• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * This file contains codegen for the Thumb2 ISA and is intended to be
19  * includes by:
20  *
21  *        Codegen-$(TARGET_ARCH_VARIANT).c
22  *
23  */
24 
25 /*
26  * Reserve 6 bytes at the beginning of the trace
27  *        +----------------------------+
28  *        | prof count addr (4 bytes)  |
29  *        +----------------------------+
30  *        | chain cell offset (2 bytes)|
31  *        +----------------------------+
32  *
33  * ...and then code to increment the execution
34  *
35  * For continuous profiling (10 bytes)
36  *       ldr   r0, [pc-8]   @ get prof count addr    [4 bytes]
37  *       ldr   r1, [r0]     @ load counter           [2 bytes]
38  *       add   r1, #1       @ increment              [2 bytes]
39  *       str   r1, [r0]     @ store                  [2 bytes]
40  *
41  * For periodic profiling (4 bytes)
42  *       call  TEMPLATE_PERIODIC_PROFILING
43  *
44  * and return the size (in bytes) of the generated code.
45  */
46 
genTraceProfileEntry(CompilationUnit * cUnit)47 static int genTraceProfileEntry(CompilationUnit *cUnit)
48 {
49     intptr_t addr = (intptr_t)dvmJitNextTraceCounter();
50     assert(__BYTE_ORDER == __LITTLE_ENDIAN);
51     newLIR1(cUnit, kArm16BitData, addr & 0xffff);
52     newLIR1(cUnit, kArm16BitData, (addr >> 16) & 0xffff);
53     cUnit->chainCellOffsetLIR =
54         (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
55     cUnit->headerSize = 6;
56     if ((gDvmJit.profileMode == kTraceProfilingContinuous) ||
57         (gDvmJit.profileMode == kTraceProfilingDisabled)) {
58         /* Thumb[2] instruction used directly here to ensure correct size */
59         newLIR2(cUnit, kThumb2LdrPcReln12, r0, 8);
60         newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
61         newLIR2(cUnit, kThumbAddRI8, r1, 1);
62         newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
63         return 10;
64     } else {
65         int opcode = TEMPLATE_PERIODIC_PROFILING;
66         newLIR2(cUnit, kThumbBlx1,
67             (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
68             (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
69         newLIR2(cUnit, kThumbBlx2,
70             (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
71             (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
72         return 4;
73     }
74 }
75 
genNegFloat(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc)76 static void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest,
77                         RegLocation rlSrc)
78 {
79     RegLocation rlResult;
80     rlSrc = loadValue(cUnit, rlSrc, kFPReg);
81     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
82     newLIR2(cUnit, kThumb2Vnegs, rlResult.lowReg, rlSrc.lowReg);
83     storeValue(cUnit, rlDest, rlResult);
84 }
85 
genNegDouble(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc)86 static void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest,
87                          RegLocation rlSrc)
88 {
89     RegLocation rlResult;
90     rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
91     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
92     newLIR2(cUnit, kThumb2Vnegd, S2D(rlResult.lowReg, rlResult.highReg),
93             S2D(rlSrc.lowReg, rlSrc.highReg));
94     storeValueWide(cUnit, rlDest, rlResult);
95 }
96 
97 /*
98  * To avoid possible conflicts, we use a lot of temps here.  Note that
99  * our usage of Thumb2 instruction forms avoids the problems with register
100  * reuse for multiply instructions prior to arm6.
