1 /*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /*
18 * This file contains codegen for the Thumb2 ISA and is intended to be
19 * includes by:
20 *
21 * Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 */
24
25 /*
26 * Reserve 6 bytes at the beginning of the trace
27 * +----------------------------+
28 * | prof count addr (4 bytes) |
29 * +----------------------------+
30 * | chain cell offset (2 bytes)|
31 * +----------------------------+
32 *
33 * ...and then code to increment the execution
34 *
35 * For continuous profiling (10 bytes)
36 * ldr r0, [pc-8] @ get prof count addr [4 bytes]
37 * ldr r1, [r0] @ load counter [2 bytes]
38 * add r1, #1 @ increment [2 bytes]
39 * str r1, [r0] @ store [2 bytes]
40 *
41 * For periodic profiling (4 bytes)
42 * call TEMPLATE_PERIODIC_PROFILING
43 *
44 * and return the size (in bytes) of the generated code.
45 */
46
genTraceProfileEntry(CompilationUnit * cUnit)47 static int genTraceProfileEntry(CompilationUnit *cUnit)
48 {
49 intptr_t addr = (intptr_t)dvmJitNextTraceCounter();
50 assert(__BYTE_ORDER == __LITTLE_ENDIAN);
51 newLIR1(cUnit, kArm16BitData, addr & 0xffff);
52 newLIR1(cUnit, kArm16BitData, (addr >> 16) & 0xffff);
53 cUnit->chainCellOffsetLIR =
54 (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
55 cUnit->headerSize = 6;
56 if ((gDvmJit.profileMode == kTraceProfilingContinuous) ||
57 (gDvmJit.profileMode == kTraceProfilingDisabled)) {
58 /* Thumb[2] instruction used directly here to ensure correct size */
59 newLIR2(cUnit, kThumb2LdrPcReln12, r0, 8);
60 newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
61 newLIR2(cUnit, kThumbAddRI8, r1, 1);
62 newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
63 return 10;
64 } else {
65 int opcode = TEMPLATE_PERIODIC_PROFILING;
66 newLIR2(cUnit, kThumbBlx1,
67 (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
68 (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
69 newLIR2(cUnit, kThumbBlx2,
70 (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
71 (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
72 return 4;
73 }
74 }
75
genNegFloat(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc)76 static void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest,
77 RegLocation rlSrc)
78 {
79 RegLocation rlResult;
80 rlSrc = loadValue(cUnit, rlSrc, kFPReg);
81 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
82 newLIR2(cUnit, kThumb2Vnegs, rlResult.lowReg, rlSrc.lowReg);
83 storeValue(cUnit, rlDest, rlResult);
84 }
85
genNegDouble(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc)86 static void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest,
87 RegLocation rlSrc)
88 {
89 RegLocation rlResult;
90 rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
91 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
92 newLIR2(cUnit, kThumb2Vnegd, S2D(rlResult.lowReg, rlResult.highReg),
93 S2D(rlSrc.lowReg, rlSrc.highReg));
94 storeValueWide(cUnit, rlDest, rlResult);
95 }
96
97 /*
98 * To avoid possible conflicts, we use a lot of temps here. Note that
99 * our usage of Thumb2 instruction forms avoids the problems with register
100 * reuse for multiply instructions prior to arm6.
