1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67 cl::desc("Generate low-precision inline sequences "
68 "for some float libcalls"),
69 cl::location(LimitFloatPrecision),
70 cl::init(0));
71
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89 const SDValue *Parts, unsigned NumParts,
90 EVT PartVT, EVT ValueVT);
91
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent. If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
getCopyFromParts(SelectionDAG & DAG,DebugLoc DL,const SDValue * Parts,unsigned NumParts,EVT PartVT,EVT ValueVT,ISD::NodeType AssertOp=ISD::DELETED_NODE)97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98 const SDValue *Parts,
99 unsigned NumParts, EVT PartVT, EVT ValueVT,
100 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101 if (ValueVT.isVector())
102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104 assert(NumParts > 0 && "No parts to assemble!");
105 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106 SDValue Val = Parts[0];
107
108 if (NumParts > 1) {
109 // Assemble the value from multiple parts.
110 if (ValueVT.isInteger()) {
111 unsigned PartBits = PartVT.getSizeInBits();
112 unsigned ValueBits = ValueVT.getSizeInBits();
113
114 // Assemble the power of 2 part.
115 unsigned RoundParts = NumParts & (NumParts - 1) ?
116 1 << Log2_32(NumParts) : NumParts;
117 unsigned RoundBits = PartBits * RoundParts;
118 EVT RoundVT = RoundBits == ValueBits ?
119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120 SDValue Lo, Hi;
121
122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124 if (RoundParts > 2) {
125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126 PartVT, HalfVT);
127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128 RoundParts / 2, PartVT, HalfVT);
129 } else {
130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132 }
133
134 if (TLI.isBigEndian())
135 std::swap(Lo, Hi);
136
137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139 if (RoundParts < NumParts) {
140 // Assemble the trailing non-power-of-2 part.
141 unsigned OddParts = NumParts - RoundParts;
142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143 Hi = getCopyFromParts(DAG, DL,
144 Parts + RoundParts, OddParts, PartVT, OddVT);
145
146 // Combine the round and odd parts.
147 Lo = Val;
148 if (TLI.isBigEndian())
149 std::swap(Lo, Hi);
150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153 DAG.getConstant(Lo.getValueType().getSizeInBits(),
154 TLI.getPointerTy()));
155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157 }
158 } else if (PartVT.isFloatingPoint()) {
159 // FP split into multiple FP parts (for ppcf128)
160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161 "Unexpected split");
162 SDValue Lo, Hi;
163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165 if (TLI.isBigEndian())
166 std::swap(Lo, Hi);
167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168 } else {
169 // FP split into integer parts (soft fp)
170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171 !PartVT.isVector() && "Unexpected split");
172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174 }
175 }
176
177 // There is now one part, held in Val. Correct it to match ValueVT.
178 PartVT = Val.getValueType();
179
180 if (PartVT == ValueVT)
181 return Val;
182
183 if (PartVT.isInteger() && ValueVT.isInteger()) {
184 if (ValueVT.bitsLT(PartVT)) {
185 // For a truncate, see if we have any information to
186 // indicate whether the truncated bits will always be
187 // zero or sign-extension.
188 if (AssertOp != ISD::DELETED_NODE)
189 Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190 DAG.getValueType(ValueVT));
191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192 }
193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194 }
195
196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197 // FP_ROUND's are always exact here.
198 if (ValueVT.bitsLT(Val.getValueType()))
199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200 DAG.getIntPtrConstant(1));
201
202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203 }
204
205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208 llvm_unreachable("Unknown mismatch!");
209 return SDValue();
210 }
211
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent. If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,DebugLoc DL,const SDValue * Parts,unsigned NumParts,EVT PartVT,EVT ValueVT)217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218 const SDValue *Parts, unsigned NumParts,
219 EVT PartVT, EVT ValueVT) {
220 assert(ValueVT.isVector() && "Not a vector value");
221 assert(NumParts > 0 && "No parts to assemble!");
222 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223 SDValue Val = Parts[0];
224
225 // Handle a multi-element vector.
226 if (NumParts > 1) {
227 EVT IntermediateVT, RegisterVT;
228 unsigned NumIntermediates;
229 unsigned NumRegs =
230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231 NumIntermediates, RegisterVT);
232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233 NumParts = NumRegs; // Silence a compiler warning.
234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235 assert(RegisterVT == Parts[0].getValueType() &&
236 "Part type doesn't match part!");
237
238 // Assemble the parts into intermediate operands.
239 SmallVector<SDValue, 8> Ops(NumIntermediates);
240 if (NumIntermediates == NumParts) {
241 // If the register was not expanded, truncate or copy the value,
242 // as appropriate.
243 for (unsigned i = 0; i != NumParts; ++i)
244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245 PartVT, IntermediateVT);
246 } else if (NumParts > 0) {
247 // If the intermediate type was expanded, build the intermediate
248 // operands from the parts.
249 assert(NumParts % NumIntermediates == 0 &&
250 "Must expand into a divisible number of parts!");
251 unsigned Factor = NumParts / NumIntermediates;
252 for (unsigned i = 0; i != NumIntermediates; ++i)
253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254 PartVT, IntermediateVT);
255 }
256
257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258 // intermediate operands.
259 Val = DAG.getNode(IntermediateVT.isVector() ?
260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261 ValueVT, &Ops[0], NumIntermediates);
262 }
263
264 // There is now one part, held in Val. Correct it to match ValueVT.
265 PartVT = Val.getValueType();
266
267 if (PartVT == ValueVT)
268 return Val;
269
270 if (PartVT.isVector()) {
271 // If the element type of the source/dest vectors are the same, but the
272 // parts vector has more elements than the value vector, then we have a
273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
274 // elements we want.
275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277 "Cannot narrow, it would be a lossy transformation");
278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279 DAG.getIntPtrConstant(0));
280 }
281
282 // Vector/Vector bitcast.
283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287 "Cannot handle this kind of promotion");
288 // Promoted vector extract
289 bool Smaller = ValueVT.bitsLE(PartVT);
290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291 DL, ValueVT, Val);
292
293 }
294
295 // Trivial bitcast if the types are the same size and the destination
296 // vector type is legal.
297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298 TLI.isTypeLegal(ValueVT))
299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301 // Handle cases such as i8 -> <1 x i1>
302 assert(ValueVT.getVectorNumElements() == 1 &&
303 "Only trivial scalar-to-vector conversions should get here!");
304
305 if (ValueVT.getVectorNumElements() == 1 &&
306 ValueVT.getVectorElementType() != PartVT) {
307 bool Smaller = ValueVT.bitsLE(PartVT);
308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309 DL, ValueVT.getScalarType(), Val);
310 }
311
312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313 }
314
315
316
317
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319 SDValue Val, SDValue *Parts, unsigned NumParts,
320 EVT PartVT);
321
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts. If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
getCopyToParts(SelectionDAG & DAG,DebugLoc DL,SDValue Val,SDValue * Parts,unsigned NumParts,EVT PartVT,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326 SDValue Val, SDValue *Parts, unsigned NumParts,
327 EVT PartVT,
328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329 EVT ValueVT = Val.getValueType();
330
331 // Handle the vector case separately.
332 if (ValueVT.isVector())
333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336 unsigned PartBits = PartVT.getSizeInBits();
337 unsigned OrigNumParts = NumParts;
338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340 if (NumParts == 0)
341 return;
342
343 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344 if (PartVT == ValueVT) {
345 assert(NumParts == 1 && "No-op copy with multiple parts!");
346 Parts[0] = Val;
347 return;
348 }
349
350 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351 // If the parts cover more bits than the value has, promote the value.
352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353 assert(NumParts == 1 && "Do not know what to promote to!");
354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355 } else {
356 assert(PartVT.isInteger() && ValueVT.isInteger() &&
357 "Unknown mismatch!");
358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360 }
361 } else if (PartBits == ValueVT.getSizeInBits()) {
362 // Different types of the same size.
363 assert(NumParts == 1 && PartVT != ValueVT);
364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366 // If the parts cover less bits than value has, truncate the value.
367 assert(PartVT.isInteger() && ValueVT.isInteger() &&
368 "Unknown mismatch!");
369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371 }
372
373 // The value may have changed - recompute ValueVT.
374 ValueVT = Val.getValueType();
375 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376 "Failed to tile the value with PartVT!");
377
378 if (NumParts == 1) {
379 assert(PartVT == ValueVT && "Type conversion failed!");
380 Parts[0] = Val;
381 return;
382 }
383
384 // Expand the value into multiple parts.
385 if (NumParts & (NumParts - 1)) {
386 // The number of parts is not a power of 2. Split off and copy the tail.
387 assert(PartVT.isInteger() && ValueVT.isInteger() &&
388 "Do not know what to expand to!");
389 unsigned RoundParts = 1 << Log2_32(NumParts);
390 unsigned RoundBits = RoundParts * PartBits;
391 unsigned OddParts = NumParts - RoundParts;
392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393 DAG.getIntPtrConstant(RoundBits));
394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396 if (TLI.isBigEndian())
397 // The odd parts were reversed by getCopyToParts - unreverse them.
398 std::reverse(Parts + RoundParts, Parts + NumParts);
399
400 NumParts = RoundParts;
401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403 }
404
405 // The number of parts is a power of 2. Repeatedly bisect the value using
406 // EXTRACT_ELEMENT.
407 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408 EVT::getIntegerVT(*DAG.getContext(),
409 ValueVT.getSizeInBits()),
410 Val);
411
412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413 for (unsigned i = 0; i < NumParts; i += StepSize) {
414 unsigned ThisBits = StepSize * PartBits / 2;
415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416 SDValue &Part0 = Parts[i];
417 SDValue &Part1 = Parts[i+StepSize/2];
418
419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420 ThisVT, Part0, DAG.getIntPtrConstant(1));
421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422 ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424 if (ThisBits == PartBits && ThisVT != PartVT) {
425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427 }
428 }
429 }
430
431 if (TLI.isBigEndian())
432 std::reverse(Parts, Parts + OrigNumParts);
433 }
434
435
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,DebugLoc DL,SDValue Val,SDValue * Parts,unsigned NumParts,EVT PartVT)438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439 SDValue Val, SDValue *Parts, unsigned NumParts,
440 EVT PartVT) {
441 EVT ValueVT = Val.getValueType();
442 assert(ValueVT.isVector() && "Not a vector");
443 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445 if (NumParts == 1) {
446 if (PartVT == ValueVT) {
447 // Nothing to do.
448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449 // Bitconvert vector->vector case.
450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451 } else if (PartVT.isVector() &&
452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454 EVT ElementVT = PartVT.getVectorElementType();
455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
456 // undef elements.
457 SmallVector<SDValue, 16> Ops;
458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460 ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462 for (unsigned i = ValueVT.getVectorNumElements(),
463 e = PartVT.getVectorNumElements(); i != e; ++i)
464 Ops.push_back(DAG.getUNDEF(ElementVT));
465
466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468 // FIXME: Use CONCAT for 2x -> 4x.
469
470 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472 } else if (PartVT.isVector() &&
473 PartVT.getVectorElementType().bitsGE(
474 ValueVT.getVectorElementType()) &&
475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477 // Promoted vector extract
478 bool Smaller = PartVT.bitsLE(ValueVT);
479 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480 DL, PartVT, Val);
481 } else{
482 // Vector -> scalar conversion.
483 assert(ValueVT.getVectorNumElements() == 1 &&
484 "Only trivial vector-to-scalar conversions should get here!");
485 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486 PartVT, Val, DAG.getIntPtrConstant(0));
487
488 bool Smaller = ValueVT.bitsLE(PartVT);
489 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490 DL, PartVT, Val);
491 }
492
493 Parts[0] = Val;
494 return;
495 }
496
497 // Handle a multi-element vector.
498 EVT IntermediateVT, RegisterVT;
499 unsigned NumIntermediates;
500 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501 IntermediateVT,
502 NumIntermediates, RegisterVT);
503 unsigned NumElements = ValueVT.getVectorNumElements();
504
505 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506 NumParts = NumRegs; // Silence a compiler warning.
507 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509 // Split the vector into intermediate operands.
510 SmallVector<SDValue, 8> Ops(NumIntermediates);
511 for (unsigned i = 0; i != NumIntermediates; ++i) {
512 if (IntermediateVT.isVector())
513 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514 IntermediateVT, Val,
515 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516 else
517 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518 IntermediateVT, Val, DAG.getIntPtrConstant(i));
519 }
520
521 // Split the intermediate operands into legal parts.
522 if (NumParts == NumIntermediates) {
523 // If the register was not expanded, promote or copy the value,
524 // as appropriate.
525 for (unsigned i = 0; i != NumParts; ++i)
526 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527 } else if (NumParts > 0) {
528 // If the intermediate type was expanded, split each the value into
529 // legal parts.
530 assert(NumParts % NumIntermediates == 0 &&
531 "Must expand into a divisible number of parts!");
532 unsigned Factor = NumParts / NumIntermediates;
533 for (unsigned i = 0; i != NumIntermediates; ++i)
534 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535 }
536 }
537
538
539
540
541 namespace {
542 /// RegsForValue - This struct represents the registers (physical or virtual)
543 /// that a particular set of values is assigned, and the type information
544 /// about the value. The most common situation is to represent one value at a
545 /// time, but struct or array values are handled element-wise as multiple
546 /// values. The splitting of aggregates is performed recursively, so that we
547 /// never have aggregate-typed registers. The values at this point do not
548 /// necessarily have legal types, so each value may require one or more
549 /// registers of some legal type.
550 ///
551 struct RegsForValue {
552 /// ValueVTs - The value types of the values, which may not be legal, and
553 /// may need be promoted or synthesized from one or more registers.
554 ///
555 SmallVector<EVT, 4> ValueVTs;
556
557 /// RegVTs - The value types of the registers. This is the same size as
558 /// ValueVTs and it records, for each value, what the type of the assigned
559 /// register or registers are. (Individual values are never synthesized
560 /// from more than one type of register.)
561 ///
562 /// With virtual registers, the contents of RegVTs is redundant with TLI's
563 /// getRegisterType member function, however when with physical registers
564 /// it is necessary to have a separate record of the types.
565 ///
566 SmallVector<EVT, 4> RegVTs;
567
568 /// Regs - This list holds the registers assigned to the values.
569 /// Each legal or promoted value requires one register, and each
570 /// expanded value requires multiple registers.
571 ///
572 SmallVector<unsigned, 4> Regs;
573
RegsForValue__anonab8f6f930111::RegsForValue574 RegsForValue() {}
575
RegsForValue__anonab8f6f930111::RegsForValue576 RegsForValue(const SmallVector<unsigned, 4> ®s,
577 EVT regvt, EVT valuevt)
578 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
RegsForValue__anonab8f6f930111::RegsForValue580 RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581 unsigned Reg, Type *Ty) {
582 ComputeValueVTs(tli, Ty, ValueVTs);
583
584 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585 EVT ValueVT = ValueVTs[Value];
586 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587 EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588 for (unsigned i = 0; i != NumRegs; ++i)
589 Regs.push_back(Reg + i);
590 RegVTs.push_back(RegisterVT);
591 Reg += NumRegs;
592 }
593 }
594
595 /// areValueTypesLegal - Return true if types of all the values are legal.
areValueTypesLegal__anonab8f6f930111::RegsForValue596 bool areValueTypesLegal(const TargetLowering &TLI) {
597 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598 EVT RegisterVT = RegVTs[Value];
599 if (!TLI.isTypeLegal(RegisterVT))
600 return false;
601 }
602 return true;
603 }
604
605 /// append - Add the specified values to this one.
append__anonab8f6f930111::RegsForValue606 void append(const RegsForValue &RHS) {
607 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610 }
611
612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613 /// this value and returns the result as a ValueVTs value. This uses
614 /// Chain/Flag as the input and updates them for the output Chain/Flag.
615 /// If the Flag pointer is NULL, no flag is used.
616 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617 DebugLoc dl,
618 SDValue &Chain, SDValue *Flag) const;
619
620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621 /// specified value into the registers specified by this object. This uses
622 /// Chain/Flag as the input and updates them for the output Chain/Flag.
623 /// If the Flag pointer is NULL, no flag is used.
624 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625 SDValue &Chain, SDValue *Flag) const;
626
627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628 /// operand list. This adds the code marker, matching input operand index
629 /// (if applicable), and includes the number of values added into it.
630 void AddInlineAsmOperands(unsigned Kind,
631 bool HasMatching, unsigned MatchingIdx,
632 SelectionDAG &DAG,
633 std::vector<SDValue> &Ops) const;
634 };
635 }
636
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value. This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,DebugLoc dl,SDValue & Chain,SDValue * Flag) const641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642 FunctionLoweringInfo &FuncInfo,
643 DebugLoc dl,
644 SDValue &Chain, SDValue *Flag) const {
645 // A Value with type {} or [0 x %t] needs no registers.
646 if (ValueVTs.empty())
647 return SDValue();
648
649 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651 // Assemble the legal parts into the final values.
652 SmallVector<SDValue, 4> Values(ValueVTs.size());
653 SmallVector<SDValue, 8> Parts;
654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655 // Copy the legal parts from the registers.
656 EVT ValueVT = ValueVTs[Value];
657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658 EVT RegisterVT = RegVTs[Value];
659
660 Parts.resize(NumRegs);
661 for (unsigned i = 0; i != NumRegs; ++i) {
662 SDValue P;
663 if (Flag == 0) {
664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665 } else {
666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667 *Flag = P.getValue(2);
668 }
669
670 Chain = P.getValue(1);
671 Parts[i] = P;
672
673 // If the source register was virtual and if we know something about it,
674 // add an assert node.
675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676 !RegisterVT.isInteger() || RegisterVT.isVector())
677 continue;
678
679 const FunctionLoweringInfo::LiveOutInfo *LOI =
680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681 if (!LOI)
682 continue;
683
684 unsigned RegSize = RegisterVT.getSizeInBits();
685 unsigned NumSignBits = LOI->NumSignBits;
686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688 // FIXME: We capture more information than the dag can represent. For
689 // now, just use the tightest assertzext/assertsext possible.
690 bool isSExt = true;
691 EVT FromVT(MVT::Other);
692 if (NumSignBits == RegSize)
693 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
694 else if (NumZeroBits >= RegSize-1)
695 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
696 else if (NumSignBits > RegSize-8)
697 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
698 else if (NumZeroBits >= RegSize-8)
699 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
700 else if (NumSignBits > RegSize-16)
701 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
702 else if (NumZeroBits >= RegSize-16)
703 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704 else if (NumSignBits > RegSize-32)
705 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
706 else if (NumZeroBits >= RegSize-32)
707 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708 else
709 continue;
710
711 // Add an assertion node.
712 assert(FromVT != MVT::Other);
713 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714 RegisterVT, P, DAG.getValueType(FromVT));
715 }
716
717 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718 NumRegs, RegisterVT, ValueVT);
719 Part += NumRegs;
720 Parts.clear();
721 }
722
723 return DAG.getNode(ISD::MERGE_VALUES, dl,
724 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725 &Values[0], ValueVTs.size());
726 }
727
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object. This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
getCopyToRegs(SDValue Val,SelectionDAG & DAG,DebugLoc dl,SDValue & Chain,SDValue * Flag) const732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733 SDValue &Chain, SDValue *Flag) const {
734 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736 // Get the list of the values's legal parts.
737 unsigned NumRegs = Regs.size();
738 SmallVector<SDValue, 8> Parts(NumRegs);
739 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740 EVT ValueVT = ValueVTs[Value];
741 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742 EVT RegisterVT = RegVTs[Value];
743
744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745 &Parts[Part], NumParts, RegisterVT);
746 Part += NumParts;
747 }
748
749 // Copy the parts into the registers.
750 SmallVector<SDValue, 8> Chains(NumRegs);
751 for (unsigned i = 0; i != NumRegs; ++i) {
752 SDValue Part;
753 if (Flag == 0) {
754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755 } else {
756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757 *Flag = Part.getValue(1);
758 }
759
760 Chains[i] = Part.getValue(0);
761 }
762
763 if (NumRegs == 1 || Flag)
764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765 // flagged to it. That is the CopyToReg nodes and the user are considered
766 // a single scheduling unit. If we create a TokenFactor and return it as
767 // chain, then the TokenFactor is both a predecessor (operand) of the
768 // user as well as a successor (the TF operands are flagged to the user).
769 // c1, f1 = CopyToReg
770 // c2, f2 = CopyToReg
771 // c3 = TokenFactor c1, c2
772 // ...
773 // = op c3, ..., f2
774 Chain = Chains[NumRegs-1];
775 else
776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777 }
778
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list. This adds the code marker and includes the number of
781 /// values added into it.
AddInlineAsmOperands(unsigned Code,bool HasMatching,unsigned MatchingIdx,SelectionDAG & DAG,std::vector<SDValue> & Ops) const782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783 unsigned MatchingIdx,
784 SelectionDAG &DAG,
785 std::vector<SDValue> &Ops) const {
786 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789 if (HasMatching)
790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792 Ops.push_back(Res);
793
794 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796 EVT RegisterVT = RegVTs[Value];
797 for (unsigned i = 0; i != NumRegs; ++i) {
798 assert(Reg < Regs.size() && "Mismatch in # registers expected");
799 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800 }
801 }
802 }
803
init(GCFunctionInfo * gfi,AliasAnalysis & aa)804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805 AA = &aa;
806 GFI = gfi;
807 TD = DAG.getTarget().getTargetData();
808 }
809
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
815 /// consumed.
clear()816 void SelectionDAGBuilder::clear() {
817 NodeMap.clear();
818 UnusedArgNodeMap.clear();
819 PendingLoads.clear();
820 PendingExports.clear();
821 CurDebugLoc = DebugLoc();
822 HasTailCall = false;
823 }
824
825 /// clearDanglingDebugInfo - Clear the dangling debug information
826 /// map. This function is seperated from the clear so that debug
827 /// information that is dangling in a basic block can be properly
828 /// resolved in a different basic block. This allows the
829 /// SelectionDAG to resolve dangling debug information attached
830 /// to PHI nodes.
clearDanglingDebugInfo()831 void SelectionDAGBuilder::clearDanglingDebugInfo() {
832 DanglingDebugInfoMap.clear();
833 }
834
835 /// getRoot - Return the current virtual root of the Selection DAG,
836 /// flushing any PendingLoad items. This must be done before emitting
837 /// a store or any other node that may need to be ordered after any
838 /// prior load instructions.
839 ///
getRoot()840 SDValue SelectionDAGBuilder::getRoot() {
841 if (PendingLoads.empty())
842 return DAG.getRoot();
843
844 if (PendingLoads.size() == 1) {
845 SDValue Root = PendingLoads[0];
846 DAG.setRoot(Root);
847 PendingLoads.clear();
848 return Root;
849 }
850
851 // Otherwise, we have to make a token factor node.
852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853 &PendingLoads[0], PendingLoads.size());
854 PendingLoads.clear();
855 DAG.setRoot(Root);
856 return Root;
857 }
858
859 /// getControlRoot - Similar to getRoot, but instead of flushing all the
860 /// PendingLoad items, flush all the PendingExports items. It is necessary
861 /// to do this before emitting a terminator instruction.
862 ///
getControlRoot()863 SDValue SelectionDAGBuilder::getControlRoot() {
864 SDValue Root = DAG.getRoot();
865
866 if (PendingExports.empty())
867 return Root;
868
869 // Turn all of the CopyToReg chains into one factored node.
870 if (Root.getOpcode() != ISD::EntryToken) {
871 unsigned i = 0, e = PendingExports.size();
872 for (; i != e; ++i) {
873 assert(PendingExports[i].getNode()->getNumOperands() > 1);
874 if (PendingExports[i].getNode()->getOperand(0) == Root)
875 break; // Don't add the root if we already indirectly depend on it.
876 }
877
878 if (i == e)
879 PendingExports.push_back(Root);
880 }
881
882 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883 &PendingExports[0],
884 PendingExports.size());
885 PendingExports.clear();
886 DAG.setRoot(Root);
887 return Root;
888 }
889
AssignOrderingToNode(const SDNode * Node)890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892 DAG.AssignOrdering(Node, SDNodeOrder);
893
894 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895 AssignOrderingToNode(Node->getOperand(I).getNode());
896 }
897
visit(const Instruction & I)898 void SelectionDAGBuilder::visit(const Instruction &I) {
899 // Set up outgoing PHI node register values before emitting the terminator.
900 if (isa<TerminatorInst>(&I))
901 HandlePHINodesInSuccessorBlocks(I.getParent());
902
903 CurDebugLoc = I.getDebugLoc();
904
905 visit(I.getOpcode(), I);
906
907 if (!isa<TerminatorInst>(&I) && !HasTailCall)
908 CopyToExportRegsIfNeeded(&I);
909
910 CurDebugLoc = DebugLoc();
911 }
912
visitPHI(const PHINode &)913 void SelectionDAGBuilder::visitPHI(const PHINode &) {
914 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915 }
916
visit(unsigned Opcode,const User & I)917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918 // Note: this doesn't use InstVisitor, because it has to work with
919 // ConstantExpr's in addition to instructions.
920 switch (Opcode) {
921 default: llvm_unreachable("Unknown instruction type encountered!");
922 // Build the switch statement using the Instruction.def file.
923 #define HANDLE_INST(NUM, OPCODE, CLASS) \
924 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925 #include "llvm/Instruction.def"
926 }
927
928 // Assign the ordering to the freshly created DAG nodes.
929 if (NodeMap.count(&I)) {
930 ++SDNodeOrder;
931 AssignOrderingToNode(getValue(&I).getNode());
932 }
933 }
934
935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938 SDValue Val) {
939 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940 if (DDI.getDI()) {
941 const DbgValueInst *DI = DDI.getDI();
942 DebugLoc dl = DDI.getdl();
943 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944 MDNode *Variable = DI->getVariable();
945 uint64_t Offset = DI->getOffset();
946 SDDbgValue *SDV;
947 if (Val.getNode()) {
948 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949 SDV = DAG.getDbgValue(Variable, Val.getNode(),
950 Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951 DAG.AddDbgValue(SDV, Val.getNode(), false);
952 }
953 } else
954 DEBUG(dbgs() << "Dropping debug info for " << DI);
955 DanglingDebugInfoMap[V] = DanglingDebugInfo();
956 }
957 }
958
959 // getValue - Return an SDValue for the given Value.
getValue(const Value * V)960 SDValue SelectionDAGBuilder::getValue(const Value *V) {
961 // If we already have an SDValue for this value, use it. It's important
962 // to do this first, so that we don't create a CopyFromReg if we already
963 // have a regular SDValue.
