• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>LLVM's Analysis and Transform Passes</title>
6  <link rel="stylesheet" href="llvm.css" type="text/css">
7  <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
8</head>
9<body>
10
11<!--
12
13If Passes.html is up to date, the following "one-liner" should print
14an empty diff.
15
16egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
17      -e '^  <a name=".*">.*</a>$' < Passes.html >html; \
18perl >help <<'EOT' && diff -u help html; rm -f help html
19open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
20while (<HTML>) {
21  m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
22  $order{$1} = sprintf("%03d", 1 + int %order);
23}
24open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
25while (<HELP>) {
26  m:^    -([^ ]+) +- (.*)$: or next;
27  my $o = $order{$1};
28  $o = "000" unless defined $o;
29  push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
30  push @y, "$o  <a name=\"$1\">-$1: $2</a>\n";
31}
32@x = map { s/^\d\d\d//; $_ } sort @x;
33@y = map { s/^\d\d\d//; $_ } sort @y;
34print @x, @y;
35EOT
36
37This (real) one-liner can also be helpful when converting comments to HTML:
38
39perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print "  <p>\n" if !$on && $_ =~ /\S/; print "  </p>\n" if $on && $_ =~ /^\s*$/; print "  $_\n"; $on = ($_ =~ /\S/); } print "  </p>\n" if $on'
40
41  -->
42
43<h1>LLVM's Analysis and Transform Passes</h1>
44
45<ol>
46  <li><a href="#intro">Introduction</a></li>
47  <li><a href="#analyses">Analysis Passes</a>
48  <li><a href="#transforms">Transform Passes</a></li>
49  <li><a href="#utilities">Utility Passes</a></li>
50</ol>
51
52<div class="doc_author">
53  <p>Written by <a href="mailto:rspencer@x10sys.com">Reid Spencer</a>
54            and Gordon Henriksen</p>
55</div>
56
57<!-- ======================================================================= -->
58<h2><a name="intro">Introduction</a></h2>
59<div>
60  <p>This document serves as a high level summary of the optimization features
61  that LLVM provides. Optimizations are implemented as Passes that traverse some
62  portion of a program to either collect information or transform the program.
63  The table below divides the passes that LLVM provides into three categories.
64  Analysis passes compute information that other passes can use or for debugging
65  or program visualization purposes. Transform passes can use (or invalidate)
66  the analysis passes. Transform passes all mutate the program in some way.
67  Utility passes provides some utility but don't otherwise fit categorization.
68  For example passes to extract functions to bitcode or write a module to
69  bitcode are neither analysis nor transform passes.
70  <p>The table below provides a quick summary of each pass and links to the more
71  complete pass description later in the document.</p>
72
73<table>
74<tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
75<tr><th>Option</th><th>Name</th></tr>
76<tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
77<tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (stateless AA impl)</td></tr>
78<tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
79<tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
80<tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
81<tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
82<tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
83<tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
84<tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
85<tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
86<tr><td><a href="#dot-dom">-dot-dom</a></td><td>Print dominance tree of function to 'dot' file</td></tr>
87<tr><td><a href="#dot-dom-only">-dot-dom-only</a></td><td>Print dominance tree of function to 'dot' file (with no function bodies)</td></tr>
88<tr><td><a href="#dot-postdom">-dot-postdom</a></td><td>Print postdominance tree of function to 'dot' file</td></tr>
89<tr><td><a href="#dot-postdom-only">-dot-postdom-only</a></td><td>Print postdominance tree of function to 'dot' file (with no function bodies)</td></tr>
90<tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
91<tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
92<tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
93<tr><td><a href="#iv-users">-iv-users</a></td><td>Induction Variable Users</td></tr>
94<tr><td><a href="#lazy-value-info">-lazy-value-info</a></td><td>Lazy Value Information Analysis</td></tr>
95<tr><td><a href="#lda">-lda</a></td><td>Loop Dependence Analysis</td></tr>
96<tr><td><a href="#libcall-aa">-libcall-aa</a></td><td>LibCall Alias Analysis</td></tr>
97<tr><td><a href="#lint">-lint</a></td><td>Statically lint-checks LLVM IR</td></tr>
98<tr><td><a href="#loops">-loops</a></td><td>Natural Loop Information</td></tr>
99<tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
100<tr><td><a href="#module-debuginfo">-module-debuginfo</a></td><td>Decodes module-level debug info</td></tr>
101<tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
102<tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
103<tr><td><a href="#postdomfrontier">-postdomfrontier</a></td><td>Post-Dominance Frontier Construction</td></tr>
104<tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
105<tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
106<tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
107<tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
108<tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
109<tr><td><a href="#print-dbginfo">-print-dbginfo</a></td><td>Print debug info in human readable form</td></tr>
110<tr><td><a href="#print-dom-info">-print-dom-info</a></td><td>Dominator Info Printer</td></tr>
111<tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
112<tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
113<tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
114<tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
115<tr><td><a href="#profile-estimator">-profile-estimator</a></td><td>Estimate profiling information</td></tr>
116<tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
117<tr><td><a href="#profile-verifier">-profile-verifier</a></td><td>Verify profiling information</td></tr>
118<tr><td><a href="#regions">-regions</a></td><td>Detect single entry single exit regions</td></tr>
119<tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
120<tr><td><a href="#scev-aa">-scev-aa</a></td><td>ScalarEvolution-based Alias Analysis</td></tr>
121<tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>
122
123
124<tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
125<tr><th>Option</th><th>Name</th></tr>
126<tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
127<tr><td><a href="#always-inline">-always-inline</a></td><td>Inliner for always_inline functions</td></tr>
128<tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
129<tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
130<tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
131<tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
132<tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
133<tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
134<tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
135<tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
136<tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
137<tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
138<tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
139<tr><td><a href="#functionattrs">-functionattrs</a></td><td>Deduce function attributes</td></tr>
140<tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
141<tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
142<tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
143<tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
144<tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
145<tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
146<tr><td><a href="#insert-optimal-edge-profiling">-insert-optimal-edge-profiling</a></td><td>Insert optimal instrumentation for edge profiling</td></tr>
147<tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
148<tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
149<tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
150<tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
151<tr><td><a href="#jump-threading">-jump-threading</a></td><td>Jump Threading</td></tr>
152<tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
153<tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
154<tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Delete dead loops</td></tr>
155<tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
156<tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
157<tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
158<tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
159<tr><td><a href="#loop-simplify">-loop-simplify</a></td><td>Canonicalize natural loops</td></tr>
160<tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
161<tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
162<tr><td><a href="#loweratomic">-loweratomic</a></td><td>Lower atomic intrinsics to non-atomic form</td></tr>
163<tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
164<tr><td><a href="#lowersetjmp">-lowersetjmp</a></td><td>Lower Set Jump</td></tr>
165<tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
166<tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
167<tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>MemCpy Optimization</td></tr>
168<tr><td><a href="#mergefunc">-mergefunc</a></td><td>Merge Functions</td></tr>
169<tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
170<tr><td><a href="#partial-inliner">-partial-inliner</a></td><td>Partial Inliner</td></tr>
171<tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
172<tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
173<tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
174<tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates (DT)</td></tr>
175<tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
176<tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
177<tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
178<tr><td><a href="#sink">-sink</a></td><td>Code sinking</td></tr>
179<tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments to multiple ret values</td></tr>
180<tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
181<tr><td><a href="#strip-dead-debug-info">-strip-dead-debug-info</a></td><td>Strip debug info for unused symbols</td></tr>
182<tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Strip Unused Function Prototypes</td></tr>
183<tr><td><a href="#strip-debug-declare">-strip-debug-declare</a></td><td>Strip all llvm.dbg.declare intrinsics</td></tr>
184<tr><td><a href="#strip-nondebug">-strip-nondebug</a></td><td>Strip all symbols, except dbg symbols, from a module</td></tr>
185<tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
186<tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>
187
188
189<tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
190<tr><th>Option</th><th>Name</th></tr>
191<tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
192<tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
193<tr><td><a href="#instnamer">-instnamer</a></td><td>Assign names to anonymous instructions</td></tr>
194<tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
195<tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
196<tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
197<tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
198<tr><td><a href="#view-dom">-view-dom</a></td><td>View dominance tree of function</td></tr>
199<tr><td><a href="#view-dom-only">-view-dom-only</a></td><td>View dominance tree of function (with no function bodies)</td></tr>
200<tr><td><a href="#view-postdom">-view-postdom</a></td><td>View postdominance tree of function</td></tr>
201<tr><td><a href="#view-postdom-only">-view-postdom-only</a></td><td>View postdominance tree of function (with no function bodies)</td></tr>
202</table>
203
204</div>
205
206<!-- ======================================================================= -->
207<h2><a name="analyses">Analysis Passes</a></h2>
208<div>
209  <p>This section describes the LLVM Analysis Passes.</p>
210
211<!-------------------------------------------------------------------------- -->
212<h3>
213  <a name="aa-eval">-aa-eval: Exhaustive Alias Analysis Precision Evaluator</a>
214</h3>
215<div>
216  <p>This is a simple N^2 alias analysis accuracy evaluator.
