sid);
1459 if (layer != 0) {
1460 err = purgatorizeLayer_l(layer);
1461 if (err == NO_ERROR) {
1462 setTransactionFlags(eTransactionNeeded);
1463 }
1464 }
1465 return err;
1466 }
1467
destroySurface(const wp<LayerBaseClient> & layer)1468 status_t SurfaceFlinger::destroySurface(const wp<LayerBaseClient>& layer)
1469 {
1470 // called by ~ISurface() when all references are gone
1471 status_t err = NO_ERROR;
1472 sp<LayerBaseClient> l(layer.promote());
1473 if (l != NULL) {
1474 Mutex::Autolock _l(mStateLock);
1475 err = removeLayer_l(l);
1476 if (err == NAME_NOT_FOUND) {
1477 // The surface wasn't in the current list, which means it was
1478 // removed already, which means it is in the purgatory,
1479 // and need to be removed from there.
1480 ssize_t idx = mLayerPurgatory.remove(l);
1481 LOGE_IF(idx < 0,
1482 "layer=%p is not in the purgatory list", l.get());
1483 }
1484 LOGE_IF(err<0 && err != NAME_NOT_FOUND,
1485 "error removing layer=%p (%s)", l.get(), strerror(-err));
1486 }
1487 return err;
1488 }
1489
setClientStateLocked(const sp<Client> & client,const layer_state_t & s)1490 uint32_t SurfaceFlinger::setClientStateLocked(
1491 const sp<Client>& client,
1492 const layer_state_t& s)
1493 {
1494 uint32_t flags = 0;
1495 sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1496 if (layer != 0) {
1497 const uint32_t what = s.what;
1498 if (what & ePositionChanged) {
1499 if (layer->setPosition(s.x, s.y))
1500 flags |= eTraversalNeeded;
1501 }
1502 if (what & eLayerChanged) {
1503 ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1504 if (layer->setLayer(s.z)) {
1505 mCurrentState.layersSortedByZ.removeAt(idx);
1506 mCurrentState.layersSortedByZ.add(layer);
1507 // we need traversal (state changed)
1508 // AND transaction (list changed)
1509 flags |= eTransactionNeeded|eTraversalNeeded;
1510 }
1511 }
1512 if (what & eSizeChanged) {
1513 if (layer->setSize(s.w, s.h)) {
1514 flags |= eTraversalNeeded;
1515 mResizeTransationPending = true;
1516 }
1517 }
1518 if (what & eAlphaChanged) {
1519 if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1520 flags |= eTraversalNeeded;
1521 }
1522 if (what & eMatrixChanged) {
1523 if (layer->setMatrix(s.matrix))
1524 flags |= eTraversalNeeded;
1525 }
1526 if (what & eTransparentRegionChanged) {
1527 if (layer->setTransparentRegionHint(s.transparentRegion))
1528 flags |= eTraversalNeeded;
1529 }
1530 if (what & eVisibilityChanged) {
1531 if (layer->setFlags(s.flags, s.mask))
1532 flags |= eTraversalNeeded;
1533 }
1534 }
1535 return flags;
1536 }
1537
screenReleased(int dpy)1538 void SurfaceFlinger::screenReleased(int dpy)
1539 {
1540 // this may be called by a signal handler, we can't do too much in here
1541 android_atomic_or(eConsoleReleased, &mConsoleSignals);
1542 signalEvent();
1543 }
1544
screenAcquired(int dpy)1545 void SurfaceFlinger::screenAcquired(int dpy)
1546 {
1547 // this may be called by a signal handler, we can't do too much in here
1548 android_atomic_or(eConsoleAcquired, &mConsoleSignals);
1549 signalEvent();
1550 }
1551
dump(int fd,const Vector<String16> & args)1552 status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1553 {
1554 const size_t SIZE = 4096;
1555 char buffer[SIZE];
1556 String8 result;
1557
1558 if (!PermissionCache::checkCallingPermission(sDump)) {
1559 snprintf(buffer, SIZE, "Permission Denial: "
1560 "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1561 IPCThreadState::self()->getCallingPid(),
1562 IPCThreadState::self()->getCallingUid());
1563 result.append(buffer);
1564 } else {
1565
1566 // figure out if we're stuck somewhere
1567 const nsecs_t now = systemTime();
1568 const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1569 const nsecs_t inTransaction(mDebugInTransaction);
1570 nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1571 nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1572
1573 // Try to get the main lock, but don't insist if we can't
1574 // (this would indicate SF is stuck, but we want to be able to
1575 // print something in dumpsys).
