1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "SplitKit.h"
17 #include "LiveRangeEdit.h"
18 #include "VirtRegMap.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28
29 using namespace llvm;
30
31 STATISTIC(NumFinished, "Number of splits finished");
32 STATISTIC(NumSimple, "Number of splits that were simple");
33 STATISTIC(NumCopies, "Number of copies inserted for splitting");
34 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
35 STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
36
37 //===----------------------------------------------------------------------===//
38 // Split Analysis
39 //===----------------------------------------------------------------------===//
40
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)41 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
42 const LiveIntervals &lis,
43 const MachineLoopInfo &mli)
44 : MF(vrm.getMachineFunction()),
45 VRM(vrm),
46 LIS(lis),
47 Loops(mli),
48 TII(*MF.getTarget().getInstrInfo()),
49 CurLI(0),
50 LastSplitPoint(MF.getNumBlockIDs()) {}
51
clear()52 void SplitAnalysis::clear() {
53 UseSlots.clear();
54 UseBlocks.clear();
55 ThroughBlocks.clear();
56 CurLI = 0;
57 DidRepairRange = false;
58 }
59
computeLastSplitPoint(unsigned Num)60 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
61 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
62 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
63 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
64
65 // Compute split points on the first call. The pair is independent of the
66 // current live interval.
67 if (!LSP.first.isValid()) {
68 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
69 if (FirstTerm == MBB->end())
70 LSP.first = LIS.getMBBEndIdx(MBB);
71 else
72 LSP.first = LIS.getInstructionIndex(FirstTerm);
73
74 // If there is a landing pad successor, also find the call instruction.
75 if (!LPad)
76 return LSP.first;
77 // There may not be a call instruction (?) in which case we ignore LPad.
78 LSP.second = LSP.first;
79 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
80 I != E;) {
81 --I;
82 if (I->getDesc().isCall()) {
83 LSP.second = LIS.getInstructionIndex(I);
84 break;
85 }
86 }
87 }
88
89 // If CurLI is live into a landing pad successor, move the last split point
90 // back to the call that may throw.
91 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
92 return LSP.second;
93 else
94 return LSP.first;
95 }
96
97 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()98 void SplitAnalysis::analyzeUses() {
99 assert(UseSlots.empty() && "Call clear first");
100
101 // First get all the defs from the interval values. This provides the correct
102 // slots for early clobbers.
103 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
104 E = CurLI->vni_end(); I != E; ++I)
105 if (!(*I)->isPHIDef() && !(*I)->isUnused())
106 UseSlots.push_back((*I)->def);
107
108 // Get use slots form the use-def chain.
109 const MachineRegisterInfo &MRI = MF.getRegInfo();
110 for (MachineRegisterInfo::use_nodbg_iterator
111 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
112 ++I)
113 if (!I.getOperand().isUndef())
114 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
115
116 array_pod_sort(UseSlots.begin(), UseSlots.end());
117
118 // Remove duplicates, keeping the smaller slot for each instruction.
119 // That is what we want for early clobbers.
120 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
121 SlotIndex::isSameInstr),
122 UseSlots.end());
123
124 // Compute per-live block info.
125 if (!calcLiveBlockInfo()) {
126 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
127 // I am looking at you, RegisterCoalescer!
128 DidRepairRange = true;
129 ++NumRepairs;
130 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
131 const_cast<LiveIntervals&>(LIS)
132 .shrinkToUses(const_cast<LiveInterval*>(CurLI));
133 UseBlocks.clear();
134 ThroughBlocks.clear();
135 bool fixed = calcLiveBlockInfo();
136 (void)fixed;
137 assert(fixed && "Couldn't fix broken live interval");
138 }
139
140 DEBUG(dbgs() << "Analyze counted "
141 << UseSlots.size() << " instrs in "
142 << UseBlocks.size() << " blocks, through "
143 << NumThroughBlocks << " blocks.\n");
144 }
145
146 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
147 /// where CurLI is live.
calcLiveBlockInfo()148 bool SplitAnalysis::calcLiveBlockInfo() {
149 ThroughBlocks.resize(MF.getNumBlockIDs());
150 NumThroughBlocks = NumGapBlocks = 0;
151 if (CurLI->empty())
152 return true;
153
154 LiveInterval::const_iterator LVI = CurLI->begin();
155 LiveInterval::const_iterator LVE = CurLI->end();
156
157 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
158 UseI = UseSlots.begin();
159 UseE = UseSlots.end();
160
161 // Loop over basic blocks where CurLI is live.
162 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
163 for (;;) {
164 BlockInfo BI;
165 BI.MBB = MFI;
166 SlotIndex Start, Stop;
167 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
168
169 // If the block contains no uses, the range must be live through. At one
170 // point, RegisterCoalescer could create dangling ranges that ended
171 // mid-block.
172 if (UseI == UseE || *UseI >= Stop) {
173 ++NumThroughBlocks;
174 ThroughBlocks.set(BI.MBB->getNumber());
175 // The range shouldn't end mid-block if there are no uses. This shouldn't
176 // happen.
177 if (LVI->end < Stop)
178 return false;
179 } else {
180 // This block has uses. Find the first and last uses in the block.
181 BI.FirstUse = *UseI;
182 assert(BI.FirstUse >= Start);
183 do ++UseI;
184 while (UseI != UseE && *UseI < Stop);
185 BI.LastUse = UseI[-1];
186 assert(BI.LastUse < Stop);
187
188 // LVI is the first live segment overlapping MBB.
189 BI.LiveIn = LVI->start <= Start;
190
191 // Look for gaps in the live range.