217  Basically, for each function in the program, it simply queries to see how the
218  alias analysis implementation answers alias queries between each pair of
219  pointers in the function.</p>
220
221  <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
222  Spadini, and Wojciech Stryjewski.</p>
223</div>
224
225<!-------------------------------------------------------------------------- -->
226<h3>
227  <a name="basicaa">-basicaa: Basic Alias Analysis (stateless AA impl)</a>
228</h3>
229<div>
230  <p>
231  This is the default implementation of the Alias Analysis interface
232  that simply implements a few identities (two different globals cannot alias,
233  etc), but otherwise does no analysis.
234  </p>
235</div>
236
237<!-------------------------------------------------------------------------- -->
238<h3>
239  <a name="basiccg">-basiccg: Basic CallGraph Construction</a>
240</h3>
241<div>
242  <p>Yet to be written.</p>
243</div>
244
245<!-------------------------------------------------------------------------- -->
246<h3>
247  <a name="count-aa">-count-aa: Count Alias Analysis Query Responses</a>
248</h3>
249<div>
250  <p>
251  A pass which can be used to count how many alias queries
252  are being made and how the alias analysis implementation being used responds.
253  </p>
254</div>
255
256<!-------------------------------------------------------------------------- -->
257<h3>
258  <a name="debug-aa">-debug-aa: AA use debugger</a>
259</h3>
260<div>
261  <p>
262  This simple pass checks alias analysis users to ensure that if they
263  create a new value, they do not query AA without informing it of the value.
264  It acts as a shim over any other AA pass you want.
265  </p>
266
267  <p>
268  Yes keeping track of every value in the program is expensive, but this is
269  a debugging pass.
270  </p>
271</div>
272
273<!-------------------------------------------------------------------------- -->
274<h3>
275  <a name="domfrontier">-domfrontier: Dominance Frontier Construction</a>
276</h3>
277<div>
278  <p>
279  This pass is a simple dominator construction algorithm for finding forward
280  dominator frontiers.
281  </p>
282</div>
283
284<!-------------------------------------------------------------------------- -->
285<h3>
286  <a name="domtree">-domtree: Dominator Tree Construction</a>
287</h3>
288<div>
289  <p>
290  This pass is a simple dominator construction algorithm for finding forward
291  dominators.
292  </p>
293</div>
294
295<!-------------------------------------------------------------------------- -->
296<h3>
297  <a name="dot-callgraph">-dot-callgraph: Print Call Graph to 'dot' file</a>
298</h3>
299<div>
300  <p>
301  This pass, only available in <code>opt</code>, prints the call graph into a
302  <code>.dot</code> graph.  This graph can then be processed with the "dot" tool
303  to convert it to postscript or some other suitable format.
304  </p>
305</div>
306
307<!-------------------------------------------------------------------------- -->
308<h3>
309  <a name="dot-cfg">-dot-cfg: Print CFG of function to 'dot' file</a>
310</h3>
311<div>
312  <p>
313  This pass, only available in <code>opt</code>, prints the control flow graph
314  into a <code>.dot</code> graph.  This graph can then be processed with the
315  "dot" tool to convert it to postscript or some other suitable format.
316  </p>
317</div>
318
319<!-------------------------------------------------------------------------- -->
320<h3>
321  <a name="dot-cfg-only">-dot-cfg-only: Print CFG of function to 'dot' file (with no function bodies)</a>
322</h3>
323<div>
324  <p>
325  This pass, only available in <code>opt</code>, prints the control flow graph
326  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
327  then be processed with the "dot" tool to convert it to postscript or some
328  other suitable format.
329  </p>
330</div>
331
332<!-------------------------------------------------------------------------- -->
333<h3>
334  <a name="dot-dom">-dot-dom: Print dominance tree of function to 'dot' file</a>
335</h3>
336<div>
337  <p>
338  This pass, only available in <code>opt</code>, prints the dominator tree
339  into a <code>.dot</code> graph.  This graph can then be processed with the
340  "dot" tool to convert it to postscript or some other suitable format.
341  </p>
342</div>
343
344<!-------------------------------------------------------------------------- -->
345<h3>
346  <a name="dot-dom-only">-dot-dom-only: Print dominance tree of function to 'dot' file (with no function bodies)</a>
347</h3>
348<div>
349  <p>
350  This pass, only available in <code>opt</code>, prints the dominator tree
351  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
352  then be processed with the "dot" tool to convert it to postscript or some
353  other suitable format.
354  </p>
355</div>
356
357<!-------------------------------------------------------------------------- -->
358<h3>
359  <a name="dot-postdom">-dot-postdom: Print postdominance tree of function to 'dot' file</a>
360</h3>
361<div>
362  <p>
363  This pass, only available in <code>opt</code>, prints the post dominator tree
364  into a <code>.dot</code> graph.  This graph can then be processed with the
365  "dot" tool to convert it to postscript or some other suitable format.
366  </p>
367</div>
368
369<!-------------------------------------------------------------------------- -->
370<h3>
371  <a name="dot-postdom-only">-dot-postdom-only: Print postdominance tree of function to 'dot' file (with no function bodies)</a>
372</h3>
373<div>
374  <p>
375  This pass, only available in <code>opt</code>, prints the post dominator tree
376  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
377  then be processed with the "dot" tool to convert it to postscript or some
378  other suitable format.
379  </p>
380</div>
381
382<!-------------------------------------------------------------------------- -->
383<h3>
384  <a name="globalsmodref-aa">-globalsmodref-aa: Simple mod/ref analysis for globals</a>
385</h3>
386<div>
387  <p>
388  This simple pass provides alias and mod/ref information for global values
389  that do not have their address taken, and keeps track of whether functions
390  read or write memory (are "pure").  For this simple (but very common) case,
391  we can provide pretty accurate and useful information.
392  </p>
393</div>
394
395<!-------------------------------------------------------------------------- -->
396<h3>
397  <a name="instcount">-instcount: Counts the various types of Instructions</a>
398</h3>
399<div>
400  <p>
401  This pass collects the count of all instructions and reports them
402  </p>
403</div>
404
405<!-------------------------------------------------------------------------- -->
406<h3>
407  <a name="intervals">-intervals: Interval Partition Construction</a>
408</h3>
409<div>
410  <p>
411  This analysis calculates and represents the interval partition of a function,
412  or a preexisting interval partition.
413  </p>
414
415  <p>
416  In this way, the interval partition may be used to reduce a flow graph down
417  to its degenerate single node interval partition (unless it is irreducible).
418  </p>
419</div>
420
421<!-------------------------------------------------------------------------- -->
422<h3>
423  <a name="iv-users">-iv-users: Induction Variable Users</a>
424</h3>
425<div>
426  <p>Bookkeeping for "interesting" users of expressions computed from
427  induction variables.</p>
428</div>
429
430<!-------------------------------------------------------------------------- -->
431<h3>
432  <a name="lazy-value-info">-lazy-value-info: Lazy Value Information Analysis</a>
433</h3>
434<div>
435  <p>Interface for lazy computation of value constraint information.</p>
436</div>
437
438<!-------------------------------------------------------------------------- -->
439<h3>
440  <a name="lda">-lda: Loop Dependence Analysis</a>
441</h3>
442<div>
443  <p>Loop dependence analysis framework, which is used to detect dependences in
444  memory accesses in loops.</p>
445</div>
446
447<!-------------------------------------------------------------------------- -->
448<h3>
449  <a name="libcall-aa">-libcall-aa: LibCall Alias Analysis</a>
450</h3>
451<div>
452  <p>LibCall Alias Analysis.</p>
453</div>
454
455<!-------------------------------------------------------------------------- -->
456<h3>
457  <a name="lint">-lint: Statically lint-checks LLVM IR</a>
458</h3>
459<div>
460  <p>This pass statically checks for common and easily-identified constructs
461  which produce undefined or likely unintended behavior in LLVM IR.</p>
462
463  <p>It is not a guarantee of correctness, in two ways. First, it isn't
464  comprehensive. There are checks which could be done statically which are
465  not yet implemented. Some of these are indicated by TODO comments, but
466  those aren't comprehensive either. Second, many conditions cannot be
467  checked statically. This pass does no dynamic instrumentation, so it
468  can't check for all possible problems.</p>
469
470  <p>Another limitation is that it assumes all code will be executed. A store
471  through a null pointer in a basic block which is never reached is harmless,
472  but this pass will warn about it anyway.</p>
473
474  <p>Optimization passes may make conditions that this pass checks for more or
475  less obvious. If an optimization pass appears to be introducing a warning,
476  it may be that the optimization pass is merely exposing an existing
477  condition in the code.</p>
478
479  <p>This code may be run before instcombine. In many cases, instcombine checks
480  for the same kinds of things and turns instructions with undefined behavior
481  into unreachable (or equivalent). Because of this, this pass makes some
482  effort to look through bitcasts and so on.
483  </p>
484</div>
485
486<!-------------------------------------------------------------------------- -->
487<h3>
488  <a name="loops">-loops: Natural Loop Information</a>
489</h3>
490<div>
491  <p>
492  This analysis is used to identify natural loops and determine the loop depth
493  of various nodes of the CFG.  Note that the loops identified may actually be
494  several natural loops that share the same header node... not just a single
495  natural loop.