1576 int retry = 3;
1577 while (mStateLock.tryLock()<0 && --retry>=0) {
1578 usleep(1000000);
1579 }
1580 const bool locked(retry >= 0);
1581 if (!locked) {
1582 snprintf(buffer, SIZE,
1583 "SurfaceFlinger appears to be unresponsive, "
1584 "dumping anyways (no locks held)\n");
1585 result.append(buffer);
1586 }
1587
1588 /*
1589 * Dump the visible layer list
1590 */
1591 const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1592 const size_t count = currentLayers.size();
1593 snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1594 result.append(buffer);
1595 for (size_t i=0 ; i<count ; i++) {
1596 const sp<LayerBase>& layer(currentLayers[i]);
1597 layer->dump(result, buffer, SIZE);
1598 const Layer::State& s(layer->drawingState());
1599 s.transparentRegion.dump(result, "transparentRegion");
1600 layer->transparentRegionScreen.dump(result, "transparentRegionScreen");
1601 layer->visibleRegionScreen.dump(result, "visibleRegionScreen");
1602 }
1603
1604 /*
1605 * Dump the layers in the purgatory
1606 */
1607
1608 const size_t purgatorySize = mLayerPurgatory.size();
1609 snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1610 result.append(buffer);
1611 for (size_t i=0 ; i<purgatorySize ; i++) {
1612 const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1613 layer->shortDump(result, buffer, SIZE);
1614 }
1615
1616 /*
1617 * Dump SurfaceFlinger global state
1618 */
1619
1620 snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1621 result.append(buffer);
1622
1623 const GLExtensions& extensions(GLExtensions::getInstance());
1624 snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1625 extensions.getVendor(),
1626 extensions.getRenderer(),
1627 extensions.getVersion());
1628 result.append(buffer);
1629 snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1630 result.append(buffer);
1631
1632 mWormholeRegion.dump(result, "WormholeRegion");
1633 const DisplayHardware& hw(graphicPlane(0).displayHardware());
1634 snprintf(buffer, SIZE,
1635 " display frozen: %s, freezeCount=%d, orientation=%d, canDraw=%d\n",
1636 mFreezeDisplay?"yes":"no", mFreezeCount,
1637 mCurrentState.orientation, hw.canDraw());
1638 result.append(buffer);
1639 snprintf(buffer, SIZE,
1640 " last eglSwapBuffers() time: %f us\n"
1641 " last transaction time : %f us\n"
1642 " refresh-rate : %f fps\n"
1643 " x-dpi : %f\n"
1644 " y-dpi : %f\n",
1645 mLastSwapBufferTime/1000.0,
1646 mLastTransactionTime/1000.0,
1647 hw.getRefreshRate(),
1648 hw.getDpiX(),
1649 hw.getDpiY());
1650 result.append(buffer);
1651
1652 if (inSwapBuffersDuration || !locked) {
1653 snprintf(buffer, SIZE, " eglSwapBuffers time: %f us\n",
1654 inSwapBuffersDuration/1000.0);
1655 result.append(buffer);
1656 }
1657
1658 if (inTransactionDuration || !locked) {
1659 snprintf(buffer, SIZE, " transaction time: %f us\n",
1660 inTransactionDuration/1000.0);
1661 result.append(buffer);
1662 }
1663
1664 /*
1665 * Dump HWComposer state
1666 */
1667 HWComposer& hwc(hw.getHwComposer());
1668 snprintf(buffer, SIZE, " h/w composer %s and %s\n",
1669 hwc.initCheck()==NO_ERROR ? "present" : "not present",
1670 (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1671 result.append(buffer);
1672 hwc.dump(result, buffer, SIZE, mVisibleLayersSortedByZ);
1673
1674 /*
1675 * Dump gralloc state
1676 */
1677 const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1678 alloc.dump(result);
1679 hw.dump(result);
1680
1681 if (locked) {
1682 mStateLock.unlock();
1683 }
1684 }
1685 write(fd, result.string(), result.size());
1686 return NO_ERROR;
1687 }
1688
onTransact(uint32_t code,const Parcel & data,Parcel * reply,uint32_t flags)1689 status_t SurfaceFlinger::onTransact(
1690 uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1691 {
1692 switch (code) {
1693 case CREATE_CONNECTION:
1694 case SET_TRANSACTION_STATE:
1695 case SET_ORIENTATION:
1696 case FREEZE_DISPLAY:
1697 case UNFREEZE_DISPLAY:
1698 case BOOT_FINISHED:
1699 case TURN_ELECTRON_BEAM_OFF:
1700 case TURN_ELECTRON_BEAM_ON:
1701 {
1702 // codes that require permission check
1703 IPCThreadState* ipc = IPCThreadState::self();
1704 const int pid = ipc->getCallingPid();
1705 const int uid = ipc->getCallingUid();
1706 if ((uid != AID_GRAPHICS) &&
1707 !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1708 LOGE("Permission Denial: "
1709 "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1710 return PERMISSION_DENIED;
1711 }
1712 break;
1713 }
1714 case CAPTURE_SCREEN:
1715 {
1716 // codes that require permission check
1717 IPCThreadState* ipc = IPCThreadState::self();
1718 const int pid = ipc->getCallingPid();
1719 const int uid = ipc->getCallingUid();
1720 if ((uid != AID_GRAPHICS) &&
1721 !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1722 LOGE("Permission Denial: "
1723 "can't read framebuffer pid=%d, uid=%d", pid, uid);
1724 return PERMISSION_DENIED;
1725 }
1726 break;
1727 }
1728 }
1729
1730 status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1731 if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1732 CHECK_INTERFACE(ISurfaceComposer, data, reply);
1733 if (UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1734 IPCThreadState* ipc = IPCThreadState::self();
1735 const int pid = ipc->getCallingPid();
1736 const int uid = ipc->getCallingUid();
1737 LOGE("Permission Denial: "
1738 "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1739 return PERMISSION_DENIED;
1740 }
1741 int n;
1742 switch (code) {
1743 case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1744 case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1745 return NO_ERROR;
1746 case 1002: // SHOW_UPDATES
1747 n = data.readInt32();
1748 mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1749 invalidateHwcGeometry();
1750 repaintEverything();
1751 return NO_ERROR;
1752 case 1003: // SHOW_BACKGROUND
1753 n = data.readInt32();
1754 mDebugBackground = n ? 1 : 0;
1755 return NO_ERROR;
1756 case 1004:{ // repaint everything
1757 repaintEverything();
1758 return NO_ERROR;
1759 }
1760 case 1005:{ // force transaction
1761 setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1762 return NO_ERROR;
1763 }
1764 case 1006:{ // enable/disable GraphicLog
1765 int enabled = data.readInt32();
1766 GraphicLog::getInstance().setEnabled(enabled);
1767 return NO_ERROR;
1768 }
1769 case 1007: // set mFreezeCount
1770 mFreezeCount = data.readInt32();
1771 mFreezeDisplayTime = 0;
1772 return NO_ERROR;
1773 case 1008: // toggle use of hw composer
1774 n = data.readInt32();
1775 mDebugDisableHWC = n ? 1 : 0;
1776 invalidateHwcGeometry();
1777 repaintEverything();
1778 return NO_ERROR;
1779 case 1009: // toggle use of transform hint
1780 n = data.readInt32();
1781 mDebugDisableTransformHint = n ? 1 : 0;
1782 invalidateHwcGeometry();
1783 repaintEverything();
1784 return NO_ERROR;
1785 case 1010: // interrogate.