101  */
genMulLong(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)102 static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
103                        RegLocation rlSrc1, RegLocation rlSrc2)
104 {
105     RegLocation rlResult;
106     int resLo = dvmCompilerAllocTemp(cUnit);
107     int resHi = dvmCompilerAllocTemp(cUnit);
108     int tmp1 = dvmCompilerAllocTemp(cUnit);
109 
110     rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
111     rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
112 
113     newLIR3(cUnit, kThumb2MulRRR, tmp1, rlSrc2.lowReg, rlSrc1.highReg);
114     newLIR4(cUnit, kThumb2Umull, resLo, resHi, rlSrc2.lowReg, rlSrc1.lowReg);
115     newLIR4(cUnit, kThumb2Mla, tmp1, rlSrc1.lowReg, rlSrc2.highReg, tmp1);
116     newLIR4(cUnit, kThumb2AddRRR, resHi, tmp1, resHi, 0);
117     dvmCompilerFreeTemp(cUnit, tmp1);
118 
119     rlResult = dvmCompilerGetReturnWide(cUnit);  // Just as a template, will patch
120     rlResult.lowReg = resLo;
121     rlResult.highReg = resHi;
122     storeValueWide(cUnit, rlDest, rlResult);
123 }
124 
genLong3Addr(CompilationUnit * cUnit,MIR * mir,OpKind firstOp,OpKind secondOp,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)125 static void genLong3Addr(CompilationUnit *cUnit, MIR *mir, OpKind firstOp,
126                          OpKind secondOp, RegLocation rlDest,
127                          RegLocation rlSrc1, RegLocation rlSrc2)
128 {
129     RegLocation rlResult;
130     rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
131     rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
132     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
133     opRegRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc1.lowReg, rlSrc2.lowReg);
134     opRegRegReg(cUnit, secondOp, rlResult.highReg, rlSrc1.highReg,
135                 rlSrc2.highReg);
136     storeValueWide(cUnit, rlDest, rlResult);
137 }
138 
dvmCompilerInitializeRegAlloc(CompilationUnit * cUnit)139 void dvmCompilerInitializeRegAlloc(CompilationUnit *cUnit)
140 {
141     int numTemps = sizeof(coreTemps)/sizeof(int);
142     int numFPTemps = sizeof(fpTemps)/sizeof(int);
143     RegisterPool *pool = (RegisterPool *)dvmCompilerNew(sizeof(*pool), true);
144     cUnit->regPool = pool;
145     pool->numCoreTemps = numTemps;
146     pool->coreTemps = (RegisterInfo *)
147             dvmCompilerNew(numTemps * sizeof(*cUnit->regPool->coreTemps), true);
148     pool->numFPTemps = numFPTemps;
149     pool->FPTemps = (RegisterInfo *)
150             dvmCompilerNew(numFPTemps * sizeof(*cUnit->regPool->FPTemps), true);
151     dvmCompilerInitPool(pool->coreTemps, coreTemps, pool->numCoreTemps);
152     dvmCompilerInitPool(pool->FPTemps, fpTemps, pool->numFPTemps);
153     pool->nullCheckedRegs =
154         dvmCompilerAllocBitVector(cUnit->numSSARegs, false);
155 }
156 
157 /*
158  * Generate a Thumb2 IT instruction, which can nullify up to
159  * four subsequent instructions based on a condition and its
160  * inverse.  The condition applies to the first instruction, which
161  * is executed if the condition is met.  The string "guide" consists
162  * of 0 to 3 chars, and applies to the 2nd through 4th instruction.
163  * A "T" means the instruction is executed if the condition is
164  * met, and an "E" means the instruction is executed if the condition
165  * is not met.
166  */
genIT(CompilationUnit * cUnit,ArmConditionCode code,const char * guide)167 static ArmLIR *genIT(CompilationUnit *cUnit, ArmConditionCode code,
168                      const char *guide)
169 {
170     int mask;
171     int condBit = code & 1;
172     int altBit = condBit ^ 1;
173     int mask3 = 0;
174     int mask2 = 0;
175     int mask1 = 0;
176 
177     //Note: case fallthroughs intentional
178     switch(strlen(guide)) {
179         case 3:
180             mask1 = (guide[2] == 'T') ? condBit : altBit;
181         case 2:
182             mask2 = (guide[1] == 'T') ? condBit : altBit;
183         case 1:
184             mask3 = (guide[0] == 'T') ? condBit : altBit;
185             break;
186         case 0:
187             break;
188         default:
189             LOGE("Jit: bad case in genIT");
190             dvmCompilerAbort(cUnit);
191     }
192     mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
193            (1 << (3 - strlen(guide)));
194     return newLIR2(cUnit, kThumb2It, code, mask);
195 }
196 
197 /* Export the Dalvik PC assicated with an instruction to the StackSave area */
genExportPC(CompilationUnit * cUnit,MIR * mir)198 static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
199 {
200     ArmLIR *res;
201     int offset = offsetof(StackSaveArea, xtra.currentPc);
202     int rDPC = dvmCompilerAllocTemp(cUnit);
203     res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
204     newLIR3(cUnit, kThumb2StrRRI8Predec, rDPC, r5FP,
205             sizeof(StackSaveArea) - offset);
206     dvmCompilerFreeTemp(cUnit, rDPC);
207     return res;
208 }
209 
210 /*
211  * Handle simple case (thin lock) inline.  If it's complicated, bail
212  * out to the heavyweight lock/unlock routines.  We'll use dedicated
213  * registers here in order to be in the right position in case we
214  * to bail to dvm[Lock/Unlock]Object(self, object)
215  *
216  * r0 -> self pointer [arg0 for dvm[Lock/Unlock]Object
217  * r1 -> object [arg1 for dvm[Lock/Unlock]Object
218  * r2 -> intial contents of object->lock, later result of strex
219  * r3 -> self->threadId
220  * r7 -> temp to hold new lock value [unlock only]
221  * r4 -> allow to be used by utilities as general temp
222  *
223  * The result of the strex is 0 if we acquire the lock.
224  *
225  * See comments in Sync.c for the layout of the lock word.