192 BI.LiveOut = true;
193 while (LVI->end < Stop) {
194 SlotIndex LastStop = LVI->end;
195 if (++LVI == LVE || LVI->start >= Stop) {
196 BI.LiveOut = false;
197 BI.LastUse = LastStop;
198 break;
199 }
200 if (LastStop < LVI->start) {
201 // There is a gap in the live range. Create duplicate entries for the
202 // live-in snippet and the live-out snippet.
203 ++NumGapBlocks;
204
205 // Push the Live-in part.
206 BI.LiveThrough = false;
207 BI.LiveOut = false;
208 UseBlocks.push_back(BI);
209 UseBlocks.back().LastUse = LastStop;
210
211 // Set up BI for the live-out part.
212 BI.LiveIn = false;
213 BI.LiveOut = true;
214 BI.FirstUse = LVI->start;
215 }
216 }
217
218 // Don't set LiveThrough when the block has a gap.
219 BI.LiveThrough = BI.LiveIn && BI.LiveOut;
220 UseBlocks.push_back(BI);
221
222 // LVI is now at LVE or LVI->end >= Stop.
223 if (LVI == LVE)
224 break;
225 }
226
227 // Live segment ends exactly at Stop. Move to the next segment.
228 if (LVI->end == Stop && ++LVI == LVE)
229 break;
230
231 // Pick the next basic block.
232 if (LVI->start < Stop)
233 ++MFI;
234 else
235 MFI = LIS.getMBBFromIndex(LVI->start);
236 }
237
238 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
239 return true;
240 }
241
countLiveBlocks(const LiveInterval * cli) const242 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
243 if (cli->empty())
244 return 0;
245 LiveInterval *li = const_cast<LiveInterval*>(cli);
246 LiveInterval::iterator LVI = li->begin();
247 LiveInterval::iterator LVE = li->end();
248 unsigned Count = 0;
249
250 // Loop over basic blocks where li is live.
251 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
252 SlotIndex Stop = LIS.getMBBEndIdx(MFI);
253 for (;;) {
254 ++Count;
255 LVI = li->advanceTo(LVI, Stop);
256 if (LVI == LVE)
257 return Count;
258 do {
259 ++MFI;
260 Stop = LIS.getMBBEndIdx(MFI);
261 } while (Stop <= LVI->start);
262 }
263 }
264
isOriginalEndpoint(SlotIndex Idx) const265 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
266 unsigned OrigReg = VRM.getOriginal(CurLI->reg);
267 const LiveInterval &Orig = LIS.getInterval(OrigReg);
268 assert(!Orig.empty() && "Splitting empty interval?");
269 LiveInterval::const_iterator I = Orig.find(Idx);
270
271 // Range containing Idx should begin at Idx.
272 if (I != Orig.end() && I->start <= Idx)
273 return I->start == Idx;
274
275 // Range does not contain Idx, previous must end at Idx.
276 return I != Orig.begin() && (--I)->end == Idx;
277 }
278
analyze(const LiveInterval * li)279 void SplitAnalysis::analyze(const LiveInterval *li) {
280 clear();
281 CurLI = li;
282 analyzeUses();
283 }
284
285
286 //===----------------------------------------------------------------------===//
287 // Split Editor
288 //===----------------------------------------------------------------------===//
289
290 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & sa,LiveIntervals & lis,VirtRegMap & vrm,MachineDominatorTree & mdt)291 SplitEditor::SplitEditor(SplitAnalysis &sa,
292 LiveIntervals &lis,
293 VirtRegMap &vrm,
294 MachineDominatorTree &mdt)
295 : SA(sa), LIS(lis), VRM(vrm),
296 MRI(vrm.getMachineFunction().getRegInfo()),
297 MDT(mdt),
298 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
299 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
300 Edit(0),
301 OpenIdx(0),
302 RegAssign(Allocator)
303 {}
304
reset(LiveRangeEdit & lre)305 void SplitEditor::reset(LiveRangeEdit &lre) {
306 Edit = &lre;
307 OpenIdx = 0;
308 RegAssign.clear();
309 Values.clear();
310
311 // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
312 LiveOutSeen.clear();
313
314 // We don't need an AliasAnalysis since we will only be performing
315 // cheap-as-a-copy remats anyway.
316 Edit->anyRematerializable(LIS, TII, 0);
317 }
318
dump() const319 void SplitEditor::dump() const {
320 if (RegAssign.empty()) {
321 dbgs() << " empty\n";
322 return;
323 }
324
325 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
326 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
327 dbgs() << '\n';
328 }
329
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx)330 VNInfo *SplitEditor::defValue(unsigned RegIdx,
331 const VNInfo *ParentVNI,
332 SlotIndex Idx) {
333 assert(ParentVNI && "Mapping NULL value");
334 assert(Idx.isValid() && "Invalid SlotIndex");
335 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
336 LiveInterval *LI = Edit->get(RegIdx);
337
338 // Create a new value.
339 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
340
341 // Use insert for lookup, so we can add missing values with a second lookup.
342 std::pair<ValueMap::iterator, bool> InsP =
343 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
344
345 // This was the first time (RegIdx, ParentVNI) was mapped.
346 // Keep it as a simple def without any liveness.
347 if (InsP.second)
348 return VNI;
349
350 // If the previous value was a simple mapping, add liveness for it now.
351 if (VNInfo *OldVNI = InsP.first->second) {
352 SlotIndex Def = OldVNI->def;
353 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
354 // No longer a simple mapping.
355 InsP.first->second = 0;
356 }
357
358 // This is a complex mapping, add liveness for VNI
359 SlotIndex Def = VNI->def;
360 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
361
362 return VNI;
363 }
364
markComplexMapped(unsigned RegIdx,const VNInfo * ParentVNI)365 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
366 assert(ParentVNI && "Mapping NULL value");
367 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
368
369 // ParentVNI was either unmapped or already complex mapped. Either way.
