• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "jit"
16 #include "ARM.h"
17 #include "ARMAddressingModes.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMRelocations.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassManager.h"
27 #include "llvm/CodeGen/JITCodeEmitter.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #ifndef NDEBUG
39 #include <iomanip>
40 #endif
41 using namespace llvm;
42 
43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
44 
45 namespace {
46 
47   class ARMCodeEmitter : public MachineFunctionPass {
48     ARMJITInfo                *JTI;
49     const ARMInstrInfo        *II;
50     const TargetData          *TD;
51     const ARMSubtarget        *Subtarget;
52     TargetMachine             &TM;
53     JITCodeEmitter            &MCE;
54     MachineModuleInfo *MMI;
55     const std::vector<MachineConstantPoolEntry> *MCPEs;
56     const std::vector<MachineJumpTableEntry> *MJTEs;
57     bool IsPIC;
58     bool IsThumb;
59 
getAnalysisUsage(AnalysisUsage & AU) const60     void getAnalysisUsage(AnalysisUsage &AU) const {
61       AU.addRequired<MachineModuleInfo>();
62       MachineFunctionPass::getAnalysisUsage(AU);
63     }
64 
65     static char ID;
66   public:
ARMCodeEmitter(TargetMachine & tm,JITCodeEmitter & mce)67     ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68       : MachineFunctionPass(ID), JTI(0),
69         II((const ARMInstrInfo *)tm.getInstrInfo()),
70         TD(tm.getTargetData()), TM(tm),
71         MCE(mce), MCPEs(0), MJTEs(0),
72         IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73 
74     /// getBinaryCodeForInstr - This function, generated by the
75     /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76     /// machine instructions.
77     unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
78 
79     bool runOnMachineFunction(MachineFunction &MF);
80 
getPassName() const81     virtual const char *getPassName() const {
82       return "ARM Machine Code Emitter";
83     }
84 
85     void emitInstruction(const MachineInstr &MI);
86 
87   private:
88 
89     void emitWordLE(unsigned Binary);
90     void emitDWordLE(uint64_t Binary);
91     void emitConstantToMemory(unsigned CPI, const Constant *CV);
92     void emitConstPoolInstruction(const MachineInstr &MI);
93     void emitMOVi32immInstruction(const MachineInstr &MI);
94     void emitMOVi2piecesInstruction(const MachineInstr &MI);
95     void emitLEApcrelInstruction(const MachineInstr &MI);
96     void emitLEApcrelJTInstruction(const MachineInstr &MI);
97     void emitPseudoMoveInstruction(const MachineInstr &MI);
98     void addPCLabel(unsigned LabelID);
99     void emitPseudoInstruction(const MachineInstr &MI);
100     unsigned getMachineSoRegOpValue(const MachineInstr &MI,
101                                     const MCInstrDesc &MCID,
102                                     const MachineOperand &MO,
103                                     unsigned OpIdx);
104 
105     unsigned getMachineSoImmOpValue(unsigned SoImm);
106     unsigned getAddrModeSBit(const MachineInstr &MI,
107                              const MCInstrDesc &MCID) const;
108 
109     void emitDataProcessingInstruction(const MachineInstr &MI,
110                                        unsigned ImplicitRd = 0,
111                                        unsigned ImplicitRn = 0);
112 
113     void emitLoadStoreInstruction(const MachineInstr &MI,
114                                   unsigned ImplicitRd = 0,
115                                   unsigned ImplicitRn = 0);
116 
117     void emitMiscLoadStoreInstruction(const MachineInstr &MI,
118                                       unsigned ImplicitRn = 0);
119 
120     void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
121 
122     void emitMulFrmInstruction(const MachineInstr &MI);
123 
124     void emitExtendInstruction(const MachineInstr &MI);
125 
126     void emitMiscArithInstruction(const MachineInstr &MI);
127 
128     void emitSaturateInstruction(const MachineInstr &MI);
129 
130     void emitBranchInstruction(const MachineInstr &MI);
131 
132     void emitInlineJumpTable(unsigned JTIndex);
133 
134     void emitMiscBranchInstruction(const MachineInstr &MI);
135 
136     void emitVFPArithInstruction(const MachineInstr &MI);
137 
138     void emitVFPConversionInstruction(const MachineInstr &MI);
139 
140     void emitVFPLoadStoreInstruction(const MachineInstr &MI);
141 
142     void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
143 
144     void emitMiscInstruction(const MachineInstr &MI);
145 
146     void emitNEONLaneInstruction(const MachineInstr &MI);
147     void emitNEONDupInstruction(const MachineInstr &MI);
148     void emitNEON1RegModImmInstruction(const MachineInstr &MI);
149     void emitNEON2RegInstruction(const MachineInstr &MI);
150     void emitNEON3RegInstruction(const MachineInstr &MI);
151 
152     /// getMachineOpValue - Return binary encoding of operand. If the machine
153     /// operand requires relocation, record the relocation and return zero.
