1 /*
2 * Copyright (C) 2004, 2005, 2006, 2007 Nikolas Zimmermann <zimmermann@kde.org>
3 * Copyright (C) 2004, 2005 Rob Buis <buis@kde.org>
4 * Copyright (C) 2005 Eric Seidel <eric@webkit.org>
5 * Copyright (C) 2009 Dirk Schulze <krit@webkit.org>
6 * Copyright (C) 2010 Renata Hodovan <reni@inf.u-szeged.hu>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Library General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Library General Public License for more details.
17 *
18 * You should have received a copy of the GNU Library General Public License
19 * along with this library; see the file COPYING.LIB. If not, write to
20 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 * Boston, MA 02110-1301, USA.
22 */
23
24 #include "config.h"
25
26 #if ENABLE(FILTERS)
27 #include "FETurbulence.h"
28
29 #include "Filter.h"
30 #include "RenderTreeAsText.h"
31 #include "TextStream.h"
32
33 #include <wtf/ByteArray.h>
34 #include <wtf/MathExtras.h>
35
36 namespace WebCore {
37
38 /*
39 Produces results in the range [1, 2**31 - 2]. Algorithm is:
40 r = (a * r) mod m where a = randAmplitude = 16807 and
41 m = randMaximum = 2**31 - 1 = 2147483647, r = seed.
42 See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
43 To test: the algorithm should produce the result 1043618065
44 as the 10,000th generated number if the original seed is 1.
45 */
46 static const int s_perlinNoise = 4096;
47 static const long s_randMaximum = 2147483647; // 2**31 - 1
48 static const int s_randAmplitude = 16807; // 7**5; primitive root of m
49 static const int s_randQ = 127773; // m / a
50 static const int s_randR = 2836; // m % a
51
FETurbulence(Filter * filter,TurbulenceType type,float baseFrequencyX,float baseFrequencyY,int numOctaves,float seed,bool stitchTiles)52 FETurbulence::FETurbulence(Filter* filter, TurbulenceType type, float baseFrequencyX, float baseFrequencyY, int numOctaves, float seed, bool stitchTiles)
53 : FilterEffect(filter)
54 , m_type(type)
55 , m_baseFrequencyX(baseFrequencyX)
56 , m_baseFrequencyY(baseFrequencyY)
57 , m_numOctaves(numOctaves)
58 , m_seed(seed)
59 , m_stitchTiles(stitchTiles)
60 {
61 }
62
create(Filter * filter,TurbulenceType type,float baseFrequencyX,float baseFrequencyY,int numOctaves,float seed,bool stitchTiles)63 PassRefPtr<FETurbulence> FETurbulence::create(Filter* filter, TurbulenceType type, float baseFrequencyX, float baseFrequencyY, int numOctaves, float seed, bool stitchTiles)
64 {
65 return adoptRef(new FETurbulence(filter, type, baseFrequencyX, baseFrequencyY, numOctaves, seed, stitchTiles));
66 }
67
type() const68 TurbulenceType FETurbulence::type() const
69 {
70 return m_type;
71 }
72
setType(TurbulenceType type)73 bool FETurbulence::setType(TurbulenceType type)
74 {
75 if (m_type == type)
76 return false;
77 m_type = type;
78 return true;
79 }
80
baseFrequencyY() const81 float FETurbulence::baseFrequencyY() const
82 {
83 return m_baseFrequencyY;
84 }
85
setBaseFrequencyY(float baseFrequencyY)86 bool FETurbulence::setBaseFrequencyY(float baseFrequencyY)
87 {
88 if (m_baseFrequencyY == baseFrequencyY)
89 return false;
90 m_baseFrequencyY = baseFrequencyY;
91 return true;
92 }
93
baseFrequencyX() const94 float FETurbulence::baseFrequencyX() const
95 {
96 return m_baseFrequencyX;
97 }
98
setBaseFrequencyX(float baseFrequencyX)99 bool FETurbulence::setBaseFrequencyX(float baseFrequencyX)
100 {
101 if (m_baseFrequencyX == baseFrequencyX)
102 return false;
103 m_baseFrequencyX = baseFrequencyX;
104 return true;
105 }
106
seed() const107 float FETurbulence::seed() const
108 {
109 return m_seed;
110 }
111
setSeed(float seed)112 bool FETurbulence::setSeed(float seed)
113 {
114 if (m_seed == seed)
115 return false;
116 m_seed = seed;
117 return true;
118 }
119
numOctaves() const120 int FETurbulence::numOctaves() const
121 {
122 return m_numOctaves;
123 }
124
setNumOctaves(int numOctaves)125 bool FETurbulence::setNumOctaves(int numOctaves)
126 {
127 if (m_numOctaves == numOctaves)
128 return false;
129 m_numOctaves = numOctaves;
130 return true;
131 }
132
stitchTiles() const133 bool FETurbulence::stitchTiles() const
134 {
135 return m_stitchTiles;
136 }
137
setStitchTiles(bool stitch)138 bool FETurbulence::setStitchTiles(bool stitch)
139 {
140 if (m_stitchTiles == stitch)
141 return false;
142 m_stitchTiles = stitch;
143 return true;
144 }
145
146 // The turbulence calculation code is an adapted version of what appears in the SVG 1.1 specification:
147 // http://www.w3.org/TR/SVG11/filters.html#feTurbulence
148
PaintingData(long paintingSeed,const IntSize & paintingSize)149 FETurbulence::PaintingData::PaintingData(long paintingSeed, const IntSize& paintingSize)
150 : seed(paintingSeed)
151 , width(0)
152 , height(0)
153 , wrapX(0)
154 , wrapY(0)
155 , channel(0)
156 , filterSize(paintingSize)
157 {
158 }
159
160 // Compute pseudo random number.