101 */
genMulLong(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)102 static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
103 RegLocation rlSrc1, RegLocation rlSrc2)
104 {
105 RegLocation rlResult;
106 int resLo = dvmCompilerAllocTemp(cUnit);
107 int resHi = dvmCompilerAllocTemp(cUnit);
108 int tmp1 = dvmCompilerAllocTemp(cUnit);
109
110 rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
111 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
112
113 newLIR3(cUnit, kThumb2MulRRR, tmp1, rlSrc2.lowReg, rlSrc1.highReg);
114 newLIR4(cUnit, kThumb2Umull, resLo, resHi, rlSrc2.lowReg, rlSrc1.lowReg);
115 newLIR4(cUnit, kThumb2Mla, tmp1, rlSrc1.lowReg, rlSrc2.highReg, tmp1);
116 newLIR4(cUnit, kThumb2AddRRR, resHi, tmp1, resHi, 0);
117 dvmCompilerFreeTemp(cUnit, tmp1);
118
119 rlResult = dvmCompilerGetReturnWide(cUnit); // Just as a template, will patch
120 rlResult.lowReg = resLo;
121 rlResult.highReg = resHi;
122 storeValueWide(cUnit, rlDest, rlResult);
123 }
124
genLong3Addr(CompilationUnit * cUnit,MIR * mir,OpKind firstOp,OpKind secondOp,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)125 static void genLong3Addr(CompilationUnit *cUnit, MIR *mir, OpKind firstOp,
126 OpKind secondOp, RegLocation rlDest,
127 RegLocation rlSrc1, RegLocation rlSrc2)
128 {
129 RegLocation rlResult;
130 rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
131 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
132 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
133 opRegRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc1.lowReg, rlSrc2.lowReg);
134 opRegRegReg(cUnit, secondOp, rlResult.highReg, rlSrc1.highReg,
135 rlSrc2.highReg);
136 storeValueWide(cUnit, rlDest, rlResult);
137 }
138
dvmCompilerInitializeRegAlloc(CompilationUnit * cUnit)139 void dvmCompilerInitializeRegAlloc(CompilationUnit *cUnit)
140 {
141 int numTemps = sizeof(coreTemps)/sizeof(int);
142 int numFPTemps = sizeof(fpTemps)/sizeof(int);
143 RegisterPool *pool = (RegisterPool *)dvmCompilerNew(sizeof(*pool), true);
144 cUnit->regPool = pool;
145 pool->numCoreTemps = numTemps;
146 pool->coreTemps = (RegisterInfo *)
147 dvmCompilerNew(numTemps * sizeof(*cUnit->regPool->coreTemps), true);
148 pool->numFPTemps = numFPTemps;
149 pool->FPTemps = (RegisterInfo *)
150 dvmCompilerNew(numFPTemps * sizeof(*cUnit->regPool->FPTemps), true);
151 dvmCompilerInitPool(pool->coreTemps, coreTemps, pool->numCoreTemps);
152 dvmCompilerInitPool(pool->FPTemps, fpTemps, pool->numFPTemps);
153 pool->nullCheckedRegs =
154 dvmCompilerAllocBitVector(cUnit->numSSARegs, false);
155 }
156
157 /*
158 * Generate a Thumb2 IT instruction, which can nullify up to
159 * four subsequent instructions based on a condition and its
160 * inverse. The condition applies to the first instruction, which
161 * is executed if the condition is met. The string "guide" consists
162 * of 0 to 3 chars, and applies to the 2nd through 4th instruction.
163 * A "T" means the instruction is executed if the condition is
164 * met, and an "E" means the instruction is executed if the condition
165 * is not met.