496  </p>
497</div>
498
499<!-------------------------------------------------------------------------- -->
500<h3>
501  <a name="memdep">-memdep: Memory Dependence Analysis</a>
502</h3>
503<div>
504  <p>
505  An analysis that determines, for a given memory operation, what preceding
506  memory operations it depends on.  It builds on alias analysis information, and
507  tries to provide a lazy, caching interface to a common kind of alias
508  information query.
509  </p>
510</div>
511
512<!-------------------------------------------------------------------------- -->
513<h3>
514  <a name="module-debuginfo">-module-debuginfo: Decodes module-level debug info</a>
515</h3>
516<div>
517  <p>This pass decodes the debug info metadata in a module and prints in a
518 (sufficiently-prepared-) human-readable form.
519
520 For example, run this pass from opt along with the -analyze option, and
521 it'll print to standard output.
522  </p>
523</div>
524
525<!-------------------------------------------------------------------------- -->
526<h3>
527  <a name="no-aa">-no-aa: No Alias Analysis (always returns 'may' alias)</a>
528</h3>
529<div>
530  <p>
531  Always returns "I don't know" for alias queries.  NoAA is unlike other alias
532  analysis implementations, in that it does not chain to a previous analysis. As
533  such it doesn't follow many of the rules that other alias analyses must.
534  </p>
535</div>
536
537<!-------------------------------------------------------------------------- -->
538<h3>
539  <a name="no-profile">-no-profile: No Profile Information</a>
540</h3>
541<div>
542  <p>
543  The default "no profile" implementation of the abstract
544  <code>ProfileInfo</code> interface.
545  </p>
546</div>
547
548<!-------------------------------------------------------------------------- -->
549<h3>
550  <a name="postdomfrontier">-postdomfrontier: Post-Dominance Frontier Construction</a>
551</h3>
552<div>
553  <p>
554  This pass is a simple post-dominator construction algorithm for finding
555  post-dominator frontiers.
556  </p>
557</div>
558
559<!-------------------------------------------------------------------------- -->
560<h3>
561  <a name="postdomtree">-postdomtree: Post-Dominator Tree Construction</a>
562</h3>
563<div>
564  <p>
565  This pass is a simple post-dominator construction algorithm for finding
566  post-dominators.
567  </p>
568</div>
569
570<!-------------------------------------------------------------------------- -->
571<h3>
572  <a name="print-alias-sets">-print-alias-sets: Alias Set Printer</a>
573</h3>
574<div>
575  <p>Yet to be written.</p>
576</div>
577
578<!-------------------------------------------------------------------------- -->
579<h3>
580  <a name="print-callgraph">-print-callgraph: Print a call graph</a>
581</h3>
582<div>
583  <p>
584  This pass, only available in <code>opt</code>, prints the call graph to
585  standard error in a human-readable form.
586  </p>
587</div>
588
589<!-------------------------------------------------------------------------- -->
590<h3>
591  <a name="print-callgraph-sccs">-print-callgraph-sccs: Print SCCs of the Call Graph</a>
592</h3>
593<div>
594  <p>
595  This pass, only available in <code>opt</code>, prints the SCCs of the call
596  graph to standard error in a human-readable form.
597  </p>
598</div>
599
600<!-------------------------------------------------------------------------- -->
601<h3>
602  <a name="print-cfg-sccs">-print-cfg-sccs: Print SCCs of each function CFG</a>
603</h3>
604<div>
605  <p>
606  This pass, only available in <code>opt</code>, prints the SCCs of each
607  function CFG to standard error in a human-readable form.
608  </p>
609</div>
610
611<!-------------------------------------------------------------------------- -->
612<h3>
613  <a name="print-dbginfo">-print-dbginfo: Print debug info in human readable form</a>
614</h3>
615<div>
616  <p>Pass that prints instructions, and associated debug info:</p>
617  <ul>
618
619  <li>source/line/col information</li>
620  <li>original variable name</li>
621  <li>original type name</li>
622  </ul>
623</div>
624
625<!-------------------------------------------------------------------------- -->
626<h3>
627  <a name="print-dom-info">-print-dom-info: Dominator Info Printer</a>
628</h3>
629<div>
630  <p>Dominator Info Printer.</p>
631</div>
632
633<!-------------------------------------------------------------------------- -->
634<h3>
635  <a name="print-externalfnconstants">-print-externalfnconstants: Print external fn callsites passed constants</a>
636</h3>
637<div>
638  <p>
639  This pass, only available in <code>opt</code>, prints out call sites to
640  external functions that are called with constant arguments.  This can be
641  useful when looking for standard library functions we should constant fold
642  or handle in alias analyses.
643  </p>
644</div>
645
646<!-------------------------------------------------------------------------- -->
647<h3>
648  <a name="print-function">-print-function: Print function to stderr</a>
649</h3>
650<div>
651  <p>
652  The <code>PrintFunctionPass</code> class is designed to be pipelined with
653  other <code>FunctionPass</code>es, and prints out the functions of the module
654  as they are processed.
655  </p>
656</div>
657
658<!-------------------------------------------------------------------------- -->
659<h3>
660  <a name="print-module">-print-module: Print module to stderr</a>
661</h3>
662<div>
663  <p>
664  This pass simply prints out the entire module when it is executed.
665  </p>
666</div>
667
668<!-------------------------------------------------------------------------- -->
669<h3>
670  <a name="print-used-types">-print-used-types: Find Used Types</a>
671</h3>
672<div>
673  <p>
674  This pass is used to seek out all of the types in use by the program.  Note
675  that this analysis explicitly does not include types only used by the symbol
676  table.
677</div>
678
679<!-------------------------------------------------------------------------- -->
680<h3>
681  <a name="profile-estimator">-profile-estimator: Estimate profiling information</a>
682</h3>
683<div>
684  <p>Profiling information that estimates the profiling information
685  in a very crude and unimaginative way.
686  </p>
687</div>
688
689<!-------------------------------------------------------------------------- -->
690<h3>
691  <a name="profile-loader">-profile-loader: Load profile information from llvmprof.out</a>
692</h3>
693<div>
694  <p>
695  A concrete implementation of profiling information that loads the information
696  from a profile dump file.
697  </p>
698</div>
699
700<!-------------------------------------------------------------------------- -->
701<h3>
702  <a name="profile-verifier">-profile-verifier: Verify profiling information</a>
703</h3>
704<div>
705  <p>Pass that checks profiling information for plausibility.</p>
706</div>
707<h3>
708  <a name="regions">-regions: Detect single entry single exit regions</a>
709</h3>
710<div>
711  <p>
712  The <code>RegionInfo</code> pass detects single entry single exit regions in a
713  function, where a region is defined as any subgraph that is connected to the
714  remaining graph at only two spots. Furthermore, an hierarchical region tree is
715  built.
716  </p>
717</div>
718
719<!-------------------------------------------------------------------------- -->
720<h3>
721  <a name="scalar-evolution">-scalar-evolution: Scalar Evolution Analysis</a>
722</h3>
723<div>
724  <p>
725  The <code>ScalarEvolution</code> analysis can be used to analyze and
726  catagorize scalar expressions in loops.  It specializes in recognizing general
727  induction variables, representing them with the abstract and opaque
728  <code>SCEV</code> class.  Given this analysis, trip counts of loops and other
729  important properties can be obtained.
730  </p>
731
732  <p>
733  This analysis is primarily useful for induction variable substitution and
734  strength reduction.
735  </p>
736</div>
737
738<!-------------------------------------------------------------------------- -->
739<h3>
740  <a name="scev-aa">-scev-aa: ScalarEvolution-based Alias Analysis</a>
741</h3>
742<div>
743  <p>Simple alias analysis implemented in terms of ScalarEvolution queries.
744
745  This differs from traditional loop dependence analysis in that it tests
746  for dependencies within a single iteration of a loop, rather than
747  dependencies between different iterations.
748
749  ScalarEvolution has a more complete understanding of pointer arithmetic
750  than BasicAliasAnalysis' collection of ad-hoc analyses.
751  </p>
752</div>
753
754<!-------------------------------------------------------------------------- -->
755<h3>
756  <a name="targetdata">-targetdata: Target Data Layout</a>
757</h3>
758<div>
759  <p>Provides other passes access to information on how the size and alignment
760  required by the the target ABI for various data types.</p>
761</div>
762
763</div>
764
765<!-- ======================================================================= -->
766<h2><a name="transforms">Transform Passes</a></h2>
767<div>
768  <p>This section describes the LLVM Transform Passes.</p>
769
770<!-------------------------------------------------------------------------- -->
771<h3>
772  <a name="adce">-adce: Aggressive Dead Code Elimination</a>
773</h3>
774<div>
775  <p>ADCE aggressively tries to eliminate code. This pass is similar to
776  <a href="#dce">DCE</a> but it assumes that values are dead until proven
777  otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to
778  the liveness of values.</p>
779</div>
780
781<!-------------------------------------------------------------------------- -->
782<h3>
783  <a name="always-inline">-always-inline: Inliner for always_inline functions</a>
784</h3>
785<div>
786  <p>A custom inliner that handles only functions that are marked as
787  "always inline".</p>
788</div>
789
790<!-------------------------------------------------------------------------- -->
791<h3>
792  <a name="argpromotion">-argpromotion: Promote 'by reference' arguments to scalars</a>
793</h3>
794<div>
795  <p>
796  This pass promotes "by reference" arguments to be "by value" arguments.  In
797  practice, this means looking for internal functions that have pointer
798  arguments.  If it can prove, through the use of alias analysis, that an
799  argument is *only* loaded, then it can pass the value into the function
800  instead of the address of the value.  This can cause recursive simplification
801  of code and lead to the elimination of allocas (especially in C++ template
802  code like the STL).