370 if (!VNI)
371 return;
372
373 // This was previously a single mapping. Make sure the old def is represented
374 // by a trivial live range.
375 SlotIndex Def = VNI->def;
376 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
377 VNI = 0;
378 }
379
380 // extendRange - Extend the live range to reach Idx.
381 // Potentially create phi-def values.
extendRange(unsigned RegIdx,SlotIndex Idx)382 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
383 assert(Idx.isValid() && "Invalid SlotIndex");
384 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
385 assert(IdxMBB && "No MBB at Idx");
386 LiveInterval *LI = Edit->get(RegIdx);
387
388 // Is there a def in the same MBB we can extend?
389 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
390 return;
391
392 // Now for the fun part. We know that ParentVNI potentially has multiple defs,
393 // and we may need to create even more phi-defs to preserve VNInfo SSA form.
394 // Perform a search for all predecessor blocks where we know the dominating
395 // VNInfo.
396 VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
397
398 // When there were multiple different values, we may need new PHIs.
399 if (!VNI)
400 return updateSSA();
401
402 // Poor man's SSA update for the single-value case.
403 LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
404 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
405 E = LiveInBlocks.end(); I != E; ++I) {
406 MachineBasicBlock *MBB = I->DomNode->getBlock();
407 SlotIndex Start = LIS.getMBBStartIdx(MBB);
408 if (I->Kill.isValid())
409 LI->addRange(LiveRange(Start, I->Kill, VNI));
410 else {
411 LiveOutCache[MBB] = LOP;
412 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
413 }
414 }
415 }
416
417 /// findReachingDefs - Search the CFG for known live-out values.
418 /// Add required live-in blocks to LiveInBlocks.
findReachingDefs(LiveInterval * LI,MachineBasicBlock * KillMBB,SlotIndex Kill)419 VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
420 MachineBasicBlock *KillMBB,
421 SlotIndex Kill) {
422 // Initialize the live-out cache the first time it is needed.
423 if (LiveOutSeen.empty()) {
424 unsigned N = VRM.getMachineFunction().getNumBlockIDs();
425 LiveOutSeen.resize(N);
426 LiveOutCache.resize(N);
427 }
428
429 // Blocks where LI should be live-in.
430 SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
431
432 // Remember if we have seen more than one value.
433 bool UniqueVNI = true;
434 VNInfo *TheVNI = 0;
435
436 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
437 for (unsigned i = 0; i != WorkList.size(); ++i) {
438 MachineBasicBlock *MBB = WorkList[i];
439 assert(!MBB->pred_empty() && "Value live-in to entry block?");
440 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
441 PE = MBB->pred_end(); PI != PE; ++PI) {
442 MachineBasicBlock *Pred = *PI;
443 LiveOutPair &LOP = LiveOutCache[Pred];
444
445 // Is this a known live-out block?
446 if (LiveOutSeen.test(Pred->getNumber())) {
447 if (VNInfo *VNI = LOP.first) {
448 if (TheVNI && TheVNI != VNI)
449 UniqueVNI = false;
450 TheVNI = VNI;
451 }
452 continue;
453 }
454
455 // First time. LOP is garbage and must be cleared below.
456 LiveOutSeen.set(Pred->getNumber());
457
458 // Does Pred provide a live-out value?
459 SlotIndex Start, Last;
460 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
461 Last = Last.getPrevSlot();
462 VNInfo *VNI = LI->extendInBlock(Start, Last);
463 LOP.first = VNI;
464 if (VNI) {
465 LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
466 if (TheVNI && TheVNI != VNI)
467 UniqueVNI = false;
468 TheVNI = VNI;
469 continue;
470 }
471 LOP.second = 0;
472
473 // No, we need a live-in value for Pred as well
474 if (Pred != KillMBB)
475 WorkList.push_back(Pred);
476 else
477 // Loopback to KillMBB, so value is really live through.
478 Kill = SlotIndex();
479 }
480 }
481
482 // Transfer WorkList to LiveInBlocks in reverse order.
483 // This ordering works best with updateSSA().
484 LiveInBlocks.clear();
485 LiveInBlocks.reserve(WorkList.size());
486 while(!WorkList.empty())
487 LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
488
489 // The kill block may not be live-through.
490 assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
491 LiveInBlocks.back().Kill = Kill;
492
493 return UniqueVNI ? TheVNI : 0;
494 }
495
updateSSA()496 void SplitEditor::updateSSA() {
497 // This is essentially the same iterative algorithm that SSAUpdater uses,
498 // except we already have a dominator tree, so we don't have to recompute it.
499 unsigned Changes;
500 do {
501 Changes = 0;
502 // Propagate live-out values down the dominator tree, inserting phi-defs
503 // when necessary.
504 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
505 E = LiveInBlocks.end(); I != E; ++I) {
506 MachineDomTreeNode *Node = I->DomNode;
507 // Skip block if the live-in value has already been determined.
508 if (!Node)
509 continue;
510 MachineBasicBlock *MBB = Node->getBlock();
511 MachineDomTreeNode *IDom = Node->getIDom();
512 LiveOutPair IDomValue;
513
514 // We need a live-in value to a block with no immediate dominator?
515 // This is probably an unreachable block that has survived somehow.
516 bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
517
518 // IDom dominates all of our predecessors, but it may not be their
519 // immediate dominator. Check if any of them have live-out values that are
520 // properly dominated by IDom. If so, we need a phi-def here.
521 if (!needPHI) {
522 IDomValue = LiveOutCache[IDom->getBlock()];
523 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
524 PE = MBB->pred_end(); PI != PE; ++PI) {
525 LiveOutPair Value = LiveOutCache[*PI];
526 if (!Value.first || Value.first == IDomValue.first)
527 continue;
528 // This predecessor is carrying something other than IDomValue.