166 */
genIT(CompilationUnit * cUnit,ArmConditionCode code,const char * guide)167 static ArmLIR *genIT(CompilationUnit *cUnit, ArmConditionCode code,
168 const char *guide)
169 {
170 int mask;
171 int condBit = code & 1;
172 int altBit = condBit ^ 1;
173 int mask3 = 0;
174 int mask2 = 0;
175 int mask1 = 0;
176
177 //Note: case fallthroughs intentional
178 switch(strlen(guide)) {
179 case 3:
180 mask1 = (guide[2] == 'T') ? condBit : altBit;
181 case 2:
182 mask2 = (guide[1] == 'T') ? condBit : altBit;
183 case 1:
184 mask3 = (guide[0] == 'T') ? condBit : altBit;
185 break;
186 case 0:
187 break;
188 default:
189 LOGE("Jit: bad case in genIT");
190 dvmCompilerAbort(cUnit);
191 }
192 mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
193 (1 << (3 - strlen(guide)));
194 return newLIR2(cUnit, kThumb2It, code, mask);
195 }
196
197 /* Export the Dalvik PC assicated with an instruction to the StackSave area */
genExportPC(CompilationUnit * cUnit,MIR * mir)198 static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
199 {
200 ArmLIR *res;
201 int offset = offsetof(StackSaveArea, xtra.currentPc);
202 int rDPC = dvmCompilerAllocTemp(cUnit);
203 res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
204 newLIR3(cUnit, kThumb2StrRRI8Predec, rDPC, r5FP,
205 sizeof(StackSaveArea) - offset);
206 dvmCompilerFreeTemp(cUnit, rDPC);
207 return res;
208 }
209
210 /*
211 * Handle simple case (thin lock) inline. If it's complicated, bail
212 * out to the heavyweight lock/unlock routines. We'll use dedicated
213 * registers here in order to be in the right position in case we
214 * to bail to dvm[Lock/Unlock]Object(self, object)
215 *
216 * r0 -> self pointer [arg0 for dvm[Lock/Unlock]Object
217 * r1 -> object [arg1 for dvm[Lock/Unlock]Object
218 * r2 -> intial contents of object->lock, later result of strex
219 * r3 -> self->threadId
220 * r7 -> temp to hold new lock value [unlock only]
221 * r4 -> allow to be used by utilities as general temp
222 *
223 * The result of the strex is 0 if we acquire the lock.
224 *
225 * See comments in Sync.c for the layout of the lock word.
226 * Of particular interest to this code is the test for the
227 * simple case - which we handle inline. For monitor enter, the
228 * simple case is thin lock, held by no-one. For monitor exit,
229 * the simple case is thin lock, held by the unlocking thread with
230 * a recurse count of 0.
231 *
232 * A minor complication is that there is a field in the lock word
233 * unrelated to locking: the hash state. This field must be ignored, but
234 * preserved.
235 *
236 */
genMonitorEnter(CompilationUnit * cUnit,MIR * mir)237 static void genMonitorEnter(CompilationUnit *cUnit, MIR *mir)
238 {
239 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
240 ArmLIR *target;
241 ArmLIR *hopTarget;
242 ArmLIR *branch;
243 ArmLIR *hopBranch;
244
245 assert(LW_SHAPE_THIN == 0);
246 loadValueDirectFixed(cUnit, rlSrc, r1); // Get obj
247 dvmCompilerLockAllTemps(cUnit); // Prepare for explicit register usage
248 dvmCompilerFreeTemp(cUnit, r4PC); // Free up r4 for general use
249 genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
250 loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
251 newLIR3(cUnit, kThumb2Ldrex, r2, r1,
252 offsetof(Object, lock) >> 2); // Get object->lock
253 opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
254 // Is lock unheld on lock or held by us (==threadId) on unlock?
255 newLIR4(cUnit, kThumb2Bfi, r3, r2, 0, LW_LOCK_OWNER_SHIFT - 1);
256 newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
257 LW_LOCK_OWNER_SHIFT - 1);
258 hopBranch = newLIR2(cUnit, kThumb2Cbnz, r2, 0);
259 newLIR4(cUnit, kThumb2Strex, r2, r3, r1, offsetof(Object, lock) >> 2);
260 dvmCompilerGenMemBarrier(cUnit, kSY);
261 branch = newLIR2(cUnit, kThumb2Cbz, r2, 0);
262
263 hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
264 hopTarget->defMask = ENCODE_ALL;
265 hopBranch->generic.target = (LIR *)hopTarget;
266
267 // Export PC (part 1)
268 loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));
269
270 /* Get dPC of next insn */
271 loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
272 dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
273 // Export PC (part 2)
274 newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
275 sizeof(StackSaveArea) -
276 offsetof(StackSaveArea, xtra.currentPc));
277 /* Call template, and don't return */
278 genRegCopy(cUnit, r0, r6SELF);
279 genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
280 // Resume here
281 target = newLIR0(cUnit, kArmPseudoTargetLabel);
282 target->defMask = ENCODE_ALL;
283 branch->generic.target = (LIR *)target;
284 }
285
286 /*
287 * For monitor unlock, we don't have to use ldrex/strex. Once
288 * we've determined that the lock is thin and that we own it with
289 * a zero recursion count, it's safe to punch it back to the
290 * initial, unlock thin state with a store word.