154     unsigned getMachineOpValue(const MachineInstr &MI,
155                                const MachineOperand &MO) const;
getMachineOpValue(const MachineInstr & MI,unsigned OpIdx) const156     unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
157       return getMachineOpValue(MI, MI.getOperand(OpIdx));
158     }
159 
160     // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
161     //  TableGen'erated getBinaryCodeForInstr() function to encode any
162     //  operand values, instead querying getMachineOpValue() directly for
163     //  each operand it needs to encode. Thus, any of the new encoder
164     //  helper functions can simply return 0 as the values the return
165     //  are already handled elsewhere. They are placeholders to allow this
166     //  encoder to continue to function until the MC encoder is sufficiently
167     //  far along that this one can be eliminated entirely.
NEONThumb2DataIPostEncoder(const MachineInstr & MI,unsigned Val) const168     unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
169       const { return 0; }
NEONThumb2LoadStorePostEncoder(const MachineInstr & MI,unsigned Val) const170     unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
171       const { return 0; }
NEONThumb2DupPostEncoder(const MachineInstr & MI,unsigned Val) const172     unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
173       const { return 0; }
VFPThumb2PostEncoder(const MachineInstr & MI,unsigned Val) const174     unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
175       const {
176       if (IsThumb) {
177         Val &= 0x0FFFFFFF;
178         Val |= 0xE0000000;
179       }
180       return Val;
181     }
getAdrLabelOpValue(const MachineInstr & MI,unsigned Op) const182     unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
183       const { return 0; }
getThumbAdrLabelOpValue(const MachineInstr & MI,unsigned Op) const184     unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
185       const { return 0; }
getThumbBLTargetOpValue(const MachineInstr & MI,unsigned Op) const186     unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
187       const { return 0; }
getThumbBLXTargetOpValue(const MachineInstr & MI,unsigned Op) const188     unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
189       const { return 0; }
getThumbBRTargetOpValue(const MachineInstr & MI,unsigned Op) const190     unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
191       const { return 0; }
getThumbBCCTargetOpValue(const MachineInstr & MI,unsigned Op) const192     unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
193       const { return 0; }
getThumbCBTargetOpValue(const MachineInstr & MI,unsigned Op) const194     unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
195       const { return 0; }
getBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const196     unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
197       const { return 0; }
getUnconditionalBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const198     unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
199       unsigned Op) const { return 0; }
getARMBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const200     unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
201       const { return 0; }
getCCOutOpValue(const MachineInstr & MI,unsigned Op) const202     unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
203       const { return 0; }
getSOImmOpValue(const MachineInstr & MI,unsigned Op) const204     unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
205       const { return 0; }
getT2SOImmOpValue(const MachineInstr & MI,unsigned Op) const206     unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
207       const { return 0; }
getSORegOpValue(const MachineInstr & MI,unsigned Op) const208     unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
209       const { return 0; }
getThumbAddrModeRegRegOpValue(const MachineInstr & MI,unsigned Op) const210     unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
211       const { return 0; }
getT2AddrModeImm12OpValue(const MachineInstr & MI,unsigned Op) const212     unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