529 // It could be because IDomValue hasn't propagated yet, or it could be
530 // because MBB is in the dominance frontier of that value.
531 if (MDT.dominates(IDom, Value.second)) {
532 needPHI = true;
533 break;
534 }
535 }
536 }
537
538 // The value may be live-through even if Kill is set, as can happen when
539 // we are called from extendRange. In that case LiveOutSeen is true, and
540 // LiveOutCache indicates a foreign or missing value.
541 LiveOutPair &LOP = LiveOutCache[MBB];
542
543 // Create a phi-def if required.
544 if (needPHI) {
545 ++Changes;
546 SlotIndex Start = LIS.getMBBStartIdx(MBB);
547 unsigned RegIdx = RegAssign.lookup(Start);
548 LiveInterval *LI = Edit->get(RegIdx);
549 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
550 VNI->setIsPHIDef(true);
551 I->Value = VNI;
552 // This block is done, we know the final value.
553 I->DomNode = 0;
554 if (I->Kill.isValid())
555 LI->addRange(LiveRange(Start, I->Kill, VNI));
556 else {
557 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
558 LOP = LiveOutPair(VNI, Node);
559 }
560 } else if (IDomValue.first) {
561 // No phi-def here. Remember incoming value.
562 I->Value = IDomValue.first;
563 if (I->Kill.isValid())
564 continue;
565 // Propagate IDomValue if needed:
566 // MBB is live-out and doesn't define its own value.
567 if (LOP.second != Node && LOP.first != IDomValue.first) {
568 ++Changes;
569 LOP = IDomValue;
570 }
571 }
572 }
573 } while (Changes);
574
575 // The values in LiveInBlocks are now accurate. No more phi-defs are needed
576 // for these blocks, so we can color the live ranges.
577 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
578 E = LiveInBlocks.end(); I != E; ++I) {
579 if (!I->DomNode)
580 continue;
581 assert(I->Value && "No live-in value found");
582 MachineBasicBlock *MBB = I->DomNode->getBlock();
583 SlotIndex Start = LIS.getMBBStartIdx(MBB);
584 unsigned RegIdx = RegAssign.lookup(Start);
585 LiveInterval *LI = Edit->get(RegIdx);
586 LI->addRange(LiveRange(Start, I->Kill.isValid() ?
587 I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
588 }
589 }
590
defFromParent(unsigned RegIdx,VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)591 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
592 VNInfo *ParentVNI,
593 SlotIndex UseIdx,
594 MachineBasicBlock &MBB,
595 MachineBasicBlock::iterator I) {
596 MachineInstr *CopyMI = 0;
597 SlotIndex Def;
598 LiveInterval *LI = Edit->get(RegIdx);
599
600 // We may be trying to avoid interference that ends at a deleted instruction,
601 // so always begin RegIdx 0 early and all others late.
602 bool Late = RegIdx != 0;
603
604 // Attempt cheap-as-a-copy rematerialization.
605 LiveRangeEdit::Remat RM(ParentVNI);
606 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
607 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
608 ++NumRemats;
609 } else {
610 // Can't remat, just insert a copy from parent.
611 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
612 .addReg(Edit->getReg());
613 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
614 .getDefIndex();
615 ++NumCopies;
616 }
617
618 // Define the value in Reg.
619 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
620 VNI->setCopy(CopyMI);
621 return VNI;
622 }
623
624 /// Create a new virtual register and live interval.
openIntv()625 unsigned SplitEditor::openIntv() {
626 // Create the complement as index 0.
627 if (Edit->empty())
628 Edit->create(LIS, VRM);
629
630 // Create the open interval.
631 OpenIdx = Edit->size();
632 Edit->create(LIS, VRM);
633 return OpenIdx;
634 }
635
selectIntv(unsigned Idx)636 void SplitEditor::selectIntv(unsigned Idx) {
637 assert(Idx != 0 && "Cannot select the complement interval");
638 assert(Idx < Edit->size() && "Can only select previously opened interval");
639 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
640 OpenIdx = Idx;
641 }
642
enterIntvBefore(SlotIndex Idx)643 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
644 assert(OpenIdx && "openIntv not called before enterIntvBefore");
645 DEBUG(dbgs() << " enterIntvBefore " << Idx);
646 Idx = Idx.getBaseIndex();
647 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
648 if (!ParentVNI) {
649 DEBUG(dbgs() << ": not live\n");
650 return Idx;
651 }
652 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
653 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
654 assert(MI && "enterIntvBefore called with invalid index");
655
656 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
657 return VNI->def;
658 }
659
enterIntvAfter(SlotIndex Idx)660 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
661 assert(OpenIdx && "openIntv not called before enterIntvAfter");
662 DEBUG(dbgs() << " enterIntvAfter " << Idx);
663 Idx = Idx.getBoundaryIndex();
664 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
665 if (!ParentVNI) {
666 DEBUG(dbgs() << ": not live\n");
667 return Idx;
668 }
669 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
670 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
671 assert(MI && "enterIntvAfter called with invalid index");
672
673 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
674 llvm::next(MachineBasicBlock::iterator(MI)));
675 return VNI->def;
676 }
677
enterIntvAtEnd(MachineBasicBlock & MBB)678 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
679 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
680 SlotIndex End = LIS.getMBBEndIdx(&MBB);
681 SlotIndex Last = End.getPrevSlot();
682 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
683 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
684 if (!ParentVNI) {
685 DEBUG(dbgs() << ": not live\n");
686 return End;
687 }
688 DEBUG(dbgs() << ": valno " << ParentVNI->id);
689 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
690 LIS.getLastSplitPoint(Edit->getParent(), &MBB));
691 RegAssign.insert(VNI->def, End, OpenIdx);
692 DEBUG(dump());
693 return VNI->def;
694 }
695
696 /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)697 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
698 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
699 }
700
useIntv(SlotIndex Start,SlotIndex End)701 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
702 assert(OpenIdx && "openIntv not called before useIntv");
703 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
704 RegAssign.insert(Start, End, OpenIdx);
705 DEBUG(dump());
706 }
707
leaveIntvAfter(SlotIndex Idx)708 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
709 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
710 DEBUG(dbgs() << " leaveIntvAfter " << Idx);
711
712 // The interval must be live beyond the instruction at Idx.