random()161 inline long FETurbulence::PaintingData::random()
162 {
163 long result = s_randAmplitude * (seed % s_randQ) - s_randR * (seed / s_randQ);
164 if (result <= 0)
165 result += s_randMaximum;
166 seed = result;
167 return result;
168 }
169
smoothCurve(float t)170 inline float smoothCurve(float t)
171 {
172 return t * t * (3 - 2 * t);
173 }
174
linearInterpolation(float t,float a,float b)175 inline float linearInterpolation(float t, float a, float b)
176 {
177 return a + t * (b - a);
178 }
179
initPaint(PaintingData & paintingData)180 inline void FETurbulence::initPaint(PaintingData& paintingData)
181 {
182 float normalizationFactor;
183
184 // The seed value clamp to the range [1, s_randMaximum - 1].
185 if (paintingData.seed <= 0)
186 paintingData.seed = -(paintingData.seed % (s_randMaximum - 1)) + 1;
187 if (paintingData.seed > s_randMaximum - 1)
188 paintingData.seed = s_randMaximum - 1;
189
190 float* gradient;
191 for (int channel = 0; channel < 4; ++channel) {
192 for (int i = 0; i < s_blockSize; ++i) {
193 paintingData.latticeSelector[i] = i;
194 gradient = paintingData.gradient[channel][i];
195 gradient[0] = static_cast<float>((paintingData.random() % (2 * s_blockSize)) - s_blockSize) / s_blockSize;
196 gradient[1] = static_cast<float>((paintingData.random() % (2 * s_blockSize)) - s_blockSize) / s_blockSize;
197 normalizationFactor = sqrtf(gradient[0] * gradient[0] + gradient[1] * gradient[1]);
198 gradient[0] /= normalizationFactor;
199 gradient[1] /= normalizationFactor;
200 }
201 }
202 for (int i = s_blockSize - 1; i > 0; --i) {
203 int k = paintingData.latticeSelector[i];
204 int j = paintingData.random() % s_blockSize;
205 ASSERT(j >= 0);
206 ASSERT(j < 2 * s_blockSize + 2);
207 paintingData.latticeSelector[i] = paintingData.latticeSelector[j];
208 paintingData.latticeSelector[j] = k;
209 }
210 for (int i = 0; i < s_blockSize + 2; ++i) {
211 paintingData.latticeSelector[s_blockSize + i] = paintingData.latticeSelector[i];
212 for (int channel = 0; channel < 4; ++channel) {
213 paintingData.gradient[channel][s_blockSize + i][0] = paintingData.gradient[channel][i][0];
214 paintingData.gradient[channel][s_blockSize + i][1] = paintingData.gradient[channel][i][1];
215 }
216 }
217 }
218
checkNoise(int & noiseValue,int limitValue,int newValue)219 inline void checkNoise(int& noiseValue, int limitValue, int newValue)
220 {
221 if (noiseValue >= limitValue)
222 noiseValue -= newValue;
223 if (noiseValue >= limitValue - 1)
224 noiseValue -= newValue - 1;
225 }
226
noise2D(PaintingData & paintingData,const FloatPoint & noiseVector)227 float FETurbulence::noise2D(PaintingData& paintingData, const FloatPoint& noiseVector)
228 {
229 struct Noise {
230 int noisePositionIntegerValue;
231 float noisePositionFractionValue;
232
233 Noise(float component)
234 {
235 float position = component + s_perlinNoise;
236 noisePositionIntegerValue = static_cast<int>(position);
237 noisePositionFractionValue = position - noisePositionIntegerValue;
238 }
239 };
240
241 Noise noiseX(noiseVector.x());
242 Noise noiseY(noiseVector.y());
243 float* q;
244 float sx, sy, a, b, u, v;
245
246 // If stitching, adjust lattice points accordingly.