803  </p>
804
805  <p>
806  This pass also handles aggregate arguments that are passed into a function,
807  scalarizing them if the elements of the aggregate are only loaded.  Note that
808  it refuses to scalarize aggregates which would require passing in more than
809  three operands to the function, because passing thousands of operands for a
810  large array or structure is unprofitable!
811  </p>
812
813  <p>
814  Note that this transformation could also be done for arguments that are only
815  stored to (returning the value instead), but does not currently.  This case
816  would be best handled when and if LLVM starts supporting multiple return
817  values from functions.
818  </p>
819</div>
820
821<!-------------------------------------------------------------------------- -->
822<h3>
823  <a name="block-placement">-block-placement: Profile Guided Basic Block Placement</a>
824</h3>
825<div>
826  <p>This pass is a very simple profile guided basic block placement algorithm.
827  The idea is to put frequently executed blocks together at the start of the
828  function and hopefully increase the number of fall-through conditional
829  branches.  If there is no profile information for a particular function, this
830  pass basically orders blocks in depth-first order.</p>
831</div>
832
833<!-------------------------------------------------------------------------- -->
834<h3>
835  <a name="break-crit-edges">-break-crit-edges: Break critical edges in CFG</a>
836</h3>
837<div>
838  <p>
839  Break all of the critical edges in the CFG by inserting a dummy basic block.
840  It may be "required" by passes that cannot deal with critical edges. This
841  transformation obviously invalidates the CFG, but can update forward dominator
842  (set, immediate dominators, tree, and frontier) information.
843  </p>
844</div>
845
846<!-------------------------------------------------------------------------- -->
847<h3>
848  <a name="codegenprepare">-codegenprepare: Optimize for code generation</a>
849</h3>
850<div>
851  This pass munges the code in the input function to better prepare it for
852  SelectionDAG-based code generation. This works around limitations in it's
853  basic-block-at-a-time approach. It should eventually be removed.
854</div>
855
856<!-------------------------------------------------------------------------- -->
857<h3>
858  <a name="constmerge">-constmerge: Merge Duplicate Global Constants</a>
859</h3>
860<div>
861  <p>
862  Merges duplicate global constants together into a single constant that is
863  shared.  This is useful because some passes (ie TraceValues) insert a lot of
864  string constants into the program, regardless of whether or not an existing
865  string is available.
866  </p>
867</div>
868
869<!-------------------------------------------------------------------------- -->
870<h3>
871  <a name="constprop">-constprop: Simple constant propagation</a>
872</h3>
873<div>
874  <p>This file implements constant propagation and merging. It looks for
875  instructions involving only constant operands and replaces them with a
876  constant value instead of an instruction. For example:</p>
877  <blockquote><pre>add i32 1, 2</pre></blockquote>
878  <p>becomes</p>
879  <blockquote><pre>i32 3</pre></blockquote>
880  <p>NOTE: this pass has a habit of making definitions be dead.  It is a good
881  idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass
882  sometime after running this pass.</p>
883</div>
884
885<!-------------------------------------------------------------------------- -->
886<h3>
887  <a name="dce">-dce: Dead Code Elimination</a>
888</h3>
889<div>
890  <p>
891  Dead code elimination is similar to <a href="#die">dead instruction
892  elimination</a>, but it rechecks instructions that were used by removed
893  instructions to see if they are newly dead.
894  </p>
895</div>
896
897<!-------------------------------------------------------------------------- -->
898<h3>
899  <a name="deadargelim">-deadargelim: Dead Argument Elimination</a>
900</h3>
901<div>
902  <p>
903  This pass deletes dead arguments from internal functions.  Dead argument
904  elimination removes arguments which are directly dead, as well as arguments
905  only passed into function calls as dead arguments of other functions.  This
906  pass also deletes dead arguments in a similar way.
907  </p>
908
909  <p>
910  This pass is often useful as a cleanup pass to run after aggressive
911  interprocedural passes, which add possibly-dead arguments.
912  </p>
913</div>
914
915<!-------------------------------------------------------------------------- -->
916<h3>
917  <a name="deadtypeelim">-deadtypeelim: Dead Type Elimination</a>
918</h3>
919<div>
920  <p>
921  This pass is used to cleanup the output of GCC.  It eliminate names for types
922  that are unused in the entire translation unit, using the <a
923  href="#findusedtypes">find used types</a> pass.
924  </p>
925</div>
926
927<!-------------------------------------------------------------------------- -->
928<h3>
929  <a name="die">-die: Dead Instruction Elimination</a>
930</h3>
931<div>
932  <p>
933  Dead instruction elimination performs a single pass over the function,
934  removing instructions that are obviously dead.
935  </p>
936</div>
937
938<!-------------------------------------------------------------------------- -->
939<h3>
940  <a name="dse">-dse: Dead Store Elimination</a>
941</h3>
942<div>
943  <p>
944  A trivial dead store elimination that only considers basic-block local
945  redundant stores.
946  </p>
947</div>
948
949<!-------------------------------------------------------------------------- -->
950<h3>
951  <a name="functionattrs">-functionattrs: Deduce function attributes</a>
952</h3>
953<div>
954  <p>A simple interprocedural pass which walks the call-graph, looking for
955  functions which do not access or only read non-local memory, and marking them
956  readnone/readonly.  In addition, it marks function arguments (of pointer type)
957  'nocapture' if a call to the function does not create any copies of the pointer
958  value that outlive the call. This more or less means that the pointer is only
959  dereferenced, and not returned from the function or stored in a global.
960  This pass is implemented as a bottom-up traversal of the call-graph.
961  </p>
962</div>
963
964<!-------------------------------------------------------------------------- -->
965<h3>
966  <a name="globaldce">-globaldce: Dead Global Elimination</a>
967</h3>
968<div>
969  <p>
970  This transform is designed to eliminate unreachable internal globals from the
971  program.  It uses an aggressive algorithm, searching out globals that are
972  known to be alive.  After it finds all of the globals which are needed, it
973  deletes whatever is left over.  This allows it to delete recursive chunks of
974  the program which are unreachable.
975  </p>
976</div>
977
978<!-------------------------------------------------------------------------- -->
979<h3>
980  <a name="globalopt">-globalopt: Global Variable Optimizer</a>
981</h3>
982<div>
983  <p>
984  This pass transforms simple global variables that never have their address
985  taken.  If obviously true, it marks read/write globals as constant, deletes
986  variables only stored to, etc.
987  </p>
988</div>
989
990<!-------------------------------------------------------------------------- -->
991<h3>
992  <a name="gvn">-gvn: Global Value Numbering</a>
993</h3>
994<div>
995  <p>
996  This pass performs global value numbering to eliminate fully and partially
997  redundant instructions.  It also performs redundant load elimination.
998  </p>
999</div>
1000
1001<!-------------------------------------------------------------------------- -->
1002<h3>
1003  <a name="indvars">-indvars: Canonicalize Induction Variables</a>
1004</h3>
1005<div>
1006  <p>
1007  This transformation analyzes and transforms the induction variables (and
1008  computations derived from them) into simpler forms suitable for subsequent
1009  analysis and transformation.
1010  </p>
1011
1012  <p>
1013  This transformation makes the following changes to each loop with an
1014  identifiable induction variable:
1015  </p>
1016
1017  <ol>
1018    <li>All loops are transformed to have a <em>single</em> canonical
1019        induction variable which starts at zero and steps by one.</li>
1020    <li>The canonical induction variable is guaranteed to be the first PHI node
1021        in the loop header block.</li>
1022    <li>Any pointer arithmetic recurrences are raised to use array
1023        subscripts.</li>
1024  </ol>
1025
1026  <p>
1027  If the trip count of a loop is computable, this pass also makes the following
1028  changes:
1029  </p>
1030
1031  <ol>
1032    <li>The exit condition for the loop is canonicalized to compare the
1033        induction value against the exit value.  This turns loops like:
1034        <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
1035        into
1036        <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
1037    <li>Any use outside of the loop of an expression derived from the indvar
1038        is changed to compute the derived value outside of the loop, eliminating
1039        the dependence on the exit value of the induction variable.  If the only
1040        purpose of the loop is to compute the exit value of some derived
1041        expression, this transformation will make the loop dead.</li>
1042  </ol>
1043
1044  <p>
1045  This transformation should be followed by strength reduction after all of the
1046  desired loop transformations have been performed.  Additionally, on targets
1047  where it is profitable, the loop could be transformed to count down to zero
1048  (the "do loop" optimization).