713 Idx = Idx.getBoundaryIndex();
714 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
715 if (!ParentVNI) {
716 DEBUG(dbgs() << ": not live\n");
717 return Idx.getNextSlot();
718 }
719 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
720
721 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
722 assert(MI && "No instruction at index");
723 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
724 llvm::next(MachineBasicBlock::iterator(MI)));
725 return VNI->def;
726 }
727
leaveIntvBefore(SlotIndex Idx)728 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
729 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
730 DEBUG(dbgs() << " leaveIntvBefore " << Idx);
731
732 // The interval must be live into the instruction at Idx.
733 Idx = Idx.getBaseIndex();
734 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
735 if (!ParentVNI) {
736 DEBUG(dbgs() << ": not live\n");
737 return Idx.getNextSlot();
738 }
739 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
740
741 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
742 assert(MI && "No instruction at index");
743 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
744 return VNI->def;
745 }
746
leaveIntvAtTop(MachineBasicBlock & MBB)747 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
748 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
749 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
750 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
751
752 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
753 if (!ParentVNI) {
754 DEBUG(dbgs() << ": not live\n");
755 return Start;
756 }
757
758 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
759 MBB.SkipPHIsAndLabels(MBB.begin()));
760 RegAssign.insert(Start, VNI->def, OpenIdx);
761 DEBUG(dump());
762 return VNI->def;
763 }
764
overlapIntv(SlotIndex Start,SlotIndex End)765 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
766 assert(OpenIdx && "openIntv not called before overlapIntv");
767 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
768 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
769 "Parent changes value in extended range");
770 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
771 "Range cannot span basic blocks");
772
773 // The complement interval will be extended as needed by extendRange().
774 if (ParentVNI)
775 markComplexMapped(0, ParentVNI);
776 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
777 RegAssign.insert(Start, End, OpenIdx);
778 DEBUG(dump());
779 }
780
781 /// transferValues - Transfer all possible values to the new live ranges.
782 /// Values that were rematerialized are left alone, they need extendRange().
transferValues()783 bool SplitEditor::transferValues() {
784 bool Skipped = false;
785 LiveInBlocks.clear();
786 RegAssignMap::const_iterator AssignI = RegAssign.begin();
787 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
788 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
789 DEBUG(dbgs() << " blit " << *ParentI << ':');
790 VNInfo *ParentVNI = ParentI->valno;
791 // RegAssign has holes where RegIdx 0 should be used.
792 SlotIndex Start = ParentI->start;
793 AssignI.advanceTo(Start);
794 do {
795 unsigned RegIdx;
796 SlotIndex End = ParentI->end;
797 if (!AssignI.valid()) {
798 RegIdx = 0;
799 } else if (AssignI.start() <= Start) {
800 RegIdx = AssignI.value();
801 if (AssignI.stop() < End) {
802 End = AssignI.stop();
803 ++AssignI;
804 }
805 } else {
806 RegIdx = 0;
807 End = std::min(End, AssignI.start());
808 }
809
810 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
811 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
812 LiveInterval *LI = Edit->get(RegIdx);
813
814 // Check for a simply defined value that can be blitted directly.
815 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
816 DEBUG(dbgs() << ':' << VNI->id);
817 LI->addRange(LiveRange(Start, End, VNI));
818 Start = End;
819 continue;
820 }
821
822 // Skip rematerialized values, we need to use extendRange() and
823 // extendPHIKillRanges() to completely recompute the live ranges.
824 if (Edit->didRematerialize(ParentVNI)) {
825 DEBUG(dbgs() << "(remat)");
826 Skipped = true;
827 Start = End;
828 continue;
829 }
830
831 // Initialize the live-out cache the first time it is needed.
832 if (LiveOutSeen.empty()) {
833 unsigned N = VRM.getMachineFunction().getNumBlockIDs();
834 LiveOutSeen.resize(N);
835 LiveOutCache.resize(N);
836 }
837
838 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
839 // so the live range is accurate. Add live-in blocks in [Start;End) to the
840 // LiveInBlocks.
841 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
842 SlotIndex BlockStart, BlockEnd;
843 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
844
845 // The first block may be live-in, or it may have its own def.
846 if (Start != BlockStart) {
847 VNInfo *VNI = LI->extendInBlock(BlockStart,
848 std::min(BlockEnd, End).getPrevSlot());
849 assert(VNI && "Missing def for complex mapped value");
850 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
851 // MBB has its own def. Is it also live-out?
852 if (BlockEnd <= End) {
853 LiveOutSeen.set(MBB->getNumber());
854 LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
855 }
856 // Skip to the next block for live-in.
857 ++MBB;
858 BlockStart = BlockEnd;
859 }
860
861 // Handle the live-in blocks covered by [Start;End).
862 assert(Start <= BlockStart && "Expected live-in block");
863 while (BlockStart < End) {
864 DEBUG(dbgs() << ">BB#" << MBB->getNumber());
865 BlockEnd = LIS.getMBBEndIdx(MBB);
866 if (BlockStart == ParentVNI->def) {
867 // This block has the def of a parent PHI, so it isn't live-in.