1786 reply->writeInt32(0);
1787 reply->writeInt32(0);
1788 reply->writeInt32(mDebugRegion);
1789 reply->writeInt32(mDebugBackground);
1790 return NO_ERROR;
1791 case 1013: {
1792 Mutex::Autolock _l(mStateLock);
1793 const DisplayHardware& hw(graphicPlane(0).displayHardware());
1794 reply->writeInt32(hw.getPageFlipCount());
1795 }
1796 return NO_ERROR;
1797 }
1798 }
1799 return err;
1800 }
1801
repaintEverything()1802 void SurfaceFlinger::repaintEverything() {
1803 const DisplayHardware& hw(graphicPlane(0).displayHardware());
1804 const Rect bounds(hw.getBounds());
1805 setInvalidateRegion(Region(bounds));
1806 signalEvent();
1807 }
1808
setInvalidateRegion(const Region & reg)1809 void SurfaceFlinger::setInvalidateRegion(const Region& reg) {
1810 Mutex::Autolock _l(mInvalidateLock);
1811 mInvalidateRegion = reg;
1812 }
1813
getAndClearInvalidateRegion()1814 Region SurfaceFlinger::getAndClearInvalidateRegion() {
1815 Mutex::Autolock _l(mInvalidateLock);
1816 Region reg(mInvalidateRegion);
1817 mInvalidateRegion.clear();
1818 return reg;
1819 }
1820
1821 // ---------------------------------------------------------------------------
1822
renderScreenToTexture(DisplayID dpy,GLuint * textureName,GLfloat * uOut,GLfloat * vOut)1823 status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
1824 GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1825 {
1826 Mutex::Autolock _l(mStateLock);
1827 return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
1828 }
1829
renderScreenToTextureLocked(DisplayID dpy,GLuint * textureName,GLfloat * uOut,GLfloat * vOut)1830 status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
1831 GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1832 {
1833 if (!GLExtensions::getInstance().haveFramebufferObject())
1834 return INVALID_OPERATION;
1835
1836 // get screen geometry
1837 const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
1838 const uint32_t hw_w = hw.getWidth();
1839 const uint32_t hw_h = hw.getHeight();
1840 GLfloat u = 1;
1841 GLfloat v = 1;
1842
1843 // make sure to clear all GL error flags
1844 while ( glGetError() != GL_NO_ERROR ) ;
1845
1846 // create a FBO
1847 GLuint name, tname;
1848 glGenTextures(1, &tname);
1849 glBindTexture(GL_TEXTURE_2D, tname);
1850 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1851 hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1852 if (glGetError() != GL_NO_ERROR) {
1853 while ( glGetError() != GL_NO_ERROR ) ;
1854 GLint tw = (2 << (31 - clz(hw_w)));
1855 GLint th = (2 << (31 - clz(hw_h)));
1856 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1857 tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1858 u = GLfloat(hw_w) / tw;
1859 v = GLfloat(hw_h) / th;
1860 }
1861 glGenFramebuffersOES(1, &name);
1862 glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
1863 glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
1864 GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
1865
1866 // redraw the screen entirely...
1867 glDisable(GL_TEXTURE_EXTERNAL_OES);
1868 glDisable(GL_TEXTURE_2D);
1869 glClearColor(0,0,0,1);
1870 glClear(GL_COLOR_BUFFER_BIT);
1871 glMatrixMode(GL_MODELVIEW);
1872 glLoadIdentity();
1873 const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
1874 const size_t count = layers.size();
1875 for (size_t i=0 ; i<count ; ++i) {
1876 const sp<LayerBase>& layer(layers[i]);
1877 layer->drawForSreenShot();
1878 }
1879
1880 hw.compositionComplete();
1881
1882 // back to main framebuffer
1883 glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
1884 glDisable(GL_SCISSOR_TEST);
1885 glDeleteFramebuffersOES(1, &name);
1886
1887 *textureName = tname;
1888 *uOut = u;
1889 *vOut = v;
1890 return NO_ERROR;
1891 }
1892
1893 // ---------------------------------------------------------------------------
1894
electronBeamOffAnimationImplLocked()1895 status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
1896 {
1897 // get screen geometry
1898 const DisplayHardware& hw(graphicPlane(0).displayHardware());
1899 const uint32_t hw_w = hw.getWidth();
1900 const uint32_t hw_h = hw.getHeight();
1901 const Region screenBounds(hw.getBounds());
1902
1903 GLfloat u, v;
1904 GLuint tname;
1905 status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
1906 if (result != NO_ERROR) {
1907 return result;
1908 }
1909
1910 GLfloat vtx[8];
1911 const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
1912 glBindTexture(GL_TEXTURE_2D, tname);
1913 glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
1914 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1915 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1916 glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
1917 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
1918 glVertexPointer(2, GL_FLOAT, 0, vtx);
1919
1920 /*
1921 * Texture coordinate mapping
1922 *
1923 * u
1924 * 1 +----------+---+
1925 * | | | | image is inverted
1926 * | V | | w.r.t. the texture
1927 * 1-v +----------+ | coordinates
1928 * | |
1929 * | |
1930 * | |
1931 * 0 +--------------+
1932 * 0 1
1933 *
1934 */
1935
1936 class s_curve_interpolator {
1937 const float nbFrames, s, v;