213       const { return 0; }
getT2AddrModeImm8OpValue(const MachineInstr & MI,unsigned Op) const214     unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
215       const { return 0; }
getT2AddrModeImm8s4OpValue(const MachineInstr & MI,unsigned Op) const216     unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
217       const { return 0; }
getT2AddrModeImm8OffsetOpValue(const MachineInstr & MI,unsigned Op) const218     unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
219       const { return 0; }
getT2AddrModeImm12OffsetOpValue(const MachineInstr & MI,unsigned Op) const220     unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
221       const { return 0; }
getT2AddrModeSORegOpValue(const MachineInstr & MI,unsigned Op) const222     unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
223       const { return 0; }
getT2SORegOpValue(const MachineInstr & MI,unsigned Op) const224     unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
225       const { return 0; }
getRotImmOpValue(const MachineInstr & MI,unsigned Op) const226     unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
227       const { return 0; }
getImmMinusOneOpValue(const MachineInstr & MI,unsigned Op) const228     unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
229       const { return 0; }
getT2AdrLabelOpValue(const MachineInstr & MI,unsigned Op) const230     unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
231       const { return 0; }
getAddrMode6AddressOpValue(const MachineInstr & MI,unsigned Op) const232     unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
233       const { return 0; }
getAddrMode6OneLane32AddressOpValue(const MachineInstr & MI,unsigned Op) const234     unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
235                                                  unsigned Op)
236       const { return 0; }
getAddrMode6DupAddressOpValue(const MachineInstr & MI,unsigned Op) const237     unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
238       const { return 0; }
getAddrMode6OffsetOpValue(const MachineInstr & MI,unsigned Op) const239     unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
240       const { return 0; }
getBitfieldInvertedMaskOpValue(const MachineInstr & MI,unsigned Op) const241     unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
242                                             unsigned Op) const { return 0; }
getMsbOpValue(const MachineInstr & MI,unsigned Op) const243     unsigned getMsbOpValue(const MachineInstr &MI,
244                            unsigned Op) const { return 0; }
getSsatBitPosValue(const MachineInstr & MI,unsigned Op) const245     unsigned getSsatBitPosValue(const MachineInstr &MI,
246                                 unsigned Op) const { return 0; }
getLdStmModeOpValue(const MachineInstr & MI,unsigned OpIdx) const247     uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
248       const {return 0; }
getLdStSORegOpValue(const MachineInstr & MI,unsigned OpIdx) const249     uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
250       const { return 0; }
251 
getAddrModeImm12OpValue(const MachineInstr & MI,unsigned Op) const252     unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
253       const {
254       // {17-13} = reg
255       // {12}    = (U)nsigned (add == '1', sub == '0')
256       // {11-0}  = imm12
257       const MachineOperand &MO  = MI.getOperand(Op);
258       const MachineOperand &MO1 = MI.getOperand(Op + 1);
259       if (!MO.isReg()) {
260         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
261         return 0;
262       }
263       unsigned Reg = getARMRegisterNumbering(MO.getReg());
264       int32_t Imm12 = MO1.getImm();
265       uint32_t Binary;
266       Binary = Imm12 & 0xfff;
267       if (Imm12 >= 0)
268         Binary |= (1 << 12);
269       Binary |= (Reg << 13);
270       return Binary;
271     }
272 
getHiLo16ImmOpValue(const MachineInstr & MI,unsigned Op) const273     unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op)
274       const {
275       const MCInstrDesc &MCID = MI.getDesc();
276       const MachineOperand &MO = MI.getOperand(Op);
277 
278       unsigned Reloc = (MCID.Opcode == ARM::MOVi16 ?