291 */
genMonitorExit(CompilationUnit * cUnit,MIR * mir)292 static void genMonitorExit(CompilationUnit *cUnit, MIR *mir)
293 {
294 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
295 ArmLIR *target;
296 ArmLIR *branch;
297 ArmLIR *hopTarget;
298 ArmLIR *hopBranch;
299
300 assert(LW_SHAPE_THIN == 0);
301 loadValueDirectFixed(cUnit, rlSrc, r1); // Get obj
302 dvmCompilerLockAllTemps(cUnit); // Prepare for explicit register usage
303 dvmCompilerFreeTemp(cUnit, r4PC); // Free up r4 for general use
304 genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
305 loadWordDisp(cUnit, r1, offsetof(Object, lock), r2); // Get object->lock
306 loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
307 // Is lock unheld on lock or held by us (==threadId) on unlock?
308 opRegRegImm(cUnit, kOpAnd, r7, r2,
309 (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
310 opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
311 newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
312 LW_LOCK_OWNER_SHIFT - 1);
313 opRegReg(cUnit, kOpSub, r2, r3);
314 hopBranch = opCondBranch(cUnit, kArmCondNe);
315 dvmCompilerGenMemBarrier(cUnit, kSY);
316 storeWordDisp(cUnit, r1, offsetof(Object, lock), r7);
317 branch = opNone(cUnit, kOpUncondBr);
318
319 hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
320 hopTarget->defMask = ENCODE_ALL;
321 hopBranch->generic.target = (LIR *)hopTarget;
322
323 // Export PC (part 1)
324 loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));
325
326 LOAD_FUNC_ADDR(cUnit, r7, (int)dvmUnlockObject);
327 genRegCopy(cUnit, r0, r6SELF);
328 // Export PC (part 2)
329 newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
330 sizeof(StackSaveArea) -
331 offsetof(StackSaveArea, xtra.currentPc));
332 opReg(cUnit, kOpBlx, r7);
333 /* Did we throw? */
334 ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
335 loadConstant(cUnit, r0,
336 (int) (cUnit->method->insns + mir->offset +
337 dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
338 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
339
340 // Resume here
341 target = newLIR0(cUnit, kArmPseudoTargetLabel);
342 target->defMask = ENCODE_ALL;
343 branch->generic.target = (LIR *)target;
344 branchOver->generic.target = (LIR *) target;
345 }
346
genMonitor(CompilationUnit * cUnit,MIR * mir)347 static void genMonitor(CompilationUnit *cUnit, MIR *mir)
348 {
349 if (mir->dalvikInsn.opcode == OP_MONITOR_ENTER)
350 genMonitorEnter(cUnit, mir);
351 else
352 genMonitorExit(cUnit, mir);
353 }
354
355 /*
356 * 64-bit 3way compare function.