964 SDValue &N = NodeMap[V];
965 if (N.getNode()) return N;
966
967 // If there's a virtual register allocated and initialized for this
968 // value, use it.
969 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970 if (It != FuncInfo.ValueMap.end()) {
971 unsigned InReg = It->second;
972 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973 SDValue Chain = DAG.getEntryNode();
974 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975 resolveDanglingDebugInfo(V, N);
976 return N;
977 }
978
979 // Otherwise create a new SDValue and remember it.
980 SDValue Val = getValueImpl(V);
981 NodeMap[V] = Val;
982 resolveDanglingDebugInfo(V, Val);
983 return Val;
984 }
985
986 /// getNonRegisterValue - Return an SDValue for the given Value, but
987 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989 // If we already have an SDValue for this value, use it.
990 SDValue &N = NodeMap[V];
991 if (N.getNode()) return N;
992
993 // Otherwise create a new SDValue and remember it.
994 SDValue Val = getValueImpl(V);
995 NodeMap[V] = Val;
996 resolveDanglingDebugInfo(V, Val);
997 return Val;
998 }
999
1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003 if (const Constant *C = dyn_cast<Constant>(V)) {
1004 EVT VT = TLI.getValueType(V->getType(), true);
1005
1006 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007 return DAG.getConstant(*CI, VT);
1008
1009 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011
1012 if (isa<ConstantPointerNull>(C))
1013 return DAG.getConstant(0, TLI.getPointerTy());
1014
1015 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016 return DAG.getConstantFP(*CFP, VT);
1017
1018 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019 return DAG.getUNDEF(VT);
1020
1021 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022 visit(CE->getOpcode(), *CE);
1023 SDValue N1 = NodeMap[V];
1024 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025 return N1;
1026 }
1027
1028 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029 SmallVector<SDValue, 4> Constants;
1030 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031 OI != OE; ++OI) {
1032 SDNode *Val = getValue(*OI).getNode();
1033 // If the operand is an empty aggregate, there are no values.
1034 if (!Val) continue;
1035 // Add each leaf value from the operand to the Constants list
1036 // to form a flattened list of all the values.
1037 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038 Constants.push_back(SDValue(Val, i));
1039 }
1040
1041 return DAG.getMergeValues(&Constants[0], Constants.size(),
1042 getCurDebugLoc());
1043 }
1044
1045 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047 "Unknown struct or array constant!");
1048
1049 SmallVector<EVT, 4> ValueVTs;
1050 ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051 unsigned NumElts = ValueVTs.size();
1052 if (NumElts == 0)
1053 return SDValue(); // empty struct
1054 SmallVector<SDValue, 4> Constants(NumElts);
1055 for (unsigned i = 0; i != NumElts; ++i) {
1056 EVT EltVT = ValueVTs[i];
1057 if (isa<UndefValue>(C))
1058 Constants[i] = DAG.getUNDEF(EltVT);
1059 else if (EltVT.isFloatingPoint())
1060 Constants[i] = DAG.getConstantFP(0, EltVT);
1061 else
1062 Constants[i] = DAG.getConstant(0, EltVT);
1063 }
1064
1065 return DAG.getMergeValues(&Constants[0], NumElts,
1066 getCurDebugLoc());
1067 }
1068
1069 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070 return DAG.getBlockAddress(BA, VT);
1071
1072 VectorType *VecTy = cast<VectorType>(V->getType());
1073 unsigned NumElements = VecTy->getNumElements();
1074
1075 // Now that we know the number and type of the elements, get that number of
1076 // elements into the Ops array based on what kind of constant it is.
1077 SmallVector<SDValue, 16> Ops;
1078 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079 for (unsigned i = 0; i != NumElements; ++i)
1080 Ops.push_back(getValue(CP->getOperand(i)));
1081 } else {
1082 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083 EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084
1085 SDValue Op;
1086 if (EltVT.isFloatingPoint())
1087 Op = DAG.getConstantFP(0, EltVT);
1088 else
1089 Op = DAG.getConstant(0, EltVT);
1090 Ops.assign(NumElements, Op);
1091 }
1092
1093 // Create a BUILD_VECTOR node.
1094 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095 VT, &Ops[0], Ops.size());
1096 }
1097
1098 // If this is a static alloca, generate it as the frameindex instead of
1099 // computation.
1100 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101 DenseMap<const AllocaInst*, int>::iterator SI =
1102 FuncInfo.StaticAllocaMap.find(AI);
1103 if (SI != FuncInfo.StaticAllocaMap.end())
1104 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105 }
1106
1107 // If this is an instruction which fast-isel has deferred, select it now.
1108 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111 SDValue Chain = DAG.getEntryNode();
1112 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113 }
1114
1115 llvm_unreachable("Can't get register for value!");
1116 return SDValue();
1117 }
1118
visitRet(const ReturnInst & I)1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120 SDValue Chain = getControlRoot();
1121 SmallVector<ISD::OutputArg, 8> Outs;
1122 SmallVector<SDValue, 8> OutVals;
1123
1124 if (!FuncInfo.CanLowerReturn) {
1125 unsigned DemoteReg = FuncInfo.DemoteRegister;
1126 const Function *F = I.getParent()->getParent();
1127
1128 // Emit a store of the return value through the virtual register.
1129 // Leave Outs empty so that LowerReturn won't try to load return
1130 // registers the usual way.
1131 SmallVector<EVT, 1> PtrValueVTs;
1132 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133 PtrValueVTs);
1134
1135 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136 SDValue RetOp = getValue(I.getOperand(0));
1137
1138 SmallVector<EVT, 4> ValueVTs;
1139 SmallVector<uint64_t, 4> Offsets;
1140 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141 unsigned NumValues = ValueVTs.size();
1142
1143 SmallVector<SDValue, 4> Chains(NumValues);
1144 for (unsigned i = 0; i != NumValues; ++i) {
1145 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146 RetPtr.getValueType(), RetPtr,
1147 DAG.getIntPtrConstant(Offsets[i]));
1148 Chains[i] =
1149 DAG.getStore(Chain, getCurDebugLoc(),
1150 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151 // FIXME: better loc info would be nice.
1152 Add, MachinePointerInfo(), false, false, 0);
1153 }
1154
1155 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156 MVT::Other, &Chains[0], NumValues);
1157 } else if (I.getNumOperands() != 0) {
1158 SmallVector<EVT, 4> ValueVTs;
1159 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160 unsigned NumValues = ValueVTs.size();
1161 if (NumValues) {
1162 SDValue RetOp = getValue(I.getOperand(0));
1163 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164 EVT VT = ValueVTs[j];
1165
1166 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167
1168 const Function *F = I.getParent()->getParent();
1169 if (F->paramHasAttr(0, Attribute::SExt))
1170 ExtendKind = ISD::SIGN_EXTEND;
1171 else if (F->paramHasAttr(0, Attribute::ZExt))
1172 ExtendKind = ISD::ZERO_EXTEND;
1173
1174 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176
1177 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179 SmallVector<SDValue, 4> Parts(NumParts);
1180 getCopyToParts(DAG, getCurDebugLoc(),
1181 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182 &Parts[0], NumParts, PartVT, ExtendKind);
1183
1184 // 'inreg' on function refers to return value
1185 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186 if (F->paramHasAttr(0, Attribute::InReg))
1187 Flags.setInReg();
1188
1189 // Propagate extension type if any
1190 if (ExtendKind == ISD::SIGN_EXTEND)
1191 Flags.setSExt();
1192 else if (ExtendKind == ISD::ZERO_EXTEND)
1193 Flags.setZExt();
1194
1195 for (unsigned i = 0; i < NumParts; ++i) {
1196 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197 /*isfixed=*/true));
1198 OutVals.push_back(Parts[i]);
1199 }
1200 }
1201 }
1202 }
1203
1204 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205 CallingConv::ID CallConv =
1206 DAG.getMachineFunction().getFunction()->getCallingConv();
1207 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208 Outs, OutVals, getCurDebugLoc(), DAG);
1209
1210 // Verify that the target's LowerReturn behaved as expected.
1211 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212 "LowerReturn didn't return a valid chain!");
1213
1214 // Update the DAG with the new chain value resulting from return lowering.
1215 DAG.setRoot(Chain);
1216 }
1217
1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219 /// created for it, emit nodes to copy the value into the virtual
1220 /// registers.
CopyToExportRegsIfNeeded(const Value * V)1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222 // Skip empty types
1223 if (V->getType()->isEmptyTy())
1224 return;
1225
1226 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227 if (VMI != FuncInfo.ValueMap.end()) {
1228 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229 CopyValueToVirtualRegister(V, VMI->second);
1230 }
1231 }
1232
1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234 /// the current basic block, add it to ValueMap now so that we'll get a
1235 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237 // No need to export constants.
1238 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239
1240 // Already exported?
1241 if (FuncInfo.isExportedInst(V)) return;
1242
1243 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244 CopyValueToVirtualRegister(V, Reg);
1245 }
1246
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248 const BasicBlock *FromBB) {
1249 // The operands of the setcc have to be in this block. We don't know
1250 // how to export them from some other block.
1251 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252 // Can export from current BB.
1253 if (VI->getParent() == FromBB)
1254 return true;
1255
1256 // Is already exported, noop.
1257 return FuncInfo.isExportedInst(V);
1258 }
1259
1260 // If this is an argument, we can export it if the BB is the entry block or
1261 // if it is already exported.
1262 if (isa<Argument>(V)) {
1263 if (FromBB == &FromBB->getParent()->getEntryBlock())
1264 return true;
1265
1266 // Otherwise, can only export this if it is already exported.
1267 return FuncInfo.isExportedInst(V);
1268 }
1269
1270 // Otherwise, constants can always be exported.
1271 return true;
1272 }
1273
1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
getEdgeWeight(MachineBasicBlock * Src,MachineBasicBlock * Dst)1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276 MachineBasicBlock *Dst) {
1277 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278 if (!BPI)
1279 return 0;
1280 BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock());
1281 BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock());
1282 return BPI->getEdgeWeight(SrcBB, DstBB);
1283 }
1284
addSuccessorWithWeight(MachineBasicBlock * Src,MachineBasicBlock * Dst)1285 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src,
1286 MachineBasicBlock *Dst) {
1287 uint32_t weight = getEdgeWeight(Src, Dst);
1288 Src->addSuccessor(Dst, weight);
1289 }
1290
1291
InBlock(const Value * V,const BasicBlock * BB)1292 static bool InBlock(const Value *V, const BasicBlock *BB) {
1293 if (const Instruction *I = dyn_cast<Instruction>(V))
1294 return I->getParent() == BB;
1295 return true;
1296 }
1297
1298 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1299 /// This function emits a branch and is used at the leaves of an OR or an
1300 /// AND operator tree.
1301 ///
1302 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB)1303 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1304 MachineBasicBlock *TBB,
1305 MachineBasicBlock *FBB,
1306 MachineBasicBlock *CurBB,
1307 MachineBasicBlock *SwitchBB) {
1308 const BasicBlock *BB = CurBB->getBasicBlock();
1309
1310 // If the leaf of the tree is a comparison, merge the condition into
1311 // the caseblock.
1312 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1313 // The operands of the cmp have to be in this block. We don't know
1314 // how to export them from some other block. If this is the first block
1315 // of the sequence, no exporting is needed.
1316 if (CurBB == SwitchBB ||
1317 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1318 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1319 ISD::CondCode Condition;
1320 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1321 Condition = getICmpCondCode(IC->getPredicate());
1322 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1323 Condition = getFCmpCondCode(FC->getPredicate());
1324 } else {
1325 Condition = ISD::SETEQ; // silence warning.
1326 llvm_unreachable("Unknown compare instruction");
1327 }
1328
1329 CaseBlock CB(Condition, BOp->getOperand(0),
1330 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1331 SwitchCases.push_back(CB);
1332 return;
1333 }
1334 }
1335
1336 // Create a CaseBlock record representing this branch.
1337 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1338 NULL, TBB, FBB, CurBB);
1339 SwitchCases.push_back(CB);
1340 }
1341
1342 /// FindMergedConditions - If Cond is an expression like
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,unsigned Opc)1343 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1344 MachineBasicBlock *TBB,
1345 MachineBasicBlock *FBB,
1346 MachineBasicBlock *CurBB,
1347 MachineBasicBlock *SwitchBB,
1348 unsigned Opc) {
1349 // If this node is not part of the or/and tree, emit it as a branch.
1350 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1351 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1352 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1353 BOp->getParent() != CurBB->getBasicBlock() ||
1354 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1355 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1356 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1357 return;
1358 }
1359
1360 // Create TmpBB after CurBB.
1361 MachineFunction::iterator BBI = CurBB;
1362 MachineFunction &MF = DAG.getMachineFunction();
1363 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1364 CurBB->getParent()->insert(++BBI, TmpBB);
1365
1366 if (Opc == Instruction::Or) {
1367 // Codegen X | Y as:
1368 // jmp_if_X TBB
1369 // jmp TmpBB
1370 // TmpBB:
1371 // jmp_if_Y TBB
1372 // jmp FBB
1373 //
1374
1375 // Emit the LHS condition.
1376 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1377
1378 // Emit the RHS condition into TmpBB.
1379 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1380 } else {
1381 assert(Opc == Instruction::And && "Unknown merge op!");
1382 // Codegen X & Y as:
1383 // jmp_if_X TmpBB
1384 // jmp FBB
1385 // TmpBB:
1386 // jmp_if_Y TBB
1387 // jmp FBB
1388 //
1389 // This requires creation of TmpBB after CurBB.
1390
1391 // Emit the LHS condition.
1392 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1393
1394 // Emit the RHS condition into TmpBB.
1395 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1396 }
1397 }
1398
1399 /// If the set of cases should be emitted as a series of branches, return true.
1400 /// If we should emit this as a bunch of and/or'd together conditions, return
1401 /// false.
1402 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)1403 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1404 if (Cases.size() != 2) return true;
1405
1406 // If this is two comparisons of the same values or'd or and'd together, they
1407 // will get folded into a single comparison, so don't emit two blocks.
1408 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1409 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1410 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1411 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1412 return false;
1413 }
1414
1415 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1416 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1417 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1418 Cases[0].CC == Cases[1].CC &&
1419 isa<Constant>(Cases[0].CmpRHS) &&
1420 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1421 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1422 return false;
1423 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1424 return false;
1425 }
1426
1427 return true;
1428 }
1429
visitBr(const BranchInst & I)1430 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1431 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1432
1433 // Update machine-CFG edges.
1434 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1435
1436 // Figure out which block is immediately after the current one.
1437 MachineBasicBlock *NextBlock = 0;
1438 MachineFunction::iterator BBI = BrMBB;
1439 if (++BBI != FuncInfo.MF->end())
1440 NextBlock = BBI;
1441
1442 if (I.isUnconditional()) {
1443 // Update machine-CFG edges.
1444 BrMBB->addSuccessor(Succ0MBB);
1445
1446 // If this is not a fall-through branch, emit the branch.
1447 if (Succ0MBB != NextBlock)
1448 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1449 MVT::Other, getControlRoot(),
1450 DAG.getBasicBlock(Succ0MBB)));
1451
1452 return;
1453 }
1454
1455 // If this condition is one of the special cases we handle, do special stuff
1456 // now.
1457 const Value *CondVal = I.getCondition();
1458 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1459
1460 // If this is a series of conditions that are or'd or and'd together, emit
1461 // this as a sequence of branches instead of setcc's with and/or operations.
1462 // As long as jumps are not expensive, this should improve performance.
1463 // For example, instead of something like:
1464 // cmp A, B
1465 // C = seteq
1466 // cmp D, E
1467 // F = setle
1468 // or C, F
1469 // jnz foo
1470 // Emit:
1471 // cmp A, B
1472 // je foo
1473 // cmp D, E
1474 // jle foo
1475 //
1476 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1477 if (!TLI.isJumpExpensive() &&
1478 BOp->hasOneUse() &&
1479 (BOp->getOpcode() == Instruction::And ||
1480 BOp->getOpcode() == Instruction::Or)) {
1481 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1482 BOp->getOpcode());
1483 // If the compares in later blocks need to use values not currently
1484 // exported from this block, export them now. This block should always
1485 // be the first entry.
1486 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1487
1488 // Allow some cases to be rejected.
1489 if (ShouldEmitAsBranches(SwitchCases)) {
1490 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1491 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1492 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1493 }
1494
1495 // Emit the branch for this block.
1496 visitSwitchCase(SwitchCases[0], BrMBB);
1497 SwitchCases.erase(SwitchCases.begin());
1498 return;
1499 }
1500
1501 // Okay, we decided not to do this, remove any inserted MBB's and clear
1502 // SwitchCases.
1503 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1504 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1505
1506 SwitchCases.clear();
1507 }
1508 }
1509
1510 // Create a CaseBlock record representing this branch.
1511 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1512 NULL, Succ0MBB, Succ1MBB, BrMBB);
1513
1514 // Use visitSwitchCase to actually insert the fast branch sequence for this
1515 // cond branch.
1516 visitSwitchCase(CB, BrMBB);
1517 }
1518
1519 /// visitSwitchCase - Emits the necessary code to represent a single node in
1520 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)1521 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1522 MachineBasicBlock *SwitchBB) {
1523 SDValue Cond;
1524 SDValue CondLHS = getValue(CB.CmpLHS);
1525 DebugLoc dl = getCurDebugLoc();
1526
1527 // Build the setcc now.
1528 if (CB.CmpMHS == NULL) {
1529 // Fold "(X == true)" to X and "(X == false)" to !X to
1530 // handle common cases produced by branch lowering.
1531 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1532 CB.CC == ISD::SETEQ)
1533 Cond = CondLHS;
1534 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1535 CB.CC == ISD::SETEQ) {
1536 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1537 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1538 } else
1539 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1540 } else {
1541 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1542
1543 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1544 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1545
1546 SDValue CmpOp = getValue(CB.CmpMHS);
1547 EVT VT = CmpOp.getValueType();
1548
1549 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1550 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1551 ISD::SETLE);
1552 } else {
1553 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1554 VT, CmpOp, DAG.getConstant(Low, VT));
1555 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1556 DAG.getConstant(High-Low, VT), ISD::SETULE);
1557 }
1558 }
1559
1560 // Update successor info
1561 addSuccessorWithWeight(SwitchBB, CB.TrueBB);
1562 addSuccessorWithWeight(SwitchBB, CB.FalseBB);
1563
1564 // Set NextBlock to be the MBB immediately after the current one, if any.
1565 // This is used to avoid emitting unnecessary branches to the next block.
1566 MachineBasicBlock *NextBlock = 0;
1567 MachineFunction::iterator BBI = SwitchBB;
1568 if (++BBI != FuncInfo.MF->end())
1569 NextBlock = BBI;
1570
1571 // If the lhs block is the next block, invert the condition so that we can
1572 // fall through to the lhs instead of the rhs block.
1573 if (CB.TrueBB == NextBlock) {
1574 std::swap(CB.TrueBB, CB.FalseBB);
1575 SDValue True = DAG.getConstant(1, Cond.getValueType());
1576 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1577 }
1578
1579 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1580 MVT::Other, getControlRoot(), Cond,
1581 DAG.getBasicBlock(CB.TrueBB));
1582
1583 // Insert the false branch. Do this even if it's a fall through branch,
1584 // this makes it easier to do DAG optimizations which require inverting
1585 // the branch condition.
1586 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1587 DAG.getBasicBlock(CB.FalseBB));
1588
1589 DAG.setRoot(BrCond);
1590 }
1591
1592 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(JumpTable & JT)1593 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1594 // Emit the code for the jump table
1595 assert(JT.Reg != -1U && "Should lower JT Header first!");
1596 EVT PTy = TLI.getPointerTy();
1597 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1598 JT.Reg, PTy);
1599 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1600 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1601 MVT::Other, Index.getValue(1),
1602 Table, Index);
1603 DAG.setRoot(BrJumpTable);
1604 }
1605
1606 /// visitJumpTableHeader - This function emits necessary code to produce index
1607 /// in the JumpTable from switch case.
visitJumpTableHeader(JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)1608 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1609 JumpTableHeader &JTH,
1610 MachineBasicBlock *SwitchBB) {
1611 // Subtract the lowest switch case value from the value being switched on and
1612 // conditional branch to default mbb if the result is greater than the
1613 // difference between smallest and largest cases.
1614 SDValue SwitchOp = getValue(JTH.SValue);
1615 EVT VT = SwitchOp.getValueType();
1616 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1617 DAG.getConstant(JTH.First, VT));
1618
1619 // The SDNode we just created, which holds the value being switched on minus
1620 // the smallest case value, needs to be copied to a virtual register so it
1621 // can be used as an index into the jump table in a subsequent basic block.
1622 // This value may be smaller or larger than the target's pointer type, and
1623 // therefore require extension or truncating.
1624 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1625
1626 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1627 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1628 JumpTableReg, SwitchOp);
1629 JT.Reg = JumpTableReg;
1630
1631 // Emit the range check for the jump table, and branch to the default block
1632 // for the switch statement if the value being switched on exceeds the largest
1633 // case in the switch.
1634 SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1635 TLI.getSetCCResultType(Sub.getValueType()), Sub,
1636 DAG.getConstant(JTH.Last-JTH.First,VT),
1637 ISD::SETUGT);
1638
1639 // Set NextBlock to be the MBB immediately after the current one, if any.
1640 // This is used to avoid emitting unnecessary branches to the next block.
1641 MachineBasicBlock *NextBlock = 0;
1642 MachineFunction::iterator BBI = SwitchBB;
1643
1644 if (++BBI != FuncInfo.MF->end())
1645 NextBlock = BBI;
1646
1647 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1648 MVT::Other, CopyTo, CMP,
1649 DAG.getBasicBlock(JT.Default));
1650
1651 if (JT.MBB != NextBlock)
1652 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1653 DAG.getBasicBlock(JT.MBB));
1654
1655 DAG.setRoot(BrCond);
1656 }
1657
1658 /// visitBitTestHeader - This function emits necessary code to produce value
1659 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)1660 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1661 MachineBasicBlock *SwitchBB) {
1662 // Subtract the minimum value
1663 SDValue SwitchOp = getValue(B.SValue);
1664 EVT VT = SwitchOp.getValueType();
1665 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1666 DAG.getConstant(B.First, VT));
1667
1668 // Check range
1669 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1670 TLI.getSetCCResultType(Sub.getValueType()),
1671 Sub, DAG.getConstant(B.Range, VT),
1672 ISD::SETUGT);
1673
1674 // Determine the type of the test operands.
1675 bool UsePtrType = false;
1676 if (!TLI.isTypeLegal(VT))
1677 UsePtrType = true;
1678 else {
1679 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1680 if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1681 // Switch table case range are encoded into series of masks.
1682 // Just use pointer type, it's guaranteed to fit.
1683 UsePtrType = true;
1684 break;
1685 }
1686 }
1687 if (UsePtrType) {
1688 VT = TLI.getPointerTy();
1689 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1690 }
1691
1692 B.RegVT = VT;
1693 B.Reg = FuncInfo.CreateReg(VT);
1694 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1695 B.Reg, Sub);
1696
1697 // Set NextBlock to be the MBB immediately after the current one, if any.
1698 // This is used to avoid emitting unnecessary branches to the next block.
1699 MachineBasicBlock *NextBlock = 0;
1700 MachineFunction::iterator BBI = SwitchBB;
1701 if (++BBI != FuncInfo.MF->end())
1702 NextBlock = BBI;
1703
1704 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1705
1706 addSuccessorWithWeight(SwitchBB, B.Default);
1707 addSuccessorWithWeight(SwitchBB, MBB);
1708
1709 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1710 MVT::Other, CopyTo, RangeCmp,
1711 DAG.getBasicBlock(B.Default));
1712
1713 if (MBB != NextBlock)
1714 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1715 DAG.getBasicBlock(MBB));
1716
1717 DAG.setRoot(BrRange);
1718 }
1719
1720 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)1721 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1722 MachineBasicBlock* NextMBB,
1723 unsigned Reg,
1724 BitTestCase &B,
1725 MachineBasicBlock *SwitchBB) {
1726 EVT VT = BB.RegVT;
1727 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1728 Reg, VT);
1729 SDValue Cmp;
1730 unsigned PopCount = CountPopulation_64(B.Mask);
1731 if (PopCount == 1) {
1732 // Testing for a single bit; just compare the shift count with what it
1733 // would need to be to shift a 1 bit in that position.
1734 Cmp = DAG.getSetCC(getCurDebugLoc(),
1735 TLI.getSetCCResultType(VT),
1736 ShiftOp,
1737 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1738 ISD::SETEQ);
1739 } else if (PopCount == BB.Range) {
1740 // There is only one zero bit in the range, test for it directly.
1741 Cmp = DAG.getSetCC(getCurDebugLoc(),
1742 TLI.getSetCCResultType(VT),
1743 ShiftOp,
1744 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1745 ISD::SETNE);
1746 } else {
1747 // Make desired shift
1748 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1749 DAG.getConstant(1, VT), ShiftOp);
1750
1751 // Emit bit tests and jumps
1752 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1753 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1754 Cmp = DAG.getSetCC(getCurDebugLoc(),
1755 TLI.getSetCCResultType(VT),
1756 AndOp, DAG.getConstant(0, VT),
1757 ISD::SETNE);
1758 }
1759
1760 addSuccessorWithWeight(SwitchBB, B.TargetBB);
1761 addSuccessorWithWeight(SwitchBB, NextMBB);
1762
1763 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1764 MVT::Other, getControlRoot(),
1765 Cmp, DAG.getBasicBlock(B.TargetBB));
1766
1767 // Set NextBlock to be the MBB immediately after the current one, if any.
1768 // This is used to avoid emitting unnecessary branches to the next block.
1769 MachineBasicBlock *NextBlock = 0;
1770 MachineFunction::iterator BBI = SwitchBB;
1771 if (++BBI != FuncInfo.MF->end())
1772 NextBlock = BBI;
1773
1774 if (NextMBB != NextBlock)
1775 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1776 DAG.getBasicBlock(NextMBB));
1777
1778 DAG.setRoot(BrAnd);
1779 }
1780
visitInvoke(const InvokeInst & I)1781 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1782 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1783
1784 // Retrieve successors.
1785 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1786 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1787
1788 const Value *Callee(I.getCalledValue());
1789 if (isa<InlineAsm>(Callee))
1790 visitInlineAsm(&I);
1791 else
1792 LowerCallTo(&I, getValue(Callee), false, LandingPad);
1793
1794 // If the value of the invoke is used outside of its defining block, make it
1795 // available as a virtual register.