279                        ARM::reloc_arm_movw : ARM::reloc_arm_movt);
280 
281       if (!MO.isImm()) {
282         emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
283         return 0;
284       }
285       unsigned Imm16 = static_cast<unsigned>(MO.getImm());
286       return Imm16;
287     }
288 
getAddrMode2OpValue(const MachineInstr & MI,unsigned OpIdx) const289     uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
290       const { return 0;}
getAddrMode2OffsetOpValue(const MachineInstr & MI,unsigned OpIdx) const291     uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
292       const { return 0;}
getAddrMode3OffsetOpValue(const MachineInstr & MI,unsigned OpIdx) const293     uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
294       const { return 0;}
getAddrMode3OpValue(const MachineInstr & MI,unsigned Op) const295     uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
296       const { return 0; }
getAddrModeThumbSPOpValue(const MachineInstr & MI,unsigned Op) const297     uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
298       const { return 0; }
getAddrModeSOpValue(const MachineInstr & MI,unsigned Op) const299     uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
300       const { return 0; }
getAddrModeISOpValue(const MachineInstr & MI,unsigned Op) const301     uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
302       const { return 0; }
getAddrModePCOpValue(const MachineInstr & MI,unsigned Op) const303     uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
304       const { return 0; }
getAddrMode5OpValue(const MachineInstr & MI,unsigned Op) const305     uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
306       // {12-9}  = reg
307       // {8}     = (U)nsigned (add == '1', sub == '0')
308       // {7-0}   = imm8
309       uint32_t Binary = 0;
310       const MachineOperand &MO  = MI.getOperand(Op);
311       uint32_t Reg = getMachineOpValue(MI, MO);
312       Binary |= (Reg << 9);
313 
314       // If there is a non-zero immediate offset, encode it.
315       if (MO.isReg()) {
316           const MachineOperand &MO1 = MI.getOperand(Op + 1);
317         if (uint32_t ImmOffs = ARM_AM::getAM5Offset(MO1.getImm())) {
318           if (ARM_AM::getAM5Op(MO1.getImm()) == ARM_AM::add)
319             Binary |= 1 << 8;
320           Binary |= ImmOffs & 0xff;
321           return Binary;
322         }
323       }
324 
325       // If immediate offset is omitted, default to +0.
326       Binary |= 1 << 8;
327       return Binary;
328     }
getNEONVcvtImm32OpValue(const MachineInstr & MI,unsigned Op) const329     unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
330       const { return 0; }
331 
getRegisterListOpValue(const MachineInstr & MI,unsigned Op) const332     unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
333       const { return 0; }
334 
getShiftRight8Imm(const MachineInstr & MI,unsigned Op) const335     unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
336       const { return 0; }
getShiftRight16Imm(const MachineInstr & MI,unsigned Op) const337     unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
338       const { return 0; }
getShiftRight32Imm(const MachineInstr & MI,unsigned Op) const339     unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
340       const { return 0; }
getShiftRight64Imm(const MachineInstr & MI,unsigned Op) const341     unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
342       const { return 0; }
343 
344     /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
345     /// machine operand requires relocation, record the relocation and return
346     /// zero.
347     unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
348                             unsigned Reloc);
349 
350     /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
351     ///
352     unsigned getShiftOp(unsigned Imm) const ;
353 
354     /// Routines that handle operands which add machine relocations which are
355     /// fixed up by the relocation stage.
356     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
357                            bool MayNeedFarStub,  bool Indirect,
358                            intptr_t ACPV = 0) const;
359     void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
360     void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
361     void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
362     void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
363                                intptr_t JTBase = 0) const;
364   };
365 }
366 
367 char ARMCodeEmitter::ID = 0;
368 
369 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
370 /// code to the specified MCE object.