1938 public:
1939 s_curve_interpolator(int nbFrames, float s)
1940 : nbFrames(1.0f / (nbFrames-1)), s(s),
1941 v(1.0f + expf(-s + 0.5f*s)) {
1942 }
1943 float operator()(int f) {
1944 const float x = f * nbFrames;
1945 return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
1946 }
1947 };
1948
1949 class v_stretch {
1950 const GLfloat hw_w, hw_h;
1951 public:
1952 v_stretch(uint32_t hw_w, uint32_t hw_h)
1953 : hw_w(hw_w), hw_h(hw_h) {
1954 }
1955 void operator()(GLfloat* vtx, float v) {
1956 const GLfloat w = hw_w + (hw_w * v);
1957 const GLfloat h = hw_h - (hw_h * v);
1958 const GLfloat x = (hw_w - w) * 0.5f;
1959 const GLfloat y = (hw_h - h) * 0.5f;
1960 vtx[0] = x; vtx[1] = y;
1961 vtx[2] = x; vtx[3] = y + h;
1962 vtx[4] = x + w; vtx[5] = y + h;
1963 vtx[6] = x + w; vtx[7] = y;
1964 }
1965 };
1966
1967 class h_stretch {
1968 const GLfloat hw_w, hw_h;
1969 public:
1970 h_stretch(uint32_t hw_w, uint32_t hw_h)
1971 : hw_w(hw_w), hw_h(hw_h) {
1972 }
1973 void operator()(GLfloat* vtx, float v) {
1974 const GLfloat w = hw_w - (hw_w * v);
1975 const GLfloat h = 1.0f;
1976 const GLfloat x = (hw_w - w) * 0.5f;
1977 const GLfloat y = (hw_h - h) * 0.5f;
1978 vtx[0] = x; vtx[1] = y;
1979 vtx[2] = x; vtx[3] = y + h;
1980 vtx[4] = x + w; vtx[5] = y + h;
1981 vtx[6] = x + w; vtx[7] = y;
1982 }
1983 };
1984
1985 // the full animation is 24 frames
1986 char value[PROPERTY_VALUE_MAX];
1987 property_get("debug.sf.electron_frames", value, "24");
1988 int nbFrames = (atoi(value) + 1) >> 1;
1989 if (nbFrames <= 0) // just in case
1990 nbFrames = 24;
1991
1992 s_curve_interpolator itr(nbFrames, 7.5f);
1993 s_curve_interpolator itg(nbFrames, 8.0f);
1994 s_curve_interpolator itb(nbFrames, 8.5f);
1995
1996 v_stretch vverts(hw_w, hw_h);
1997
1998 glMatrixMode(GL_TEXTURE);
1999 glLoadIdentity();
2000 glMatrixMode(GL_MODELVIEW);
2001 glLoadIdentity();
2002
2003 glEnable(GL_BLEND);
2004 glBlendFunc(GL_ONE, GL_ONE);
2005 for (int i=0 ; i<nbFrames ; i++) {
2006 float x, y, w, h;
2007 const float vr = itr(i);
2008 const float vg = itg(i);
2009 const float vb = itb(i);
2010
2011 // clear screen
2012 glColorMask(1,1,1,1);
2013 glClear(GL_COLOR_BUFFER_BIT);
2014 glEnable(GL_TEXTURE_2D);
2015
2016 // draw the red plane
2017 vverts(vtx, vr);
2018 glColorMask(1,0,0,1);
2019 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2020
2021 // draw the green plane
2022 vverts(vtx, vg);
2023 glColorMask(0,1,0,1);
2024 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2025
2026 // draw the blue plane
2027 vverts(vtx, vb);
2028 glColorMask(0,0,1,1);
2029 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2030
2031 // draw the white highlight (we use the last vertices)
2032 glDisable(GL_TEXTURE_2D);
2033 glColorMask(1,1,1,1);
2034 glColor4f(vg, vg, vg, 1);
2035 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2036 hw.flip(screenBounds);
2037 }
2038
2039 h_stretch hverts(hw_w, hw_h);
2040 glDisable(GL_BLEND);
2041 glDisable(GL_TEXTURE_2D);
2042 glColorMask(1,1,1,1);
2043 for (int i=0 ; i<nbFrames ; i++) {
2044 const float v = itg(i);
2045 hverts(vtx, v);
2046 glClear(GL_COLOR_BUFFER_BIT);
2047 glColor4f(1-v, 1-v, 1-v, 1);
2048 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2049 hw.flip(screenBounds);
2050 }
2051
2052 glColorMask(1,1,1,1);
2053 glEnable(GL_SCISSOR_TEST);
2054 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2055 glDeleteTextures(1, &tname);
2056 glDisable(GL_TEXTURE_2D);
2057 glDisable(GL_BLEND);
2058 return NO_ERROR;
2059 }
2060
electronBeamOnAnimationImplLocked()2061 status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
2062 {
2063 status_t result = PERMISSION_DENIED;
2064
2065 if (!GLExtensions::getInstance().haveFramebufferObject())
2066 return INVALID_OPERATION;
2067
2068
2069 // get screen geometry
2070 const DisplayHardware& hw(graphicPlane(0).displayHardware());
2071 const uint32_t hw_w = hw.getWidth();
2072 const uint32_t hw_h = hw.getHeight();
2073 const Region screenBounds(hw.bounds());
2074
2075 GLfloat u, v;
2076 GLuint tname;
2077 result = renderScreenToTextureLocked(0, &tname, &u, &v);
2078 if (result != NO_ERROR) {
2079 return result;
2080 }
2081
2082 GLfloat vtx[8];
2083 const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2084 glBindTexture(GL_TEXTURE_2D, tname);
2085 glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2086 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2087 glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2088 glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2089 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2090 glVertexPointer(2, GL_FLOAT, 0, vtx);
2091
2092 class s_curve_interpolator {
2093 const float nbFrames, s, v;
2094 public:
2095 s_curve_interpolator(int nbFrames, float s)
2096 : nbFrames(1.0f / (nbFrames-1)), s(s),
2097 v(1.0f + expf(-s + 0.5f*s)) {
2098 }
2099 float operator()(int f) {
2100 const float x = f * nbFrames;
2101 return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2102 }
2103 };
2104
2105 class v_stretch {
2106 const GLfloat hw_w, hw_h;
2107 public:
2108 v_stretch(uint32_t hw_w, uint32_t hw_h)