1796 CopyToExportRegsIfNeeded(&I);
1797
1798 // Update successor info
1799 InvokeMBB->addSuccessor(Return);
1800 InvokeMBB->addSuccessor(LandingPad);
1801
1802 // Drop into normal successor.
1803 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1804 MVT::Other, getControlRoot(),
1805 DAG.getBasicBlock(Return)));
1806 }
1807
visitUnwind(const UnwindInst & I)1808 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1809 }
1810
1811 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1812 /// small case ranges).
handleSmallSwitchRange(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)1813 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1814 CaseRecVector& WorkList,
1815 const Value* SV,
1816 MachineBasicBlock *Default,
1817 MachineBasicBlock *SwitchBB) {
1818 Case& BackCase = *(CR.Range.second-1);
1819
1820 // Size is the number of Cases represented by this range.
1821 size_t Size = CR.Range.second - CR.Range.first;
1822 if (Size > 3)
1823 return false;
1824
1825 // Get the MachineFunction which holds the current MBB. This is used when
1826 // inserting any additional MBBs necessary to represent the switch.
1827 MachineFunction *CurMF = FuncInfo.MF;
1828
1829 // Figure out which block is immediately after the current one.
1830 MachineBasicBlock *NextBlock = 0;
1831 MachineFunction::iterator BBI = CR.CaseBB;
1832
1833 if (++BBI != FuncInfo.MF->end())
1834 NextBlock = BBI;
1835
1836 // If any two of the cases has the same destination, and if one value
1837 // is the same as the other, but has one bit unset that the other has set,
1838 // use bit manipulation to do two compares at once. For example:
1839 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1840 // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1841 // TODO: Handle cases where CR.CaseBB != SwitchBB.
1842 if (Size == 2 && CR.CaseBB == SwitchBB) {
1843 Case &Small = *CR.Range.first;
1844 Case &Big = *(CR.Range.second-1);
1845
1846 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1847 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1848 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1849
1850 // Check that there is only one bit different.
1851 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1852 (SmallValue | BigValue) == BigValue) {
1853 // Isolate the common bit.
1854 APInt CommonBit = BigValue & ~SmallValue;
1855 assert((SmallValue | CommonBit) == BigValue &&
1856 CommonBit.countPopulation() == 1 && "Not a common bit?");
1857
1858 SDValue CondLHS = getValue(SV);
1859 EVT VT = CondLHS.getValueType();
1860 DebugLoc DL = getCurDebugLoc();
1861
1862 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1863 DAG.getConstant(CommonBit, VT));
1864 SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1865 Or, DAG.getConstant(BigValue, VT),
1866 ISD::SETEQ);
1867
1868 // Update successor info.
1869 SwitchBB->addSuccessor(Small.BB);
1870 SwitchBB->addSuccessor(Default);
1871
1872 // Insert the true branch.
1873 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1874 getControlRoot(), Cond,
1875 DAG.getBasicBlock(Small.BB));
1876
1877 // Insert the false branch.
1878 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1879 DAG.getBasicBlock(Default));
1880
1881 DAG.setRoot(BrCond);
1882 return true;
1883 }
1884 }
1885 }
1886
1887 // Rearrange the case blocks so that the last one falls through if possible.
1888 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1889 // The last case block won't fall through into 'NextBlock' if we emit the
1890 // branches in this order. See if rearranging a case value would help.
1891 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1892 if (I->BB == NextBlock) {
1893 std::swap(*I, BackCase);
1894 break;
1895 }
1896 }
1897 }
1898
1899 // Create a CaseBlock record representing a conditional branch to
1900 // the Case's target mbb if the value being switched on SV is equal
1901 // to C.
1902 MachineBasicBlock *CurBlock = CR.CaseBB;
1903 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1904 MachineBasicBlock *FallThrough;
1905 if (I != E-1) {
1906 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1907 CurMF->insert(BBI, FallThrough);
1908
1909 // Put SV in a virtual register to make it available from the new blocks.
1910 ExportFromCurrentBlock(SV);
1911 } else {
1912 // If the last case doesn't match, go to the default block.
1913 FallThrough = Default;
1914 }
1915
1916 const Value *RHS, *LHS, *MHS;
1917 ISD::CondCode CC;
1918 if (I->High == I->Low) {
1919 // This is just small small case range :) containing exactly 1 case
1920 CC = ISD::SETEQ;
1921 LHS = SV; RHS = I->High; MHS = NULL;
1922 } else {
1923 CC = ISD::SETLE;
1924 LHS = I->Low; MHS = SV; RHS = I->High;
1925 }
1926 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1927
1928 // If emitting the first comparison, just call visitSwitchCase to emit the
1929 // code into the current block. Otherwise, push the CaseBlock onto the
1930 // vector to be later processed by SDISel, and insert the node's MBB
1931 // before the next MBB.
1932 if (CurBlock == SwitchBB)
1933 visitSwitchCase(CB, SwitchBB);
1934 else
1935 SwitchCases.push_back(CB);
1936
1937 CurBlock = FallThrough;
1938 }
1939
1940 return true;
1941 }
1942
areJTsAllowed(const TargetLowering & TLI)1943 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1944 return !DisableJumpTables &&
1945 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1946 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1947 }
1948
ComputeRange(const APInt & First,const APInt & Last)1949 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1950 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1951 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1952 return (LastExt - FirstExt + 1ULL);
1953 }
1954
1955 /// handleJTSwitchCase - Emit jumptable for current switch case range
handleJTSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)1956 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1957 CaseRecVector& WorkList,
1958 const Value* SV,
1959 MachineBasicBlock* Default,
1960 MachineBasicBlock *SwitchBB) {
1961 Case& FrontCase = *CR.Range.first;
1962 Case& BackCase = *(CR.Range.second-1);
1963
1964 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1965 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
1966
1967 APInt TSize(First.getBitWidth(), 0);
1968 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1969 I!=E; ++I)
1970 TSize += I->size();
1971
1972 if (!areJTsAllowed(TLI) || TSize.ult(4))
1973 return false;
1974
1975 APInt Range = ComputeRange(First, Last);
1976 double Density = TSize.roundToDouble() / Range.roundToDouble();
1977 if (Density < 0.4)
1978 return false;
1979
1980 DEBUG(dbgs() << "Lowering jump table\n"
1981 << "First entry: " << First << ". Last entry: " << Last << '\n'
1982 << "Range: " << Range
1983 << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1984
1985 // Get the MachineFunction which holds the current MBB. This is used when
1986 // inserting any additional MBBs necessary to represent the switch.
1987 MachineFunction *CurMF = FuncInfo.MF;
1988
1989 // Figure out which block is immediately after the current one.
1990 MachineFunction::iterator BBI = CR.CaseBB;
1991 ++BBI;
1992
1993 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1994
1995 // Create a new basic block to hold the code for loading the address
1996 // of the jump table, and jumping to it. Update successor information;
1997 // we will either branch to the default case for the switch, or the jump
1998 // table.
1999 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2000 CurMF->insert(BBI, JumpTableBB);
2001
2002 addSuccessorWithWeight(CR.CaseBB, Default);
2003 addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2004
2005 // Build a vector of destination BBs, corresponding to each target
2006 // of the jump table. If the value of the jump table slot corresponds to
2007 // a case statement, push the case's BB onto the vector, otherwise, push
2008 // the default BB.
2009 std::vector<MachineBasicBlock*> DestBBs;
2010 APInt TEI = First;
2011 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2012 const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2013 const APInt &High = cast<ConstantInt>(I->High)->getValue();
2014
2015 if (Low.sle(TEI) && TEI.sle(High)) {
2016 DestBBs.push_back(I->BB);
2017 if (TEI==High)
2018 ++I;
2019 } else {
2020 DestBBs.push_back(Default);
2021 }
2022 }
2023
2024 // Update successor info. Add one edge to each unique successor.
2025 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2026 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2027 E = DestBBs.end(); I != E; ++I) {
2028 if (!SuccsHandled[(*I)->getNumber()]) {
2029 SuccsHandled[(*I)->getNumber()] = true;
2030 addSuccessorWithWeight(JumpTableBB, *I);
2031 }
2032 }
2033
2034 // Create a jump table index for this jump table.
2035 unsigned JTEncoding = TLI.getJumpTableEncoding();
2036 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2037 ->createJumpTableIndex(DestBBs);
2038
2039 // Set the jump table information so that we can codegen it as a second
2040 // MachineBasicBlock
2041 JumpTable JT(-1U, JTI, JumpTableBB, Default);
2042 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2043 if (CR.CaseBB == SwitchBB)
2044 visitJumpTableHeader(JT, JTH, SwitchBB);
2045
2046 JTCases.push_back(JumpTableBlock(JTH, JT));
2047
2048 return true;
2049 }
2050
2051 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2052 /// 2 subtrees.
handleBTSplitSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2053 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2054 CaseRecVector& WorkList,
2055 const Value* SV,
2056 MachineBasicBlock *Default,
2057 MachineBasicBlock *SwitchBB) {
2058 // Get the MachineFunction which holds the current MBB. This is used when
2059 // inserting any additional MBBs necessary to represent the switch.
2060 MachineFunction *CurMF = FuncInfo.MF;
2061
2062 // Figure out which block is immediately after the current one.
2063 MachineFunction::iterator BBI = CR.CaseBB;
2064 ++BBI;
2065
2066 Case& FrontCase = *CR.Range.first;
2067 Case& BackCase = *(CR.Range.second-1);
2068 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2069
2070 // Size is the number of Cases represented by this range.
2071 unsigned Size = CR.Range.second - CR.Range.first;
2072
2073 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2074 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2075 double FMetric = 0;
2076 CaseItr Pivot = CR.Range.first + Size/2;
2077
2078 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2079 // (heuristically) allow us to emit JumpTable's later.
2080 APInt TSize(First.getBitWidth(), 0);
2081 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2082 I!=E; ++I)
2083 TSize += I->size();
2084
2085 APInt LSize = FrontCase.size();
2086 APInt RSize = TSize-LSize;
2087 DEBUG(dbgs() << "Selecting best pivot: \n"
2088 << "First: " << First << ", Last: " << Last <<'\n'
2089 << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2090 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2091 J!=E; ++I, ++J) {
2092 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2093 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2094 APInt Range = ComputeRange(LEnd, RBegin);
2095 assert((Range - 2ULL).isNonNegative() &&
2096 "Invalid case distance");
2097 // Use volatile double here to avoid excess precision issues on some hosts,
2098 // e.g. that use 80-bit X87 registers.
2099 volatile double LDensity =
2100 (double)LSize.roundToDouble() /
2101 (LEnd - First + 1ULL).roundToDouble();
2102 volatile double RDensity =
2103 (double)RSize.roundToDouble() /
2104 (Last - RBegin + 1ULL).roundToDouble();
2105 double Metric = Range.logBase2()*(LDensity+RDensity);
2106 // Should always split in some non-trivial place
2107 DEBUG(dbgs() <<"=>Step\n"
2108 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2109 << "LDensity: " << LDensity
2110 << ", RDensity: " << RDensity << '\n'
2111 << "Metric: " << Metric << '\n');
2112 if (FMetric < Metric) {
2113 Pivot = J;
2114 FMetric = Metric;
2115 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2116 }
2117
2118 LSize += J->size();
2119 RSize -= J->size();
2120 }
2121 if (areJTsAllowed(TLI)) {
2122 // If our case is dense we *really* should handle it earlier!
2123 assert((FMetric > 0) && "Should handle dense range earlier!");
2124 } else {
2125 Pivot = CR.Range.first + Size/2;
2126 }
2127
2128 CaseRange LHSR(CR.Range.first, Pivot);
2129 CaseRange RHSR(Pivot, CR.Range.second);
2130 Constant *C = Pivot->Low;
2131 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2132
2133 // We know that we branch to the LHS if the Value being switched on is
2134 // less than the Pivot value, C. We use this to optimize our binary
2135 // tree a bit, by recognizing that if SV is greater than or equal to the
2136 // LHS's Case Value, and that Case Value is exactly one less than the
2137 // Pivot's Value, then we can branch directly to the LHS's Target,
2138 // rather than creating a leaf node for it.
2139 if ((LHSR.second - LHSR.first) == 1 &&
2140 LHSR.first->High == CR.GE &&
2141 cast<ConstantInt>(C)->getValue() ==
2142 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2143 TrueBB = LHSR.first->BB;
2144 } else {
2145 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2146 CurMF->insert(BBI, TrueBB);
2147 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2148
2149 // Put SV in a virtual register to make it available from the new blocks.
2150 ExportFromCurrentBlock(SV);
2151 }
2152
2153 // Similar to the optimization above, if the Value being switched on is
2154 // known to be less than the Constant CR.LT, and the current Case Value
2155 // is CR.LT - 1, then we can branch directly to the target block for
2156 // the current Case Value, rather than emitting a RHS leaf node for it.
2157 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2158 cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2159 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2160 FalseBB = RHSR.first->BB;
2161 } else {
2162 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2163 CurMF->insert(BBI, FalseBB);
2164 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2165
2166 // Put SV in a virtual register to make it available from the new blocks.
2167 ExportFromCurrentBlock(SV);
2168 }
2169
2170 // Create a CaseBlock record representing a conditional branch to
2171 // the LHS node if the value being switched on SV is less than C.
2172 // Otherwise, branch to LHS.
2173 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2174
2175 if (CR.CaseBB == SwitchBB)
2176 visitSwitchCase(CB, SwitchBB);
2177 else
2178 SwitchCases.push_back(CB);
2179
2180 return true;
2181 }
2182
2183 /// handleBitTestsSwitchCase - if current case range has few destination and
2184 /// range span less, than machine word bitwidth, encode case range into series
2185 /// of masks and emit bit tests with these masks.
handleBitTestsSwitchCase(CaseRec & CR,CaseRecVector & WorkList,const Value * SV,MachineBasicBlock * Default,MachineBasicBlock * SwitchBB)2186 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2187 CaseRecVector& WorkList,
2188 const Value* SV,
2189 MachineBasicBlock* Default,
2190 MachineBasicBlock *SwitchBB){
2191 EVT PTy = TLI.getPointerTy();
2192 unsigned IntPtrBits = PTy.getSizeInBits();
2193
2194 Case& FrontCase = *CR.Range.first;
2195 Case& BackCase = *(CR.Range.second-1);
2196
2197 // Get the MachineFunction which holds the current MBB. This is used when
2198 // inserting any additional MBBs necessary to represent the switch.
2199 MachineFunction *CurMF = FuncInfo.MF;
2200
2201 // If target does not have legal shift left, do not emit bit tests at all.
2202 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2203 return false;
2204
2205 size_t numCmps = 0;
2206 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2207 I!=E; ++I) {
2208 // Single case counts one, case range - two.
2209 numCmps += (I->Low == I->High ? 1 : 2);
2210 }
2211
2212 // Count unique destinations
2213 SmallSet<MachineBasicBlock*, 4> Dests;
2214 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2215 Dests.insert(I->BB);
2216 if (Dests.size() > 3)
2217 // Don't bother the code below, if there are too much unique destinations
2218 return false;
2219 }
2220 DEBUG(dbgs() << "Total number of unique destinations: "
2221 << Dests.size() << '\n'
2222 << "Total number of comparisons: " << numCmps << '\n');
2223
2224 // Compute span of values.
2225 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2226 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2227 APInt cmpRange = maxValue - minValue;
2228
2229 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2230 << "Low bound: " << minValue << '\n'
2231 << "High bound: " << maxValue << '\n');
2232
2233 if (cmpRange.uge(IntPtrBits) ||
2234 (!(Dests.size() == 1 && numCmps >= 3) &&
2235 !(Dests.size() == 2 && numCmps >= 5) &&
2236 !(Dests.size() >= 3 && numCmps >= 6)))
2237 return false;
2238
2239 DEBUG(dbgs() << "Emitting bit tests\n");
2240 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2241
2242 // Optimize the case where all the case values fit in a
2243 // word without having to subtract minValue. In this case,
2244 // we can optimize away the subtraction.
2245 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2246 cmpRange = maxValue;
2247 } else {
2248 lowBound = minValue;
2249 }
2250
2251 CaseBitsVector CasesBits;
2252 unsigned i, count = 0;
2253
2254 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2255 MachineBasicBlock* Dest = I->BB;
2256 for (i = 0; i < count; ++i)
2257 if (Dest == CasesBits[i].BB)
2258 break;
2259
2260 if (i == count) {
2261 assert((count < 3) && "Too much destinations to test!");
2262 CasesBits.push_back(CaseBits(0, Dest, 0));
2263 count++;
2264 }
2265
2266 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2267 const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2268
2269 uint64_t lo = (lowValue - lowBound).getZExtValue();
2270 uint64_t hi = (highValue - lowBound).getZExtValue();
2271
2272 for (uint64_t j = lo; j <= hi; j++) {
2273 CasesBits[i].Mask |= 1ULL << j;
2274 CasesBits[i].Bits++;
2275 }
2276
2277 }
2278 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2279
2280 BitTestInfo BTC;
2281
2282 // Figure out which block is immediately after the current one.
2283 MachineFunction::iterator BBI = CR.CaseBB;
2284 ++BBI;
2285
2286 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2287
2288 DEBUG(dbgs() << "Cases:\n");
2289 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2290 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2291 << ", Bits: " << CasesBits[i].Bits
2292 << ", BB: " << CasesBits[i].BB << '\n');
2293
2294 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2295 CurMF->insert(BBI, CaseBB);
2296 BTC.push_back(BitTestCase(CasesBits[i].Mask,
2297 CaseBB,
2298 CasesBits[i].BB));
2299
2300 // Put SV in a virtual register to make it available from the new blocks.
2301 ExportFromCurrentBlock(SV);
2302 }
2303
2304 BitTestBlock BTB(lowBound, cmpRange, SV,
2305 -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2306 CR.CaseBB, Default, BTC);
2307
2308 if (CR.CaseBB == SwitchBB)
2309 visitBitTestHeader(BTB, SwitchBB);
2310
2311 BitTestCases.push_back(BTB);
2312
2313 return true;
2314 }
2315
2316 /// Clusterify - Transform simple list of Cases into list of CaseRange's
Clusterify(CaseVector & Cases,const SwitchInst & SI)2317 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2318 const SwitchInst& SI) {
2319 size_t numCmps = 0;
2320
2321 // Start with "simple" cases
2322 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2323 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2324 Cases.push_back(Case(SI.getSuccessorValue(i),
2325 SI.getSuccessorValue(i),
2326 SMBB));
2327 }
2328 std::sort(Cases.begin(), Cases.end(), CaseCmp());
2329
2330 // Merge case into clusters
2331 if (Cases.size() >= 2)
2332 // Must recompute end() each iteration because it may be
2333 // invalidated by erase if we hold on to it
2334 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2335 J != Cases.end(); ) {
2336 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2337 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2338 MachineBasicBlock* nextBB = J->BB;
2339 MachineBasicBlock* currentBB = I->BB;
2340
2341 // If the two neighboring cases go to the same destination, merge them
2342 // into a single case.
2343 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2344 I->High = J->High;
2345 J = Cases.erase(J);
2346 } else {
2347 I = J++;
2348 }
2349 }
2350
2351 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2352 if (I->Low != I->High)
2353 // A range counts double, since it requires two compares.
2354 ++numCmps;
2355 }
2356
2357 return numCmps;
2358 }
2359
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)2360 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2361 MachineBasicBlock *Last) {
2362 // Update JTCases.
2363 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2364 if (JTCases[i].first.HeaderBB == First)
2365 JTCases[i].first.HeaderBB = Last;
2366
2367 // Update BitTestCases.
2368 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2369 if (BitTestCases[i].Parent == First)
2370 BitTestCases[i].Parent = Last;
2371 }
2372
visitSwitch(const SwitchInst & SI)2373 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2374 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2375
2376 // Figure out which block is immediately after the current one.
2377 MachineBasicBlock *NextBlock = 0;
2378 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2379
2380 // If there is only the default destination, branch to it if it is not the
2381 // next basic block. Otherwise, just fall through.
2382 if (SI.getNumOperands() == 2) {
2383 // Update machine-CFG edges.
2384
2385 // If this is not a fall-through branch, emit the branch.
2386 SwitchMBB->addSuccessor(Default);
2387 if (Default != NextBlock)
2388 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2389 MVT::Other, getControlRoot(),
2390 DAG.getBasicBlock(Default)));
2391
2392 return;
2393 }
2394
2395 // If there are any non-default case statements, create a vector of Cases
2396 // representing each one, and sort the vector so that we can efficiently
2397 // create a binary search tree from them.
2398 CaseVector Cases;
2399 size_t numCmps = Clusterify(Cases, SI);
2400 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2401 << ". Total compares: " << numCmps << '\n');
2402 numCmps = 0;
2403
2404 // Get the Value to be switched on and default basic blocks, which will be
2405 // inserted into CaseBlock records, representing basic blocks in the binary
2406 // search tree.
2407 const Value *SV = SI.getOperand(0);
2408
2409 // Push the initial CaseRec onto the worklist
2410 CaseRecVector WorkList;
2411 WorkList.push_back(CaseRec(SwitchMBB,0,0,
2412 CaseRange(Cases.begin(),Cases.end())));
2413
2414 while (!WorkList.empty()) {
2415 // Grab a record representing a case range to process off the worklist
2416 CaseRec CR = WorkList.back();
2417 WorkList.pop_back();
2418
2419 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2420 continue;
2421
2422 // If the range has few cases (two or less) emit a series of specific
2423 // tests.
2424 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2425 continue;
2426
2427 // If the switch has more than 5 blocks, and at least 40% dense, and the
2428 // target supports indirect branches, then emit a jump table rather than
2429 // lowering the switch to a binary tree of conditional branches.
2430 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2431 continue;
2432
2433 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2434 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2435 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2436 }
2437 }
2438
visitIndirectBr(const IndirectBrInst & I)2439 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2440 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2441
2442 // Update machine-CFG edges with unique successors.
2443 SmallVector<BasicBlock*, 32> succs;
2444 succs.reserve(I.getNumSuccessors());
2445 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2446 succs.push_back(I.getSuccessor(i));
2447 array_pod_sort(succs.begin(), succs.end());
2448 succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2449 for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2450 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2451 addSuccessorWithWeight(IndirectBrMBB, Succ);
2452 }
2453
2454 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2455 MVT::Other, getControlRoot(),
2456 getValue(I.getAddress())));
2457 }
2458
visitFSub(const User & I)2459 void SelectionDAGBuilder::visitFSub(const User &I) {
2460 // -0.0 - X --> fneg
2461 Type *Ty = I.getType();
2462 if (isa<Constant>(I.getOperand(0)) &&
2463 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2464 SDValue Op2 = getValue(I.getOperand(1));
2465 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2466 Op2.getValueType(), Op2));
2467 return;
2468 }
2469
2470 visitBinary(I, ISD::FSUB);
2471 }
2472
visitBinary(const User & I,unsigned OpCode)2473 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2474 SDValue Op1 = getValue(I.getOperand(0));
2475 SDValue Op2 = getValue(I.getOperand(1));
2476 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2477 Op1.getValueType(), Op1, Op2));
2478 }
2479
visitShift(const User & I,unsigned Opcode)2480 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2481 SDValue Op1 = getValue(I.getOperand(0));
2482 SDValue Op2 = getValue(I.getOperand(1));
2483
2484 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2485
2486 // Coerce the shift amount to the right type if we can.
2487 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2488 unsigned ShiftSize = ShiftTy.getSizeInBits();
2489 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2490 DebugLoc DL = getCurDebugLoc();
2491
2492 // If the operand is smaller than the shift count type, promote it.
2493 if (ShiftSize > Op2Size)
2494 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2495
2496 // If the operand is larger than the shift count type but the shift
2497 // count type has enough bits to represent any shift value, truncate
2498 // it now. This is a common case and it exposes the truncate to
2499 // optimization early.
2500 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2501 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2502 // Otherwise we'll need to temporarily settle for some other convenient
2503 // type. Type legalization will make adjustments once the shiftee is split.
2504 else
2505 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2506 }
2507
2508 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2509 Op1.getValueType(), Op1, Op2));
2510 }
2511
visitSDiv(const User & I)2512 void SelectionDAGBuilder::visitSDiv(const User &I) {
2513 SDValue Op1 = getValue(I.getOperand(0));
2514 SDValue Op2 = getValue(I.getOperand(1));
2515
2516 // Turn exact SDivs into multiplications.
2517 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2518 // exact bit.