226  * Of particular interest to this code is the test for the
227  * simple case - which we handle inline.  For monitor enter, the
228  * simple case is thin lock, held by no-one.  For monitor exit,
229  * the simple case is thin lock, held by the unlocking thread with
230  * a recurse count of 0.
231  *
232  * A minor complication is that there is a field in the lock word
233  * unrelated to locking: the hash state.  This field must be ignored, but
234  * preserved.
235  *
236  */
genMonitorEnter(CompilationUnit * cUnit,MIR * mir)237 static void genMonitorEnter(CompilationUnit *cUnit, MIR *mir)
238 {
239     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
240     ArmLIR *target;
241     ArmLIR *hopTarget;
242     ArmLIR *branch;
243     ArmLIR *hopBranch;
244 
245     assert(LW_SHAPE_THIN == 0);
246     loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
247     dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
248     dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
249     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
250     loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
251     newLIR3(cUnit, kThumb2Ldrex, r2, r1,
252             offsetof(Object, lock) >> 2); // Get object->lock
253     opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
254     // Is lock unheld on lock or held by us (==threadId) on unlock?
255     newLIR4(cUnit, kThumb2Bfi, r3, r2, 0, LW_LOCK_OWNER_SHIFT - 1);
256     newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
257             LW_LOCK_OWNER_SHIFT - 1);
258     hopBranch = newLIR2(cUnit, kThumb2Cbnz, r2, 0);
259     newLIR4(cUnit, kThumb2Strex, r2, r3, r1, offsetof(Object, lock) >> 2);
260     dvmCompilerGenMemBarrier(cUnit, kSY);
261     branch = newLIR2(cUnit, kThumb2Cbz, r2, 0);
262 
263     hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
264     hopTarget->defMask = ENCODE_ALL;
265     hopBranch->generic.target = (LIR *)hopTarget;
266 
267     // Export PC (part 1)
268     loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));
269 
270     /* Get dPC of next insn */
271     loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
272                  dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
273     // Export PC (part 2)
274     newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
275             sizeof(StackSaveArea) -
276             offsetof(StackSaveArea, xtra.currentPc));
277     /* Call template, and don't return */
278     genRegCopy(cUnit, r0, r6SELF);
279     genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
280     // Resume here
281     target = newLIR0(cUnit, kArmPseudoTargetLabel);
282     target->defMask = ENCODE_ALL;
283     branch->generic.target = (LIR *)target;
284 }
285 
286 /*
287  * For monitor unlock, we don't have to use ldrex/strex.  Once
288  * we've determined that the lock is thin and that we own it with
289  * a zero recursion count, it's safe to punch it back to the
290  * initial, unlock thin state with a store word.
291  */
genMonitorExit(CompilationUnit * cUnit,MIR * mir)292 static void genMonitorExit(CompilationUnit *cUnit, MIR *mir)
293 {
294     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
295     ArmLIR *target;
296     ArmLIR *branch;
297     ArmLIR *hopTarget;
298     ArmLIR *hopBranch;
299 
300     assert(LW_SHAPE_THIN == 0);
301     loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
302     dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
303     dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
304     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
305     loadWordDisp(cUnit, r1, offsetof(Object, lock), r2); // Get object->lock
306     loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
307     // Is lock unheld on lock or held by us (==threadId) on unlock?
308     opRegRegImm(cUnit, kOpAnd, r7, r2,
309                 (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
310     opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
311     newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
312             LW_LOCK_OWNER_SHIFT - 1);
313     opRegReg(cUnit, kOpSub, r2, r3);
314     hopBranch = opCondBranch(cUnit, kArmCondNe);
315     dvmCompilerGenMemBarrier(cUnit, kSY);
316     storeWordDisp(cUnit, r1, offsetof(Object, lock), r7);
317     branch = opNone(cUnit, kOpUncondBr);
318 
319     hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
320     hopTarget->defMask = ENCODE_ALL;
321     hopBranch->generic.target = (LIR *)hopTarget;
322 
323     // Export PC (part 1)
324     loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));
325 
326     LOAD_FUNC_ADDR(cUnit, r7, (int)dvmUnlockObject);
327     genRegCopy(cUnit, r0, r6SELF);
328     // Export PC (part 2)
329     newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
330             sizeof(StackSaveArea) -
331             offsetof(StackSaveArea, xtra.currentPc));
332     opReg(cUnit, kOpBlx, r7);
333     /* Did we throw? */
334     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
335     loadConstant(cUnit, r0,
336                  (int) (cUnit->method->insns + mir->offset +
337                  dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
338     genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
339 
340     // Resume here
341     target = newLIR0(cUnit, kArmPseudoTargetLabel);
342     target->defMask = ENCODE_ALL;
343     branch->generic.target = (LIR *)target;
344     branchOver->generic.target = (LIR *) target;
345 }
346 
genMonitor(CompilationUnit * cUnit,MIR * mir)347 static void genMonitor(CompilationUnit *cUnit, MIR *mir)
348 {
349     if (mir->dalvikInsn.opcode == OP_MONITOR_ENTER)
350         genMonitorEnter(cUnit, mir);
351     else
352         genMonitorExit(cUnit, mir);
353 }
354 
355 /*
356  * 64-bit 3way compare function.