868 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
869 VNInfo *VNI = LI->extendInBlock(BlockStart,
870 std::min(BlockEnd, End).getPrevSlot());
871 assert(VNI && "Missing def for complex mapped parent PHI");
872 if (End >= BlockEnd) {
873 // Live-out as well.
874 LiveOutSeen.set(MBB->getNumber());
875 LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
876 }
877 } else {
878 // This block needs a live-in value.
879 LiveInBlocks.push_back(MDT[MBB]);
880 // The last block covered may not be live-out.
881 if (End < BlockEnd)
882 LiveInBlocks.back().Kill = End;
883 else {
884 // Live-out, but we need updateSSA to tell us the value.
885 LiveOutSeen.set(MBB->getNumber());
886 LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
887 (MachineDomTreeNode*)0);
888 }
889 }
890 BlockStart = BlockEnd;
891 ++MBB;
892 }
893 Start = End;
894 } while (Start != ParentI->end);
895 DEBUG(dbgs() << '\n');
896 }
897
898 if (!LiveInBlocks.empty())
899 updateSSA();
900
901 return Skipped;
902 }
903
extendPHIKillRanges()904 void SplitEditor::extendPHIKillRanges() {
905 // Extend live ranges to be live-out for successor PHI values.
906 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
907 E = Edit->getParent().vni_end(); I != E; ++I) {
908 const VNInfo *PHIVNI = *I;
909 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
910 continue;
911 unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
912 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
913 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
914 PE = MBB->pred_end(); PI != PE; ++PI) {
915 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
916 // The predecessor may not have a live-out value. That is OK, like an
917 // undef PHI operand.
918 if (Edit->getParent().liveAt(End)) {
919 assert(RegAssign.lookup(End) == RegIdx &&
920 "Different register assignment in phi predecessor");
921 extendRange(RegIdx, End);
922 }
923 }
924 }
925 }
926
927 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)928 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
929 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
930 RE = MRI.reg_end(); RI != RE;) {
931 MachineOperand &MO = RI.getOperand();
932 MachineInstr *MI = MO.getParent();
933 ++RI;
934 // LiveDebugVariables should have handled all DBG_VALUE instructions.
935 if (MI->isDebugValue()) {
936 DEBUG(dbgs() << "Zapping " << *MI);
937 MO.setReg(0);
938 continue;
939 }
940
941 // <undef> operands don't really read the register, so just assign them to
942 // the complement.
943 if (MO.isUse() && MO.isUndef()) {
944 MO.setReg(Edit->get(0)->reg);
945 continue;
946 }
947
948 SlotIndex Idx = LIS.getInstructionIndex(MI);
949 if (MO.isDef())
950 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
951
952 // Rewrite to the mapped register at Idx.
953 unsigned RegIdx = RegAssign.lookup(Idx);
954 MO.setReg(Edit->get(RegIdx)->reg);
955 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
956 << Idx << ':' << RegIdx << '\t' << *MI);
957
958 // Extend liveness to Idx if the instruction reads reg.
959 if (!ExtendRanges)
960 continue;
961
962 // Skip instructions that don't read Reg.
963 if (MO.isDef()) {
964 if (!MO.getSubReg() && !MO.isEarlyClobber())
965 continue;
966 // We may wan't to extend a live range for a partial redef, or for a use
967 // tied to an early clobber.
968 Idx = Idx.getPrevSlot();
969 if (!Edit->getParent().liveAt(Idx))
970 continue;
971 } else
972 Idx = Idx.getUseIndex();
973
974 extendRange(RegIdx, Idx);
975 }
976 }
977
deleteRematVictims()978 void SplitEditor::deleteRematVictims() {
979 SmallVector<MachineInstr*, 8> Dead;
980 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
981 LiveInterval *LI = *I;
982 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
983 LII != LIE; ++LII) {
984 // Dead defs end at the store slot.
985 if (LII->end != LII->valno->def.getNextSlot())
986 continue;
987 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
988 assert(MI && "Missing instruction for dead def");
989 MI->addRegisterDead(LI->reg, &TRI);
990
991 if (!MI->allDefsAreDead())
992 continue;
993
994 DEBUG(dbgs() << "All defs dead: " << *MI);
995 Dead.push_back(MI);
996 }
997 }
998
999 if (Dead.empty())
1000 return;
1001
1002 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
1003 }
1004
finish(SmallVectorImpl<unsigned> * LRMap)1005 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1006 ++NumFinished;
1007
1008 // At this point, the live intervals in Edit contain VNInfos corresponding to
1009 // the inserted copies.
1010
1011 // Add the original defs from the parent interval.
1012 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1013 E = Edit->getParent().vni_end(); I != E; ++I) {
1014 const VNInfo *ParentVNI = *I;
1015 if (ParentVNI->isUnused())
1016 continue;
1017 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1018 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
1019 VNI->setIsPHIDef(ParentVNI->isPHIDef());
1020 VNI->setCopy(ParentVNI->getCopy());
1021
1022 // Mark rematted values as complex everywhere to force liveness computation.
1023 // The new live ranges may be truncated.
1024 if (Edit->didRematerialize(ParentVNI))
1025 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1026 markComplexMapped(i, ParentVNI);
1027 }
1028
1029 // Transfer the simply mapped values, check if any are skipped.
1030 bool Skipped = transferValues();
1031 if (Skipped)
1032 extendPHIKillRanges();
1033 else
1034 ++NumSimple;
1035
1036 // Rewrite virtual registers, possibly extending ranges.
1037 rewriteAssigned(Skipped);
1038
1039 // Delete defs that were rematted everywhere.