2519 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2520 !isa<ConstantSDNode>(Op1) &&
2521 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2522 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2523 else
2524 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2525 Op1, Op2));
2526 }
2527
visitICmp(const User & I)2528 void SelectionDAGBuilder::visitICmp(const User &I) {
2529 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2530 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2531 predicate = IC->getPredicate();
2532 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2533 predicate = ICmpInst::Predicate(IC->getPredicate());
2534 SDValue Op1 = getValue(I.getOperand(0));
2535 SDValue Op2 = getValue(I.getOperand(1));
2536 ISD::CondCode Opcode = getICmpCondCode(predicate);
2537
2538 EVT DestVT = TLI.getValueType(I.getType());
2539 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2540 }
2541
visitFCmp(const User & I)2542 void SelectionDAGBuilder::visitFCmp(const User &I) {
2543 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2544 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2545 predicate = FC->getPredicate();
2546 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2547 predicate = FCmpInst::Predicate(FC->getPredicate());
2548 SDValue Op1 = getValue(I.getOperand(0));
2549 SDValue Op2 = getValue(I.getOperand(1));
2550 ISD::CondCode Condition = getFCmpCondCode(predicate);
2551 EVT DestVT = TLI.getValueType(I.getType());
2552 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2553 }
2554
visitSelect(const User & I)2555 void SelectionDAGBuilder::visitSelect(const User &I) {
2556 SmallVector<EVT, 4> ValueVTs;
2557 ComputeValueVTs(TLI, I.getType(), ValueVTs);
2558 unsigned NumValues = ValueVTs.size();
2559 if (NumValues == 0) return;
2560
2561 SmallVector<SDValue, 4> Values(NumValues);
2562 SDValue Cond = getValue(I.getOperand(0));
2563 SDValue TrueVal = getValue(I.getOperand(1));
2564 SDValue FalseVal = getValue(I.getOperand(2));
2565
2566 for (unsigned i = 0; i != NumValues; ++i)
2567 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2568 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2569 Cond,
2570 SDValue(TrueVal.getNode(),
2571 TrueVal.getResNo() + i),
2572 SDValue(FalseVal.getNode(),
2573 FalseVal.getResNo() + i));
2574
2575 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2576 DAG.getVTList(&ValueVTs[0], NumValues),
2577 &Values[0], NumValues));
2578 }
2579
visitTrunc(const User & I)2580 void SelectionDAGBuilder::visitTrunc(const User &I) {
2581 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2582 SDValue N = getValue(I.getOperand(0));
2583 EVT DestVT = TLI.getValueType(I.getType());
2584 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2585 }
2586
visitZExt(const User & I)2587 void SelectionDAGBuilder::visitZExt(const User &I) {
2588 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2589 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2590 SDValue N = getValue(I.getOperand(0));
2591 EVT DestVT = TLI.getValueType(I.getType());
2592 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2593 }
2594
visitSExt(const User & I)2595 void SelectionDAGBuilder::visitSExt(const User &I) {
2596 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2597 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2598 SDValue N = getValue(I.getOperand(0));
2599 EVT DestVT = TLI.getValueType(I.getType());
2600 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2601 }
2602
visitFPTrunc(const User & I)2603 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2604 // FPTrunc is never a no-op cast, no need to check
2605 SDValue N = getValue(I.getOperand(0));
2606 EVT DestVT = TLI.getValueType(I.getType());
2607 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2608 DestVT, N, DAG.getIntPtrConstant(0)));
2609 }
2610
visitFPExt(const User & I)2611 void SelectionDAGBuilder::visitFPExt(const User &I){
2612 // FPTrunc is never a no-op cast, no need to check
2613 SDValue N = getValue(I.getOperand(0));
2614 EVT DestVT = TLI.getValueType(I.getType());
2615 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2616 }
2617
visitFPToUI(const User & I)2618 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2619 // FPToUI is never a no-op cast, no need to check
2620 SDValue N = getValue(I.getOperand(0));
2621 EVT DestVT = TLI.getValueType(I.getType());
2622 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2623 }
2624
visitFPToSI(const User & I)2625 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2626 // FPToSI is never a no-op cast, no need to check
2627 SDValue N = getValue(I.getOperand(0));
2628 EVT DestVT = TLI.getValueType(I.getType());
2629 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2630 }
2631
visitUIToFP(const User & I)2632 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2633 // UIToFP is never a no-op cast, no need to check
2634 SDValue N = getValue(I.getOperand(0));
2635 EVT DestVT = TLI.getValueType(I.getType());
2636 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2637 }
2638
visitSIToFP(const User & I)2639 void SelectionDAGBuilder::visitSIToFP(const User &I){
2640 // SIToFP is never a no-op cast, no need to check
2641 SDValue N = getValue(I.getOperand(0));
2642 EVT DestVT = TLI.getValueType(I.getType());
2643 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2644 }
2645
visitPtrToInt(const User & I)2646 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2647 // What to do depends on the size of the integer and the size of the pointer.
2648 // We can either truncate, zero extend, or no-op, accordingly.
2649 SDValue N = getValue(I.getOperand(0));
2650 EVT DestVT = TLI.getValueType(I.getType());
2651 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2652 }
2653
visitIntToPtr(const User & I)2654 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2655 // What to do depends on the size of the integer and the size of the pointer.
2656 // We can either truncate, zero extend, or no-op, accordingly.
2657 SDValue N = getValue(I.getOperand(0));
2658 EVT DestVT = TLI.getValueType(I.getType());
2659 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2660 }
2661
visitBitCast(const User & I)2662 void SelectionDAGBuilder::visitBitCast(const User &I) {
2663 SDValue N = getValue(I.getOperand(0));
2664 EVT DestVT = TLI.getValueType(I.getType());
2665
2666 // BitCast assures us that source and destination are the same size so this is
2667 // either a BITCAST or a no-op.
2668 if (DestVT != N.getValueType())
2669 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2670 DestVT, N)); // convert types.
2671 else
2672 setValue(&I, N); // noop cast.
2673 }
2674
visitInsertElement(const User & I)2675 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2676 SDValue InVec = getValue(I.getOperand(0));
2677 SDValue InVal = getValue(I.getOperand(1));
2678 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2679 TLI.getPointerTy(),
2680 getValue(I.getOperand(2)));
2681 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2682 TLI.getValueType(I.getType()),
2683 InVec, InVal, InIdx));
2684 }
2685
visitExtractElement(const User & I)2686 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2687 SDValue InVec = getValue(I.getOperand(0));
2688 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2689 TLI.getPointerTy(),
2690 getValue(I.getOperand(1)));
2691 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2692 TLI.getValueType(I.getType()), InVec, InIdx));
2693 }
2694
2695 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2696 // from SIndx and increasing to the element length (undefs are allowed).
SequentialMask(SmallVectorImpl<int> & Mask,unsigned SIndx)2697 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2698 unsigned MaskNumElts = Mask.size();
2699 for (unsigned i = 0; i != MaskNumElts; ++i)
2700 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2701 return false;
2702 return true;
2703 }
2704
visitShuffleVector(const User & I)2705 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2706 SmallVector<int, 8> Mask;
2707 SDValue Src1 = getValue(I.getOperand(0));
2708 SDValue Src2 = getValue(I.getOperand(1));
2709
2710 // Convert the ConstantVector mask operand into an array of ints, with -1
2711 // representing undef values.
2712 SmallVector<Constant*, 8> MaskElts;
2713 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2714 unsigned MaskNumElts = MaskElts.size();
2715 for (unsigned i = 0; i != MaskNumElts; ++i) {
2716 if (isa<UndefValue>(MaskElts[i]))
2717 Mask.push_back(-1);
2718 else
2719 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2720 }
2721
2722 EVT VT = TLI.getValueType(I.getType());
2723 EVT SrcVT = Src1.getValueType();
2724 unsigned SrcNumElts = SrcVT.getVectorNumElements();
2725
2726 if (SrcNumElts == MaskNumElts) {
2727 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2728 &Mask[0]));
2729 return;
2730 }
2731
2732 // Normalize the shuffle vector since mask and vector length don't match.
2733 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2734 // Mask is longer than the source vectors and is a multiple of the source
2735 // vectors. We can use concatenate vector to make the mask and vectors
2736 // lengths match.
2737 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2738 // The shuffle is concatenating two vectors together.
2739 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2740 VT, Src1, Src2));
2741 return;
2742 }
2743
2744 // Pad both vectors with undefs to make them the same length as the mask.
2745 unsigned NumConcat = MaskNumElts / SrcNumElts;
2746 bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2747 bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2748 SDValue UndefVal = DAG.getUNDEF(SrcVT);
2749
2750 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2751 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2752 MOps1[0] = Src1;
2753 MOps2[0] = Src2;
2754
2755 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2756 getCurDebugLoc(), VT,
2757 &MOps1[0], NumConcat);
2758 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2759 getCurDebugLoc(), VT,
2760 &MOps2[0], NumConcat);
2761
2762 // Readjust mask for new input vector length.
2763 SmallVector<int, 8> MappedOps;
2764 for (unsigned i = 0; i != MaskNumElts; ++i) {
2765 int Idx = Mask[i];
2766 if (Idx < (int)SrcNumElts)
2767 MappedOps.push_back(Idx);
2768 else
2769 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2770 }
2771
2772 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2773 &MappedOps[0]));
2774 return;
2775 }
2776
2777 if (SrcNumElts > MaskNumElts) {
2778 // Analyze the access pattern of the vector to see if we can extract
2779 // two subvectors and do the shuffle. The analysis is done by calculating
2780 // the range of elements the mask access on both vectors.
2781 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2782 int MaxRange[2] = {-1, -1};
2783
2784 for (unsigned i = 0; i != MaskNumElts; ++i) {
2785 int Idx = Mask[i];
2786 int Input = 0;
2787 if (Idx < 0)
2788 continue;
2789
2790 if (Idx >= (int)SrcNumElts) {
2791 Input = 1;
2792 Idx -= SrcNumElts;
2793 }
2794 if (Idx > MaxRange[Input])
2795 MaxRange[Input] = Idx;
2796 if (Idx < MinRange[Input])
2797 MinRange[Input] = Idx;
2798 }
2799
2800 // Check if the access is smaller than the vector size and can we find
2801 // a reasonable extract index.
2802 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not
2803 // Extract.
2804 int StartIdx[2]; // StartIdx to extract from
2805 for (int Input=0; Input < 2; ++Input) {
2806 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2807 RangeUse[Input] = 0; // Unused
2808 StartIdx[Input] = 0;
2809 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2810 // Fits within range but we should see if we can find a good
2811 // start index that is a multiple of the mask length.
2812 if (MaxRange[Input] < (int)MaskNumElts) {
2813 RangeUse[Input] = 1; // Extract from beginning of the vector
2814 StartIdx[Input] = 0;
2815 } else {
2816 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2817 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2818 StartIdx[Input] + MaskNumElts <= SrcNumElts)
2819 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2820 }
2821 }
2822 }
2823
2824 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2825 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2826 return;
2827 }
2828 else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2829 // Extract appropriate subvector and generate a vector shuffle
2830 for (int Input=0; Input < 2; ++Input) {
2831 SDValue &Src = Input == 0 ? Src1 : Src2;
2832 if (RangeUse[Input] == 0)
2833 Src = DAG.getUNDEF(VT);
2834 else
2835 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2836 Src, DAG.getIntPtrConstant(StartIdx[Input]));
2837 }
2838
2839 // Calculate new mask.
2840 SmallVector<int, 8> MappedOps;
2841 for (unsigned i = 0; i != MaskNumElts; ++i) {
2842 int Idx = Mask[i];
2843 if (Idx < 0)
2844 MappedOps.push_back(Idx);
2845 else if (Idx < (int)SrcNumElts)
2846 MappedOps.push_back(Idx - StartIdx[0]);
2847 else
2848 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2849 }
2850
2851 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2852 &MappedOps[0]));
2853 return;
2854 }
2855 }
2856
2857 // We can't use either concat vectors or extract subvectors so fall back to
2858 // replacing the shuffle with extract and build vector.
2859 // to insert and build vector.
2860 EVT EltVT = VT.getVectorElementType();
2861 EVT PtrVT = TLI.getPointerTy();
2862 SmallVector<SDValue,8> Ops;
2863 for (unsigned i = 0; i != MaskNumElts; ++i) {
2864 if (Mask[i] < 0) {
2865 Ops.push_back(DAG.getUNDEF(EltVT));
2866 } else {
2867 int Idx = Mask[i];
2868 SDValue Res;
2869
2870 if (Idx < (int)SrcNumElts)
2871 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2872 EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2873 else
2874 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2875 EltVT, Src2,
2876 DAG.getConstant(Idx - SrcNumElts, PtrVT));
2877
2878 Ops.push_back(Res);
2879 }
2880 }
2881
2882 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2883 VT, &Ops[0], Ops.size()));
2884 }
2885
visitInsertValue(const InsertValueInst & I)2886 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2887 const Value *Op0 = I.getOperand(0);
2888 const Value *Op1 = I.getOperand(1);
2889 Type *AggTy = I.getType();
2890 Type *ValTy = Op1->getType();
2891 bool IntoUndef = isa<UndefValue>(Op0);
2892 bool FromUndef = isa<UndefValue>(Op1);
2893
2894 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2895
2896 SmallVector<EVT, 4> AggValueVTs;
2897 ComputeValueVTs(TLI, AggTy, AggValueVTs);
2898 SmallVector<EVT, 4> ValValueVTs;
2899 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2900
2901 unsigned NumAggValues = AggValueVTs.size();
2902 unsigned NumValValues = ValValueVTs.size();
2903 SmallVector<SDValue, 4> Values(NumAggValues);
2904
2905 SDValue Agg = getValue(Op0);
2906 unsigned i = 0;
2907 // Copy the beginning value(s) from the original aggregate.
2908 for (; i != LinearIndex; ++i)
2909 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2910 SDValue(Agg.getNode(), Agg.getResNo() + i);
2911 // Copy values from the inserted value(s).
2912 if (NumValValues) {
2913 SDValue Val = getValue(Op1);
2914 for (; i != LinearIndex + NumValValues; ++i)
2915 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2916 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2917 }
2918 // Copy remaining value(s) from the original aggregate.
2919 for (; i != NumAggValues; ++i)
2920 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2921 SDValue(Agg.getNode(), Agg.getResNo() + i);
2922
2923 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2924 DAG.getVTList(&AggValueVTs[0], NumAggValues),
2925 &Values[0], NumAggValues));
2926 }
2927
visitExtractValue(const ExtractValueInst & I)2928 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2929 const Value *Op0 = I.getOperand(0);
2930 Type *AggTy = Op0->getType();
2931 Type *ValTy = I.getType();
2932 bool OutOfUndef = isa<UndefValue>(Op0);
2933
2934 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2935
2936 SmallVector<EVT, 4> ValValueVTs;
2937 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2938
2939 unsigned NumValValues = ValValueVTs.size();
2940
2941 // Ignore a extractvalue that produces an empty object
2942 if (!NumValValues) {
2943 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2944 return;
2945 }
2946
2947 SmallVector<SDValue, 4> Values(NumValValues);
2948
2949 SDValue Agg = getValue(Op0);
2950 // Copy out the selected value(s).
2951 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2952 Values[i - LinearIndex] =
2953 OutOfUndef ?
2954 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2955 SDValue(Agg.getNode(), Agg.getResNo() + i);
2956
2957 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2958 DAG.getVTList(&ValValueVTs[0], NumValValues),
2959 &Values[0], NumValValues));
2960 }
2961
visitGetElementPtr(const User & I)2962 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2963 SDValue N = getValue(I.getOperand(0));
2964 Type *Ty = I.getOperand(0)->getType();
2965
2966 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2967 OI != E; ++OI) {
2968 const Value *Idx = *OI;
2969 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2970 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2971 if (Field) {
2972 // N = N + Offset
2973 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2974 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2975 DAG.getIntPtrConstant(Offset));
2976 }
2977
2978 Ty = StTy->getElementType(Field);
2979 } else {
2980 Ty = cast<SequentialType>(Ty)->getElementType();
2981
2982 // If this is a constant subscript, handle it quickly.
2983 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2984 if (CI->isZero()) continue;
2985 uint64_t Offs =
2986 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2987 SDValue OffsVal;
2988 EVT PTy = TLI.getPointerTy();
2989 unsigned PtrBits = PTy.getSizeInBits();
2990 if (PtrBits < 64)
2991 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2992 TLI.getPointerTy(),
2993 DAG.getConstant(Offs, MVT::i64));
2994 else
2995 OffsVal = DAG.getIntPtrConstant(Offs);
2996
2997 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2998 OffsVal);
2999 continue;
3000 }
3001
3002 // N = N + Idx * ElementSize;
3003 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3004 TD->getTypeAllocSize(Ty));
3005 SDValue IdxN = getValue(Idx);
3006
3007 // If the index is smaller or larger than intptr_t, truncate or extend
3008 // it.
3009 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3010
3011 // If this is a multiply by a power of two, turn it into a shl
3012 // immediately. This is a very common case.
3013 if (ElementSize != 1) {
3014 if (ElementSize.isPowerOf2()) {
3015 unsigned Amt = ElementSize.logBase2();
3016 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3017 N.getValueType(), IdxN,
3018 DAG.getConstant(Amt, TLI.getPointerTy()));
3019 } else {
3020 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3021 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3022 N.getValueType(), IdxN, Scale);
3023 }
3024 }
3025
3026 N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3027 N.getValueType(), N, IdxN);
3028 }
3029 }
3030
3031 setValue(&I, N);
3032 }
3033
visitAlloca(const AllocaInst & I)3034 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3035 // If this is a fixed sized alloca in the entry block of the function,
3036 // allocate it statically on the stack.
3037 if (FuncInfo.StaticAllocaMap.count(&I))
3038 return; // getValue will auto-populate this.
3039
3040 Type *Ty = I.getAllocatedType();
3041 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3042 unsigned Align =
3043 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3044 I.getAlignment());
3045
3046 SDValue AllocSize = getValue(I.getArraySize());
3047
3048 EVT IntPtr = TLI.getPointerTy();
3049 if (AllocSize.getValueType() != IntPtr)
3050 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3051
3052 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3053 AllocSize,
3054 DAG.getConstant(TySize, IntPtr));
3055
3056 // Handle alignment. If the requested alignment is less than or equal to
3057 // the stack alignment, ignore it. If the size is greater than or equal to
3058 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3059 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3060 if (Align <= StackAlign)
3061 Align = 0;
3062
3063 // Round the size of the allocation up to the stack alignment size
3064 // by add SA-1 to the size.
3065 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3066 AllocSize.getValueType(), AllocSize,
3067 DAG.getIntPtrConstant(StackAlign-1));
3068
3069 // Mask out the low bits for alignment purposes.
3070 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3071 AllocSize.getValueType(), AllocSize,
3072 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3073
3074 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3075 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3076 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3077 VTs, Ops, 3);
3078 setValue(&I, DSA);
3079 DAG.setRoot(DSA.getValue(1));
3080
3081 // Inform the Frame Information that we have just allocated a variable-sized
3082 // object.
3083 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3084 }
3085
visitLoad(const LoadInst & I)3086 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3087 const Value *SV = I.getOperand(0);
3088 SDValue Ptr = getValue(SV);
3089
3090 Type *Ty = I.getType();
3091
3092 bool isVolatile = I.isVolatile();
3093 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3094 unsigned Alignment = I.getAlignment();
3095 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3096
3097 SmallVector<EVT, 4> ValueVTs;
3098 SmallVector<uint64_t, 4> Offsets;
3099 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3100 unsigned NumValues = ValueVTs.size();
3101 if (NumValues == 0)
3102 return;
3103
3104 SDValue Root;
3105 bool ConstantMemory = false;
3106 if (I.isVolatile() || NumValues > MaxParallelChains)
3107 // Serialize volatile loads with other side effects.
3108 Root = getRoot();
3109 else if (AA->pointsToConstantMemory(
3110 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3111 // Do not serialize (non-volatile) loads of constant memory with anything.
3112 Root = DAG.getEntryNode();
3113 ConstantMemory = true;
3114 } else {
3115 // Do not serialize non-volatile loads against each other.
3116 Root = DAG.getRoot();
3117 }
3118
3119 SmallVector<SDValue, 4> Values(NumValues);
3120 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3121 NumValues));
3122 EVT PtrVT = Ptr.getValueType();
3123 unsigned ChainI = 0;
3124 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3125 // Serializing loads here may result in excessive register pressure, and
3126 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3127 // could recover a bit by hoisting nodes upward in the chain by recognizing
3128 // they are side-effect free or do not alias. The optimizer should really
3129 // avoid this case by converting large object/array copies to llvm.memcpy
3130 // (MaxParallelChains should always remain as failsafe).
3131 if (ChainI == MaxParallelChains) {
3132 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3133 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3134 MVT::Other, &Chains[0], ChainI);
3135 Root = Chain;
3136 ChainI = 0;
3137 }
3138 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3139 PtrVT, Ptr,
3140 DAG.getConstant(Offsets[i], PtrVT));
3141 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3142 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3143 isNonTemporal, Alignment, TBAAInfo);
3144
3145 Values[i] = L;
3146 Chains[ChainI] = L.getValue(1);
3147 }
3148
3149 if (!ConstantMemory) {
3150 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3151 MVT::Other, &Chains[0], ChainI);
3152 if (isVolatile)
3153 DAG.setRoot(Chain);
3154 else
3155 PendingLoads.push_back(Chain);
3156 }
3157
3158 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3159 DAG.getVTList(&ValueVTs[0], NumValues),
3160 &Values[0], NumValues));
3161 }
3162
visitStore(const StoreInst & I)3163 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3164 const Value *SrcV = I.getOperand(0);
3165 const Value *PtrV = I.getOperand(1);
3166
3167 SmallVector<EVT, 4> ValueVTs;
3168 SmallVector<uint64_t, 4> Offsets;
3169 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3170 unsigned NumValues = ValueVTs.size();
3171 if (NumValues == 0)
3172 return;
3173
3174 // Get the lowered operands. Note that we do this after
3175 // checking if NumResults is zero, because with zero results
3176 // the operands won't have values in the map.
3177 SDValue Src = getValue(SrcV);
3178 SDValue Ptr = getValue(PtrV);
3179
3180 SDValue Root = getRoot();
3181 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3182 NumValues));
3183 EVT PtrVT = Ptr.getValueType();
3184 bool isVolatile = I.isVolatile();
3185 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3186 unsigned Alignment = I.getAlignment();
3187 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3188
3189 unsigned ChainI = 0;
3190 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3191 // See visitLoad comments.
3192 if (ChainI == MaxParallelChains) {
3193 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3194 MVT::Other, &Chains[0], ChainI);
3195 Root = Chain;
3196 ChainI = 0;
3197 }
3198 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3199 DAG.getConstant(Offsets[i], PtrVT));
3200 SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3201 SDValue(Src.getNode(), Src.getResNo() + i),
3202 Add, MachinePointerInfo(PtrV, Offsets[i]),
3203 isVolatile, isNonTemporal, Alignment, TBAAInfo);
3204 Chains[ChainI] = St;
3205 }
3206
3207 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3208 MVT::Other, &Chains[0], ChainI);
3209 ++SDNodeOrder;
3210 AssignOrderingToNode(StoreNode.getNode());
3211 DAG.setRoot(StoreNode);
3212 }
3213
3214 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3215 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)3216 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3217 unsigned Intrinsic) {
3218 bool HasChain = !I.doesNotAccessMemory();
3219 bool OnlyLoad = HasChain && I.onlyReadsMemory();
3220
3221 // Build the operand list.
3222 SmallVector<SDValue, 8> Ops;
3223 if (HasChain) { // If this intrinsic has side-effects, chainify it.
3224 if (OnlyLoad) {
3225 // We don't need to serialize loads against other loads.
3226 Ops.push_back(DAG.getRoot());
3227 } else {
3228 Ops.push_back(getRoot());
3229 }
3230 }
3231
3232 // Info is set by getTgtMemInstrinsic
3233 TargetLowering::IntrinsicInfo Info;
3234 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3235
3236 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3237 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3238 Info.opc == ISD::INTRINSIC_W_CHAIN)
3239 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3240
3241 // Add all operands of the call to the operand list.
3242 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3243 SDValue Op = getValue(I.getArgOperand(i));
3244 assert(TLI.isTypeLegal(Op.getValueType()) &&
3245 "Intrinsic uses a non-legal type?");
3246 Ops.push_back(Op);
3247 }
3248
3249 SmallVector<EVT, 4> ValueVTs;
3250 ComputeValueVTs(TLI, I.getType(), ValueVTs);
3251 #ifndef NDEBUG
3252 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3253 assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3254 "Intrinsic uses a non-legal type?");
3255 }
3256 #endif // NDEBUG
3257
3258 if (HasChain)
3259 ValueVTs.push_back(MVT::Other);
3260
3261 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3262
3263 // Create the node.
3264 SDValue Result;
3265 if (IsTgtIntrinsic) {
3266 // This is target intrinsic that touches memory
3267 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3268 VTs, &Ops[0], Ops.size(),
3269 Info.memVT,
3270 MachinePointerInfo(Info.ptrVal, Info.offset),
3271 Info.align, Info.vol,
3272 Info.readMem, Info.writeMem);
3273 } else if (!HasChain) {
3274 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3275 VTs, &Ops[0], Ops.size());
3276 } else if (!I.getType()->isVoidTy()) {
3277 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3278 VTs, &Ops[0], Ops.size());
3279 } else {
3280 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3281 VTs, &Ops[0], Ops.size());
3282 }
3283
3284 if (HasChain) {
3285 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3286 if (OnlyLoad)
3287 PendingLoads.push_back(Chain);
3288 else
3289 DAG.setRoot(Chain);
3290 }
3291
3292 if (!I.getType()->isVoidTy()) {
3293 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3294 EVT VT = TLI.getValueType(PTy);
3295 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3296 }
3297
3298 setValue(&I, Result);
3299 }
3300 }
3301
3302 /// GetSignificand - Get the significand and build it into a floating-point
3303 /// number with exponent of 1:
3304 ///
3305 /// Op = (Op & 0x007fffff) | 0x3f800000;
3306 ///
3307 /// where Op is the hexidecimal representation of floating point value.
3308 static SDValue
GetSignificand(SelectionDAG & DAG,SDValue Op,DebugLoc dl)3309 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3310 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3311 DAG.getConstant(0x007fffff, MVT::i32));
3312 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3313 DAG.getConstant(0x3f800000, MVT::i32));
3314 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3315 }
3316
3317 /// GetExponent - Get the exponent:
3318 ///
3319 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3320 ///
3321 /// where Op is the hexidecimal representation of floating point value.
3322 static SDValue
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,DebugLoc dl)3323 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3324 DebugLoc dl) {
3325 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3326 DAG.getConstant(0x7f800000, MVT::i32));
3327 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3328 DAG.getConstant(23, TLI.getPointerTy()));
3329 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3330 DAG.getConstant(127, MVT::i32));
3331 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3332 }
3333
3334 /// getF32Constant - Get 32-bit floating point constant.
3335 static SDValue
getF32Constant(SelectionDAG & DAG,unsigned Flt)3336 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3337 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3338 }
3339
3340 /// Inlined utility function to implement binary input atomic intrinsics for
3341 /// visitIntrinsicCall: I is a call instruction
3342 /// Op is the associated NodeType for I
3343 const char *
implVisitBinaryAtomic(const CallInst & I,ISD::NodeType Op)3344 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3345 ISD::NodeType Op) {
3346 SDValue Root = getRoot();
3347 SDValue L =
3348 DAG.getAtomic(Op, getCurDebugLoc(),
3349 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3350 Root,
3351 getValue(I.getArgOperand(0)),
3352 getValue(I.getArgOperand(1)),
3353 I.getArgOperand(0));
3354 setValue(&I, L);
3355 DAG.setRoot(L.getValue(1));
3356 return 0;
3357 }
3358
3359 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3360 const char *
implVisitAluOverflow(const CallInst & I,ISD::NodeType Op)3361 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3362 SDValue Op1 = getValue(I.getArgOperand(0));
3363 SDValue Op2 = getValue(I.getArgOperand(1));
3364
3365 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3366 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3367 return 0;
3368 }
3369
3370 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3371 /// limited-precision mode.