2109 : hw_w(hw_w), hw_h(hw_h) {
2110 }
2111 void operator()(GLfloat* vtx, float v) {
2112 const GLfloat w = hw_w + (hw_w * v);
2113 const GLfloat h = hw_h - (hw_h * v);
2114 const GLfloat x = (hw_w - w) * 0.5f;
2115 const GLfloat y = (hw_h - h) * 0.5f;
2116 vtx[0] = x; vtx[1] = y;
2117 vtx[2] = x; vtx[3] = y + h;
2118 vtx[4] = x + w; vtx[5] = y + h;
2119 vtx[6] = x + w; vtx[7] = y;
2120 }
2121 };
2122
2123 class h_stretch {
2124 const GLfloat hw_w, hw_h;
2125 public:
2126 h_stretch(uint32_t hw_w, uint32_t hw_h)
2127 : hw_w(hw_w), hw_h(hw_h) {
2128 }
2129 void operator()(GLfloat* vtx, float v) {
2130 const GLfloat w = hw_w - (hw_w * v);
2131 const GLfloat h = 1.0f;
2132 const GLfloat x = (hw_w - w) * 0.5f;
2133 const GLfloat y = (hw_h - h) * 0.5f;
2134 vtx[0] = x; vtx[1] = y;
2135 vtx[2] = x; vtx[3] = y + h;
2136 vtx[4] = x + w; vtx[5] = y + h;
2137 vtx[6] = x + w; vtx[7] = y;
2138 }
2139 };
2140
2141 // the full animation is 12 frames
2142 int nbFrames = 8;
2143 s_curve_interpolator itr(nbFrames, 7.5f);
2144 s_curve_interpolator itg(nbFrames, 8.0f);
2145 s_curve_interpolator itb(nbFrames, 8.5f);
2146
2147 h_stretch hverts(hw_w, hw_h);
2148 glDisable(GL_BLEND);
2149 glDisable(GL_TEXTURE_2D);
2150 glColorMask(1,1,1,1);
2151 for (int i=nbFrames-1 ; i>=0 ; i--) {
2152 const float v = itg(i);
2153 hverts(vtx, v);
2154 glClear(GL_COLOR_BUFFER_BIT);
2155 glColor4f(1-v, 1-v, 1-v, 1);
2156 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2157 hw.flip(screenBounds);
2158 }
2159
2160 nbFrames = 4;
2161 v_stretch vverts(hw_w, hw_h);
2162 glEnable(GL_BLEND);
2163 glBlendFunc(GL_ONE, GL_ONE);
2164 for (int i=nbFrames-1 ; i>=0 ; i--) {
2165 float x, y, w, h;
2166 const float vr = itr(i);
2167 const float vg = itg(i);
2168 const float vb = itb(i);
2169
2170 // clear screen
2171 glColorMask(1,1,1,1);
2172 glClear(GL_COLOR_BUFFER_BIT);
2173 glEnable(GL_TEXTURE_2D);
2174
2175 // draw the red plane
2176 vverts(vtx, vr);
2177 glColorMask(1,0,0,1);
2178 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2179
2180 // draw the green plane
2181 vverts(vtx, vg);
2182 glColorMask(0,1,0,1);
2183 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2184
2185 // draw the blue plane
2186 vverts(vtx, vb);
2187 glColorMask(0,0,1,1);
2188 glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2189
2190 hw.flip(screenBounds);
2191 }
2192
2193 glColorMask(1,1,1,1);
2194 glEnable(GL_SCISSOR_TEST);
2195 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2196 glDeleteTextures(1, &tname);
2197 glDisable(GL_TEXTURE_2D);
2198 glDisable(GL_BLEND);
2199
2200 return NO_ERROR;
2201 }
2202
2203 // ---------------------------------------------------------------------------
2204
turnElectronBeamOffImplLocked(int32_t mode)2205 status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2206 {
2207 DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
2208 if (!hw.canDraw()) {
2209 // we're already off
2210 return NO_ERROR;
2211 }
2212
2213 // turn off hwc while we're doing the animation
2214 hw.getHwComposer().disable();
2215 // and make sure to turn it back on (if needed) next time we compose
2216 invalidateHwcGeometry();
2217
2218 if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2219 electronBeamOffAnimationImplLocked();
2220 }
2221
2222 // always clear the whole screen at the end of the animation
2223 glClearColor(0,0,0,1);
2224 glDisable(GL_SCISSOR_TEST);
2225 glClear(GL_COLOR_BUFFER_BIT);
2226 glEnable(GL_SCISSOR_TEST);
2227 hw.flip( Region(hw.bounds()) );
2228
2229 return NO_ERROR;
2230 }
2231
turnElectronBeamOff(int32_t mode)2232 status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2233 {
2234 class MessageTurnElectronBeamOff : public MessageBase {
2235 SurfaceFlinger* flinger;
2236 int32_t mode;
2237 status_t result;
2238 public:
2239 MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2240 : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2241 }
2242 status_t getResult() const {
2243 return result;
2244 }
2245 virtual bool handler() {
2246 Mutex::Autolock _l(flinger->mStateLock);
2247 result = flinger->turnElectronBeamOffImplLocked(mode);
2248 return true;
2249 }
2250 };
2251
2252 sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2253 status_t res = postMessageSync(msg);
2254 if (res == NO_ERROR) {
2255 res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2256
2257 // work-around: when the power-manager calls us we activate the
2258 // animation. eventually, the "on" animation will be called
2259 // by the power-manager itself
2260 mElectronBeamAnimationMode = mode;
2261 }
2262 return res;
2263 }
2264
2265 // ---------------------------------------------------------------------------
2266
turnElectronBeamOnImplLocked(int32_t mode)2267 status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2268 {
2269 DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
2270 if (hw.canDraw()) {
2271 // we're already on
2272 return NO_ERROR;
2273 }
2274 if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2275 electronBeamOnAnimationImplLocked();
2276 }
2277
2278 // make sure to redraw the whole screen when the animation is done