357 * mov r7, #-1
358 * cmp op1hi, op2hi
359 * blt done
360 * bgt flip
361 * sub r7, op1lo, op2lo (treat as unsigned)
362 * beq done
363 * ite hi
364 * mov(hi) r7, #-1
365 * mov(!hi) r7, #1
366 * flip:
367 * neg r7
368 * done:
369 */
genCmpLong(CompilationUnit * cUnit,MIR * mir,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)370 static void genCmpLong(CompilationUnit *cUnit, MIR *mir,
371 RegLocation rlDest, RegLocation rlSrc1,
372 RegLocation rlSrc2)
373 {
374 RegLocation rlTemp = LOC_C_RETURN; // Just using as template, will change
375 ArmLIR *target1;
376 ArmLIR *target2;
377 rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
378 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
379 rlTemp.lowReg = dvmCompilerAllocTemp(cUnit);
380 loadConstant(cUnit, rlTemp.lowReg, -1);
381 opRegReg(cUnit, kOpCmp, rlSrc1.highReg, rlSrc2.highReg);
382 ArmLIR *branch1 = opCondBranch(cUnit, kArmCondLt);
383 ArmLIR *branch2 = opCondBranch(cUnit, kArmCondGt);
384 opRegRegReg(cUnit, kOpSub, rlTemp.lowReg, rlSrc1.lowReg, rlSrc2.lowReg);
385 ArmLIR *branch3 = opCondBranch(cUnit, kArmCondEq);
386
387 genIT(cUnit, kArmCondHi, "E");
388 newLIR2(cUnit, kThumb2MovImmShift, rlTemp.lowReg, modifiedImmediate(-1));
389 loadConstant(cUnit, rlTemp.lowReg, 1);
390 genBarrier(cUnit);
391
392 target2 = newLIR0(cUnit, kArmPseudoTargetLabel);
393 target2->defMask = -1;
394 opRegReg(cUnit, kOpNeg, rlTemp.lowReg, rlTemp.lowReg);
395
396 target1 = newLIR0(cUnit, kArmPseudoTargetLabel);
397 target1->defMask = -1;
398
399 storeValue(cUnit, rlDest, rlTemp);
400
401 branch1->generic.target = (LIR *)target1;
402 branch2->generic.target = (LIR *)target2;
403 branch3->generic.target = branch1->generic.target;
404 }
405
genInlinedAbsFloat(CompilationUnit * cUnit,MIR * mir)406 static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
407 {
408 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
409 RegLocation rlDest = inlinedTarget(cUnit, mir, true);
410 rlSrc = loadValue(cUnit, rlSrc, kFPReg);
411 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
412 newLIR2(cUnit, kThumb2Vabss, rlResult.lowReg, rlSrc.lowReg);
413 storeValue(cUnit, rlDest, rlResult);
414 return false;
415 }
416
genInlinedAbsDouble(CompilationUnit * cUnit,MIR * mir)417 static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
418 {
419 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
420 RegLocation rlDest = inlinedTargetWide(cUnit, mir, true);
421 rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
422 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
423 newLIR2(cUnit, kThumb2Vabsd, S2D(rlResult.lowReg, rlResult.highReg),
424 S2D(rlSrc.lowReg, rlSrc.highReg));
425 storeValueWide(cUnit, rlDest, rlResult);
426 return false;
427 }
428
genInlinedMinMaxInt(CompilationUnit * cUnit,MIR * mir,bool isMin)429 static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
430 {
431 RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
432 RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
433 rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
434 rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
435 RegLocation rlDest = inlinedTarget(cUnit, mir, false);
436 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
437 opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
438 genIT(cUnit, (isMin) ? kArmCondGt : kArmCondLt, "E");
439 opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg);
440 opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg);
441 genBarrier(cUnit);
442 storeValue(cUnit, rlDest, rlResult);
443 return false;
444 }
445
genMultiplyByTwoBitMultiplier(CompilationUnit * cUnit,RegLocation rlSrc,RegLocation rlResult,int lit,int firstBit,int secondBit)446 static void genMultiplyByTwoBitMultiplier(CompilationUnit *cUnit,
447 RegLocation rlSrc, RegLocation rlResult, int lit,
448 int firstBit, int secondBit)
449 {
450 opRegRegRegShift(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, rlSrc.lowReg,
451 encodeShift(kArmLsl, secondBit - firstBit));
452 if (firstBit != 0) {
453 opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlResult.lowReg, firstBit);
454 }
455 }
456