3372 void
visitExp(const CallInst & I)3373 SelectionDAGBuilder::visitExp(const CallInst &I) {
3374 SDValue result;
3375 DebugLoc dl = getCurDebugLoc();
3376
3377 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3378 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3379 SDValue Op = getValue(I.getArgOperand(0));
3380
3381 // Put the exponent in the right bit position for later addition to the
3382 // final result:
3383 //
3384 // #define LOG2OFe 1.4426950f
3385 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3386 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3387 getF32Constant(DAG, 0x3fb8aa3b));
3388 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3389
3390 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3391 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3392 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3393
3394 // IntegerPartOfX <<= 23;
3395 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3396 DAG.getConstant(23, TLI.getPointerTy()));
3397
3398 if (LimitFloatPrecision <= 6) {
3399 // For floating-point precision of 6:
3400 //
3401 // TwoToFractionalPartOfX =
3402 // 0.997535578f +
3403 // (0.735607626f + 0.252464424f * x) * x;
3404 //
3405 // error 0.0144103317, which is 6 bits
3406 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3407 getF32Constant(DAG, 0x3e814304));
3408 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3409 getF32Constant(DAG, 0x3f3c50c8));
3410 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3411 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3412 getF32Constant(DAG, 0x3f7f5e7e));
3413 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3414
3415 // Add the exponent into the result in integer domain.
3416 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3417 TwoToFracPartOfX, IntegerPartOfX);
3418
3419 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3420 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3421 // For floating-point precision of 12:
3422 //
3423 // TwoToFractionalPartOfX =
3424 // 0.999892986f +
3425 // (0.696457318f +
3426 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3427 //
3428 // 0.000107046256 error, which is 13 to 14 bits
3429 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3430 getF32Constant(DAG, 0x3da235e3));
3431 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3432 getF32Constant(DAG, 0x3e65b8f3));
3433 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3434 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3435 getF32Constant(DAG, 0x3f324b07));
3436 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3437 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3438 getF32Constant(DAG, 0x3f7ff8fd));
3439 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3440
3441 // Add the exponent into the result in integer domain.
3442 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3443 TwoToFracPartOfX, IntegerPartOfX);
3444
3445 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3446 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3447 // For floating-point precision of 18:
3448 //
3449 // TwoToFractionalPartOfX =
3450 // 0.999999982f +
3451 // (0.693148872f +
3452 // (0.240227044f +
3453 // (0.554906021e-1f +
3454 // (0.961591928e-2f +
3455 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3456 //
3457 // error 2.47208000*10^(-7), which is better than 18 bits
3458 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3459 getF32Constant(DAG, 0x3924b03e));
3460 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3461 getF32Constant(DAG, 0x3ab24b87));
3462 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3463 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3464 getF32Constant(DAG, 0x3c1d8c17));
3465 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3466 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3467 getF32Constant(DAG, 0x3d634a1d));
3468 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3469 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3470 getF32Constant(DAG, 0x3e75fe14));
3471 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3472 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3473 getF32Constant(DAG, 0x3f317234));
3474 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3475 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3476 getF32Constant(DAG, 0x3f800000));
3477 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3478 MVT::i32, t13);
3479
3480 // Add the exponent into the result in integer domain.
3481 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3482 TwoToFracPartOfX, IntegerPartOfX);
3483
3484 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3485 }
3486 } else {
3487 // No special expansion.
3488 result = DAG.getNode(ISD::FEXP, dl,
3489 getValue(I.getArgOperand(0)).getValueType(),
3490 getValue(I.getArgOperand(0)));
3491 }
3492
3493 setValue(&I, result);
3494 }
3495
3496 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3497 /// limited-precision mode.
3498 void
visitLog(const CallInst & I)3499 SelectionDAGBuilder::visitLog(const CallInst &I) {
3500 SDValue result;
3501 DebugLoc dl = getCurDebugLoc();
3502
3503 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3504 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3505 SDValue Op = getValue(I.getArgOperand(0));
3506 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3507
3508 // Scale the exponent by log(2) [0.69314718f].
3509 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3510 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3511 getF32Constant(DAG, 0x3f317218));
3512
3513 // Get the significand and build it into a floating-point number with
3514 // exponent of 1.
3515 SDValue X = GetSignificand(DAG, Op1, dl);
3516
3517 if (LimitFloatPrecision <= 6) {
3518 // For floating-point precision of 6:
3519 //
3520 // LogofMantissa =
3521 // -1.1609546f +
3522 // (1.4034025f - 0.23903021f * x) * x;
3523 //
3524 // error 0.0034276066, which is better than 8 bits
3525 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3526 getF32Constant(DAG, 0xbe74c456));
3527 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3528 getF32Constant(DAG, 0x3fb3a2b1));
3529 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3530 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3531 getF32Constant(DAG, 0x3f949a29));
3532
3533 result = DAG.getNode(ISD::FADD, dl,
3534 MVT::f32, LogOfExponent, LogOfMantissa);
3535 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3536 // For floating-point precision of 12:
3537 //
3538 // LogOfMantissa =
3539 // -1.7417939f +
3540 // (2.8212026f +
3541 // (-1.4699568f +
3542 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3543 //
3544 // error 0.000061011436, which is 14 bits
3545 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3546 getF32Constant(DAG, 0xbd67b6d6));
3547 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3548 getF32Constant(DAG, 0x3ee4f4b8));
3549 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3550 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3551 getF32Constant(DAG, 0x3fbc278b));
3552 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3553 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3554 getF32Constant(DAG, 0x40348e95));
3555 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3556 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3557 getF32Constant(DAG, 0x3fdef31a));
3558
3559 result = DAG.getNode(ISD::FADD, dl,
3560 MVT::f32, LogOfExponent, LogOfMantissa);
3561 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3562 // For floating-point precision of 18:
3563 //
3564 // LogOfMantissa =
3565 // -2.1072184f +
3566 // (4.2372794f +
3567 // (-3.7029485f +
3568 // (2.2781945f +
3569 // (-0.87823314f +
3570 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3571 //
3572 // error 0.0000023660568, which is better than 18 bits
3573 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3574 getF32Constant(DAG, 0xbc91e5ac));
3575 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3576 getF32Constant(DAG, 0x3e4350aa));
3577 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3578 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3579 getF32Constant(DAG, 0x3f60d3e3));
3580 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3581 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3582 getF32Constant(DAG, 0x4011cdf0));
3583 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3584 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3585 getF32Constant(DAG, 0x406cfd1c));
3586 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3587 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3588 getF32Constant(DAG, 0x408797cb));
3589 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3590 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3591 getF32Constant(DAG, 0x4006dcab));
3592
3593 result = DAG.getNode(ISD::FADD, dl,
3594 MVT::f32, LogOfExponent, LogOfMantissa);
3595 }
3596 } else {
3597 // No special expansion.
3598 result = DAG.getNode(ISD::FLOG, dl,
3599 getValue(I.getArgOperand(0)).getValueType(),
3600 getValue(I.getArgOperand(0)));
3601 }
3602
3603 setValue(&I, result);
3604 }
3605
3606 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3607 /// limited-precision mode.
3608 void
visitLog2(const CallInst & I)3609 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3610 SDValue result;
3611 DebugLoc dl = getCurDebugLoc();
3612
3613 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3614 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3615 SDValue Op = getValue(I.getArgOperand(0));
3616 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3617
3618 // Get the exponent.
3619 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3620
3621 // Get the significand and build it into a floating-point number with
3622 // exponent of 1.
3623 SDValue X = GetSignificand(DAG, Op1, dl);
3624
3625 // Different possible minimax approximations of significand in
3626 // floating-point for various degrees of accuracy over [1,2].
3627 if (LimitFloatPrecision <= 6) {
3628 // For floating-point precision of 6:
3629 //
3630 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3631 //
3632 // error 0.0049451742, which is more than 7 bits
3633 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3634 getF32Constant(DAG, 0xbeb08fe0));
3635 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3636 getF32Constant(DAG, 0x40019463));
3637 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3638 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3639 getF32Constant(DAG, 0x3fd6633d));
3640
3641 result = DAG.getNode(ISD::FADD, dl,
3642 MVT::f32, LogOfExponent, Log2ofMantissa);
3643 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3644 // For floating-point precision of 12:
3645 //
3646 // Log2ofMantissa =
3647 // -2.51285454f +
3648 // (4.07009056f +
3649 // (-2.12067489f +
3650 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3651 //
3652 // error 0.0000876136000, which is better than 13 bits
3653 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3654 getF32Constant(DAG, 0xbda7262e));
3655 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3656 getF32Constant(DAG, 0x3f25280b));
3657 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3658 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3659 getF32Constant(DAG, 0x4007b923));
3660 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3661 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3662 getF32Constant(DAG, 0x40823e2f));
3663 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3664 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3665 getF32Constant(DAG, 0x4020d29c));
3666
3667 result = DAG.getNode(ISD::FADD, dl,
3668 MVT::f32, LogOfExponent, Log2ofMantissa);
3669 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3670 // For floating-point precision of 18:
3671 //
3672 // Log2ofMantissa =
3673 // -3.0400495f +
3674 // (6.1129976f +
3675 // (-5.3420409f +
3676 // (3.2865683f +
3677 // (-1.2669343f +
3678 // (0.27515199f -
3679 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3680 //
3681 // error 0.0000018516, which is better than 18 bits
3682 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3683 getF32Constant(DAG, 0xbcd2769e));
3684 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3685 getF32Constant(DAG, 0x3e8ce0b9));
3686 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3687 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3688 getF32Constant(DAG, 0x3fa22ae7));
3689 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3690 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3691 getF32Constant(DAG, 0x40525723));
3692 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3693 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3694 getF32Constant(DAG, 0x40aaf200));
3695 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3696 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3697 getF32Constant(DAG, 0x40c39dad));
3698 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3699 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3700 getF32Constant(DAG, 0x4042902c));
3701
3702 result = DAG.getNode(ISD::FADD, dl,
3703 MVT::f32, LogOfExponent, Log2ofMantissa);
3704 }
3705 } else {
3706 // No special expansion.
3707 result = DAG.getNode(ISD::FLOG2, dl,
3708 getValue(I.getArgOperand(0)).getValueType(),
3709 getValue(I.getArgOperand(0)));
3710 }
3711
3712 setValue(&I, result);
3713 }
3714
3715 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3716 /// limited-precision mode.
3717 void
visitLog10(const CallInst & I)3718 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3719 SDValue result;
3720 DebugLoc dl = getCurDebugLoc();
3721
3722 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3723 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3724 SDValue Op = getValue(I.getArgOperand(0));
3725 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3726
3727 // Scale the exponent by log10(2) [0.30102999f].
3728 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3729 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3730 getF32Constant(DAG, 0x3e9a209a));
3731
3732 // Get the significand and build it into a floating-point number with
3733 // exponent of 1.
3734 SDValue X = GetSignificand(DAG, Op1, dl);
3735
3736 if (LimitFloatPrecision <= 6) {
3737 // For floating-point precision of 6:
3738 //
3739 // Log10ofMantissa =
3740 // -0.50419619f +
3741 // (0.60948995f - 0.10380950f * x) * x;
3742 //
3743 // error 0.0014886165, which is 6 bits
3744 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3745 getF32Constant(DAG, 0xbdd49a13));
3746 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3747 getF32Constant(DAG, 0x3f1c0789));
3748 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3749 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3750 getF32Constant(DAG, 0x3f011300));
3751
3752 result = DAG.getNode(ISD::FADD, dl,
3753 MVT::f32, LogOfExponent, Log10ofMantissa);
3754 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3755 // For floating-point precision of 12:
3756 //
3757 // Log10ofMantissa =
3758 // -0.64831180f +
3759 // (0.91751397f +
3760 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3761 //
3762 // error 0.00019228036, which is better than 12 bits
3763 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3764 getF32Constant(DAG, 0x3d431f31));
3765 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3766 getF32Constant(DAG, 0x3ea21fb2));
3767 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3768 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3769 getF32Constant(DAG, 0x3f6ae232));
3770 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3771 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3772 getF32Constant(DAG, 0x3f25f7c3));
3773
3774 result = DAG.getNode(ISD::FADD, dl,
3775 MVT::f32, LogOfExponent, Log10ofMantissa);
3776 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3777 // For floating-point precision of 18:
3778 //
3779 // Log10ofMantissa =
3780 // -0.84299375f +
3781 // (1.5327582f +
3782 // (-1.0688956f +
3783 // (0.49102474f +
3784 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3785 //
3786 // error 0.0000037995730, which is better than 18 bits
3787 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3788 getF32Constant(DAG, 0x3c5d51ce));
3789 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3790 getF32Constant(DAG, 0x3e00685a));
3791 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3792 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3793 getF32Constant(DAG, 0x3efb6798));
3794 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3795 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3796 getF32Constant(DAG, 0x3f88d192));
3797 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3798 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3799 getF32Constant(DAG, 0x3fc4316c));
3800 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3801 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3802 getF32Constant(DAG, 0x3f57ce70));
3803
3804 result = DAG.getNode(ISD::FADD, dl,
3805 MVT::f32, LogOfExponent, Log10ofMantissa);
3806 }
3807 } else {
3808 // No special expansion.
3809 result = DAG.getNode(ISD::FLOG10, dl,
3810 getValue(I.getArgOperand(0)).getValueType(),
3811 getValue(I.getArgOperand(0)));
3812 }
3813
3814 setValue(&I, result);
3815 }
3816
3817 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3818 /// limited-precision mode.
3819 void
visitExp2(const CallInst & I)3820 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3821 SDValue result;
3822 DebugLoc dl = getCurDebugLoc();
3823
3824 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3825 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3826 SDValue Op = getValue(I.getArgOperand(0));
3827
3828 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3829
3830 // FractionalPartOfX = x - (float)IntegerPartOfX;
3831 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3832 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3833
3834 // IntegerPartOfX <<= 23;
3835 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3836 DAG.getConstant(23, TLI.getPointerTy()));
3837
3838 if (LimitFloatPrecision <= 6) {
3839 // For floating-point precision of 6:
3840 //
3841 // TwoToFractionalPartOfX =
3842 // 0.997535578f +
3843 // (0.735607626f + 0.252464424f * x) * x;
3844 //
3845 // error 0.0144103317, which is 6 bits
3846 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3847 getF32Constant(DAG, 0x3e814304));
3848 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3849 getF32Constant(DAG, 0x3f3c50c8));
3850 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3851 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3852 getF32Constant(DAG, 0x3f7f5e7e));
3853 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3854 SDValue TwoToFractionalPartOfX =
3855 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3856
3857 result = DAG.getNode(ISD::BITCAST, dl,
3858 MVT::f32, TwoToFractionalPartOfX);
3859 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3860 // For floating-point precision of 12:
3861 //
3862 // TwoToFractionalPartOfX =
3863 // 0.999892986f +
3864 // (0.696457318f +
3865 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3866 //
3867 // error 0.000107046256, which is 13 to 14 bits
3868 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3869 getF32Constant(DAG, 0x3da235e3));
3870 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3871 getF32Constant(DAG, 0x3e65b8f3));
3872 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3873 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3874 getF32Constant(DAG, 0x3f324b07));
3875 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3876 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3877 getF32Constant(DAG, 0x3f7ff8fd));
3878 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3879 SDValue TwoToFractionalPartOfX =
3880 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3881
3882 result = DAG.getNode(ISD::BITCAST, dl,
3883 MVT::f32, TwoToFractionalPartOfX);
3884 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3885 // For floating-point precision of 18:
3886 //
3887 // TwoToFractionalPartOfX =
3888 // 0.999999982f +
3889 // (0.693148872f +
3890 // (0.240227044f +
3891 // (0.554906021e-1f +
3892 // (0.961591928e-2f +
3893 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3894 // error 2.47208000*10^(-7), which is better than 18 bits
3895 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3896 getF32Constant(DAG, 0x3924b03e));
3897 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3898 getF32Constant(DAG, 0x3ab24b87));
3899 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3900 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3901 getF32Constant(DAG, 0x3c1d8c17));
3902 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3903 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3904 getF32Constant(DAG, 0x3d634a1d));
3905 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3906 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3907 getF32Constant(DAG, 0x3e75fe14));
3908 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3909 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3910 getF32Constant(DAG, 0x3f317234));
3911 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3912 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3913 getF32Constant(DAG, 0x3f800000));
3914 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3915 SDValue TwoToFractionalPartOfX =
3916 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3917
3918 result = DAG.getNode(ISD::BITCAST, dl,
3919 MVT::f32, TwoToFractionalPartOfX);
3920 }
3921 } else {
3922 // No special expansion.
3923 result = DAG.getNode(ISD::FEXP2, dl,
3924 getValue(I.getArgOperand(0)).getValueType(),
3925 getValue(I.getArgOperand(0)));
3926 }
3927
3928 setValue(&I, result);
3929 }
3930
3931 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3932 /// limited-precision mode with x == 10.0f.
3933 void
visitPow(const CallInst & I)3934 SelectionDAGBuilder::visitPow(const CallInst &I) {
3935 SDValue result;
3936 const Value *Val = I.getArgOperand(0);
3937 DebugLoc dl = getCurDebugLoc();
3938 bool IsExp10 = false;
3939
3940 if (getValue(Val).getValueType() == MVT::f32 &&
3941 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3942 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3943 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3944 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3945 APFloat Ten(10.0f);
3946 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3947 }
3948 }
3949 }
3950
3951 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3952 SDValue Op = getValue(I.getArgOperand(1));
3953
3954 // Put the exponent in the right bit position for later addition to the
3955 // final result:
3956 //
3957 // #define LOG2OF10 3.3219281f
3958 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3959 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3960 getF32Constant(DAG, 0x40549a78));
3961 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3962
3963 // FractionalPartOfX = x - (float)IntegerPartOfX;
3964 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3965 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3966
3967 // IntegerPartOfX <<= 23;
3968 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3969 DAG.getConstant(23, TLI.getPointerTy()));
3970
3971 if (LimitFloatPrecision <= 6) {
3972 // For floating-point precision of 6:
3973 //
3974 // twoToFractionalPartOfX =
3975 // 0.997535578f +
3976 // (0.735607626f + 0.252464424f * x) * x;
3977 //
3978 // error 0.0144103317, which is 6 bits
3979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3980 getF32Constant(DAG, 0x3e814304));
3981 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3982 getF32Constant(DAG, 0x3f3c50c8));
3983 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3984 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3985 getF32Constant(DAG, 0x3f7f5e7e));
3986 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3987 SDValue TwoToFractionalPartOfX =
3988 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3989
3990 result = DAG.getNode(ISD::BITCAST, dl,
3991 MVT::f32, TwoToFractionalPartOfX);
3992 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3993 // For floating-point precision of 12:
3994 //
3995 // TwoToFractionalPartOfX =
3996 // 0.999892986f +
3997 // (0.696457318f +
3998 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3999 //
4000 // error 0.000107046256, which is 13 to 14 bits
4001 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4002 getF32Constant(DAG, 0x3da235e3));
4003 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4004 getF32Constant(DAG, 0x3e65b8f3));
4005 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4006 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4007 getF32Constant(DAG, 0x3f324b07));
4008 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4009 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4010 getF32Constant(DAG, 0x3f7ff8fd));
4011 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4012 SDValue TwoToFractionalPartOfX =
4013 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4014
4015 result = DAG.getNode(ISD::BITCAST, dl,
4016 MVT::f32, TwoToFractionalPartOfX);
4017 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4018 // For floating-point precision of 18:
4019 //
4020 // TwoToFractionalPartOfX =
4021 // 0.999999982f +
4022 // (0.693148872f +
4023 // (0.240227044f +
4024 // (0.554906021e-1f +
4025 // (0.961591928e-2f +
4026 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4027 // error 2.47208000*10^(-7), which is better than 18 bits
4028 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4029 getF32Constant(DAG, 0x3924b03e));
4030 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4031 getF32Constant(DAG, 0x3ab24b87));
4032 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4033 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4034 getF32Constant(DAG, 0x3c1d8c17));
4035 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4036 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4037 getF32Constant(DAG, 0x3d634a1d));
4038 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4039 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4040 getF32Constant(DAG, 0x3e75fe14));
4041 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4042 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4043 getF32Constant(DAG, 0x3f317234));
4044 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4045 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4046 getF32Constant(DAG, 0x3f800000));
4047 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4048 SDValue TwoToFractionalPartOfX =
4049 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4050
4051 result = DAG.getNode(ISD::BITCAST, dl,
4052 MVT::f32, TwoToFractionalPartOfX);
4053 }
4054 } else {
4055 // No special expansion.
4056 result = DAG.getNode(ISD::FPOW, dl,
4057 getValue(I.getArgOperand(0)).getValueType(),
4058 getValue(I.getArgOperand(0)),
4059 getValue(I.getArgOperand(1)));
4060 }
4061
4062 setValue(&I, result);
4063 }
4064
4065
4066 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(DebugLoc DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)4067 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4068 SelectionDAG &DAG) {
4069 // If RHS is a constant, we can expand this out to a multiplication tree,
4070 // otherwise we end up lowering to a call to __powidf2 (for example). When
4071 // optimizing for size, we only want to do this if the expansion would produce
4072 // a small number of multiplies, otherwise we do the full expansion.
4073 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4074 // Get the exponent as a positive value.
4075 unsigned Val = RHSC->getSExtValue();
4076 if ((int)Val < 0) Val = -Val;
4077
4078 // powi(x, 0) -> 1.0
4079 if (Val == 0)
4080 return DAG.getConstantFP(1.0, LHS.getValueType());
4081
4082 const Function *F = DAG.getMachineFunction().getFunction();
4083 if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4084 // If optimizing for size, don't insert too many multiplies. This
4085 // inserts up to 5 multiplies.
4086 CountPopulation_32(Val)+Log2_32(Val) < 7) {
4087 // We use the simple binary decomposition method to generate the multiply
4088 // sequence. There are more optimal ways to do this (for example,
4089 // powi(x,15) generates one more multiply than it should), but this has
4090 // the benefit of being both really simple and much better than a libcall.
4091 SDValue Res; // Logically starts equal to 1.0
4092 SDValue CurSquare = LHS;
4093 while (Val) {
4094 if (Val & 1) {
4095 if (Res.getNode())
4096 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4097 else
4098 Res = CurSquare; // 1.0*CurSquare.
4099 }
4100
4101 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4102 CurSquare, CurSquare);
4103 Val >>= 1;
4104 }
4105
4106 // If the original was negative, invert the result, producing 1/(x*x*x).
4107 if (RHSC->getSExtValue() < 0)
4108 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4109 DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4110 return Res;
4111 }
4112 }
4113
4114 // Otherwise, expand to a libcall.
4115 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4116 }
4117
4118 // getTruncatedArgReg - Find underlying register used for an truncated
4119 // argument.
getTruncatedArgReg(const SDValue & N)4120 static unsigned getTruncatedArgReg(const SDValue &N) {
4121 if (N.getOpcode() != ISD::TRUNCATE)
4122 return 0;
4123
4124 const SDValue &Ext = N.getOperand(0);
4125 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4126 const SDValue &CFR = Ext.getOperand(0);
4127 if (CFR.getOpcode() == ISD::CopyFromReg)
4128 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4129 else
4130 if (CFR.getOpcode() == ISD::TRUNCATE)
4131 return getTruncatedArgReg(CFR);
4132 }
4133 return 0;
4134 }
4135
4136 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4137 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4138 /// At the end of instruction selection, they will be inserted to the entry BB.
4139 bool
EmitFuncArgumentDbgValue(const Value * V,MDNode * Variable,int64_t Offset,const SDValue & N)4140 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4141 int64_t Offset,
4142 const SDValue &N) {
4143 const Argument *Arg = dyn_cast<Argument>(V);
4144 if (!Arg)
4145 return false;
4146
4147 MachineFunction &MF = DAG.getMachineFunction();
4148 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4149 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4150
4151 // Ignore inlined function arguments here.
4152 DIVariable DV(Variable);
4153 if (DV.isInlinedFnArgument(MF.getFunction()))
4154 return false;
4155
4156 unsigned Reg = 0;
4157 if (Arg->hasByValAttr()) {
4158 // Byval arguments' frame index is recorded during argument lowering.
4159 // Use this info directly.
4160 Reg = TRI->getFrameRegister(MF);
4161 Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4162 // If byval argument ofset is not recorded then ignore this.
4163 if (!Offset)
4164 Reg = 0;
4165 }
4166
4167 if (N.getNode()) {
4168 if (N.getOpcode() == ISD::CopyFromReg)
4169 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4170 else
4171 Reg = getTruncatedArgReg(N);
4172 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4173 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4174 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4175 if (PR)
4176 Reg = PR;
4177 }
4178 }
4179
4180 if (!Reg) {
4181 // Check if ValueMap has reg number.
4182 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4183 if (VMI != FuncInfo.ValueMap.end())
4184 Reg = VMI->second;
4185 }
4186
4187 if (!Reg && N.getNode()) {
4188 // Check if frame index is available.
4189 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4190 if (FrameIndexSDNode *FINode =
4191 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4192 Reg = TRI->getFrameRegister(MF);
4193 Offset = FINode->getIndex();
4194 }
4195 }
4196
4197 if (!Reg)
4198 return false;
4199
4200 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4201 TII->get(TargetOpcode::DBG_VALUE))
4202 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4203 FuncInfo.ArgDbgValues.push_back(&*MIB);
4204 return true;
4205 }
4206
4207 // VisualStudio defines setjmp as _setjmp
4208 #if defined(_MSC_VER) && defined(setjmp) && \
4209 !defined(setjmp_undefined_for_msvc)
4210 # pragma push_macro("setjmp")
4211 # undef setjmp
4212 # define setjmp_undefined_for_msvc
4213 #endif
4214
4215 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4216 /// we want to emit this as a call to a named external function, return the name
4217 /// otherwise lower it and return null.
4218 const char *
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)4219 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4220 DebugLoc dl = getCurDebugLoc();
4221 SDValue Res;
4222
4223 switch (Intrinsic) {
4224 default:
4225 // By default, turn this into a target intrinsic node.
4226 visitTargetIntrinsic(I, Intrinsic);
4227 return 0;
4228 case Intrinsic::vastart: visitVAStart(I); return 0;
4229 case Intrinsic::vaend: visitVAEnd(I); return 0;
4230 case Intrinsic::vacopy: visitVACopy(I); return 0;
4231 case Intrinsic::returnaddress:
4232 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4233 getValue(I.getArgOperand(0))));
4234 return 0;
4235 case Intrinsic::frameaddress:
4236 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4237 getValue(I.getArgOperand(0))));
4238 return 0;
4239 case Intrinsic::setjmp:
4240 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4241 case Intrinsic::longjmp:
4242 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4243 case Intrinsic::memcpy: {
4244 // Assert for address < 256 since we support only user defined address
4245 // spaces.