247 if (m_stitchTiles) {
248 checkNoise(noiseX.noisePositionIntegerValue, paintingData.wrapX, paintingData.width);
249 checkNoise(noiseY.noisePositionIntegerValue, paintingData.wrapY, paintingData.height);
250 }
251
252 noiseX.noisePositionIntegerValue &= s_blockMask;
253 noiseY.noisePositionIntegerValue &= s_blockMask;
254 int latticeIndex = paintingData.latticeSelector[noiseX.noisePositionIntegerValue];
255 int nextLatticeIndex = paintingData.latticeSelector[(noiseX.noisePositionIntegerValue + 1) & s_blockMask];
256
257 sx = smoothCurve(noiseX.noisePositionFractionValue);
258 sy = smoothCurve(noiseY.noisePositionFractionValue);
259
260 // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement.
261 int temp = paintingData.latticeSelector[latticeIndex + noiseY.noisePositionIntegerValue];
262 q = paintingData.gradient[paintingData.channel][temp];
263 u = noiseX.noisePositionFractionValue * q[0] + noiseY.noisePositionFractionValue * q[1];
264 temp = paintingData.latticeSelector[nextLatticeIndex + noiseY.noisePositionIntegerValue];
265 q = paintingData.gradient[paintingData.channel][temp];
266 v = (noiseX.noisePositionFractionValue - 1) * q[0] + noiseY.noisePositionFractionValue * q[1];
267 a = linearInterpolation(sx, u, v);
268 temp = paintingData.latticeSelector[latticeIndex + noiseY.noisePositionIntegerValue + 1];
269 q = paintingData.gradient[paintingData.channel][temp];
270 u = noiseX.noisePositionFractionValue * q[0] + (noiseY.noisePositionFractionValue - 1) * q[1];
271 temp = paintingData.latticeSelector[nextLatticeIndex + noiseY.noisePositionIntegerValue + 1];
272 q = paintingData.gradient[paintingData.channel][temp];
273 v = (noiseX.noisePositionFractionValue - 1) * q[0] + (noiseY.noisePositionFractionValue - 1) * q[1];
274 b = linearInterpolation(sx, u, v);
275 return linearInterpolation(sy, a, b);
276 }
277
calculateTurbulenceValueForPoint(PaintingData & paintingData,const FloatPoint & point)278 unsigned char FETurbulence::calculateTurbulenceValueForPoint(PaintingData& paintingData, const FloatPoint& point)
279 {
280 float tileWidth = paintingData.filterSize.width();
281 ASSERT(tileWidth > 0);
282 float tileHeight = paintingData.filterSize.height();
283 ASSERT(tileHeight > 0);
284 // Adjust the base frequencies if necessary for stitching.
285 if (m_stitchTiles) {
286 // When stitching tiled turbulence, the frequencies must be adjusted
287 // so that the tile borders will be continuous.
288 if (m_baseFrequencyX) {
289 float lowFrequency = floorf(tileWidth * m_baseFrequencyX) / tileWidth;
290 float highFrequency = ceilf(tileWidth * m_baseFrequencyX) / tileWidth;
291 // BaseFrequency should be non-negative according to the standard.
292 if (m_baseFrequencyX / lowFrequency < highFrequency / m_baseFrequencyX)
293 m_baseFrequencyX = lowFrequency;
294 else
295 m_baseFrequencyX = highFrequency;
296 }
297 if (m_baseFrequencyY) {
298 float lowFrequency = floorf(tileHeight * m_baseFrequencyY) / tileHeight;
299 float highFrequency = ceilf(tileHeight * m_baseFrequencyY) / tileHeight;
300 if (m_baseFrequencyY / lowFrequency < highFrequency / m_baseFrequencyY)
301 m_baseFrequencyY = lowFrequency;
302 else
303 m_baseFrequencyY = highFrequency;
304 }
305 // Set up TurbulenceInitial stitch values.