1040 if (Skipped)
1041 deleteRematVictims();
1042
1043 // Get rid of unused values and set phi-kill flags.
1044 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1045 (*I)->RenumberValues(LIS);
1046
1047 // Provide a reverse mapping from original indices to Edit ranges.
1048 if (LRMap) {
1049 LRMap->clear();
1050 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1051 LRMap->push_back(i);
1052 }
1053
1054 // Now check if any registers were separated into multiple components.
1055 ConnectedVNInfoEqClasses ConEQ(LIS);
1056 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1057 // Don't use iterators, they are invalidated by create() below.
1058 LiveInterval *li = Edit->get(i);
1059 unsigned NumComp = ConEQ.Classify(li);
1060 if (NumComp <= 1)
1061 continue;
1062 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
1063 SmallVector<LiveInterval*, 8> dups;
1064 dups.push_back(li);
1065 for (unsigned j = 1; j != NumComp; ++j)
1066 dups.push_back(&Edit->create(LIS, VRM));
1067 ConEQ.Distribute(&dups[0], MRI);
1068 // The new intervals all map back to i.
1069 if (LRMap)
1070 LRMap->resize(Edit->size(), i);
1071 }
1072
1073 // Calculate spill weight and allocation hints for new intervals.
1074 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
1075
1076 assert(!LRMap || LRMap->size() == Edit->size());
1077 }
1078
1079
1080 //===----------------------------------------------------------------------===//
1081 // Single Block Splitting
1082 //===----------------------------------------------------------------------===//
1083
1084 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
1085 /// may be an advantage to split CurLI for the duration of the block.
getMultiUseBlocks(BlockPtrSet & Blocks)1086 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1087 // If CurLI is local to one block, there is no point to splitting it.
1088 if (UseBlocks.size() <= 1)
1089 return false;
1090 // Add blocks with multiple uses.
1091 for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
1092 const BlockInfo &BI = UseBlocks[i];
1093 if (BI.FirstUse == BI.LastUse)
1094 continue;
1095 Blocks.insert(BI.MBB);
1096 }
1097 return !Blocks.empty();
1098 }
1099
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1100 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1101 openIntv();
1102 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1103 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
1104 LastSplitPoint));
1105 if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
1106 useIntv(SegStart, leaveIntvAfter(BI.LastUse));
1107 } else {
1108 // The last use is after the last valid split point.
1109 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1110 useIntv(SegStart, SegStop);
1111 overlapIntv(SegStop, BI.LastUse);
1112 }
1113 }
1114
1115 /// splitSingleBlocks - Split CurLI into a separate live interval inside each
1116 /// basic block in Blocks.
splitSingleBlocks(const SplitAnalysis::BlockPtrSet & Blocks)1117 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1118 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1119 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
1120 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1121 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1122 if (Blocks.count(BI.MBB))
1123 splitSingleBlock(BI);
1124 }
1125 finish();
1126 }
1127
1128
1129 //===----------------------------------------------------------------------===//
1130 // Global Live Range Splitting Support
1131 //===----------------------------------------------------------------------===//
1132
1133 // These methods support a method of global live range splitting that uses a
1134 // global algorithm to decide intervals for CFG edges. They will insert split
1135 // points and color intervals in basic blocks while avoiding interference.
1136 //
1137 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1138 // are on the stack.
1139
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1140 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1141 unsigned IntvIn, SlotIndex LeaveBefore,
1142 unsigned IntvOut, SlotIndex EnterAfter){
1143 SlotIndex Start, Stop;
1144 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1145
1146 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1147 << ") intf " << LeaveBefore << '-' << EnterAfter
1148 << ", live-through " << IntvIn << " -> " << IntvOut);
1149
1150 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1151
1152 if (!IntvOut) {
1153 DEBUG(dbgs() << ", spill on entry.\n");
1154 //
1155 // <<<<<<<<< Possible LeaveBefore interference.
1156 // |-----------| Live through.
1157 // -____________ Spill on entry.
1158 //
1159 selectIntv(IntvIn);
1160 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1161 SlotIndex Idx = leaveIntvAtTop(*MBB);
1162 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1163 (void)Idx;
1164 return;
1165 }
1166
1167 if (!IntvIn) {
1168 DEBUG(dbgs() << ", reload on exit.\n");
1169 //
1170 // >>>>>>> Possible EnterAfter interference.
1171 // |-----------| Live through.
1172 // ___________-- Reload on exit.
1173 //
1174 selectIntv(IntvOut);
1175 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1176 SlotIndex Idx = enterIntvAtEnd(*MBB);
1177 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1178 (void)Idx;
1179 return;
1180 }
1181
1182 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1183 DEBUG(dbgs() << ", straight through.\n");
1184 //
1185 // |-----------| Live through.
1186 // ------------- Straight through, same intv, no interference.
1187 //
1188 selectIntv(IntvOut);
1189 useIntv(Start, Stop);
1190 return;
1191 }
1192
1193 // We cannot legally insert splits after LSP.
1194 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1195
1196 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1197 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1198 DEBUG(dbgs() << ", switch avoiding interference.\n");
1199 //
1200 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1201 // |-----------| Live through.
1202 // ------======= Switch intervals between interference.
1203 //
1204 SlotIndex Cut = (LeaveBefore && LeaveBefore < LSP) ? LeaveBefore : LSP;
1205 selectIntv(IntvOut);
1206 SlotIndex Idx = enterIntvBefore(Cut);
1207 useIntv(Idx, Stop);
1208 selectIntv(IntvIn);
1209 useIntv(Start, Idx);
1210 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1211 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1212 return;
1213 }
1214
1215 DEBUG(dbgs() << ", create local intv for interference.\n");
1216 //
1217 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1218 // |-----------| Live through.