1049  </p>
1050</div>
1051
1052<!-------------------------------------------------------------------------- -->
1053<h3>
1054  <a name="inline">-inline: Function Integration/Inlining</a>
1055</h3>
1056<div>
1057  <p>
1058  Bottom-up inlining of functions into callees.
1059  </p>
1060</div>
1061
1062<!-------------------------------------------------------------------------- -->
1063<h3>
1064  <a name="insert-edge-profiling">-insert-edge-profiling: Insert instrumentation for edge profiling</a>
1065</h3>
1066<div>
1067  <p>
1068  This pass instruments the specified program with counters for edge profiling.
1069  Edge profiling can give a reasonable approximation of the hot paths through a
1070  program, and is used for a wide variety of program transformations.
1071  </p>
1072
1073  <p>
1074  Note that this implementation is very naïve.  It inserts a counter for
1075  <em>every</em> edge in the program, instead of using control flow information
1076  to prune the number of counters inserted.
1077  </p>
1078</div>
1079
1080<!-------------------------------------------------------------------------- -->
1081<h3>
1082  <a name="insert-optimal-edge-profiling">-insert-optimal-edge-profiling: Insert optimal instrumentation for edge profiling</a>
1083</h3>
1084<div>
1085  <p>This pass instruments the specified program with counters for edge profiling.
1086  Edge profiling can give a reasonable approximation of the hot paths through a
1087  program, and is used for a wide variety of program transformations.
1088  </p>
1089</div>
1090
1091<!-------------------------------------------------------------------------- -->
1092<h3>
1093  <a name="instcombine">-instcombine: Combine redundant instructions</a>
1094</h3>
1095<div>
1096  <p>
1097  Combine instructions to form fewer, simple
1098  instructions.  This pass does not modify the CFG This pass is where algebraic
1099  simplification happens.
1100  </p>
1101
1102  <p>
1103  This pass combines things like:
1104  </p>
1105
1106<blockquote><pre
1107>%Y = add i32 %X, 1
1108%Z = add i32 %Y, 1</pre></blockquote>
1109
1110  <p>
1111  into:
1112  </p>
1113
1114<blockquote><pre
1115>%Z = add i32 %X, 2</pre></blockquote>
1116
1117  <p>
1118  This is a simple worklist driven algorithm.
1119  </p>
1120
1121  <p>
1122  This pass guarantees that the following canonicalizations are performed on
1123  the program:
1124  </p>
1125
1126  <ul>
1127    <li>If a binary operator has a constant operand, it is moved to the right-
1128        hand side.</li>
1129    <li>Bitwise operators with constant operands are always grouped so that
1130        shifts are performed first, then <code>or</code>s, then
1131        <code>and</code>s, then <code>xor</code>s.</li>
1132    <li>Compare instructions are converted from <code>&lt;</code>,
1133        <code>&gt;</code>, <code>≤</code>, or <code>≥</code> to
1134        <code>=</code> or <code>≠</code> if possible.</li>
1135    <li>All <code>cmp</code> instructions on boolean values are replaced with
1136        logical operations.</li>
1137    <li><code>add <var>X</var>, <var>X</var></code> is represented as
1138        <code>mul <var>X</var>, 2</code> ⇒ <code>shl <var>X</var>, 1</code></li>
1139    <li>Multiplies with a constant power-of-two argument are transformed into
1140        shifts.</li>
1141    <li>… etc.</li>
1142  </ul>
1143</div>
1144
1145<!-------------------------------------------------------------------------- -->
1146<h3>
1147  <a name="internalize">-internalize: Internalize Global Symbols</a>
1148</h3>
1149<div>
1150  <p>
1151  This pass loops over all of the functions in the input module, looking for a
1152  main function.  If a main function is found, all other functions and all
1153  global variables with initializers are marked as internal.
1154  </p>
1155</div>
1156
1157<!-------------------------------------------------------------------------- -->
1158<h3>
1159  <a name="ipconstprop">-ipconstprop: Interprocedural constant propagation</a>
1160</h3>
1161<div>
1162  <p>
1163  This pass implements an <em>extremely</em> simple interprocedural constant
1164  propagation pass.  It could certainly be improved in many different ways,
1165  like using a worklist.  This pass makes arguments dead, but does not remove
1166  them.  The existing dead argument elimination pass should be run after this
1167  to clean up the mess.
1168  </p>
1169</div>
1170
1171<!-------------------------------------------------------------------------- -->
1172<h3>
1173  <a name="ipsccp">-ipsccp: Interprocedural Sparse Conditional Constant Propagation</a>
1174</h3>
1175<div>
1176  <p>
1177  An interprocedural variant of <a href="#sccp">Sparse Conditional Constant
1178  Propagation</a>.
1179  </p>
1180</div>
1181
1182<!-------------------------------------------------------------------------- -->
1183<h3>
1184  <a name="jump-threading">-jump-threading: Jump Threading</a>
1185</h3>
1186<div>
1187  <p>
1188  Jump threading tries to find distinct threads of control flow running through
1189  a basic block. This pass looks at blocks that have multiple predecessors and
1190  multiple successors.  If one or more of the predecessors of the block can be
1191  proven to always cause a jump to one of the successors, we forward the edge
1192  from the predecessor to the successor by duplicating the contents of this
1193  block.
1194  </p>
1195  <p>
1196  An example of when this can occur is code like this:
1197  </p>
1198
1199  <pre
1200>if () { ...
1201  X = 4;
1202}
1203if (X &lt; 3) {</pre>
1204
1205  <p>
1206  In this case, the unconditional branch at the end of the first if can be
1207  revectored to the false side of the second if.
1208  </p>
1209</div>
1210
1211<!-------------------------------------------------------------------------- -->
1212<h3>
1213  <a name="lcssa">-lcssa: Loop-Closed SSA Form Pass</a>
1214</h3>
1215<div>
1216  <p>
1217  This pass transforms loops by placing phi nodes at the end of the loops for
1218  all values that are live across the loop boundary.  For example, it turns
1219  the left into the right code:
1220  </p>
1221
1222  <pre
1223>for (...)                for (...)
1224  if (c)                   if (c)
1225    X1 = ...                 X1 = ...
1226  else                     else
1227    X2 = ...                 X2 = ...
1228  X3 = phi(X1, X2)         X3 = phi(X1, X2)
1229... = X3 + 4              X4 = phi(X3)
1230                          ... = X4 + 4</pre>
1231
1232  <p>
1233  This is still valid LLVM; the extra phi nodes are purely redundant, and will
1234  be trivially eliminated by <code>InstCombine</code>.  The major benefit of
1235  this transformation is that it makes many other loop optimizations, such as
1236  LoopUnswitching, simpler.
1237  </p>
1238</div>
1239
1240<!-------------------------------------------------------------------------- -->
1241<h3>
1242  <a name="licm">-licm: Loop Invariant Code Motion</a>
1243</h3>
1244<div>
1245  <p>
1246  This pass performs loop invariant code motion, attempting to remove as much
1247  code from the body of a loop as possible.  It does this by either hoisting
1248  code into the preheader block, or by sinking code to the exit blocks if it is
1249  safe.  This pass also promotes must-aliased memory locations in the loop to
1250  live in registers, thus hoisting and sinking "invariant" loads and stores.
1251  </p>
1252
1253  <p>
1254  This pass uses alias analysis for two purposes:
1255  </p>
1256
1257  <ul>
1258    <li>Moving loop invariant loads and calls out of loops.  If we can determine
1259        that a load or call inside of a loop never aliases anything stored to,
1260        we can hoist it or sink it like any other instruction.</li>
1261    <li>Scalar Promotion of Memory - If there is a store instruction inside of
1262        the loop, we try to move the store to happen AFTER the loop instead of
1263        inside of the loop.  This can only happen if a few conditions are true:
1264        <ul>
1265          <li>The pointer stored through is loop invariant.</li>
1266          <li>There are no stores or loads in the loop which <em>may</em> alias
1267              the pointer.  There are no calls in the loop which mod/ref the
1268              pointer.</li>
1269        </ul>
1270        If these conditions are true, we can promote the loads and stores in the
1271        loop of the pointer to use a temporary alloca'd variable.  We then use
1272        the mem2reg functionality to construct the appropriate SSA form for the
1273        variable.</li>
1274  </ul>
1275</div>
1276
1277<!-------------------------------------------------------------------------- -->
1278<h3>
1279  <a name="loop-deletion">-loop-deletion: Delete dead loops</a>
1280</h3>
1281<div>
1282  <p>
1283  This file implements the Dead Loop Deletion Pass.  This pass is responsible
1284  for eliminating loops with non-infinite computable trip counts that have no
1285  side effects or volatile instructions, and do not contribute to the
1286  computation of the function's return value.
1287  </p>
1288</div>
1289
1290<!-------------------------------------------------------------------------- -->
1291<h3>
1292  <a name="loop-extract">-loop-extract: Extract loops into new functions</a>
1293</h3>
1294<div>
1295  <p>
1296  A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to
1297  extract each top-level loop into its own new function. If the loop is the
1298  <em>only</em> loop in a given function, it is not touched. This is a pass most
1299  useful for debugging via bugpoint.