createARMJITCodeEmitterPass(ARMBaseTargetMachine & TM,JITCodeEmitter & JCE)371 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
372                                                 JITCodeEmitter &JCE) {
373   return new ARMCodeEmitter(TM, JCE);
374 }
375 
runOnMachineFunction(MachineFunction & MF)376 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
377   assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
378           MF.getTarget().getRelocationModel() != Reloc::Static) &&
379          "JIT relocation model must be set to static or default!");
380   JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
381   II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
382   TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
383   Subtarget = &TM.getSubtarget<ARMSubtarget>();
384   MCPEs = &MF.getConstantPool()->getConstants();
385   MJTEs = 0;
386   if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
387   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
388   IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
389   JTI->Initialize(MF, IsPIC);
390   MMI = &getAnalysis<MachineModuleInfo>();
391   MCE.setModuleInfo(MMI);
392 
393   do {
394     DEBUG(errs() << "JITTing function '"
395           << MF.getFunction()->getName() << "'\n");
396     MCE.startFunction(MF);
397     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
398          MBB != E; ++MBB) {
399       MCE.StartMachineBasicBlock(MBB);
400       for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
401            I != E; ++I)
402         emitInstruction(*I);
403     }
404   } while (MCE.finishFunction(MF));
405 
406   return false;
407 }
408 
409 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
410 ///
getShiftOp(unsigned Imm) const411 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
412   switch (ARM_AM::getAM2ShiftOpc(Imm)) {
413   default: llvm_unreachable("Unknown shift opc!");
414   case ARM_AM::asr: return 2;
415   case ARM_AM::lsl: return 0;
416   case ARM_AM::lsr: return 1;
417   case ARM_AM::ror:
418   case ARM_AM::rrx: return 3;
419   }
420   return 0;
421 }
422 
423 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
424 /// machine operand requires relocation, record the relocation and return zero.
getMovi32Value(const MachineInstr & MI,const MachineOperand & MO,unsigned Reloc)425 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
426                                         const MachineOperand &MO,
427                                         unsigned Reloc) {
428   assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
429       && "Relocation to this function should be for movt or movw");
430 
431   if (MO.isImm())
432     return static_cast<unsigned>(MO.getImm());
433   else if (MO.isGlobal())
434     emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
435   else if (MO.isSymbol())
436     emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
437   else if (MO.isMBB())
438     emitMachineBasicBlock(MO.getMBB(), Reloc);
439   else {
440 #ifndef NDEBUG
441     errs() << MO;
442 #endif
443     llvm_unreachable("Unsupported operand type for movw/movt");
444   }
445   return 0;
446 }
447 
448 /// getMachineOpValue - Return binary encoding of operand. If the machine
449 /// operand requires relocation, record the relocation and return zero.
getMachineOpValue(const MachineInstr & MI,const MachineOperand & MO) const450 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
451                                            const MachineOperand &MO) const {
452   if (MO.isReg())
453     return getARMRegisterNumbering(MO.getReg());
454   else if (MO.isImm())
455     return static_cast<unsigned>(MO.getImm());
456   else if (MO.isFPImm())
457     return static_cast<unsigned>(MO.getFPImm()->getValueAPF()
458                       .bitcastToAPInt().getHiBits(32).getLimitedValue());
459   else if (MO.isGlobal())
460     emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
461   else if (MO.isSymbol())
462     emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
463   else if (MO.isCPI()) {
464     const MCInstrDesc &MCID = MI.getDesc();
465     // For VFP load, the immediate offset is multiplied by 4.
466     unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
467       ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
468     emitConstPoolAddress(MO.getIndex(), Reloc);
469   } else if (MO.isJTI())
470     emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
471   else if (MO.isMBB())
472     emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
473   else
474     llvm_unreachable("Unable to encode MachineOperand!");
475   return 0;
476 }
477 
478 /// emitGlobalAddress - Emit the specified address to the code stream.
479 ///
emitGlobalAddress(const GlobalValue * GV,unsigned Reloc,bool MayNeedFarStub,bool Indirect,intptr_t ACPV) const480 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
481                                        bool MayNeedFarStub, bool Indirect,
482                                        intptr_t ACPV) const {
483   MachineRelocation MR = Indirect
484     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
485                                            const_cast<GlobalValue *>(GV),
486                                            ACPV, MayNeedFarStub)
487     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
488                                const_cast<GlobalValue *>(GV), ACPV,
489                                MayNeedFarStub);
490   MCE.addRelocation(MR);
491 }
492 
493 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
494 /// be emitted to the current location in the function, and allow it to be PC
495 /// relative.