2279 mDirtyRegion.set(hw.bounds());
2280 signalEvent();
2281
2282 return NO_ERROR;
2283 }
2284
turnElectronBeamOn(int32_t mode)2285 status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2286 {
2287 class MessageTurnElectronBeamOn : public MessageBase {
2288 SurfaceFlinger* flinger;
2289 int32_t mode;
2290 status_t result;
2291 public:
2292 MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2293 : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2294 }
2295 status_t getResult() const {
2296 return result;
2297 }
2298 virtual bool handler() {
2299 Mutex::Autolock _l(flinger->mStateLock);
2300 result = flinger->turnElectronBeamOnImplLocked(mode);
2301 return true;
2302 }
2303 };
2304
2305 postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2306 return NO_ERROR;
2307 }
2308
2309 // ---------------------------------------------------------------------------
2310
captureScreenImplLocked(DisplayID dpy,sp<IMemoryHeap> * heap,uint32_t * w,uint32_t * h,PixelFormat * f,uint32_t sw,uint32_t sh,uint32_t minLayerZ,uint32_t maxLayerZ)2311 status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2312 sp<IMemoryHeap>* heap,
2313 uint32_t* w, uint32_t* h, PixelFormat* f,
2314 uint32_t sw, uint32_t sh,
2315 uint32_t minLayerZ, uint32_t maxLayerZ)
2316 {
2317 status_t result = PERMISSION_DENIED;
2318
2319 // only one display supported for now
2320 if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2321 return BAD_VALUE;
2322
2323 if (!GLExtensions::getInstance().haveFramebufferObject())
2324 return INVALID_OPERATION;
2325
2326 // get screen geometry
2327 const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
2328 const uint32_t hw_w = hw.getWidth();
2329 const uint32_t hw_h = hw.getHeight();
2330
2331 if ((sw > hw_w) || (sh > hw_h))
2332 return BAD_VALUE;
2333
2334 sw = (!sw) ? hw_w : sw;
2335 sh = (!sh) ? hw_h : sh;
2336 const size_t size = sw * sh * 4;
2337
2338 //LOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2339 // sw, sh, minLayerZ, maxLayerZ);
2340
2341 // make sure to clear all GL error flags
2342 while ( glGetError() != GL_NO_ERROR ) ;
2343
2344 // create a FBO
2345 GLuint name, tname;
2346 glGenRenderbuffersOES(1, &tname);
2347 glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2348 glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2349 glGenFramebuffersOES(1, &name);
2350 glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2351 glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2352 GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2353
2354 GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2355
2356 if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2357
2358 // invert everything, b/c glReadPixel() below will invert the FB
2359 glViewport(0, 0, sw, sh);
2360 glScissor(0, 0, sw, sh);
2361 glEnable(GL_SCISSOR_TEST);
2362 glMatrixMode(GL_PROJECTION);
2363 glPushMatrix();
2364 glLoadIdentity();
2365 glOrthof(0, hw_w, hw_h, 0, 0, 1);
2366 glMatrixMode(GL_MODELVIEW);
2367
2368 // redraw the screen entirely...
2369 glClearColor(0,0,0,1);
2370 glClear(GL_COLOR_BUFFER_BIT);
2371
2372 const LayerVector& layers(mDrawingState.layersSortedByZ);
2373 const size_t count = layers.size();
2374 for (size_t i=0 ; i<count ; ++i) {
2375 const sp<LayerBase>& layer(layers[i]);
2376 const uint32_t flags = layer->drawingState().flags;
2377 if (!(flags & ISurfaceComposer::eLayerHidden)) {
2378 const uint32_t z = layer->drawingState().z;
2379 if (z >= minLayerZ && z <= maxLayerZ) {
2380 layer->drawForSreenShot();
2381 }
2382 }
2383 }
2384
2385 // XXX: this is needed on tegra
2386 glEnable(GL_SCISSOR_TEST);
2387 glScissor(0, 0, sw, sh);
2388
2389 // check for errors and return screen capture
2390 if (glGetError() != GL_NO_ERROR) {
2391 // error while rendering
2392 result = INVALID_OPERATION;
2393 } else {
2394 // allocate shared memory large enough to hold the
2395 // screen capture
2396 sp<MemoryHeapBase> base(
2397 new MemoryHeapBase(size, 0, "screen-capture") );
2398 void* const ptr = base->getBase();
2399 if (ptr) {
2400 // capture the screen with glReadPixels()
2401 glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2402 if (glGetError() == GL_NO_ERROR) {
2403 *heap = base;
2404 *w = sw;
2405 *h = sh;
2406 *f = PIXEL_FORMAT_RGBA_8888;
2407 result = NO_ERROR;
2408 }
2409 } else {
2410 result = NO_MEMORY;
2411 }
2412 }
2413 glEnable(GL_SCISSOR_TEST);
2414 glViewport(0, 0, hw_w, hw_h);
2415 glMatrixMode(GL_PROJECTION);
2416 glPopMatrix();
2417 glMatrixMode(GL_MODELVIEW);
2418 } else {
2419 result = BAD_VALUE;
2420 }
2421
2422 // release FBO resources
2423 glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2424 glDeleteRenderbuffersOES(1, &tname);
2425 glDeleteFramebuffersOES(1, &name);
2426
2427 hw.compositionComplete();
2428
2429 // LOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2430
2431 return result;
2432 }
2433
2434
captureScreen(DisplayID dpy,sp<IMemoryHeap> * heap,uint32_t * width,uint32_t * height,PixelFormat * format,uint32_t sw,uint32_t sh,uint32_t minLayerZ,uint32_t maxLayerZ)2435 status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2436 sp<IMemoryHeap>* heap,