1300  </p>
1301</div>
1302
1303<!-------------------------------------------------------------------------- -->
1304<h3>
1305  <a name="loop-extract-single">-loop-extract-single: Extract at most one loop into a new function</a>
1306</h3>
1307<div>
1308  <p>
1309  Similar to <a href="#loop-extract">Extract loops into new functions</a>,
1310  this pass extracts one natural loop from the program into a function if it
1311  can. This is used by bugpoint.
1312  </p>
1313</div>
1314
1315<!-------------------------------------------------------------------------- -->
1316<h3>
1317  <a name="loop-reduce">-loop-reduce: Loop Strength Reduction</a>
1318</h3>
1319<div>
1320  <p>
1321  This pass performs a strength reduction on array references inside loops that
1322  have as one or more of their components the loop induction variable.  This is
1323  accomplished by creating a new value to hold the initial value of the array
1324  access for the first iteration, and then creating a new GEP instruction in
1325  the loop to increment the value by the appropriate amount.
1326  </p>
1327</div>
1328
1329<!-------------------------------------------------------------------------- -->
1330<h3>
1331  <a name="loop-rotate">-loop-rotate: Rotate Loops</a>
1332</h3>
1333<div>
1334  <p>A simple loop rotation transformation.</p>
1335</div>
1336
1337<!-------------------------------------------------------------------------- -->
1338<h3>
1339  <a name="loop-simplify">-loop-simplify: Canonicalize natural loops</a>
1340</h3>
1341<div>
1342  <p>
1343  This pass performs several transformations to transform natural loops into a
1344  simpler form, which makes subsequent analyses and transformations simpler and
1345  more effective.
1346  </p>
1347
1348  <p>
1349  Loop pre-header insertion guarantees that there is a single, non-critical
1350  entry edge from outside of the loop to the loop header.  This simplifies a
1351  number of analyses and transformations, such as LICM.
1352  </p>
1353
1354  <p>
1355  Loop exit-block insertion guarantees that all exit blocks from the loop
1356  (blocks which are outside of the loop that have predecessors inside of the
1357  loop) only have predecessors from inside of the loop (and are thus dominated
1358  by the loop header).  This simplifies transformations such as store-sinking
1359  that are built into LICM.
1360  </p>
1361
1362  <p>
1363  This pass also guarantees that loops will have exactly one backedge.
1364  </p>
1365
1366  <p>
1367  Note that the simplifycfg pass will clean up blocks which are split out but
1368  end up being unnecessary, so usage of this pass should not pessimize
1369  generated code.
1370  </p>
1371
1372  <p>
1373  This pass obviously modifies the CFG, but updates loop information and
1374  dominator information.
1375  </p>
1376</div>
1377
1378<!-------------------------------------------------------------------------- -->
1379<h3>
1380  <a name="loop-unroll">-loop-unroll: Unroll loops</a>
1381</h3>
1382<div>
1383  <p>
1384  This pass implements a simple loop unroller.  It works best when loops have
1385  been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
1386  allowing it to determine the trip counts of loops easily.
1387  </p>
1388</div>
1389
1390<!-------------------------------------------------------------------------- -->
1391<h3>
1392  <a name="loop-unswitch">-loop-unswitch: Unswitch loops</a>
1393</h3>
1394<div>
1395  <p>
1396  This pass transforms loops that contain branches on loop-invariant conditions
1397  to have multiple loops.  For example, it turns the left into the right code:
1398  </p>
1399
1400  <pre
1401>for (...)                  if (lic)
1402  A                          for (...)
1403  if (lic)                     A; B; C
1404    B                      else
1405  C                          for (...)
1406                               A; C</pre>
1407
1408  <p>
1409  This can increase the size of the code exponentially (doubling it every time
1410  a loop is unswitched) so we only unswitch if the resultant code will be
1411  smaller than a threshold.
1412  </p>
1413
1414  <p>
1415  This pass expects LICM to be run before it to hoist invariant conditions out
1416  of the loop, to make the unswitching opportunity obvious.
1417  </p>
1418</div>
1419
1420<!-------------------------------------------------------------------------- -->
1421<h3>
1422  <a name="loweratomic">-loweratomic: Lower atomic intrinsics to non-atomic form</a>
1423</h3>
1424<div>
1425  <p>
1426  This pass lowers atomic intrinsics to non-atomic form for use in a known
1427  non-preemptible environment.
1428  </p>
1429
1430  <p>
1431  The pass does not verify that the environment is non-preemptible (in
1432  general this would require knowledge of the entire call graph of the
1433  program including any libraries which may not be available in bitcode form);
1434  it simply lowers every atomic intrinsic.
1435  </p>
1436</div>
1437
1438<!-------------------------------------------------------------------------- -->
1439<h3>
1440  <a name="lowerinvoke">-lowerinvoke: Lower invoke and unwind, for unwindless code generators</a>
1441</h3>
1442<div>
1443  <p>
1444  This transformation is designed for use by code generators which do not yet
1445  support stack unwinding.  This pass supports two models of exception handling
1446  lowering, the 'cheap' support and the 'expensive' support.
1447  </p>
1448
1449  <p>
1450  'Cheap' exception handling support gives the program the ability to execute
1451  any program which does not "throw an exception", by turning 'invoke'
1452  instructions into calls and by turning 'unwind' instructions into calls to
1453  abort().  If the program does dynamically use the unwind instruction, the
1454  program will print a message then abort.
1455  </p>
1456
1457  <p>
1458  'Expensive' exception handling support gives the full exception handling
1459  support to the program at the cost of making the 'invoke' instruction
1460  really expensive.  It basically inserts setjmp/longjmp calls to emulate the
1461  exception handling as necessary.
1462  </p>
1463
1464  <p>
1465  Because the 'expensive' support slows down programs a lot, and EH is only
1466  used for a subset of the programs, it must be specifically enabled by the
1467  <tt>-enable-correct-eh-support</tt> option.
1468  </p>
1469
1470  <p>
1471  Note that after this pass runs the CFG is not entirely accurate (exceptional
1472  control flow edges are not correct anymore) so only very simple things should
1473  be done after the lowerinvoke pass has run (like generation of native code).
1474  This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
1475  support the invoke instruction yet" lowering pass.
1476  </p>
1477</div>
1478
1479<!-------------------------------------------------------------------------- -->
1480<h3>
1481  <a name="lowersetjmp">-lowersetjmp: Lower Set Jump</a>
1482</h3>
1483<div>
1484  <p>
1485   Lowers <tt>setjmp</tt> and <tt>longjmp</tt> to use the LLVM invoke and unwind
1486   instructions as necessary.
1487  </p>
1488
1489  <p>
1490   Lowering of <tt>longjmp</tt> is fairly trivial. We replace the call with a
1491   call to the LLVM library function <tt>__llvm_sjljeh_throw_longjmp()</tt>.
1492   This unwinds the stack for us calling all of the destructors for
1493   objects allocated on the stack.
1494  </p>
1495
1496  <p>
1497   At a <tt>setjmp</tt> call, the basic block is split and the <tt>setjmp</tt>
1498   removed. The calls in a function that have a <tt>setjmp</tt> are converted to
1499   invoke where the except part checks to see if it's a <tt>longjmp</tt>
1500   exception and, if so, if it's handled in the function. If it is, then it gets
1501   the value returned by the <tt>longjmp</tt> and goes to where the basic block
1502   was split. <tt>invoke</tt> instructions are handled in a similar fashion with
1503   the original except block being executed if it isn't a <tt>longjmp</tt>
1504   except that is handled by that function.
1505  </p>
1506</div>
1507
1508<!-------------------------------------------------------------------------- -->
1509<h3>
1510  <a name="lowerswitch">-lowerswitch: Lower SwitchInst's to branches</a>
1511</h3>
1512<div>
1513  <p>
1514  Rewrites <tt>switch</tt> instructions with a sequence of branches, which
1515  allows targets to get away with not implementing the switch instruction until
1516  it is convenient.
1517  </p>
1518</div>
1519
1520<!-------------------------------------------------------------------------- -->
1521<h3>
1522  <a name="mem2reg">-mem2reg: Promote Memory to Register</a>
1523</h3>
1524<div>
1525  <p>
1526  This file promotes memory references to be register references.  It promotes
1527  <tt>alloca</tt> instructions which only have <tt>load</tt>s and
1528  <tt>store</tt>s as uses.  An <tt>alloca</tt> is transformed by using dominator
1529  frontiers to place <tt>phi</tt> nodes, then traversing the function in
1530  depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
1531  appropriate. This is just the standard SSA construction algorithm to construct
1532  "pruned" SSA form.
1533  </p>
1534</div>
1535
1536<!-------------------------------------------------------------------------- -->
1537<h3>
1538  <a name="memcpyopt">-memcpyopt: MemCpy Optimization</a>
1539</h3>
1540<div>
1541  <p>
1542  This pass performs various transformations related to eliminating memcpy
1543  calls, or transforming sets of stores into memset's.
1544  </p>
1545</div>
1546
1547<!-------------------------------------------------------------------------- -->
1548<h3>
1549  <a name="mergefunc">-mergefunc: Merge Functions</a>
1550</h3>
1551<div>
1552  <p>This pass looks for equivalent functions that are mergable and folds them.