496 void ARMCodeEmitter::
emitExternalSymbolAddress(const char * ES,unsigned Reloc) const497 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
498   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
499                                                  Reloc, ES));
500 }
501 
502 /// emitConstPoolAddress - Arrange for the address of an constant pool
503 /// to be emitted to the current location in the function, and allow it to be PC
504 /// relative.
emitConstPoolAddress(unsigned CPI,unsigned Reloc) const505 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
506   // Tell JIT emitter we'll resolve the address.
507   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
508                                                     Reloc, CPI, 0, true));
509 }
510 
511 /// emitJumpTableAddress - Arrange for the address of a jump table to
512 /// be emitted to the current location in the function, and allow it to be PC
513 /// relative.
514 void ARMCodeEmitter::
emitJumpTableAddress(unsigned JTIndex,unsigned Reloc) const515 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
516   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
517                                                     Reloc, JTIndex, 0, true));
518 }
519 
520 /// emitMachineBasicBlock - Emit the specified address basic block.
emitMachineBasicBlock(MachineBasicBlock * BB,unsigned Reloc,intptr_t JTBase) const521 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
522                                            unsigned Reloc,
523                                            intptr_t JTBase) const {
524   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
525                                              Reloc, BB, JTBase));
526 }
527 
emitWordLE(unsigned Binary)528 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
529   DEBUG(errs() << "  0x";
530         errs().write_hex(Binary) << "\n");
531   MCE.emitWordLE(Binary);
532 }
533 
emitDWordLE(uint64_t Binary)534 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
535   DEBUG(errs() << "  0x";
536         errs().write_hex(Binary) << "\n");
537   MCE.emitDWordLE(Binary);
538 }
539 
emitInstruction(const MachineInstr & MI)540 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
541   DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
542 
543   MCE.processDebugLoc(MI.getDebugLoc(), true);
544 
545   ++NumEmitted;  // Keep track of the # of mi's emitted
546   switch (MI.getDesc().TSFlags & ARMII::FormMask) {
547   default: {
548     llvm_unreachable("Unhandled instruction encoding format!");
549     break;
550   }
551   case ARMII::MiscFrm:
552     if (MI.getOpcode() == ARM::LEApcrelJT) {
553       // Materialize jumptable address.
554       emitLEApcrelJTInstruction(MI);
555       break;
556     }
557     llvm_unreachable("Unhandled instruction encoding!");
558     break;
559   case ARMII::Pseudo:
560     emitPseudoInstruction(MI);
561     break;
562   case ARMII::DPFrm:
563   case ARMII::DPSoRegFrm:
564     emitDataProcessingInstruction(MI);
565     break;
566   case ARMII::LdFrm:
567   case ARMII::StFrm:
568     emitLoadStoreInstruction(MI);
569     break;
570   case ARMII::LdMiscFrm:
571   case ARMII::StMiscFrm:
572     emitMiscLoadStoreInstruction(MI);
573     break;
574   case ARMII::LdStMulFrm:
575     emitLoadStoreMultipleInstruction(MI);
576     break;
577   case ARMII::MulFrm:
578     emitMulFrmInstruction(MI);
579     break;
580   case ARMII::ExtFrm:
581     emitExtendInstruction(MI);
582     break;
583   case ARMII::ArithMiscFrm:
584     emitMiscArithInstruction(MI);
585     break;
586   case ARMII::SatFrm:
587     emitSaturateInstruction(MI);
588     break;
589   case ARMII::BrFrm:
590     emitBranchInstruction(MI);
591     break;
592   case ARMII::BrMiscFrm:
593     emitMiscBranchInstruction(MI);
594     break;
595   // VFP instructions.
596   case ARMII::VFPUnaryFrm:
597   case ARMII::VFPBinaryFrm:
598     emitVFPArithInstruction(MI);
599     break;
600   case ARMII::VFPConv1Frm:
601   case ARMII::VFPConv2Frm:
602   case ARMII::VFPConv3Frm:
603   case ARMII::VFPConv4Frm:
604   case ARMII::VFPConv5Frm:
605     emitVFPConversionInstruction(MI);
606     break;
607   case ARMII::VFPLdStFrm:
608     emitVFPLoadStoreInstruction(MI);
609     break;
610   case ARMII::VFPLdStMulFrm:
611     emitVFPLoadStoreMultipleInstruction(MI);
612     break;
613   case ARMII::VFPMiscFrm:
614     emitMiscInstruction(MI);
615     break;
616   // NEON instructions.