2437 uint32_t* width, uint32_t* height, PixelFormat* format,
2438 uint32_t sw, uint32_t sh,
2439 uint32_t minLayerZ, uint32_t maxLayerZ)
2440 {
2441 // only one display supported for now
2442 if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2443 return BAD_VALUE;
2444
2445 if (!GLExtensions::getInstance().haveFramebufferObject())
2446 return INVALID_OPERATION;
2447
2448 class MessageCaptureScreen : public MessageBase {
2449 SurfaceFlinger* flinger;
2450 DisplayID dpy;
2451 sp<IMemoryHeap>* heap;
2452 uint32_t* w;
2453 uint32_t* h;
2454 PixelFormat* f;
2455 uint32_t sw;
2456 uint32_t sh;
2457 uint32_t minLayerZ;
2458 uint32_t maxLayerZ;
2459 status_t result;
2460 public:
2461 MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2462 sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2463 uint32_t sw, uint32_t sh,
2464 uint32_t minLayerZ, uint32_t maxLayerZ)
2465 : flinger(flinger), dpy(dpy),
2466 heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2467 minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2468 result(PERMISSION_DENIED)
2469 {
2470 }
2471 status_t getResult() const {
2472 return result;
2473 }
2474 virtual bool handler() {
2475 Mutex::Autolock _l(flinger->mStateLock);
2476
2477 // if we have secure windows, never allow the screen capture
2478 if (flinger->mSecureFrameBuffer)
2479 return true;
2480
2481 result = flinger->captureScreenImplLocked(dpy,
2482 heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2483
2484 return true;
2485 }
2486 };
2487
2488 sp<MessageBase> msg = new MessageCaptureScreen(this,
2489 dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2490 status_t res = postMessageSync(msg);
2491 if (res == NO_ERROR) {
2492 res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2493 }
2494 return res;
2495 }
2496
2497 // ---------------------------------------------------------------------------
2498
getLayer(const sp<ISurface> & sur) const2499 sp<Layer> SurfaceFlinger::getLayer(const sp<ISurface>& sur) const
2500 {
2501 sp<Layer> result;
2502 Mutex::Autolock _l(mStateLock);
2503 result = mLayerMap.valueFor( sur->asBinder() ).promote();
2504 return result;
2505 }
2506
2507 // ---------------------------------------------------------------------------
2508
Client(const sp<SurfaceFlinger> & flinger)2509 Client::Client(const sp<SurfaceFlinger>& flinger)
2510 : mFlinger(flinger), mNameGenerator(1)
2511 {
2512 }
2513
~Client()2514 Client::~Client()
2515 {
2516 const size_t count = mLayers.size();
2517 for (size_t i=0 ; i<count ; i++) {
2518 sp<LayerBaseClient> layer(mLayers.valueAt(i).promote());
2519 if (layer != 0) {
2520 mFlinger->removeLayer(layer);
2521 }
2522 }
2523 }
2524
initCheck() const2525 status_t Client::initCheck() const {
2526 return NO_ERROR;
2527 }
2528
attachLayer(const sp<LayerBaseClient> & layer)2529 size_t Client::attachLayer(const sp<LayerBaseClient>& layer)
2530 {
2531 Mutex::Autolock _l(mLock);
2532 size_t name = mNameGenerator++;
2533 mLayers.add(name, layer);
2534 return name;
2535 }
2536
detachLayer(const LayerBaseClient * layer)2537 void Client::detachLayer(const LayerBaseClient* layer)
2538 {
2539 Mutex::Autolock _l(mLock);
2540 // we do a linear search here, because this doesn't happen often
2541 const size_t count = mLayers.size();
2542 for (size_t i=0 ; i<count ; i++) {
2543 if (mLayers.valueAt(i) == layer) {
2544 mLayers.removeItemsAt(i, 1);
2545 break;
2546 }
2547 }
2548 }
getLayerUser(int32_t i) const2549 sp<LayerBaseClient> Client::getLayerUser(int32_t i) const
2550 {
2551 Mutex::Autolock _l(mLock);
2552 sp<LayerBaseClient> lbc;
2553 wp<LayerBaseClient> layer(mLayers.valueFor(i));
2554 if (layer != 0) {
2555 lbc = layer.promote();
2556 LOGE_IF(lbc==0, "getLayerUser(name=%d) is dead", int(i));
2557 }
2558 return lbc;
2559 }
2560
2561
onTransact(uint32_t code,const Parcel & data,Parcel * reply,uint32_t flags)2562 status_t Client::onTransact(
2563 uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2564 {
2565 // these must be checked
2566 IPCThreadState* ipc = IPCThreadState::self();
2567 const int pid = ipc->getCallingPid();
2568 const int uid = ipc->getCallingUid();
2569 const int self_pid = getpid();
2570 if (UNLIKELY(pid != self_pid && uid != AID_GRAPHICS && uid != 0)) {
2571 // we're called from a different process, do the real check
2572 if (!PermissionCache::checkCallingPermission(sAccessSurfaceFlinger))
2573 {
2574 LOGE("Permission Denial: "
2575 "can't openGlobalTransaction pid=%d, uid=%d", pid, uid);
2576 return PERMISSION_DENIED;
2577 }
2578 }
2579 return BnSurfaceComposerClient::onTransact(code, data, reply, flags);
2580 }
2581
2582
createSurface(ISurfaceComposerClient::surface_data_t * params,const String8 & name,DisplayID display,uint32_t w,uint32_t h,PixelFormat format,uint32_t flags)2583 sp<ISurface> Client::createSurface(
2584 ISurfaceComposerClient::surface_data_t* params,
2585 const String8& name,
2586 DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
2587 uint32_t flags)
2588 {
2589 /*
2590 * createSurface must be called from the GL thread so that it can
2591 * have access to the GL context.