1553
1554  A hash is computed from the function, based on its type and number of
1555  basic blocks.
1556
1557  Once all hashes are computed, we perform an expensive equality comparison
1558  on each function pair. This takes n^2/2 comparisons per bucket, so it's
1559  important that the hash function be high quality. The equality comparison
1560  iterates through each instruction in each basic block.
1561
1562  When a match is found the functions are folded. If both functions are
1563  overridable, we move the functionality into a new internal function and
1564  leave two overridable thunks to it.
1565  </p>
1566</div>
1567
1568<!-------------------------------------------------------------------------- -->
1569<h3>
1570  <a name="mergereturn">-mergereturn: Unify function exit nodes</a>
1571</h3>
1572<div>
1573  <p>
1574  Ensure that functions have at most one <tt>ret</tt> instruction in them.
1575  Additionally, it keeps track of which node is the new exit node of the CFG.
1576  </p>
1577</div>
1578
1579<!-------------------------------------------------------------------------- -->
1580<h3>
1581  <a name="partial-inliner">-partial-inliner: Partial Inliner</a>
1582</h3>
1583<div>
1584  <p>This pass performs partial inlining, typically by inlining an if
1585  statement that surrounds the body of the function.
1586  </p>
1587</div>
1588
1589<!-------------------------------------------------------------------------- -->
1590<h3>
1591  <a name="prune-eh">-prune-eh: Remove unused exception handling info</a>
1592</h3>
1593<div>
1594  <p>
1595  This file implements a simple interprocedural pass which walks the call-graph,
1596  turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
1597  only if the callee cannot throw an exception. It implements this as a
1598  bottom-up traversal of the call-graph.
1599  </p>
1600</div>
1601
1602<!-------------------------------------------------------------------------- -->
1603<h3>
1604  <a name="reassociate">-reassociate: Reassociate expressions</a>
1605</h3>
1606<div>
1607  <p>
1608  This pass reassociates commutative expressions in an order that is designed
1609  to promote better constant propagation, GCSE, LICM, PRE, etc.
1610  </p>
1611
1612  <p>
1613  For example: 4 + (<var>x</var> + 5) ⇒ <var>x</var> + (4 + 5)
1614  </p>
1615
1616  <p>
1617  In the implementation of this algorithm, constants are assigned rank = 0,
1618  function arguments are rank = 1, and other values are assigned ranks
1619  corresponding to the reverse post order traversal of current function
1620  (starting at 2), which effectively gives values in deep loops higher rank
1621  than values not in loops.
1622  </p>
1623</div>
1624
1625<!-------------------------------------------------------------------------- -->
1626<h3>
1627  <a name="reg2mem">-reg2mem: Demote all values to stack slots</a>
1628</h3>
1629<div>
1630  <p>
1631  This file demotes all registers to memory references.  It is intented to be
1632  the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>.  By converting to
1633  <tt>load</tt> instructions, the only values live across basic blocks are
1634  <tt>alloca</tt> instructions and <tt>load</tt> instructions before
1635  <tt>phi</tt> nodes. It is intended that this should make CFG hacking much
1636  easier. To make later hacking easier, the entry block is split into two, such
1637  that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
1638  entry block.
1639  </p>
1640</div>
1641
1642<!-------------------------------------------------------------------------- -->
1643<h3>
1644  <a name="scalarrepl">-scalarrepl: Scalar Replacement of Aggregates (DT)</a>
1645</h3>
1646<div>
1647  <p>
1648  The well-known scalar replacement of aggregates transformation.  This
1649  transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
1650  or array) into individual <tt>alloca</tt> instructions for each member if
1651  possible.  Then, if possible, it transforms the individual <tt>alloca</tt>
1652  instructions into nice clean scalar SSA form.
1653  </p>
1654
1655  <p>
1656  This combines a simple scalar replacement of aggregates algorithm with the <a
1657  href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact,
1658  especially for C++ programs.  As such, iterating between <tt>scalarrepl</tt>,
1659  then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to
1660  promote works well.
1661  </p>
1662</div>
1663
1664<!-------------------------------------------------------------------------- -->
1665<h3>
1666  <a name="sccp">-sccp: Sparse Conditional Constant Propagation</a>
1667</h3>
1668<div>
1669  <p>
1670  Sparse conditional constant propagation and merging, which can be summarized
1671  as:
1672  </p>
1673
1674  <ol>
1675    <li>Assumes values are constant unless proven otherwise</li>
1676    <li>Assumes BasicBlocks are dead unless proven otherwise</li>
1677    <li>Proves values to be constant, and replaces them with constants</li>
1678    <li>Proves conditional branches to be unconditional</li>
1679  </ol>
1680
1681  <p>
1682  Note that this pass has a habit of making definitions be dead.  It is a good
1683  idea to to run a DCE pass sometime after running this pass.
1684  </p>
1685</div>
1686
1687<!-------------------------------------------------------------------------- -->
1688<h3>
1689  <a name="simplify-libcalls">-simplify-libcalls: Simplify well-known library calls</a>
1690</h3>
1691<div>
1692  <p>
1693  Applies a variety of small optimizations for calls to specific well-known
1694  function calls (e.g. runtime library functions). For example, a call
1695   <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be
1696   transformed into simply <tt>return 3</tt>.
1697  </p>
1698</div>
1699
1700<!-------------------------------------------------------------------------- -->
1701<h3>
1702  <a name="simplifycfg">-simplifycfg: Simplify the CFG</a>
1703</h3>
1704<div>
1705  <p>
1706  Performs dead code elimination and basic block merging. Specifically:
1707  </p>
1708
1709  <ol>
1710    <li>Removes basic blocks with no predecessors.</li>
1711    <li>Merges a basic block into its predecessor if there is only one and the
1712        predecessor only has one successor.</li>
1713    <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
1714    <li>Eliminates a basic block that only contains an unconditional
1715        branch.</li>
1716  </ol>
1717</div>
1718
1719<!-------------------------------------------------------------------------- -->
1720<h3>
1721  <a name="sink">-sink: Code sinking</a>
1722</h3>
1723<div>
1724  <p>This pass moves instructions into successor blocks, when possible, so that
1725 they aren't executed on paths where their results aren't needed.
1726  </p>
1727</div>
1728
1729<!-------------------------------------------------------------------------- -->
1730<h3>
1731  <a name="sretpromotion">-sretpromotion: Promote sret arguments to multiple ret values</a>
1732</h3>
1733<div>
1734  <p>
1735  This pass finds functions that return a struct (using a pointer to the struct
1736  as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
1737  replaces them with a new function that simply returns each of the elements of
1738  that struct (using multiple return values).
1739  </p>
1740
1741  <p>
1742  This pass works under a number of conditions:
1743  </p>
1744
1745  <ul>
1746  <li>The returned struct must not contain other structs</li>
1747  <li>The returned struct must only be used to load values from</li>
1748  <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
1749  </ul>
1750</div>
1751
1752<!-------------------------------------------------------------------------- -->
1753<h3>
1754  <a name="strip">-strip: Strip all symbols from a module</a>
1755</h3>
1756<div>
1757  <p>
1758  performs code stripping. this transformation can delete:
1759  </p>
1760
1761  <ol>
1762    <li>names for virtual registers</li>
1763    <li>symbols for internal globals and functions</li>
1764    <li>debug information</li>
1765  </ol>
1766
1767  <p>
1768  note that this transformation makes code much less readable, so it should
1769  only be used in situations where the <tt>strip</tt> utility would be used,
1770  such as reducing code size or making it harder to reverse engineer code.
1771  </p>
1772</div>
1773
1774<!-------------------------------------------------------------------------- -->
1775<h3>
1776  <a name="strip-dead-debug-info">-strip-dead-debug-info: Strip debug info for unused symbols</a>
1777</h3>
1778<div>
1779  <p>
1780  performs code stripping. this transformation can delete:
1781  </p>
1782
1783  <ol>
1784    <li>names for virtual registers</li>
1785    <li>symbols for internal globals and functions</li>
1786    <li>debug information</li>
1787  </ol>
1788
1789  <p>
1790  note that this transformation makes code much less readable, so it should
1791  only be used in situations where the <tt>strip</tt> utility would be used,
1792  such as reducing code size or making it harder to reverse engineer code.
1793  </p>
1794</div>
1795
1796<!-------------------------------------------------------------------------- -->
1797<h3>
1798  <a name="strip-dead-prototypes">-strip-dead-prototypes: Strip Unused Function Prototypes</a>
1799</h3>
1800<div>
1801  <p>
1802  This pass loops over all of the functions in the input module, looking for
1803  dead declarations and removes them. Dead declarations are declarations of
1804  functions for which no implementation is available (i.e., declarations for
1805  unused library functions).
1806  </p>
1807</div>
1808
1809<!-------------------------------------------------------------------------- -->
1810<h3>
1811  <a name="strip-debug-declare">-strip-debug-declare: Strip all llvm.dbg.declare intrinsics</a>
1812</h3>
1813<div>
1814  <p>This pass implements code stripping. Specifically, it can delete:</p>
1815  <ul>
1816  <li>names for virtual registers</li>
1817  <li>symbols for internal globals and functions</li>
1818  <li>debug information</li>
1819  </ul>
1820  <p>
1821  Note that this transformation makes code much less readable, so it should
1822  only be used in situations where the 'strip' utility would be used, such as
1823  reducing code size or making it harder to reverse engineer code.