1219 // ==---------== Switch intervals before/after interference.
1220 //
1221 assert(LeaveBefore <= EnterAfter && "Missed case");
1222
1223 selectIntv(IntvOut);
1224 SlotIndex Idx = enterIntvAfter(EnterAfter);
1225 useIntv(Idx, Stop);
1226 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1227
1228 selectIntv(IntvIn);
1229 Idx = leaveIntvBefore(LeaveBefore);
1230 useIntv(Start, Idx);
1231 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1232 }
1233
1234
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1235 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1236 unsigned IntvIn, SlotIndex LeaveBefore) {
1237 SlotIndex Start, Stop;
1238 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1239
1240 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1241 << "), uses " << BI.FirstUse << '-' << BI.LastUse
1242 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1243 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1244
1245 assert(IntvIn && "Must have register in");
1246 assert(BI.LiveIn && "Must be live-in");
1247 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1248
1249 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastUse)) {
1250 DEBUG(dbgs() << " before interference.\n");
1251 //
1252 // <<< Interference after kill.
1253 // |---o---x | Killed in block.
1254 // ========= Use IntvIn everywhere.
1255 //
1256 selectIntv(IntvIn);
1257 useIntv(Start, BI.LastUse);
1258 return;
1259 }
1260
1261 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1262
1263 if (!LeaveBefore || LeaveBefore > BI.LastUse.getBoundaryIndex()) {
1264 //
1265 // <<< Possible interference after last use.
1266 // |---o---o---| Live-out on stack.
1267 // =========____ Leave IntvIn after last use.
1268 //
1269 // < Interference after last use.
1270 // |---o---o--o| Live-out on stack, late last use.
1271 // ============ Copy to stack after LSP, overlap IntvIn.
1272 // \_____ Stack interval is live-out.
1273 //
1274 if (BI.LastUse < LSP) {
1275 DEBUG(dbgs() << ", spill after last use before interference.\n");
1276 selectIntv(IntvIn);
1277 SlotIndex Idx = leaveIntvAfter(BI.LastUse);
1278 useIntv(Start, Idx);
1279 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1280 } else {
1281 DEBUG(dbgs() << ", spill before last split point.\n");
1282 selectIntv(IntvIn);
1283 SlotIndex Idx = leaveIntvBefore(LSP);
1284 overlapIntv(Idx, BI.LastUse);
1285 useIntv(Start, Idx);
1286 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1287 }
1288 return;
1289 }
1290
1291 // The interference is overlapping somewhere we wanted to use IntvIn. That
1292 // means we need to create a local interval that can be allocated a
1293 // different register.
1294 unsigned LocalIntv = openIntv();
1295 (void)LocalIntv;
1296 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1297
1298 if (!BI.LiveOut || BI.LastUse < LSP) {
1299 //
1300 // <<<<<<< Interference overlapping uses.
1301 // |---o---o---| Live-out on stack.
1302 // =====----____ Leave IntvIn before interference, then spill.
1303 //
1304 SlotIndex To = leaveIntvAfter(BI.LastUse);
1305 SlotIndex From = enterIntvBefore(LeaveBefore);
1306 useIntv(From, To);
1307 selectIntv(IntvIn);
1308 useIntv(Start, From);
1309 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1310 return;
1311 }
1312
1313 // <<<<<<< Interference overlapping uses.
1314 // |---o---o--o| Live-out on stack, late last use.
1315 // =====------- Copy to stack before LSP, overlap LocalIntv.
1316 // \_____ Stack interval is live-out.
1317 //
1318 SlotIndex To = leaveIntvBefore(LSP);
1319 overlapIntv(To, BI.LastUse);
1320 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1321 useIntv(From, To);
1322 selectIntv(IntvIn);
1323 useIntv(Start, From);
1324 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1325 }
1326
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1327 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1328 unsigned IntvOut, SlotIndex EnterAfter) {
1329 SlotIndex Start, Stop;
1330 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1331
1332 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1333 << "), uses " << BI.FirstUse << '-' << BI.LastUse
1334 << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1335 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1336
1337 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1338
1339 assert(IntvOut && "Must have register out");
1340 assert(BI.LiveOut && "Must be live-out");
1341 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1342
1343 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstUse)) {
1344 DEBUG(dbgs() << " after interference.\n");
1345 //
1346 // >>>> Interference before def.
1347 // | o---o---| Defined in block.
1348 // ========= Use IntvOut everywhere.
1349 //
1350 selectIntv(IntvOut);
1351 useIntv(BI.FirstUse, Stop);
1352 return;
1353 }
1354
1355 if (!EnterAfter || EnterAfter < BI.FirstUse.getBaseIndex()) {
1356 DEBUG(dbgs() << ", reload after interference.\n");
1357 //
1358 // >>>> Interference before def.
1359 // |---o---o---| Live-through, stack-in.
1360 // ____========= Enter IntvOut before first use.
1361 //
1362 selectIntv(IntvOut);
1363 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstUse));
1364 useIntv(Idx, Stop);
1365 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1366 return;
1367 }
1368
1369 // The interference is overlapping somewhere we wanted to use IntvOut. That
1370 // means we need to create a local interval that can be allocated a
1371 // different register.
1372 DEBUG(dbgs() << ", interference overlaps uses.\n");
1373 //
1374 // >>>>>>> Interference overlapping uses.
1375 // |---o---o---| Live-through, stack-in.
1376 // ____---====== Create local interval for interference range.
1377 //
1378 selectIntv(IntvOut);
1379 SlotIndex Idx = enterIntvAfter(EnterAfter);
1380 useIntv(Idx, Stop);
1381 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1382
1383 openIntv();
1384 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstUse));
1385 useIntv(From, Idx);
1386 }
1387