2592 */
2593
2594 class MessageCreateSurface : public MessageBase {
2595 sp<ISurface> result;
2596 SurfaceFlinger* flinger;
2597 ISurfaceComposerClient::surface_data_t* params;
2598 Client* client;
2599 const String8& name;
2600 DisplayID display;
2601 uint32_t w, h;
2602 PixelFormat format;
2603 uint32_t flags;
2604 public:
2605 MessageCreateSurface(SurfaceFlinger* flinger,
2606 ISurfaceComposerClient::surface_data_t* params,
2607 const String8& name, Client* client,
2608 DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
2609 uint32_t flags)
2610 : flinger(flinger), params(params), client(client), name(name),
2611 display(display), w(w), h(h), format(format), flags(flags)
2612 {
2613 }
2614 sp<ISurface> getResult() const { return result; }
2615 virtual bool handler() {
2616 result = flinger->createSurface(params, name, client,
2617 display, w, h, format, flags);
2618 return true;
2619 }
2620 };
2621
2622 sp<MessageBase> msg = new MessageCreateSurface(mFlinger.get(),
2623 params, name, this, display, w, h, format, flags);
2624 mFlinger->postMessageSync(msg);
2625 return static_cast<MessageCreateSurface*>( msg.get() )->getResult();
2626 }
destroySurface(SurfaceID sid)2627 status_t Client::destroySurface(SurfaceID sid) {
2628 return mFlinger->removeSurface(this, sid);
2629 }
2630
2631 // ---------------------------------------------------------------------------
2632
GraphicBufferAlloc()2633 GraphicBufferAlloc::GraphicBufferAlloc() {}
2634
~GraphicBufferAlloc()2635 GraphicBufferAlloc::~GraphicBufferAlloc() {}
2636
createGraphicBuffer(uint32_t w,uint32_t h,PixelFormat format,uint32_t usage,status_t * error)2637 sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2638 PixelFormat format, uint32_t usage, status_t* error) {
2639 sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2640 status_t err = graphicBuffer->initCheck();
2641 *error = err;
2642 if (err != 0 || graphicBuffer->handle == 0) {
2643 if (err == NO_MEMORY) {
2644 GraphicBuffer::dumpAllocationsToSystemLog();
2645 }
2646 LOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2647 "failed (%s), handle=%p",
2648 w, h, strerror(-err), graphicBuffer->handle);
2649 return 0;
2650 }
2651 return graphicBuffer;
2652 }
2653
2654 // ---------------------------------------------------------------------------
2655
GraphicPlane()2656 GraphicPlane::GraphicPlane()
2657 : mHw(0)
2658 {
2659 }
2660
~GraphicPlane()2661 GraphicPlane::~GraphicPlane() {
2662 delete mHw;
2663 }
2664
initialized() const2665 bool GraphicPlane::initialized() const {
2666 return mHw ? true : false;
2667 }
2668
getWidth() const2669 int GraphicPlane::getWidth() const {
2670 return mWidth;
2671 }
2672
getHeight() const2673 int GraphicPlane::getHeight() const {
2674 return mHeight;
2675 }
2676
setDisplayHardware(DisplayHardware * hw)2677 void GraphicPlane::setDisplayHardware(DisplayHardware *hw)
2678 {
2679 mHw = hw;
2680
2681 // initialize the display orientation transform.
2682 // it's a constant that should come from the display driver.
2683 int displayOrientation = ISurfaceComposer::eOrientationDefault;
2684 char property[PROPERTY_VALUE_MAX];
2685 if (property_get("ro.sf.hwrotation", property, NULL) > 0) {
2686 //displayOrientation
2687 switch (atoi(property)) {
2688 case 90:
2689 displayOrientation = ISurfaceComposer::eOrientation90;
2690 break;
2691 case 270:
2692 displayOrientation = ISurfaceComposer::eOrientation270;
2693 break;
2694 }
2695 }
2696
2697 const float w = hw->getWidth();
2698 const float h = hw->getHeight();
2699 GraphicPlane::orientationToTransfrom(displayOrientation, w, h,
2700 &mDisplayTransform);
2701 if (displayOrientation & ISurfaceComposer::eOrientationSwapMask) {
2702 mDisplayWidth = h;
2703 mDisplayHeight = w;
2704 } else {
2705 mDisplayWidth = w;
2706 mDisplayHeight = h;
2707 }
2708
2709 setOrientation(ISurfaceComposer::eOrientationDefault);
2710 }
2711
orientationToTransfrom(int orientation,int w,int h,Transform * tr)2712 status_t GraphicPlane::orientationToTransfrom(
2713 int orientation, int w, int h, Transform* tr)
2714 {
2715 uint32_t flags = 0;
2716 switch (orientation) {
2717 case ISurfaceComposer::eOrientationDefault:
2718 flags = Transform::ROT_0;
2719 break;
2720 case ISurfaceComposer::eOrientation90:
2721 flags = Transform::ROT_90;
2722 break;
2723 case ISurfaceComposer::eOrientation180:
2724 flags = Transform::ROT_180;
2725 break;
2726 case ISurfaceComposer::eOrientation270:
2727 flags = Transform::ROT_270;
2728 break;
2729 default:
2730 return BAD_VALUE;
2731 }
2732 tr->set(flags, w, h);
2733 return NO_ERROR;
2734 }
2735
setOrientation(int orientation)2736 status_t GraphicPlane::setOrientation(int orientation)
2737 {
2738 // If the rotation can be handled in hardware, this is where
2739 // the magic should happen.
2740
2741 const DisplayHardware& hw(displayHardware());
2742 const float w = mDisplayWidth;
2743 const float h = mDisplayHeight;
2744 mWidth = int(w);
2745 mHeight = int(h);
2746
2747 Transform orientationTransform;
2748 GraphicPlane::orientationToTransfrom(orientation, w, h,
2749 &orientationTransform);
2750 if (orientation & ISurfaceComposer::eOrientationSwapMask) {
2751 mWidth = int(h);
2752 mHeight = int(w);
2753 }
2754
2755 mOrientation = orientation;
2756 mGlobalTransform = mDisplayTransform * orientationTransform;
2757 return NO_ERROR;
2758 }
2759
displayHardware() const2760 const DisplayHardware& GraphicPlane::displayHardware() const {
2761 return *mHw;
2762 }
2763
editDisplayHardware()2764 DisplayHardware& GraphicPlane::editDisplayHardware() {
2765 return *mHw;
2766 }
2767
transform() const2768 const Transform& GraphicPlane::transform() const {
2769 return mGlobalTransform;
2770 }
2771
getEGLDisplay() const2772 EGLDisplay GraphicPlane::getEGLDisplay() const {
2773 return mHw->getEGLDisplay();
2774 }
2775
2776 // ---------------------------------------------------------------------------
2777
2778 }; // namespace android
2779