357  *     mov   r7, #-1
358  *     cmp   op1hi, op2hi
359  *     blt   done
360  *     bgt   flip
361  *     sub   r7, op1lo, op2lo (treat as unsigned)
362  *     beq   done
363  *     ite   hi
364  *     mov(hi)   r7, #-1
365  *     mov(!hi)  r7, #1
366  * flip:
367  *     neg   r7
368  * done:
369  */
genCmpLong(CompilationUnit * cUnit,MIR * mir,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)370 static void genCmpLong(CompilationUnit *cUnit, MIR *mir,
371                        RegLocation rlDest, RegLocation rlSrc1,
372                        RegLocation rlSrc2)
373 {
374     RegLocation rlTemp = LOC_C_RETURN; // Just using as template, will change
375     ArmLIR *target1;
376     ArmLIR *target2;
377     rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
378     rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
379     rlTemp.lowReg = dvmCompilerAllocTemp(cUnit);
380     loadConstant(cUnit, rlTemp.lowReg, -1);
381     opRegReg(cUnit, kOpCmp, rlSrc1.highReg, rlSrc2.highReg);
382     ArmLIR *branch1 = opCondBranch(cUnit, kArmCondLt);
383     ArmLIR *branch2 = opCondBranch(cUnit, kArmCondGt);
384     opRegRegReg(cUnit, kOpSub, rlTemp.lowReg, rlSrc1.lowReg, rlSrc2.lowReg);
385     ArmLIR *branch3 = opCondBranch(cUnit, kArmCondEq);
386 
387     genIT(cUnit, kArmCondHi, "E");
388     newLIR2(cUnit, kThumb2MovImmShift, rlTemp.lowReg, modifiedImmediate(-1));
389     loadConstant(cUnit, rlTemp.lowReg, 1);
390     genBarrier(cUnit);
391 
392     target2 = newLIR0(cUnit, kArmPseudoTargetLabel);
393     target2->defMask = -1;
394     opRegReg(cUnit, kOpNeg, rlTemp.lowReg, rlTemp.lowReg);
395 
396     target1 = newLIR0(cUnit, kArmPseudoTargetLabel);
397     target1->defMask = -1;
398 
399     storeValue(cUnit, rlDest, rlTemp);
400 
401     branch1->generic.target = (LIR *)target1;
402     branch2->generic.target = (LIR *)target2;
403     branch3->generic.target = branch1->generic.target;
404 }
405 
genInlinedAbsFloat(CompilationUnit * cUnit,MIR * mir)406 static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
407 {
408     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
409     RegLocation rlDest = inlinedTarget(cUnit, mir, true);
410     rlSrc = loadValue(cUnit, rlSrc, kFPReg);
411     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
412     newLIR2(cUnit, kThumb2Vabss, rlResult.lowReg, rlSrc.lowReg);
413     storeValue(cUnit, rlDest, rlResult);
414     return false;
415 }
416 
genInlinedAbsDouble(CompilationUnit * cUnit,MIR * mir)417 static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
418 {
419     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
420     RegLocation rlDest = inlinedTargetWide(cUnit, mir, true);
421     rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
422     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
423     newLIR2(cUnit, kThumb2Vabsd, S2D(rlResult.lowReg, rlResult.highReg),
424             S2D(rlSrc.lowReg, rlSrc.highReg));
425     storeValueWide(cUnit, rlDest, rlResult);
426     return false;
427 }
428 
genInlinedMinMaxInt(CompilationUnit * cUnit,MIR * mir,bool isMin)429 static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
430 {
431     RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
432     RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
433     rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
434     rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
435     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
436     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
437     opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
438     genIT(cUnit, (isMin) ? kArmCondGt : kArmCondLt, "E");
439     opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg);
440     opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg);
441     genBarrier(cUnit);
442     storeValue(cUnit, rlDest, rlResult);
443     return false;
444 }
445 
genMultiplyByTwoBitMultiplier(CompilationUnit * cUnit,RegLocation rlSrc,RegLocation rlResult,int lit,int firstBit,int secondBit)446 static void genMultiplyByTwoBitMultiplier(CompilationUnit *cUnit,
447         RegLocation rlSrc, RegLocation rlResult, int lit,
448         int firstBit, int secondBit)
449 {
450     opRegRegRegShift(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, rlSrc.lowReg,
451                      encodeShift(kArmLsl, secondBit - firstBit));
452     if (firstBit != 0) {
453         opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlResult.lowReg, firstBit);
454     }
455 }
456