306 paintingData.width = roundf(tileWidth * m_baseFrequencyX);
307 paintingData.wrapX = s_perlinNoise + paintingData.width;
308 paintingData.height = roundf(tileHeight * m_baseFrequencyY);
309 paintingData.wrapY = s_perlinNoise + paintingData.height;
310 }
311 float turbulenceFunctionResult = 0;
312 FloatPoint noiseVector(point.x() * m_baseFrequencyX, point.y() * m_baseFrequencyY);
313 float ratio = 1;
314 for (int octave = 0; octave < m_numOctaves; ++octave) {
315 if (m_type == FETURBULENCE_TYPE_FRACTALNOISE)
316 turbulenceFunctionResult += noise2D(paintingData, noiseVector) / ratio;
317 else
318 turbulenceFunctionResult += fabsf(noise2D(paintingData, noiseVector)) / ratio;
319 noiseVector.setX(noiseVector.x() * 2);
320 noiseVector.setY(noiseVector.y() * 2);
321 ratio *= 2;
322 if (m_stitchTiles) {
323 // Update stitch values. Subtracting s_perlinNoiseoise before the multiplication and
324 // adding it afterward simplifies to subtracting it once.
325 paintingData.width *= 2;
326 paintingData.wrapX = 2 * paintingData.wrapX - s_perlinNoise;
327 paintingData.height *= 2;
328 paintingData.wrapY = 2 * paintingData.wrapY - s_perlinNoise;
329 }
330 }
331
332 // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult * 255) + 255) / 2 by fractalNoise
333 // and (turbulenceFunctionResult * 255) by turbulence.
334 if (m_type == FETURBULENCE_TYPE_FRACTALNOISE)
335 turbulenceFunctionResult = turbulenceFunctionResult * 0.5f + 0.5f;
336 // Clamp result
337 turbulenceFunctionResult = std::max(std::min(turbulenceFunctionResult, 1.f), 0.f);
338 return static_cast<unsigned char>(turbulenceFunctionResult * 255);
339 }
340
apply()341 void FETurbulence::apply()
342 {
343 if (hasResult())
344 return;
345 ByteArray* pixelArray = createUnmultipliedImageResult();
346 if (!pixelArray)
347 return;
348
349 if (absolutePaintRect().isEmpty())
350 return;
351
352 PaintingData paintingData(m_seed, roundedIntSize(filterPrimitiveSubregion().size()));
353 initPaint(paintingData);
354
355 FloatRect filterRegion = absolutePaintRect();
356 FloatPoint point;
357 point.setY(filterRegion.y());
358 int indexOfPixelChannel = 0;
359 for (int y = 0; y < absolutePaintRect().height(); ++y) {
360 point.setY(point.y() + 1);
361 point.setX(filterRegion.x());
362 for (int x = 0; x < absolutePaintRect().width(); ++x) {
363 point.setX(point.x() + 1);
364 for (paintingData.channel = 0; paintingData.channel < 4; ++paintingData.channel, ++indexOfPixelChannel)
365 pixelArray->set(indexOfPixelChannel, calculateTurbulenceValueForPoint(paintingData, filter()->mapAbsolutePointToLocalPoint(point)));
366 }
367 }
368 }
369
dump()370 void FETurbulence::dump()
371 {
372 }
373
operator <<(TextStream & ts,const TurbulenceType & type)374 static TextStream& operator<<(TextStream& ts, const TurbulenceType& type)
375 {
376 switch (type) {
377 case FETURBULENCE_TYPE_UNKNOWN:
378 ts << "UNKNOWN";
379 break;
380 case FETURBULENCE_TYPE_TURBULENCE:
381 ts << "TURBULANCE";
382 break;
383 case FETURBULENCE_TYPE_FRACTALNOISE:
384 ts << "NOISE";
385 break;
386 }
387 return ts;
388 }
389
externalRepresentation(TextStream & ts,int indent) const390 TextStream& FETurbulence::externalRepresentation(TextStream& ts, int indent) const
391 {
392 writeIndent(ts, indent);
393 ts << "[feTurbulence";
394 FilterEffect::externalRepresentation(ts);
395 ts << " type=\"" << type() << "\" "
396 << "baseFrequency=\"" << baseFrequencyX() << ", " << baseFrequencyY() << "\" "
397 << "seed=\"" << seed() << "\" "
398 << "numOctaves=\"" << numOctaves() << "\" "
399 << "stitchTiles=\"" << stitchTiles() << "\"]\n";
400 return ts;
401 }
402
403 } // namespace WebCore
404
405 #endif // ENABLE(FILTERS)
406