4246 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4247 < 256 &&
4248 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4249 < 256 &&
4250 "Unknown address space");
4251 SDValue Op1 = getValue(I.getArgOperand(0));
4252 SDValue Op2 = getValue(I.getArgOperand(1));
4253 SDValue Op3 = getValue(I.getArgOperand(2));
4254 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4255 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4256 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4257 MachinePointerInfo(I.getArgOperand(0)),
4258 MachinePointerInfo(I.getArgOperand(1))));
4259 return 0;
4260 }
4261 case Intrinsic::memset: {
4262 // Assert for address < 256 since we support only user defined address
4263 // spaces.
4264 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4265 < 256 &&
4266 "Unknown address space");
4267 SDValue Op1 = getValue(I.getArgOperand(0));
4268 SDValue Op2 = getValue(I.getArgOperand(1));
4269 SDValue Op3 = getValue(I.getArgOperand(2));
4270 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4271 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4272 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4273 MachinePointerInfo(I.getArgOperand(0))));
4274 return 0;
4275 }
4276 case Intrinsic::memmove: {
4277 // Assert for address < 256 since we support only user defined address
4278 // spaces.
4279 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4280 < 256 &&
4281 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4282 < 256 &&
4283 "Unknown address space");
4284 SDValue Op1 = getValue(I.getArgOperand(0));
4285 SDValue Op2 = getValue(I.getArgOperand(1));
4286 SDValue Op3 = getValue(I.getArgOperand(2));
4287 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4288 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4289 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4290 MachinePointerInfo(I.getArgOperand(0)),
4291 MachinePointerInfo(I.getArgOperand(1))));
4292 return 0;
4293 }
4294 case Intrinsic::dbg_declare: {
4295 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4296 MDNode *Variable = DI.getVariable();
4297 const Value *Address = DI.getAddress();
4298 if (!Address || !DIVariable(DI.getVariable()).Verify())
4299 return 0;
4300
4301 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4302 // but do not always have a corresponding SDNode built. The SDNodeOrder
4303 // absolute, but not relative, values are different depending on whether
4304 // debug info exists.
4305 ++SDNodeOrder;
4306
4307 // Check if address has undef value.
4308 if (isa<UndefValue>(Address) ||
4309 (Address->use_empty() && !isa<Argument>(Address))) {
4310 DEBUG(dbgs() << "Dropping debug info for " << DI);
4311 return 0;
4312 }
4313
4314 SDValue &N = NodeMap[Address];
4315 if (!N.getNode() && isa<Argument>(Address))
4316 // Check unused arguments map.
4317 N = UnusedArgNodeMap[Address];
4318 SDDbgValue *SDV;
4319 if (N.getNode()) {
4320 // Parameters are handled specially.
4321 bool isParameter =
4322 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4323 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4324 Address = BCI->getOperand(0);
4325 const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4326
4327 if (isParameter && !AI) {
4328 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4329 if (FINode)
4330 // Byval parameter. We have a frame index at this point.
4331 SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4332 0, dl, SDNodeOrder);
4333 else {
4334 // Address is an argument, so try to emit its dbg value using
4335 // virtual register info from the FuncInfo.ValueMap.
4336 EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4337 return 0;
4338 }
4339 } else if (AI)
4340 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4341 0, dl, SDNodeOrder);
4342 else {
4343 // Can't do anything with other non-AI cases yet.
4344 DEBUG(dbgs() << "Dropping debug info for " << DI);
4345 return 0;
4346 }
4347 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4348 } else {
4349 // If Address is an argument then try to emit its dbg value using
4350 // virtual register info from the FuncInfo.ValueMap.
4351 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4352 // If variable is pinned by a alloca in dominating bb then
4353 // use StaticAllocaMap.
4354 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4355 if (AI->getParent() != DI.getParent()) {
4356 DenseMap<const AllocaInst*, int>::iterator SI =
4357 FuncInfo.StaticAllocaMap.find(AI);
4358 if (SI != FuncInfo.StaticAllocaMap.end()) {
4359 SDV = DAG.getDbgValue(Variable, SI->second,
4360 0, dl, SDNodeOrder);
4361 DAG.AddDbgValue(SDV, 0, false);
4362 return 0;
4363 }
4364 }
4365 }
4366 DEBUG(dbgs() << "Dropping debug info for " << DI);
4367 }
4368 }
4369 return 0;
4370 }
4371 case Intrinsic::dbg_value: {
4372 const DbgValueInst &DI = cast<DbgValueInst>(I);
4373 if (!DIVariable(DI.getVariable()).Verify())
4374 return 0;
4375
4376 MDNode *Variable = DI.getVariable();
4377 uint64_t Offset = DI.getOffset();
4378 const Value *V = DI.getValue();
4379 if (!V)
4380 return 0;
4381
4382 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
4383 // but do not always have a corresponding SDNode built. The SDNodeOrder
4384 // absolute, but not relative, values are different depending on whether
4385 // debug info exists.
4386 ++SDNodeOrder;
4387 SDDbgValue *SDV;
4388 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4389 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4390 DAG.AddDbgValue(SDV, 0, false);
4391 } else {
4392 // Do not use getValue() in here; we don't want to generate code at
4393 // this point if it hasn't been done yet.
4394 SDValue N = NodeMap[V];
4395 if (!N.getNode() && isa<Argument>(V))
4396 // Check unused arguments map.
4397 N = UnusedArgNodeMap[V];
4398 if (N.getNode()) {
4399 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4400 SDV = DAG.getDbgValue(Variable, N.getNode(),
4401 N.getResNo(), Offset, dl, SDNodeOrder);
4402 DAG.AddDbgValue(SDV, N.getNode(), false);
4403 }
4404 } else if (!V->use_empty() ) {
4405 // Do not call getValue(V) yet, as we don't want to generate code.
4406 // Remember it for later.
4407 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4408 DanglingDebugInfoMap[V] = DDI;
4409 } else {
4410 // We may expand this to cover more cases. One case where we have no
4411 // data available is an unreferenced parameter.
4412 DEBUG(dbgs() << "Dropping debug info for " << DI);
4413 }
4414 }
4415
4416 // Build a debug info table entry.
4417 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4418 V = BCI->getOperand(0);
4419 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4420 // Don't handle byval struct arguments or VLAs, for example.
4421 if (!AI)
4422 return 0;
4423 DenseMap<const AllocaInst*, int>::iterator SI =
4424 FuncInfo.StaticAllocaMap.find(AI);
4425 if (SI == FuncInfo.StaticAllocaMap.end())
4426 return 0; // VLAs.
4427 int FI = SI->second;
4428
4429 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4430 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4431 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4432 return 0;
4433 }
4434 case Intrinsic::eh_exception: {
4435 // Insert the EXCEPTIONADDR instruction.
4436 assert(FuncInfo.MBB->isLandingPad() &&
4437 "Call to eh.exception not in landing pad!");
4438 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4439 SDValue Ops[1];
4440 Ops[0] = DAG.getRoot();
4441 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4442 setValue(&I, Op);
4443 DAG.setRoot(Op.getValue(1));
4444 return 0;
4445 }
4446
4447 case Intrinsic::eh_selector: {
4448 MachineBasicBlock *CallMBB = FuncInfo.MBB;
4449 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4450 if (CallMBB->isLandingPad())
4451 AddCatchInfo(I, &MMI, CallMBB);
4452 else {
4453 #ifndef NDEBUG
4454 FuncInfo.CatchInfoLost.insert(&I);
4455 #endif
4456 // FIXME: Mark exception selector register as live in. Hack for PR1508.
4457 unsigned Reg = TLI.getExceptionSelectorRegister();
4458 if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4459 }
4460
4461 // Insert the EHSELECTION instruction.
4462 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4463 SDValue Ops[2];
4464 Ops[0] = getValue(I.getArgOperand(0));
4465 Ops[1] = getRoot();
4466 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4467 DAG.setRoot(Op.getValue(1));
4468 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4469 return 0;
4470 }
4471
4472 case Intrinsic::eh_typeid_for: {
4473 // Find the type id for the given typeinfo.
4474 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4475 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4476 Res = DAG.getConstant(TypeID, MVT::i32);
4477 setValue(&I, Res);
4478 return 0;
4479 }
4480
4481 case Intrinsic::eh_return_i32:
4482 case Intrinsic::eh_return_i64:
4483 DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4484 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4485 MVT::Other,
4486 getControlRoot(),
4487 getValue(I.getArgOperand(0)),
4488 getValue(I.getArgOperand(1))));
4489 return 0;
4490 case Intrinsic::eh_unwind_init:
4491 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4492 return 0;
4493 case Intrinsic::eh_dwarf_cfa: {
4494 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4495 TLI.getPointerTy());
4496 SDValue Offset = DAG.getNode(ISD::ADD, dl,
4497 TLI.getPointerTy(),
4498 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4499 TLI.getPointerTy()),
4500 CfaArg);
4501 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4502 TLI.getPointerTy(),
4503 DAG.getConstant(0, TLI.getPointerTy()));
4504 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4505 FA, Offset));
4506 return 0;
4507 }
4508 case Intrinsic::eh_sjlj_callsite: {
4509 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4510 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4511 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4512 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4513
4514 MMI.setCurrentCallSite(CI->getZExtValue());
4515 return 0;
4516 }
4517 case Intrinsic::eh_sjlj_setjmp: {
4518 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4519 getValue(I.getArgOperand(0))));
4520 return 0;
4521 }
4522 case Intrinsic::eh_sjlj_longjmp: {
4523 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4524 getRoot(), getValue(I.getArgOperand(0))));
4525 return 0;
4526 }
4527 case Intrinsic::eh_sjlj_dispatch_setup: {
4528 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4529 getRoot(), getValue(I.getArgOperand(0))));
4530 return 0;
4531 }
4532
4533 case Intrinsic::x86_mmx_pslli_w:
4534 case Intrinsic::x86_mmx_pslli_d:
4535 case Intrinsic::x86_mmx_pslli_q:
4536 case Intrinsic::x86_mmx_psrli_w:
4537 case Intrinsic::x86_mmx_psrli_d:
4538 case Intrinsic::x86_mmx_psrli_q:
4539 case Intrinsic::x86_mmx_psrai_w:
4540 case Intrinsic::x86_mmx_psrai_d: {
4541 SDValue ShAmt = getValue(I.getArgOperand(1));
4542 if (isa<ConstantSDNode>(ShAmt)) {
4543 visitTargetIntrinsic(I, Intrinsic);
4544 return 0;
4545 }
4546 unsigned NewIntrinsic = 0;
4547 EVT ShAmtVT = MVT::v2i32;
4548 switch (Intrinsic) {
4549 case Intrinsic::x86_mmx_pslli_w:
4550 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4551 break;
4552 case Intrinsic::x86_mmx_pslli_d:
4553 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4554 break;
4555 case Intrinsic::x86_mmx_pslli_q:
4556 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4557 break;
4558 case Intrinsic::x86_mmx_psrli_w:
4559 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4560 break;
4561 case Intrinsic::x86_mmx_psrli_d:
4562 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4563 break;
4564 case Intrinsic::x86_mmx_psrli_q:
4565 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4566 break;
4567 case Intrinsic::x86_mmx_psrai_w:
4568 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4569 break;
4570 case Intrinsic::x86_mmx_psrai_d:
4571 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4572 break;
4573 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4574 }
4575
4576 // The vector shift intrinsics with scalars uses 32b shift amounts but
4577 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4578 // to be zero.
4579 // We must do this early because v2i32 is not a legal type.
4580 DebugLoc dl = getCurDebugLoc();
4581 SDValue ShOps[2];
4582 ShOps[0] = ShAmt;
4583 ShOps[1] = DAG.getConstant(0, MVT::i32);
4584 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4585 EVT DestVT = TLI.getValueType(I.getType());
4586 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4587 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4588 DAG.getConstant(NewIntrinsic, MVT::i32),
4589 getValue(I.getArgOperand(0)), ShAmt);
4590 setValue(&I, Res);
4591 return 0;
4592 }
4593 case Intrinsic::convertff:
4594 case Intrinsic::convertfsi:
4595 case Intrinsic::convertfui:
4596 case Intrinsic::convertsif:
4597 case Intrinsic::convertuif:
4598 case Intrinsic::convertss:
4599 case Intrinsic::convertsu:
4600 case Intrinsic::convertus:
4601 case Intrinsic::convertuu: {
4602 ISD::CvtCode Code = ISD::CVT_INVALID;
4603 switch (Intrinsic) {
4604 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
4605 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4606 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4607 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4608 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4609 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
4610 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
4611 case Intrinsic::convertus: Code = ISD::CVT_US; break;
4612 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
4613 }
4614 EVT DestVT = TLI.getValueType(I.getType());
4615 const Value *Op1 = I.getArgOperand(0);
4616 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4617 DAG.getValueType(DestVT),
4618 DAG.getValueType(getValue(Op1).getValueType()),
4619 getValue(I.getArgOperand(1)),
4620 getValue(I.getArgOperand(2)),
4621 Code);
4622 setValue(&I, Res);
4623 return 0;
4624 }
4625 case Intrinsic::sqrt:
4626 setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4627 getValue(I.getArgOperand(0)).getValueType(),
4628 getValue(I.getArgOperand(0))));
4629 return 0;
4630 case Intrinsic::powi:
4631 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4632 getValue(I.getArgOperand(1)), DAG));
4633 return 0;
4634 case Intrinsic::sin:
4635 setValue(&I, DAG.getNode(ISD::FSIN, dl,
4636 getValue(I.getArgOperand(0)).getValueType(),
4637 getValue(I.getArgOperand(0))));
4638 return 0;
4639 case Intrinsic::cos:
4640 setValue(&I, DAG.getNode(ISD::FCOS, dl,
4641 getValue(I.getArgOperand(0)).getValueType(),
4642 getValue(I.getArgOperand(0))));
4643 return 0;
4644 case Intrinsic::log:
4645 visitLog(I);
4646 return 0;
4647 case Intrinsic::log2:
4648 visitLog2(I);
4649 return 0;
4650 case Intrinsic::log10:
4651 visitLog10(I);
4652 return 0;
4653 case Intrinsic::exp:
4654 visitExp(I);
4655 return 0;
4656 case Intrinsic::exp2:
4657 visitExp2(I);
4658 return 0;
4659 case Intrinsic::pow:
4660 visitPow(I);
4661 return 0;
4662 case Intrinsic::fma:
4663 setValue(&I, DAG.getNode(ISD::FMA, dl,
4664 getValue(I.getArgOperand(0)).getValueType(),
4665 getValue(I.getArgOperand(0)),
4666 getValue(I.getArgOperand(1)),
4667 getValue(I.getArgOperand(2))));
4668 return 0;
4669 case Intrinsic::convert_to_fp16:
4670 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4671 MVT::i16, getValue(I.getArgOperand(0))));
4672 return 0;
4673 case Intrinsic::convert_from_fp16:
4674 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4675 MVT::f32, getValue(I.getArgOperand(0))));
4676 return 0;
4677 case Intrinsic::pcmarker: {
4678 SDValue Tmp = getValue(I.getArgOperand(0));
4679 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4680 return 0;
4681 }
4682 case Intrinsic::readcyclecounter: {
4683 SDValue Op = getRoot();
4684 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4685 DAG.getVTList(MVT::i64, MVT::Other),
4686 &Op, 1);
4687 setValue(&I, Res);
4688 DAG.setRoot(Res.getValue(1));
4689 return 0;
4690 }
4691 case Intrinsic::bswap:
4692 setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4693 getValue(I.getArgOperand(0)).getValueType(),
4694 getValue(I.getArgOperand(0))));
4695 return 0;
4696 case Intrinsic::cttz: {
4697 SDValue Arg = getValue(I.getArgOperand(0));
4698 EVT Ty = Arg.getValueType();
4699 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4700 return 0;
4701 }
4702 case Intrinsic::ctlz: {
4703 SDValue Arg = getValue(I.getArgOperand(0));
4704 EVT Ty = Arg.getValueType();
4705 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4706 return 0;
4707 }
4708 case Intrinsic::ctpop: {
4709 SDValue Arg = getValue(I.getArgOperand(0));
4710 EVT Ty = Arg.getValueType();
4711 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4712 return 0;
4713 }
4714 case Intrinsic::stacksave: {
4715 SDValue Op = getRoot();
4716 Res = DAG.getNode(ISD::STACKSAVE, dl,
4717 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4718 setValue(&I, Res);
4719 DAG.setRoot(Res.getValue(1));
4720 return 0;
4721 }
4722 case Intrinsic::stackrestore: {
4723 Res = getValue(I.getArgOperand(0));
4724 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4725 return 0;
4726 }
4727 case Intrinsic::stackprotector: {
4728 // Emit code into the DAG to store the stack guard onto the stack.
4729 MachineFunction &MF = DAG.getMachineFunction();
4730 MachineFrameInfo *MFI = MF.getFrameInfo();
4731 EVT PtrTy = TLI.getPointerTy();
4732
4733 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
4734 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4735
4736 int FI = FuncInfo.StaticAllocaMap[Slot];
4737 MFI->setStackProtectorIndex(FI);
4738
4739 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4740
4741 // Store the stack protector onto the stack.
4742 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4743 MachinePointerInfo::getFixedStack(FI),
4744 true, false, 0);
4745 setValue(&I, Res);
4746 DAG.setRoot(Res);
4747 return 0;
4748 }
4749 case Intrinsic::objectsize: {
4750 // If we don't know by now, we're never going to know.
4751 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4752
4753 assert(CI && "Non-constant type in __builtin_object_size?");
4754
4755 SDValue Arg = getValue(I.getCalledValue());
4756 EVT Ty = Arg.getValueType();
4757
4758 if (CI->isZero())
4759 Res = DAG.getConstant(-1ULL, Ty);
4760 else
4761 Res = DAG.getConstant(0, Ty);
4762
4763 setValue(&I, Res);
4764 return 0;
4765 }
4766 case Intrinsic::var_annotation:
4767 // Discard annotate attributes
4768 return 0;
4769
4770 case Intrinsic::init_trampoline: {
4771 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4772
4773 SDValue Ops[6];
4774 Ops[0] = getRoot();
4775 Ops[1] = getValue(I.getArgOperand(0));
4776 Ops[2] = getValue(I.getArgOperand(1));
4777 Ops[3] = getValue(I.getArgOperand(2));
4778 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4779 Ops[5] = DAG.getSrcValue(F);
4780
4781 Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4782 DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4783 Ops, 6);
4784
4785 setValue(&I, Res);
4786 DAG.setRoot(Res.getValue(1));
4787 return 0;
4788 }
4789 case Intrinsic::gcroot:
4790 if (GFI) {
4791 const Value *Alloca = I.getArgOperand(0);
4792 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4793
4794 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4795 GFI->addStackRoot(FI->getIndex(), TypeMap);
4796 }
4797 return 0;
4798 case Intrinsic::gcread:
4799 case Intrinsic::gcwrite:
4800 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4801 return 0;
4802 case Intrinsic::flt_rounds:
4803 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4804 return 0;
4805
4806 case Intrinsic::expect: {
4807 // Just replace __builtin_expect(exp, c) with EXP.
4808 setValue(&I, getValue(I.getArgOperand(0)));
4809 return 0;
4810 }
4811
4812 case Intrinsic::trap: {
4813 StringRef TrapFuncName = getTrapFunctionName();
4814 if (TrapFuncName.empty()) {
4815 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4816 return 0;
4817 }
4818 TargetLowering::ArgListTy Args;
4819 std::pair<SDValue, SDValue> Result =
4820 TLI.LowerCallTo(getRoot(), I.getType(),
4821 false, false, false, false, 0, CallingConv::C,
4822 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4823 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4824 Args, DAG, getCurDebugLoc());
4825 DAG.setRoot(Result.second);
4826 return 0;
4827 }
4828 case Intrinsic::uadd_with_overflow:
4829 return implVisitAluOverflow(I, ISD::UADDO);
4830 case Intrinsic::sadd_with_overflow:
4831 return implVisitAluOverflow(I, ISD::SADDO);
4832 case Intrinsic::usub_with_overflow:
4833 return implVisitAluOverflow(I, ISD::USUBO);
4834 case Intrinsic::ssub_with_overflow:
4835 return implVisitAluOverflow(I, ISD::SSUBO);
4836 case Intrinsic::umul_with_overflow:
4837 return implVisitAluOverflow(I, ISD::UMULO);
4838 case Intrinsic::smul_with_overflow:
4839 return implVisitAluOverflow(I, ISD::SMULO);
4840
4841 case Intrinsic::prefetch: {
4842 SDValue Ops[5];
4843 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4844 Ops[0] = getRoot();
4845 Ops[1] = getValue(I.getArgOperand(0));
4846 Ops[2] = getValue(I.getArgOperand(1));
4847 Ops[3] = getValue(I.getArgOperand(2));
4848 Ops[4] = getValue(I.getArgOperand(3));
4849 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4850 DAG.getVTList(MVT::Other),
4851 &Ops[0], 5,
4852 EVT::getIntegerVT(*Context, 8),
4853 MachinePointerInfo(I.getArgOperand(0)),
4854 0, /* align */
4855 false, /* volatile */
4856 rw==0, /* read */
4857 rw==1)); /* write */
4858 return 0;
4859 }
4860 case Intrinsic::memory_barrier: {
4861 SDValue Ops[6];
4862 Ops[0] = getRoot();
4863 for (int x = 1; x < 6; ++x)
4864 Ops[x] = getValue(I.getArgOperand(x - 1));
4865
4866 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4867 return 0;
4868 }
4869 case Intrinsic::atomic_cmp_swap: {
4870 SDValue Root = getRoot();
4871 SDValue L =
4872 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4873 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4874 Root,
4875 getValue(I.getArgOperand(0)),
4876 getValue(I.getArgOperand(1)),
4877 getValue(I.getArgOperand(2)),
4878 MachinePointerInfo(I.getArgOperand(0)));
4879 setValue(&I, L);
4880 DAG.setRoot(L.getValue(1));
4881 return 0;
4882 }
4883 case Intrinsic::atomic_load_add:
4884 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4885 case Intrinsic::atomic_load_sub:
4886 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4887 case Intrinsic::atomic_load_or:
4888 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4889 case Intrinsic::atomic_load_xor:
4890 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4891 case Intrinsic::atomic_load_and:
4892 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4893 case Intrinsic::atomic_load_nand:
4894 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4895 case Intrinsic::atomic_load_max:
4896 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4897 case Intrinsic::atomic_load_min:
4898 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4899 case Intrinsic::atomic_load_umin:
4900 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4901 case Intrinsic::atomic_load_umax:
4902 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4903 case Intrinsic::atomic_swap:
4904 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4905
4906 case Intrinsic::invariant_start:
4907 case Intrinsic::lifetime_start:
4908 // Discard region information.
4909 setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4910 return 0;
4911 case Intrinsic::invariant_end:
4912 case Intrinsic::lifetime_end:
4913 // Discard region information.
4914 return 0;
4915 }
4916 }
4917
LowerCallTo(ImmutableCallSite CS,SDValue Callee,bool isTailCall,MachineBasicBlock * LandingPad)4918 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4919 bool isTailCall,
4920 MachineBasicBlock *LandingPad) {
4921 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4922 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4923 Type *RetTy = FTy->getReturnType();
4924 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4925 MCSymbol *BeginLabel = 0;
4926
4927 TargetLowering::ArgListTy Args;
4928 TargetLowering::ArgListEntry Entry;
4929 Args.reserve(CS.arg_size());
4930
4931 // Check whether the function can return without sret-demotion.
4932 SmallVector<ISD::OutputArg, 4> Outs;
4933 SmallVector<uint64_t, 4> Offsets;
4934 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4935 Outs, TLI, &Offsets);
4936
4937 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4938 DAG.getMachineFunction(),
4939 FTy->isVarArg(), Outs,
4940 FTy->getContext());
4941
4942 SDValue DemoteStackSlot;
4943 int DemoteStackIdx = -100;
4944
4945 if (!CanLowerReturn) {
4946 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4947 FTy->getReturnType());
4948 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(
4949 FTy->getReturnType());
4950 MachineFunction &MF = DAG.getMachineFunction();
4951 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4952 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4953
4954 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4955 Entry.Node = DemoteStackSlot;
4956 Entry.Ty = StackSlotPtrType;
4957 Entry.isSExt = false;
4958 Entry.isZExt = false;
4959 Entry.isInReg = false;
4960 Entry.isSRet = true;
4961 Entry.isNest = false;
4962 Entry.isByVal = false;
4963 Entry.Alignment = Align;
4964 Args.push_back(Entry);
4965 RetTy = Type::getVoidTy(FTy->getContext());
4966 }
4967
4968 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4969 i != e; ++i) {
4970 const Value *V = *i;
4971
4972 // Skip empty types
4973 if (V->getType()->isEmptyTy())
4974 continue;
4975
4976 SDValue ArgNode = getValue(V);
4977 Entry.Node = ArgNode; Entry.Ty = V->getType();
4978
4979 unsigned attrInd = i - CS.arg_begin() + 1;
4980 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
4981 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
4982 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4983 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
4984 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
4985 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4986 Entry.Alignment = CS.getParamAlignment(attrInd);
4987 Args.push_back(Entry);
4988 }
4989
4990 if (LandingPad) {
4991 // Insert a label before the invoke call to mark the try range. This can be
4992 // used to detect deletion of the invoke via the MachineModuleInfo.
4993 BeginLabel = MMI.getContext().CreateTempSymbol();
4994
4995 // For SjLj, keep track of which landing pads go with which invokes
4996 // so as to maintain the ordering of pads in the LSDA.
4997 unsigned CallSiteIndex = MMI.getCurrentCallSite();
4998 if (CallSiteIndex) {
4999 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5000 // Now that the call site is handled, stop tracking it.
5001 MMI.setCurrentCallSite(0);
5002 }
5003
5004 // Both PendingLoads and PendingExports must be flushed here;
5005 // this call might not return.
5006 (void)getRoot();
5007 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5008 }
5009
5010 // Check if target-independent constraints permit a tail call here.
5011 // Target-dependent constraints are checked within TLI.LowerCallTo.
5012 if (isTailCall &&
5013 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5014 isTailCall = false;
5015
5016 // If there's a possibility that fast-isel has already selected some amount
5017 // of the current basic block, don't emit a tail call.