1824  </p>
1825</div>
1826
1827<!-------------------------------------------------------------------------- -->
1828<h3>
1829  <a name="strip-nondebug">-strip-nondebug: Strip all symbols, except dbg symbols, from a module</a>
1830</h3>
1831<div>
1832  <p>This pass implements code stripping. Specifically, it can delete:</p>
1833  <ul>
1834  <li>names for virtual registers</li>
1835  <li>symbols for internal globals and functions</li>
1836  <li>debug information</li>
1837  </ul>
1838  <p>
1839  Note that this transformation makes code much less readable, so it should
1840  only be used in situations where the 'strip' utility would be used, such as
1841  reducing code size or making it harder to reverse engineer code.
1842  </p>
1843</div>
1844
1845<!-------------------------------------------------------------------------- -->
1846<h3>
1847  <a name="tailcallelim">-tailcallelim: Tail Call Elimination</a>
1848</h3>
1849<div>
1850  <p>
1851  This file transforms calls of the current function (self recursion) followed
1852  by a return instruction with a branch to the entry of the function, creating
1853  a loop.  This pass also implements the following extensions to the basic
1854  algorithm:
1855  </p>
1856
1857  <ul>
1858  <li>Trivial instructions between the call and return do not prevent the
1859      transformation from taking place, though currently the analysis cannot
1860      support moving any really useful instructions (only dead ones).
1861  <li>This pass transforms functions that are prevented from being tail
1862      recursive by an associative expression to use an accumulator variable,
1863      thus compiling the typical naive factorial or <tt>fib</tt> implementation
1864      into efficient code.
1865  <li>TRE is performed if the function returns void, if the return
1866      returns the result returned by the call, or if the function returns a
1867      run-time constant on all exits from the function.  It is possible, though
1868      unlikely, that the return returns something else (like constant 0), and
1869      can still be TRE'd.  It can be TRE'd if <em>all other</em> return
1870      instructions in the function return the exact same value.
1871  <li>If it can prove that callees do not access theier caller stack frame,
1872      they are marked as eligible for tail call elimination (by the code
1873      generator).
1874  </ul>
1875</div>
1876
1877<!-------------------------------------------------------------------------- -->
1878<h3>
1879  <a name="tailduplicate">-tailduplicate: Tail Duplication</a>
1880</h3>
1881<div>
1882  <p>
1883  This pass performs a limited form of tail duplication, intended to simplify
1884  CFGs by removing some unconditional branches.  This pass is necessary to
1885  straighten out loops created by the C front-end, but also is capable of
1886  making other code nicer.  After this pass is run, the CFG simplify pass
1887  should be run to clean up the mess.
1888  </p>
1889</div>
1890
1891</div>
1892
1893<!-- ======================================================================= -->
1894<h2><a name="utilities">Utility Passes</a></h2>
1895<div>
1896  <p>This section describes the LLVM Utility Passes.</p>
1897
1898<!-------------------------------------------------------------------------- -->
1899<h3>
1900  <a name="deadarghaX0r">-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
1901</h3>
1902<div>
1903  <p>
1904  Same as dead argument elimination, but deletes arguments to functions which
1905  are external.  This is only for use by <a
1906  href="Bugpoint.html">bugpoint</a>.</p>
1907</div>
1908
1909<!-------------------------------------------------------------------------- -->
1910<h3>
1911  <a name="extract-blocks">-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)</a>
1912</h3>
1913<div>
1914  <p>
1915  This pass is used by bugpoint to extract all blocks from the module into their
1916  own functions.</p>
1917</div>
1918
1919<!-------------------------------------------------------------------------- -->
1920<h3>
1921  <a name="instnamer">-instnamer: Assign names to anonymous instructions</a>
1922</h3>
1923<div>
1924  <p>This is a little utility pass that gives instructions names, this is mostly
1925 useful when diffing the effect of an optimization because deleting an
1926 unnamed instruction can change all other instruction numbering, making the
1927 diff very noisy.
1928  </p>
1929</div>
1930
1931<!-------------------------------------------------------------------------- -->
1932<h3>
1933  <a name="preverify">-preverify: Preliminary module verification</a>
1934</h3>
1935<div>
1936  <p>
1937  Ensures that the module is in the form required by the <a
1938  href="#verifier">Module Verifier</a> pass.
1939  </p>
1940
1941  <p>
1942  Running the verifier runs this pass automatically, so there should be no need
1943  to use it directly.
1944  </p>
1945</div>
1946
1947<!-------------------------------------------------------------------------- -->
1948<h3>
1949  <a name="verify">-verify: Module Verifier</a>
1950</h3>
1951<div>
1952  <p>
1953  Verifies an LLVM IR code. This is useful to run after an optimization which is
1954  undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
1955  emitting bitcode, and also that malformed bitcode is likely to make LLVM
1956  crash. All language front-ends are therefore encouraged to verify their output
1957  before performing optimizing transformations.
1958  </p>
1959
1960  <ul>
1961    <li>Both of a binary operator's parameters are of the same type.</li>
1962    <li>Verify that the indices of mem access instructions match other
1963        operands.</li>
1964    <li>Verify that arithmetic and other things are only performed on
1965        first-class types.  Verify that shifts and logicals only happen on
1966        integrals f.e.</li>
1967    <li>All of the constants in a switch statement are of the correct type.</li>
1968    <li>The code is in valid SSA form.</li>
1969    <li>It is illegal to put a label into any other type (like a structure) or
1970        to return one.</li>
1971    <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
1972        invalid.</li>
1973    <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
1974    <li>PHI nodes must be the first thing in a basic block, all grouped
1975        together.</li>
1976    <li>PHI nodes must have at least one entry.</li>
1977    <li>All basic blocks should only end with terminator insts, not contain
1978        them.</li>
1979    <li>The entry node to a function must not have predecessors.</li>
1980    <li>All Instructions must be embedded into a basic block.</li>
1981    <li>Functions cannot take a void-typed parameter.</li>
1982    <li>Verify that a function's argument list agrees with its declared
1983        type.</li>
1984    <li>It is illegal to specify a name for a void value.</li>
1985    <li>It is illegal to have a internal global value with no initializer.</li>
1986    <li>It is illegal to have a ret instruction that returns a value that does
1987        not agree with the function return value type.</li>
1988    <li>Function call argument types match the function prototype.</li>
1989    <li>All other things that are tested by asserts spread about the code.</li>
1990  </ul>
1991
1992  <p>
1993  Note that this does not provide full security verification (like Java), but
1994  instead just tries to ensure that code is well-formed.
1995  </p>
1996</div>
1997
1998<!-------------------------------------------------------------------------- -->
1999<h3>
2000  <a name="view-cfg">-view-cfg: View CFG of function</a>
2001</h3>
2002<div>
2003  <p>
2004  Displays the control flow graph using the GraphViz tool.
2005  </p>
2006</div>
2007
2008<!-------------------------------------------------------------------------- -->
2009<h3>
2010  <a name="view-cfg-only">-view-cfg-only: View CFG of function (with no function bodies)</a>
2011</h3>
2012<div>
2013  <p>
2014  Displays the control flow graph using the GraphViz tool, but omitting function
2015  bodies.
2016  </p>
2017</div>
2018
2019<!-------------------------------------------------------------------------- -->
2020<h3>
2021  <a name="view-dom">-view-dom: View dominance tree of function</a>
2022</h3>
2023<div>
2024  <p>
2025  Displays the dominator tree using the GraphViz tool.
2026  </p>
2027</div>
2028
2029<!-------------------------------------------------------------------------- -->
2030<h3>
2031  <a name="view-dom-only">-view-dom-only: View dominance tree of function (with no function bodies)</a>
2032</h3>
2033<div>
2034  <p>
2035  Displays the dominator tree using the GraphViz tool, but omitting function
2036  bodies.
2037  </p>
2038</div>
2039
2040<!-------------------------------------------------------------------------- -->
2041<h3>
2042  <a name="view-postdom">-view-postdom: View postdominance tree of function</a>
2043</h3>
2044<div>
2045  <p>
2046  Displays the post dominator tree using the GraphViz tool.
2047  </p>
2048</div>
2049
2050<!-------------------------------------------------------------------------- -->
2051<h3>
2052  <a name="view-postdom-only">-view-postdom-only: View postdominance tree of function (with no function bodies)</a>
2053</h3>
2054<div>
2055  <p>
2056  Displays the post dominator tree using the GraphViz tool, but omitting
2057  function bodies.
2058  </p>
2059</div>
2060
2061</div>
2062
2063<!-- *********************************************************************** -->
2064
2065<hr>
2066<address>
2067  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2068  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
2069  <a href="http://validator.w3.org/check/referer"><img
2070  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
2071
2072  <a href="mailto:rspencer@x10sys.com">Reid Spencer</a><br>
2073  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
2074  Last modified: $Date$
2075</address>
2076
2077</body>
2078</html>
2079