5018 if (isTailCall && EnableFastISel)
5019 isTailCall = false;
5020
5021 std::pair<SDValue,SDValue> Result =
5022 TLI.LowerCallTo(getRoot(), RetTy,
5023 CS.paramHasAttr(0, Attribute::SExt),
5024 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5025 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5026 CS.getCallingConv(),
5027 isTailCall,
5028 !CS.getInstruction()->use_empty(),
5029 Callee, Args, DAG, getCurDebugLoc());
5030 assert((isTailCall || Result.second.getNode()) &&
5031 "Non-null chain expected with non-tail call!");
5032 assert((Result.second.getNode() || !Result.first.getNode()) &&
5033 "Null value expected with tail call!");
5034 if (Result.first.getNode()) {
5035 setValue(CS.getInstruction(), Result.first);
5036 } else if (!CanLowerReturn && Result.second.getNode()) {
5037 // The instruction result is the result of loading from the
5038 // hidden sret parameter.
5039 SmallVector<EVT, 1> PVTs;
5040 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5041
5042 ComputeValueVTs(TLI, PtrRetTy, PVTs);
5043 assert(PVTs.size() == 1 && "Pointers should fit in one register");
5044 EVT PtrVT = PVTs[0];
5045 unsigned NumValues = Outs.size();
5046 SmallVector<SDValue, 4> Values(NumValues);
5047 SmallVector<SDValue, 4> Chains(NumValues);
5048
5049 for (unsigned i = 0; i < NumValues; ++i) {
5050 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5051 DemoteStackSlot,
5052 DAG.getConstant(Offsets[i], PtrVT));
5053 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5054 Add,
5055 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5056 false, false, 1);
5057 Values[i] = L;
5058 Chains[i] = L.getValue(1);
5059 }
5060
5061 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5062 MVT::Other, &Chains[0], NumValues);
5063 PendingLoads.push_back(Chain);
5064
5065 // Collect the legal value parts into potentially illegal values
5066 // that correspond to the original function's return values.
5067 SmallVector<EVT, 4> RetTys;
5068 RetTy = FTy->getReturnType();
5069 ComputeValueVTs(TLI, RetTy, RetTys);
5070 ISD::NodeType AssertOp = ISD::DELETED_NODE;
5071 SmallVector<SDValue, 4> ReturnValues;
5072 unsigned CurReg = 0;
5073 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5074 EVT VT = RetTys[I];
5075 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5076 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5077
5078 SDValue ReturnValue =
5079 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5080 RegisterVT, VT, AssertOp);
5081 ReturnValues.push_back(ReturnValue);
5082 CurReg += NumRegs;
5083 }
5084
5085 setValue(CS.getInstruction(),
5086 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5087 DAG.getVTList(&RetTys[0], RetTys.size()),
5088 &ReturnValues[0], ReturnValues.size()));
5089 }
5090
5091 // Assign order to nodes here. If the call does not produce a result, it won't
5092 // be mapped to a SDNode and visit() will not assign it an order number.
5093 if (!Result.second.getNode()) {
5094 // As a special case, a null chain means that a tail call has been emitted and
5095 // the DAG root is already updated.
5096 HasTailCall = true;
5097 ++SDNodeOrder;
5098 AssignOrderingToNode(DAG.getRoot().getNode());
5099 } else {
5100 DAG.setRoot(Result.second);
5101 ++SDNodeOrder;
5102 AssignOrderingToNode(Result.second.getNode());
5103 }
5104
5105 if (LandingPad) {
5106 // Insert a label at the end of the invoke call to mark the try range. This
5107 // can be used to detect deletion of the invoke via the MachineModuleInfo.
5108 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5109 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5110
5111 // Inform MachineModuleInfo of range.
5112 MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5113 }
5114 }
5115
5116 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5117 /// value is equal or not-equal to zero.
IsOnlyUsedInZeroEqualityComparison(const Value * V)5118 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5119 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5120 UI != E; ++UI) {
5121 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5122 if (IC->isEquality())
5123 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5124 if (C->isNullValue())
5125 continue;
5126 // Unknown instruction.
5127 return false;
5128 }
5129 return true;
5130 }
5131
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,Type * LoadTy,SelectionDAGBuilder & Builder)5132 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5133 Type *LoadTy,
5134 SelectionDAGBuilder &Builder) {
5135
5136 // Check to see if this load can be trivially constant folded, e.g. if the
5137 // input is from a string literal.
5138 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5139 // Cast pointer to the type we really want to load.
5140 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5141 PointerType::getUnqual(LoadTy));
5142
5143 if (const Constant *LoadCst =
5144 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5145 Builder.TD))
5146 return Builder.getValue(LoadCst);
5147 }
5148
5149 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
5150 // still constant memory, the input chain can be the entry node.
5151 SDValue Root;
5152 bool ConstantMemory = false;
5153
5154 // Do not serialize (non-volatile) loads of constant memory with anything.
5155 if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5156 Root = Builder.DAG.getEntryNode();
5157 ConstantMemory = true;
5158 } else {
5159 // Do not serialize non-volatile loads against each other.
5160 Root = Builder.DAG.getRoot();
5161 }
5162
5163 SDValue Ptr = Builder.getValue(PtrVal);
5164 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5165 Ptr, MachinePointerInfo(PtrVal),
5166 false /*volatile*/,
5167 false /*nontemporal*/, 1 /* align=1 */);
5168
5169 if (!ConstantMemory)
5170 Builder.PendingLoads.push_back(LoadVal.getValue(1));
5171 return LoadVal;
5172 }
5173
5174
5175 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5176 /// If so, return true and lower it, otherwise return false and it will be
5177 /// lowered like a normal call.
visitMemCmpCall(const CallInst & I)5178 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5179 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
5180 if (I.getNumArgOperands() != 3)
5181 return false;
5182
5183 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5184 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5185 !I.getArgOperand(2)->getType()->isIntegerTy() ||
5186 !I.getType()->isIntegerTy())
5187 return false;
5188
5189 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5190
5191 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
5192 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
5193 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5194 bool ActuallyDoIt = true;
5195 MVT LoadVT;
5196 Type *LoadTy;
5197 switch (Size->getZExtValue()) {
5198 default:
5199 LoadVT = MVT::Other;
5200 LoadTy = 0;
5201 ActuallyDoIt = false;
5202 break;
5203 case 2:
5204 LoadVT = MVT::i16;
5205 LoadTy = Type::getInt16Ty(Size->getContext());
5206 break;
5207 case 4:
5208 LoadVT = MVT::i32;
5209 LoadTy = Type::getInt32Ty(Size->getContext());
5210 break;
5211 case 8:
5212 LoadVT = MVT::i64;
5213 LoadTy = Type::getInt64Ty(Size->getContext());
5214 break;
5215 /*
5216 case 16:
5217 LoadVT = MVT::v4i32;
5218 LoadTy = Type::getInt32Ty(Size->getContext());
5219 LoadTy = VectorType::get(LoadTy, 4);
5220 break;
5221 */
5222 }
5223
5224 // This turns into unaligned loads. We only do this if the target natively
5225 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5226 // we'll only produce a small number of byte loads.
5227
5228 // Require that we can find a legal MVT, and only do this if the target
5229 // supports unaligned loads of that type. Expanding into byte loads would
5230 // bloat the code.
5231 if (ActuallyDoIt && Size->getZExtValue() > 4) {
5232 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5233 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5234 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5235 ActuallyDoIt = false;
5236 }
5237
5238 if (ActuallyDoIt) {
5239 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5240 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5241
5242 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5243 ISD::SETNE);
5244 EVT CallVT = TLI.getValueType(I.getType(), true);
5245 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5246 return true;
5247 }
5248 }
5249
5250
5251 return false;
5252 }
5253
5254
visitCall(const CallInst & I)5255 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5256 // Handle inline assembly differently.
5257 if (isa<InlineAsm>(I.getCalledValue())) {
5258 visitInlineAsm(&I);
5259 return;
5260 }
5261
5262 // See if any floating point values are being passed to this function. This is
5263 // used to emit an undefined reference to fltused on Windows.
5264 FunctionType *FT =
5265 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5266 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5267 if (FT->isVarArg() &&
5268 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5269 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5270 Type* T = I.getArgOperand(i)->getType();
5271 for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5272 i != e; ++i) {
5273 if (!i->isFloatingPointTy()) continue;
5274 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5275 break;
5276 }
5277 }
5278 }
5279
5280 const char *RenameFn = 0;
5281 if (Function *F = I.getCalledFunction()) {
5282 if (F->isDeclaration()) {
5283 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5284 if (unsigned IID = II->getIntrinsicID(F)) {
5285 RenameFn = visitIntrinsicCall(I, IID);
5286 if (!RenameFn)
5287 return;
5288 }
5289 }
5290 if (unsigned IID = F->getIntrinsicID()) {
5291 RenameFn = visitIntrinsicCall(I, IID);
5292 if (!RenameFn)
5293 return;
5294 }
5295 }
5296
5297 // Check for well-known libc/libm calls. If the function is internal, it
5298 // can't be a library call.
5299 if (!F->hasLocalLinkage() && F->hasName()) {
5300 StringRef Name = F->getName();
5301 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5302 if (I.getNumArgOperands() == 2 && // Basic sanity checks.
5303 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5304 I.getType() == I.getArgOperand(0)->getType() &&
5305 I.getType() == I.getArgOperand(1)->getType()) {
5306 SDValue LHS = getValue(I.getArgOperand(0));
5307 SDValue RHS = getValue(I.getArgOperand(1));
5308 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5309 LHS.getValueType(), LHS, RHS));
5310 return;
5311 }
5312 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5313 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5314 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5315 I.getType() == I.getArgOperand(0)->getType()) {
5316 SDValue Tmp = getValue(I.getArgOperand(0));
5317 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5318 Tmp.getValueType(), Tmp));
5319 return;
5320 }
5321 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5322 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5323 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5324 I.getType() == I.getArgOperand(0)->getType() &&
5325 I.onlyReadsMemory()) {
5326 SDValue Tmp = getValue(I.getArgOperand(0));
5327 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5328 Tmp.getValueType(), Tmp));
5329 return;
5330 }
5331 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5332 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5333 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5334 I.getType() == I.getArgOperand(0)->getType() &&
5335 I.onlyReadsMemory()) {
5336 SDValue Tmp = getValue(I.getArgOperand(0));
5337 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5338 Tmp.getValueType(), Tmp));
5339 return;
5340 }
5341 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5342 if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5343 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5344 I.getType() == I.getArgOperand(0)->getType() &&
5345 I.onlyReadsMemory()) {
5346 SDValue Tmp = getValue(I.getArgOperand(0));
5347 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5348 Tmp.getValueType(), Tmp));
5349 return;
5350 }
5351 } else if (Name == "memcmp") {
5352 if (visitMemCmpCall(I))
5353 return;
5354 }
5355 }
5356 }
5357
5358 SDValue Callee;
5359 if (!RenameFn)
5360 Callee = getValue(I.getCalledValue());
5361 else
5362 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5363
5364 // Check if we can potentially perform a tail call. More detailed checking is
5365 // be done within LowerCallTo, after more information about the call is known.
5366 LowerCallTo(&I, Callee, I.isTailCall());
5367 }
5368
5369 namespace {
5370
5371 /// AsmOperandInfo - This contains information for each constraint that we are
5372 /// lowering.
5373 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5374 public:
5375 /// CallOperand - If this is the result output operand or a clobber
5376 /// this is null, otherwise it is the incoming operand to the CallInst.
5377 /// This gets modified as the asm is processed.
5378 SDValue CallOperand;
5379
5380 /// AssignedRegs - If this is a register or register class operand, this
5381 /// contains the set of register corresponding to the operand.
5382 RegsForValue AssignedRegs;
5383
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)5384 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5385 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5386 }
5387
5388 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5389 /// busy in OutputRegs/InputRegs.
MarkAllocatedRegs(bool isOutReg,bool isInReg,std::set<unsigned> & OutputRegs,std::set<unsigned> & InputRegs,const TargetRegisterInfo & TRI) const5390 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5391 std::set<unsigned> &OutputRegs,
5392 std::set<unsigned> &InputRegs,
5393 const TargetRegisterInfo &TRI) const {
5394 if (isOutReg) {
5395 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5396 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5397 }
5398 if (isInReg) {
5399 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5400 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5401 }
5402 }
5403
5404 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5405 /// corresponds to. If there is no Value* for this operand, it returns
5406 /// MVT::Other.
getCallOperandValEVT(LLVMContext & Context,const TargetLowering & TLI,const TargetData * TD) const5407 EVT getCallOperandValEVT(LLVMContext &Context,
5408 const TargetLowering &TLI,
5409 const TargetData *TD) const {
5410 if (CallOperandVal == 0) return MVT::Other;
5411
5412 if (isa<BasicBlock>(CallOperandVal))
5413 return TLI.getPointerTy();
5414
5415 llvm::Type *OpTy = CallOperandVal->getType();
5416
5417 // FIXME: code duplicated from TargetLowering::ParseConstraints().
5418 // If this is an indirect operand, the operand is a pointer to the
5419 // accessed type.
5420 if (isIndirect) {
5421 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5422 if (!PtrTy)
5423 report_fatal_error("Indirect operand for inline asm not a pointer!");
5424 OpTy = PtrTy->getElementType();
5425 }
5426
5427 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5428 if (StructType *STy = dyn_cast<StructType>(OpTy))
5429 if (STy->getNumElements() == 1)
5430 OpTy = STy->getElementType(0);
5431
5432 // If OpTy is not a single value, it may be a struct/union that we
5433 // can tile with integers.
5434 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5435 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5436 switch (BitSize) {
5437 default: break;
5438 case 1:
5439 case 8:
5440 case 16:
5441 case 32:
5442 case 64:
5443 case 128:
5444 OpTy = IntegerType::get(Context, BitSize);
5445 break;
5446 }
5447 }
5448
5449 return TLI.getValueType(OpTy, true);
5450 }
5451
5452 private:
5453 /// MarkRegAndAliases - Mark the specified register and all aliases in the
5454 /// specified set.
MarkRegAndAliases(unsigned Reg,std::set<unsigned> & Regs,const TargetRegisterInfo & TRI)5455 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5456 const TargetRegisterInfo &TRI) {
5457 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5458 Regs.insert(Reg);
5459 if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5460 for (; *Aliases; ++Aliases)
5461 Regs.insert(*Aliases);
5462 }
5463 };
5464
5465 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5466
5467 } // end anonymous namespace
5468
5469 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5470 /// specified operand. We prefer to assign virtual registers, to allow the
5471 /// register allocator to handle the assignment process. However, if the asm
5472 /// uses features that we can't model on machineinstrs, we have SDISel do the
5473 /// allocation. This produces generally horrible, but correct, code.
5474 ///
5475 /// OpInfo describes the operand.
5476 /// Input and OutputRegs are the set of already allocated physical registers.
5477 ///
GetRegistersForValue(SelectionDAG & DAG,const TargetLowering & TLI,DebugLoc DL,SDISelAsmOperandInfo & OpInfo,std::set<unsigned> & OutputRegs,std::set<unsigned> & InputRegs)5478 static void GetRegistersForValue(SelectionDAG &DAG,
5479 const TargetLowering &TLI,
5480 DebugLoc DL,
5481 SDISelAsmOperandInfo &OpInfo,
5482 std::set<unsigned> &OutputRegs,
5483 std::set<unsigned> &InputRegs) {
5484 LLVMContext &Context = *DAG.getContext();
5485
5486 // Compute whether this value requires an input register, an output register,
5487 // or both.
5488 bool isOutReg = false;
5489 bool isInReg = false;
5490 switch (OpInfo.Type) {
5491 case InlineAsm::isOutput:
5492 isOutReg = true;
5493
5494 // If there is an input constraint that matches this, we need to reserve
5495 // the input register so no other inputs allocate to it.
5496 isInReg = OpInfo.hasMatchingInput();
5497 break;
5498 case InlineAsm::isInput:
5499 isInReg = true;
5500 isOutReg = false;
5501 break;
5502 case InlineAsm::isClobber:
5503 isOutReg = true;
5504 isInReg = true;
5505 break;
5506 }
5507
5508
5509 MachineFunction &MF = DAG.getMachineFunction();
5510 SmallVector<unsigned, 4> Regs;
5511
5512 // If this is a constraint for a single physreg, or a constraint for a
5513 // register class, find it.
5514 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5515 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5516 OpInfo.ConstraintVT);
5517
5518 unsigned NumRegs = 1;
5519 if (OpInfo.ConstraintVT != MVT::Other) {
5520 // If this is a FP input in an integer register (or visa versa) insert a bit
5521 // cast of the input value. More generally, handle any case where the input
5522 // value disagrees with the register class we plan to stick this in.
5523 if (OpInfo.Type == InlineAsm::isInput &&
5524 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5525 // Try to convert to the first EVT that the reg class contains. If the
5526 // types are identical size, use a bitcast to convert (e.g. two differing
5527 // vector types).
5528 EVT RegVT = *PhysReg.second->vt_begin();
5529 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5530 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5531 RegVT, OpInfo.CallOperand);
5532 OpInfo.ConstraintVT = RegVT;
5533 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5534 // If the input is a FP value and we want it in FP registers, do a
5535 // bitcast to the corresponding integer type. This turns an f64 value
5536 // into i64, which can be passed with two i32 values on a 32-bit
5537 // machine.
5538 RegVT = EVT::getIntegerVT(Context,
5539 OpInfo.ConstraintVT.getSizeInBits());
5540 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5541 RegVT, OpInfo.CallOperand);
5542 OpInfo.ConstraintVT = RegVT;
5543 }
5544 }
5545
5546 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5547 }
5548
5549 EVT RegVT;
5550 EVT ValueVT = OpInfo.ConstraintVT;
5551
5552 // If this is a constraint for a specific physical register, like {r17},
5553 // assign it now.
5554 if (unsigned AssignedReg = PhysReg.first) {
5555 const TargetRegisterClass *RC = PhysReg.second;
5556 if (OpInfo.ConstraintVT == MVT::Other)
5557 ValueVT = *RC->vt_begin();
5558
5559 // Get the actual register value type. This is important, because the user
5560 // may have asked for (e.g.) the AX register in i32 type. We need to
5561 // remember that AX is actually i16 to get the right extension.
5562 RegVT = *RC->vt_begin();
5563
5564 // This is a explicit reference to a physical register.
5565 Regs.push_back(AssignedReg);
5566
5567 // If this is an expanded reference, add the rest of the regs to Regs.
5568 if (NumRegs != 1) {
5569 TargetRegisterClass::iterator I = RC->begin();
5570 for (; *I != AssignedReg; ++I)
5571 assert(I != RC->end() && "Didn't find reg!");
5572
5573 // Already added the first reg.
5574 --NumRegs; ++I;
5575 for (; NumRegs; --NumRegs, ++I) {
5576 assert(I != RC->end() && "Ran out of registers to allocate!");
5577 Regs.push_back(*I);
5578 }
5579 }
5580
5581 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5582 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5583 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5584 return;
5585 }
5586
5587 // Otherwise, if this was a reference to an LLVM register class, create vregs
5588 // for this reference.
5589 if (const TargetRegisterClass *RC = PhysReg.second) {
5590 RegVT = *RC->vt_begin();
5591 if (OpInfo.ConstraintVT == MVT::Other)
5592 ValueVT = RegVT;
5593
5594 // Create the appropriate number of virtual registers.
5595 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5596 for (; NumRegs; --NumRegs)
5597 Regs.push_back(RegInfo.createVirtualRegister(RC));
5598
5599 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5600 return;
5601 }
5602
5603 // Otherwise, we couldn't allocate enough registers for this.
5604 }
5605
5606 /// visitInlineAsm - Handle a call to an InlineAsm object.
5607 ///
visitInlineAsm(ImmutableCallSite CS)5608 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5609 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5610
5611 /// ConstraintOperands - Information about all of the constraints.
5612 SDISelAsmOperandInfoVector ConstraintOperands;
5613
5614 std::set<unsigned> OutputRegs, InputRegs;
5615
5616 TargetLowering::AsmOperandInfoVector
5617 TargetConstraints = TLI.ParseConstraints(CS);
5618
5619 bool hasMemory = false;
5620
5621 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5622 unsigned ResNo = 0; // ResNo - The result number of the next output.
5623 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5624 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5625 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5626
5627 EVT OpVT = MVT::Other;
5628
5629 // Compute the value type for each operand.
5630 switch (OpInfo.Type) {
5631 case InlineAsm::isOutput:
5632 // Indirect outputs just consume an argument.
5633 if (OpInfo.isIndirect) {
5634 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5635 break;
5636 }
5637
5638 // The return value of the call is this value. As such, there is no
5639 // corresponding argument.
5640 assert(!CS.getType()->isVoidTy() &&
5641 "Bad inline asm!");
5642 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5643 OpVT = TLI.getValueType(STy->getElementType(ResNo));
5644 } else {
5645 assert(ResNo == 0 && "Asm only has one result!");
5646 OpVT = TLI.getValueType(CS.getType());
5647 }
5648 ++ResNo;
5649 break;
5650 case InlineAsm::isInput:
5651 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5652 break;
5653 case InlineAsm::isClobber:
5654 // Nothing to do.
5655 break;
5656 }
5657
5658 // If this is an input or an indirect output, process the call argument.
5659 // BasicBlocks are labels, currently appearing only in asm's.
5660 if (OpInfo.CallOperandVal) {
5661 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5662 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5663 } else {
5664 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5665 }
5666
5667 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5668 }
5669
5670 OpInfo.ConstraintVT = OpVT;
5671
5672 // Indirect operand accesses access memory.
5673 if (OpInfo.isIndirect)
5674 hasMemory = true;
5675 else {
5676 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5677 TargetLowering::ConstraintType
5678 CType = TLI.getConstraintType(OpInfo.Codes[j]);
5679 if (CType == TargetLowering::C_Memory) {
5680 hasMemory = true;
5681 break;
5682 }
5683 }
5684 }
5685 }
5686
5687 SDValue Chain, Flag;
5688
5689 // We won't need to flush pending loads if this asm doesn't touch
5690 // memory and is nonvolatile.
5691 if (hasMemory || IA->hasSideEffects())
5692 Chain = getRoot();
5693 else
5694 Chain = DAG.getRoot();
5695
5696 // Second pass over the constraints: compute which constraint option to use
5697 // and assign registers to constraints that want a specific physreg.
5698 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5699 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5700
5701 // If this is an output operand with a matching input operand, look up the
5702 // matching input. If their types mismatch, e.g. one is an integer, the
5703 // other is floating point, or their sizes are different, flag it as an
5704 // error.
5705 if (OpInfo.hasMatchingInput()) {
5706 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5707
5708 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5709 std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5710 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
5711 std::pair<unsigned, const TargetRegisterClass*> InputRC =
5712 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
5713 if ((OpInfo.ConstraintVT.isInteger() !=
5714 Input.ConstraintVT.isInteger()) ||
5715 (MatchRC.second != InputRC.second)) {
5716 report_fatal_error("Unsupported asm: input constraint"
5717 " with a matching output constraint of"
5718 " incompatible type!");
5719 }
5720 Input.ConstraintVT = OpInfo.ConstraintVT;
5721 }
5722 }
5723
5724 // Compute the constraint code and ConstraintType to use.
5725 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5726
5727 // If this is a memory input, and if the operand is not indirect, do what we
5728 // need to to provide an address for the memory input.
5729 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5730 !OpInfo.isIndirect) {
5731 assert((OpInfo.isMultipleAlternative ||
5732 (OpInfo.Type == InlineAsm::isInput)) &&
5733 "Can only indirectify direct input operands!");
5734
5735 // Memory operands really want the address of the value. If we don't have
5736 // an indirect input, put it in the constpool if we can, otherwise spill
5737 // it to a stack slot.
5738 // TODO: This isn't quite right. We need to handle these according to
5739 // the addressing mode that the constraint wants. Also, this may take
5740 // an additional register for the computation and we don't want that
5741 // either.
5742
5743 // If the operand is a float, integer, or vector constant, spill to a
5744 // constant pool entry to get its address.
5745 const Value *OpVal = OpInfo.CallOperandVal;
5746 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5747 isa<ConstantVector>(OpVal)) {
5748 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5749 TLI.getPointerTy());
5750 } else {
5751 // Otherwise, create a stack slot and emit a store to it before the
5752 // asm.
5753 Type *Ty = OpVal->getType();
5754 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5755 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5756 MachineFunction &MF = DAG.getMachineFunction();
5757 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5758 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5759 Chain = DAG.getStore(Chain, getCurDebugLoc(),
5760 OpInfo.CallOperand, StackSlot,
5761 MachinePointerInfo::getFixedStack(SSFI),
5762 false, false, 0);
5763 OpInfo.CallOperand = StackSlot;
5764 }
5765
5766 // There is no longer a Value* corresponding to this operand.
5767 OpInfo.CallOperandVal = 0;
5768
5769 // It is now an indirect operand.
5770 OpInfo.isIndirect = true;
5771 }
5772
5773 // If this constraint is for a specific register, allocate it before
5774 // anything else.
5775 if (OpInfo.ConstraintType == TargetLowering::C_Register)
5776 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5777 InputRegs);
5778 }
5779
5780 // Second pass - Loop over all of the operands, assigning virtual or physregs
5781 // to register class operands.
5782 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5783 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5784
5785 // C_Register operands have already been allocated, Other/Memory don't need
5786 // to be.
5787 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5788 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5789 InputRegs);
5790 }
5791
5792 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5793 std::vector<SDValue> AsmNodeOperands;
5794 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
5795 AsmNodeOperands.push_back(
5796 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5797 TLI.getPointerTy()));
5798
5799 // If we have a !srcloc metadata node associated with it, we want to attach
5800 // this to the ultimately generated inline asm machineinstr. To do this, we
5801 // pass in the third operand as this (potentially null) inline asm MDNode.
5802 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5803 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5804
5805 // Remember the HasSideEffect and AlignStack bits as operand 3.
5806 unsigned ExtraInfo = 0;
5807 if (IA->hasSideEffects())
5808 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5809 if (IA->isAlignStack())
5810 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5811 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5812 TLI.getPointerTy()));
5813
5814 // Loop over all of the inputs, copying the operand values into the
5815 // appropriate registers and processing the output regs.
5816 RegsForValue RetValRegs;
5817
5818 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5819 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5820
5821 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5822 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5823
5824 switch (OpInfo.Type) {
5825 case InlineAsm::isOutput: {
5826 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5827 OpInfo.ConstraintType != TargetLowering::C_Register) {
5828 // Memory output, or 'other' output (e.g. 'X' constraint).
5829 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5830
5831 // Add information to the INLINEASM node to know about this output.
5832 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5833 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5834 TLI.getPointerTy()));
5835 AsmNodeOperands.push_back(OpInfo.CallOperand);
5836 break;
5837 }
5838
5839 // Otherwise, this is a register or register class output.
5840
5841 // Copy the output from the appropriate register. Find a register that
5842 // we can use.
5843 if (OpInfo.AssignedRegs.Regs.empty())
5844 report_fatal_error("Couldn't allocate output reg for constraint '" +
5845 Twine(OpInfo.ConstraintCode) + "'!");
5846
5847 // If this is an indirect operand, store through the pointer after the
5848 // asm.
5849 if (OpInfo.isIndirect) {
5850 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5851 OpInfo.CallOperandVal));
5852 } else {
5853 // This is the result value of the call.
5854 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5855 // Concatenate this output onto the outputs list.
5856 RetValRegs.append(OpInfo.AssignedRegs);
5857 }
5858
5859 // Add information to the INLINEASM node to know that this register is
5860 // set.
5861 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5862 InlineAsm::Kind_RegDefEarlyClobber :
5863 InlineAsm::Kind_RegDef,
5864 false,
5865 0,
5866 DAG,
5867 AsmNodeOperands);
5868 break;
5869 }
5870 case InlineAsm::isInput: {
5871 SDValue InOperandVal = OpInfo.CallOperand;
5872
5873 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
5874 // If this is required to match an output register we have already set,
5875 // just use its register.
5876 unsigned OperandNo = OpInfo.getMatchedOperand();
5877
5878 // Scan until we find the definition we already emitted of this operand.
5879 // When we find it, create a RegsForValue operand.
5880 unsigned CurOp = InlineAsm::Op_FirstOperand;
5881 for (; OperandNo; --OperandNo) {
5882 // Advance to the next operand.
5883 unsigned OpFlag =
5884 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5885 assert((InlineAsm::isRegDefKind(OpFlag) ||
5886 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5887 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5888 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5889 }
5890
5891 unsigned OpFlag =
5892 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5893 if (InlineAsm::isRegDefKind(OpFlag) ||
5894 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5895 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5896 if (OpInfo.isIndirect) {
5897 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5898 LLVMContext &Ctx = *DAG.getContext();
5899 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
5900 " don't know how to handle tied "
5901 "indirect register inputs");
5902 }
5903
5904 RegsForValue MatchedRegs;
5905 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5906 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5907 MatchedRegs.RegVTs.push_back(RegVT);
5908 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5909 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5910 i != e; ++i)
5911 MatchedRegs.Regs.push_back
5912 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5913
5914 // Use the produced MatchedRegs object to
5915 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5916 Chain, &Flag);
5917 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5918 true, OpInfo.getMatchedOperand(),
5919 DAG, AsmNodeOperands);
5920 break;
5921 }
5922
5923 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5924 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5925 "Unexpected number of operands");
5926 // Add information to the INLINEASM node to know about this input.
5927 // See InlineAsm.h isUseOperandTiedToDef.
5928 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5929 OpInfo.getMatchedOperand());
5930 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5931 TLI.getPointerTy()));
5932 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5933 break;
5934 }
5935
5936 // Treat indirect 'X' constraint as memory.
5937 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5938 OpInfo.isIndirect)
5939 OpInfo.ConstraintType = TargetLowering::C_Memory;
5940
5941 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5942 std::vector<SDValue> Ops;
5943 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
5944 Ops, DAG);
5945 if (Ops.empty())
5946 report_fatal_error("Invalid operand for inline asm constraint '" +
5947 Twine(OpInfo.ConstraintCode) + "'!");
5948
5949 // Add information to the INLINEASM node to know about this input.
5950 unsigned ResOpType =
5951 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5952 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5953 TLI.getPointerTy()));
5954 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5955 break;
5956 }
5957
5958 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5959 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5960 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5961 "Memory operands expect pointer values");
5962
5963 // Add information to the INLINEASM node to know about this input.
5964 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5965 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5966 TLI.getPointerTy()));
5967 AsmNodeOperands.push_back(InOperandVal);
5968 break;
5969 }
5970
5971 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5972 OpInfo.ConstraintType == TargetLowering::C_Register) &&
5973 "Unknown constraint type!");
5974 assert(!OpInfo.isIndirect &&
5975 "Don't know how to handle indirect register inputs yet!");
5976
5977 // Copy the input into the appropriate registers.
5978 if (OpInfo.AssignedRegs.Regs.empty())
5979 report_fatal_error("Couldn't allocate input reg for constraint '" +
5980 Twine(OpInfo.ConstraintCode) + "'!");
5981
5982 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5983 Chain, &Flag);
5984
5985 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5986 DAG, AsmNodeOperands);
5987 break;
5988 }
5989 case InlineAsm::isClobber: {
5990 // Add the clobbered value to the operand list, so that the register
5991 // allocator is aware that the physreg got clobbered.
5992 if (!OpInfo.AssignedRegs.Regs.empty())
5993 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
5994 false, 0, DAG,
5995 AsmNodeOperands);
5996 break;
5997 }
5998 }
5999 }
6000
6001 // Finish up input operands. Set the input chain and add the flag last.
6002 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6003 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6004
6005 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6006 DAG.getVTList(MVT::Other, MVT::Glue),
6007 &AsmNodeOperands[0], AsmNodeOperands.size());
6008 Flag = Chain.getValue(1);
6009
6010 // If this asm returns a register value, copy the result from that register
6011 // and set it as the value of the call.
6012 if (!RetValRegs.Regs.empty()) {
6013 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6014 Chain, &Flag);
6015
6016 // FIXME: Why don't we do this for inline asms with MRVs?
6017 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6018 EVT ResultType = TLI.getValueType(CS.getType());
6019
6020 // If any of the results of the inline asm is a vector, it may have the
6021 // wrong width/num elts. This can happen for register classes that can
6022 // contain multiple different value types. The preg or vreg allocated may
6023 // not have the same VT as was expected. Convert it to the right type
6024 // with bit_convert.
6025 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6026 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6027 ResultType, Val);
6028
6029 } else if (ResultType != Val.getValueType() &&
6030 ResultType.isInteger() && Val.getValueType().isInteger()) {
6031 // If a result value was tied to an input value, the computed result may
6032 // have a wider width than the expected result. Extract the relevant
6033 // portion.
6034 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6035 }
6036
6037 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6038 }
6039
6040 setValue(CS.getInstruction(), Val);
6041 // Don't need to use this as a chain in this case.
6042 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6043 return;
6044 }
6045
6046 std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6047
6048 // Process indirect outputs, first output all of the flagged copies out of
6049 // physregs.
6050 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6051 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6052 const Value *Ptr = IndirectStoresToEmit[i].second;
6053 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6054 Chain, &Flag);
6055 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6056 }
6057
6058 // Emit the non-flagged stores from the physregs.
6059 SmallVector<SDValue, 8> OutChains;
6060 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6061 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6062 StoresToEmit[i].first,
6063 getValue(StoresToEmit[i].second),
6064 MachinePointerInfo(StoresToEmit[i].second),
6065 false, false, 0);
6066 OutChains.push_back(Val);
6067 }
6068
6069 if (!OutChains.empty())
6070 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6071 &OutChains[0], OutChains.size());
6072
6073 DAG.setRoot(Chain);
6074 }
6075
visitVAStart(const CallInst & I)6076 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6077 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6078 MVT::Other, getRoot(),
6079 getValue(I.getArgOperand(0)),
6080 DAG.getSrcValue(I.getArgOperand(0))));
6081 }
6082
visitVAArg(const VAArgInst & I)6083 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6084 const TargetData &TD = *TLI.getTargetData();
6085 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6086 getRoot(), getValue(I.getOperand(0)),
6087 DAG.getSrcValue(I.getOperand(0)),
6088 TD.getABITypeAlignment(I.getType()));
6089 setValue(&I, V);
6090 DAG.setRoot(V.getValue(1));
6091 }
6092
visitVAEnd(const CallInst & I)6093 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6094 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6095 MVT::Other, getRoot(),
6096 getValue(I.getArgOperand(0)),
6097 DAG.getSrcValue(I.getArgOperand(0))));
6098 }
6099
visitVACopy(const CallInst & I)6100 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6101 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6102 MVT::Other, getRoot(),
6103 getValue(I.getArgOperand(0)),
6104 getValue(I.getArgOperand(1)),
6105 DAG.getSrcValue(I.getArgOperand(0)),
6106 DAG.getSrcValue(I.getArgOperand(1))));
6107 }
6108
6109 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6110 /// implementation, which just calls LowerCall.
6111 /// FIXME: When all targets are
6112 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6113 std::pair<SDValue, SDValue>
LowerCallTo(SDValue Chain,Type * RetTy,bool RetSExt,bool RetZExt,bool isVarArg,bool isInreg,unsigned NumFixedArgs,CallingConv::ID CallConv,bool isTailCall,bool isReturnValueUsed,SDValue Callee,ArgListTy & Args,SelectionDAG & DAG,DebugLoc dl) const6114 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6115 bool RetSExt, bool RetZExt, bool isVarArg,
6116 bool isInreg, unsigned NumFixedArgs,
6117 CallingConv::ID CallConv, bool isTailCall,
6118 bool isReturnValueUsed,
6119 SDValue Callee,
6120 ArgListTy &Args, SelectionDAG &DAG,
6121 DebugLoc dl) const {
6122 // Handle all of the outgoing arguments.
6123 SmallVector<ISD::OutputArg, 32> Outs;
6124 SmallVector<SDValue, 32> OutVals;
6125 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6126 SmallVector<EVT, 4> ValueVTs;
6127 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6128 for (unsigned Value = 0, NumValues = ValueVTs.size();
6129 Value != NumValues; ++Value) {
6130 EVT VT = ValueVTs[Value];
6131 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6132 SDValue Op = SDValue(Args[i].Node.getNode(),
6133 Args[i].Node.getResNo() + Value);
6134 ISD::ArgFlagsTy Flags;
6135 unsigned OriginalAlignment =
6136 getTargetData()->getABITypeAlignment(ArgTy);
6137
6138 if (Args[i].isZExt)
6139 Flags.setZExt();
6140 if (Args[i].isSExt)
6141 Flags.setSExt();
6142 if (Args[i].isInReg)
6143 Flags.setInReg();
6144 if (Args[i].isSRet)
6145 Flags.setSRet();
6146 if (Args[i].isByVal) {
6147 Flags.setByVal();
6148 PointerType *Ty = cast<PointerType>(Args[i].Ty);
6149 Type *ElementTy = Ty->getElementType();
6150 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6151 // For ByVal, alignment should come from FE. BE will guess if this
6152 // info is not there but there are cases it cannot get right.
6153 unsigned FrameAlign;
6154 if (Args[i].Alignment)
6155 FrameAlign = Args[i].Alignment;
6156 else
6157 FrameAlign = getByValTypeAlignment(ElementTy);
6158 Flags.setByValAlign(FrameAlign);
6159 }
6160 if (Args[i].isNest)
6161 Flags.setNest();
6162 Flags.setOrigAlign(OriginalAlignment);
6163
6164 EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6165 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6166 SmallVector<SDValue, 4> Parts(NumParts);
6167 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6168
6169 if (Args[i].isSExt)
6170 ExtendKind = ISD::SIGN_EXTEND;
6171 else if (Args[i].isZExt)
6172 ExtendKind = ISD::ZERO_EXTEND;
6173
6174 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6175 PartVT, ExtendKind);
6176
6177 for (unsigned j = 0; j != NumParts; ++j) {
6178 // if it isn't first piece, alignment must be 1
6179 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6180 i < NumFixedArgs);
6181 if (NumParts > 1 && j == 0)
6182 MyFlags.Flags.setSplit();
6183 else if (j != 0)
6184 MyFlags.Flags.setOrigAlign(1);
6185
6186 Outs.push_back(MyFlags);
6187 OutVals.push_back(Parts[j]);
6188 }
6189 }
6190 }
6191
6192 // Handle the incoming return values from the call.
6193 SmallVector<ISD::InputArg, 32> Ins;
6194 SmallVector<EVT, 4> RetTys;
6195 ComputeValueVTs(*this, RetTy, RetTys);
6196 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6197 EVT VT = RetTys[I];
6198 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6199 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6200 for (unsigned i = 0; i != NumRegs; ++i) {
6201 ISD::InputArg MyFlags;
6202 MyFlags.VT = RegisterVT.getSimpleVT();
6203 MyFlags.Used = isReturnValueUsed;
6204 if (RetSExt)
6205 MyFlags.Flags.setSExt();
6206 if (RetZExt)
6207 MyFlags.Flags.setZExt();
6208 if (isInreg)
6209 MyFlags.Flags.setInReg();
6210 Ins.push_back(MyFlags);
6211 }
6212 }
6213
6214 SmallVector<SDValue, 4> InVals;
6215 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6216 Outs, OutVals, Ins, dl, DAG, InVals);
6217
6218 // Verify that the target's LowerCall behaved as expected.
6219 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6220 "LowerCall didn't return a valid chain!");
6221 assert((!isTailCall || InVals.empty()) &&
6222 "LowerCall emitted a return value for a tail call!");
6223 assert((isTailCall || InVals.size() == Ins.size()) &&
6224 "LowerCall didn't emit the correct number of values!");
6225
6226 // For a tail call, the return value is merely live-out and there aren't
6227 // any nodes in the DAG representing it. Return a special value to
6228 // indicate that a tail call has been emitted and no more Instructions
6229 // should be processed in the current block.
6230 if (isTailCall) {
6231 DAG.setRoot(Chain);
6232 return std::make_pair(SDValue(), SDValue());
6233 }
6234
6235 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6236 assert(InVals[i].getNode() &&
6237 "LowerCall emitted a null value!");
6238 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6239 "LowerCall emitted a value with the wrong type!");
6240 });
6241
6242 // Collect the legal value parts into potentially illegal values
6243 // that correspond to the original function's return values.
6244 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6245 if (RetSExt)
6246 AssertOp = ISD::AssertSext;
6247 else if (RetZExt)
6248 AssertOp = ISD::AssertZext;
6249 SmallVector<SDValue, 4> ReturnValues;
6250 unsigned CurReg = 0;
6251 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6252 EVT VT = RetTys[I];
6253 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6254 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6255
6256 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6257 NumRegs, RegisterVT, VT,
6258 AssertOp));
6259 CurReg += NumRegs;
6260 }
6261
6262 // For a function returning void, there is no return value. We can't create
6263 // such a node, so we just return a null return value in that case. In
6264 // that case, nothing will actually look at the value.
6265 if (ReturnValues.empty())
6266 return std::make_pair(SDValue(), Chain);
6267
6268 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6269 DAG.getVTList(&RetTys[0], RetTys.size()),
6270 &ReturnValues[0], ReturnValues.size());
6271 return std::make_pair(Res, Chain);
6272 }
6273
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const6274 void TargetLowering::LowerOperationWrapper(SDNode *N,
6275 SmallVectorImpl<SDValue> &Results,
6276 SelectionDAG &DAG) const {
6277 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6278 if (Res.getNode())
6279 Results.push_back(Res);
6280 }
6281
LowerOperation(SDValue Op,SelectionDAG & DAG) const6282 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6283 llvm_unreachable("LowerOperation not implemented for this target!");
6284 return SDValue();
6285 }
6286
6287 void
CopyValueToVirtualRegister(const Value * V,unsigned Reg)6288 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6289 SDValue Op = getNonRegisterValue(V);
6290 assert((Op.getOpcode() != ISD::CopyFromReg ||
6291 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6292 "Copy from a reg to the same reg!");
6293 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6294
6295 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6296 SDValue Chain = DAG.getEntryNode();
6297 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6298 PendingExports.push_back(Chain);
6299 }
6300
6301 #include "llvm/CodeGen/SelectionDAGISel.h"
6302
6303 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6304 /// entry block, return true. This includes arguments used by switches, since
6305 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A)6306 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6307 // With FastISel active, we may be splitting blocks, so force creation
6308 // of virtual registers for all non-dead arguments.
6309 if (EnableFastISel)
6310 return A->use_empty();
6311
6312 const BasicBlock *Entry = A->getParent()->begin();
6313 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6314 UI != E; ++UI) {
6315 const User *U = *UI;
6316 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6317 return false; // Use not in entry block.
6318 }
6319 return true;
6320 }
6321
LowerArguments(const BasicBlock * LLVMBB)6322 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6323 // If this is the entry block, emit arguments.
6324 const Function &F = *LLVMBB->getParent();
6325 SelectionDAG &DAG = SDB->DAG;
6326 DebugLoc dl = SDB->getCurDebugLoc();
6327 const TargetData *TD = TLI.getTargetData();
6328 SmallVector<ISD::InputArg, 16> Ins;
6329
6330 // Check whether the function can return without sret-demotion.
6331 SmallVector<ISD::OutputArg, 4> Outs;
6332 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6333 Outs, TLI);
6334
6335 if (!FuncInfo->CanLowerReturn) {
6336 // Put in an sret pointer parameter before all the other parameters.
6337 SmallVector<EVT, 1> ValueVTs;
6338 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6339
6340 // NOTE: Assuming that a pointer will never break down to more than one VT
6341 // or one register.
6342 ISD::ArgFlagsTy Flags;
6343 Flags.setSRet();
6344 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6345 ISD::InputArg RetArg(Flags, RegisterVT, true);
6346 Ins.push_back(RetArg);
6347 }
6348
6349 // Set up the incoming argument description vector.
6350 unsigned Idx = 1;
6351 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6352 I != E; ++I, ++Idx) {
6353 SmallVector<EVT, 4> ValueVTs;
6354 ComputeValueVTs(TLI, I->getType(), ValueVTs);
6355 bool isArgValueUsed = !I->use_empty();
6356 for (unsigned Value = 0, NumValues = ValueVTs.size();
6357 Value != NumValues; ++Value) {
6358 EVT VT = ValueVTs[Value];
6359 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6360 ISD::ArgFlagsTy Flags;
6361 unsigned OriginalAlignment =
6362 TD->getABITypeAlignment(ArgTy);
6363
6364 if (F.paramHasAttr(Idx, Attribute::ZExt))
6365 Flags.setZExt();
6366 if (F.paramHasAttr(Idx, Attribute::SExt))
6367 Flags.setSExt();
6368 if (F.paramHasAttr(Idx, Attribute::InReg))
6369 Flags.setInReg();
6370 if (F.paramHasAttr(Idx, Attribute::StructRet))
6371 Flags.setSRet();
6372 if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6373 Flags.setByVal();
6374 PointerType *Ty = cast<PointerType>(I->getType());
6375 Type *ElementTy = Ty->getElementType();
6376 Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6377 // For ByVal, alignment should be passed from FE. BE will guess if
6378 // this info is not there but there are cases it cannot get right.
6379 unsigned FrameAlign;
6380 if (F.getParamAlignment(Idx))
6381 FrameAlign = F.getParamAlignment(Idx);
6382 else
6383 FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6384 Flags.setByValAlign(FrameAlign);
6385 }
6386 if (F.paramHasAttr(Idx, Attribute::Nest))
6387 Flags.setNest();
6388 Flags.setOrigAlign(OriginalAlignment);
6389
6390 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6391 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6392 for (unsigned i = 0; i != NumRegs; ++i) {
6393 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6394 if (NumRegs > 1 && i == 0)
6395 MyFlags.Flags.setSplit();
6396 // if it isn't first piece, alignment must be 1
6397 else if (i > 0)
6398 MyFlags.Flags.setOrigAlign(1);
6399 Ins.push_back(MyFlags);
6400 }
6401 }
6402 }
6403
6404 // Call the target to set up the argument values.
6405 SmallVector<SDValue, 8> InVals;
6406 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6407 F.isVarArg(), Ins,
6408 dl, DAG, InVals);
6409
6410 // Verify that the target's LowerFormalArguments behaved as expected.
6411 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6412 "LowerFormalArguments didn't return a valid chain!");
6413 assert(InVals.size() == Ins.size() &&
6414 "LowerFormalArguments didn't emit the correct number of values!");
6415 DEBUG({
6416 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6417 assert(InVals[i].getNode() &&
6418 "LowerFormalArguments emitted a null value!");
6419 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6420 "LowerFormalArguments emitted a value with the wrong type!");
6421 }
6422 });
6423
6424 // Update the DAG with the new chain value resulting from argument lowering.
6425 DAG.setRoot(NewRoot);
6426
6427 // Set up the argument values.
6428 unsigned i = 0;
6429 Idx = 1;
6430 if (!FuncInfo->CanLowerReturn) {
6431 // Create a virtual register for the sret pointer, and put in a copy
6432 // from the sret argument into it.
6433 SmallVector<EVT, 1> ValueVTs;
6434 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6435 EVT VT = ValueVTs[0];
6436 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6437 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6438 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6439 RegVT, VT, AssertOp);
6440
6441 MachineFunction& MF = SDB->DAG.getMachineFunction();
6442 MachineRegisterInfo& RegInfo = MF.getRegInfo();
6443 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6444 FuncInfo->DemoteRegister = SRetReg;
6445 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6446 SRetReg, ArgValue);
6447 DAG.setRoot(NewRoot);
6448
6449 // i indexes lowered arguments. Bump it past the hidden sret argument.
6450 // Idx indexes LLVM arguments. Don't touch it.
6451 ++i;
6452 }
6453
6454 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6455 ++I, ++Idx) {
6456 SmallVector<SDValue, 4> ArgValues;
6457 SmallVector<EVT, 4> ValueVTs;
6458 ComputeValueVTs(TLI, I->getType(), ValueVTs);
6459 unsigned NumValues = ValueVTs.size();
6460
6461 // If this argument is unused then remember its value. It is used to generate
6462 // debugging information.
6463 if (I->use_empty() && NumValues)
6464 SDB->setUnusedArgValue(I, InVals[i]);
6465
6466 for (unsigned Val = 0; Val != NumValues; ++Val) {
6467 EVT VT = ValueVTs[Val];
6468 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6469 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6470
6471 if (!I->use_empty()) {
6472 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6473 if (F.paramHasAttr(Idx, Attribute::SExt))
6474 AssertOp = ISD::AssertSext;
6475 else if (F.paramHasAttr(Idx, Attribute::ZExt))
6476 AssertOp = ISD::AssertZext;
6477
6478 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6479 NumParts, PartVT, VT,
6480 AssertOp));
6481 }
6482
6483 i += NumParts;
6484 }
6485
6486 // We don't need to do anything else for unused arguments.
6487 if (ArgValues.empty())
6488 continue;
6489
6490 // Note down frame index for byval arguments.
6491 if (I->hasByValAttr())
6492 if (FrameIndexSDNode *FI =
6493 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6494 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6495
6496 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6497 SDB->getCurDebugLoc());
6498 SDB->setValue(I, Res);
6499
6500 // If this argument is live outside of the entry block, insert a copy from
6501 // wherever we got it to the vreg that other BB's will reference it as.
6502 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6503 // If we can, though, try to skip creating an unnecessary vreg.
6504 // FIXME: This isn't very clean... it would be nice to make this more
6505 // general. It's also subtly incompatible with the hacks FastISel
6506 // uses with vregs.
6507 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6508 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6509 FuncInfo->ValueMap[I] = Reg;
6510 continue;
6511 }
6512 }
6513 if (!isOnlyUsedInEntryBlock(I)) {
6514 FuncInfo->InitializeRegForValue(I);
6515 SDB->CopyToExportRegsIfNeeded(I);
6516 }
6517 }
6518
6519 assert(i == InVals.size() && "Argument register count mismatch!");
6520
6521 // Finally, if the target has anything special to do, allow it to do so.
6522 // FIXME: this should insert code into the DAG!
6523 EmitFunctionEntryCode();
6524 }
6525
6526 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
6527 /// ensure constants are generated when needed. Remember the virtual registers
6528 /// that need to be added to the Machine PHI nodes as input. We cannot just
6529 /// directly add them, because expansion might result in multiple MBB's for one
6530 /// BB. As such, the start of the BB might correspond to a different MBB than
6531 /// the end.
6532 ///
6533 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)6534 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6535 const TerminatorInst *TI = LLVMBB->getTerminator();
6536
6537 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6538
6539 // Check successor nodes' PHI nodes that expect a constant to be available
6540 // from this block.
6541 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6542 const BasicBlock *SuccBB = TI->getSuccessor(succ);
6543 if (!isa<PHINode>(SuccBB->begin())) continue;
6544 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6545
6546 // If this terminator has multiple identical successors (common for
6547 // switches), only handle each succ once.
6548 if (!SuccsHandled.insert(SuccMBB)) continue;
6549
6550 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6551
6552 // At this point we know that there is a 1-1 correspondence between LLVM PHI
6553 // nodes and Machine PHI nodes, but the incoming operands have not been
6554 // emitted yet.
6555 for (BasicBlock::const_iterator I = SuccBB->begin();
6556 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6557 // Ignore dead phi's.
6558 if (PN->use_empty()) continue;
6559
6560 // Skip empty types
6561 if (PN->getType()->isEmptyTy())
6562 continue;
6563
6564 unsigned Reg;
6565 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6566
6567 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6568 unsigned &RegOut = ConstantsOut[C];
6569 if (RegOut == 0) {
6570 RegOut = FuncInfo.CreateRegs(C->getType());
6571 CopyValueToVirtualRegister(C, RegOut);
6572 }
6573 Reg = RegOut;
6574 } else {
6575 DenseMap<const Value *, unsigned>::iterator I =
6576 FuncInfo.ValueMap.find(PHIOp);
6577 if (I != FuncInfo.ValueMap.end())
6578 Reg = I->second;
6579 else {
6580 assert(isa<AllocaInst>(PHIOp) &&
6581 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6582 "Didn't codegen value into a register!??");
6583 Reg = FuncInfo.CreateRegs(PHIOp->getType());
6584 CopyValueToVirtualRegister(PHIOp, Reg);
6585 }
6586 }
6587
6588 // Remember that this register needs to added to the machine PHI node as
6589 // the input for this MBB.
6590 SmallVector<EVT, 4> ValueVTs;
6591 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6592 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6593 EVT VT = ValueVTs[vti];
6594 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6595 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6596 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6597 Reg += NumRegisters;
6598 }
6599 }
6600 }
6601 ConstantsOut.clear();
6602 }
6603