617   case ARMII::NGetLnFrm:
618   case ARMII::NSetLnFrm:
619     emitNEONLaneInstruction(MI);
620     break;
621   case ARMII::NDupFrm:
622     emitNEONDupInstruction(MI);
623     break;
624   case ARMII::N1RegModImmFrm:
625     emitNEON1RegModImmInstruction(MI);
626     break;
627   case ARMII::N2RegFrm:
628     emitNEON2RegInstruction(MI);
629     break;
630   case ARMII::N3RegFrm:
631     emitNEON3RegInstruction(MI);
632     break;
633   }
634   MCE.processDebugLoc(MI.getDebugLoc(), false);
635 }
636 
emitConstantToMemory(unsigned CPI,const Constant * C)637 void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) {
638   DEBUG({
639       errs() << "  ** Constant pool #" << CPI << " @ "
640              << (void*)MCE.getCurrentPCValue() << " ";
641       if (const Function *F = dyn_cast<Function>(C))
642         errs() << F->getName();
643       else
644         errs() << *C;
645       errs() << '\n';
646     });
647 
648   switch (C->getValueID()) {
649   default: {
650     llvm_unreachable("Unable to handle this constantpool entry!");
651     break;
652   }
653   case Value::GlobalVariableVal: {
654     emitGlobalAddress(static_cast<const GlobalValue*>(C),
655                       ARM::reloc_arm_absolute, isa<Function>(C), false);
656     emitWordLE(0);
657     break;
658   }
659   case Value::ConstantIntVal: {
660     const ConstantInt *CI = static_cast<const ConstantInt*>(C);
661     uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
662     emitWordLE(Val);
663     break;
664   }
665   case Value::ConstantFPVal: {
666     const ConstantFP *CFP = static_cast<const ConstantFP*>(C);
667     if (CFP->getType()->isFloatTy())
668       emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
669     else if (CFP->getType()->isDoubleTy())
670       emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
671     else {
672       llvm_unreachable("Unable to handle this constantpool entry!");
673     }
674     break;
675   }
676   case Value::ConstantArrayVal: {
677     const ConstantArray *CA = static_cast<const ConstantArray*>(C);
678     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
679       emitConstantToMemory(CPI, CA->getOperand(i));
680     break;
681   }
682   case Value::ConstantVectorVal:{
683     //FIXME:emit vector
684     const ConstantVector *CV = static_cast<const ConstantVector*>(C);
685     break;
686   }
687   }
688 
689   return;
690 }
691 
emitConstPoolInstruction(const MachineInstr & MI)692 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
693   unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
694   unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
695   const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
696 
697   // Remember the CONSTPOOL_ENTRY address for later relocation.
698   JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
699 
700   // Emit constpool island entry. In most cases, the actual values will be
701   // resolved and relocated after code emission.
702   if (MCPE.isMachineConstantPoolEntry()) {
703     ARMConstantPoolValue *ACPV =
704       static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
705 
706     DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
707           << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
708 
709     assert(ACPV->isGlobalValue() && "unsupported constant pool value");
710     const GlobalValue *GV = ACPV->getGV();
711     if (GV) {
712       Reloc::Model RelocM = TM.getRelocationModel();
713       emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
714                         isa<Function>(GV),
715                         Subtarget->GVIsIndirectSymbol(GV, RelocM),
716                         (intptr_t)ACPV);
717      } else  {
718       emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
719     }
720     emitWordLE(0);
721   } else {
722     emitConstantToMemory(CPI, MCPE.Val.ConstVal);
723   }
724 }
725 
emitMOVi32immInstruction(const MachineInstr & MI)726 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
727   const MachineOperand &MO0 = MI.getOperand(0);
728   const MachineOperand &MO1 = MI.getOperand(1);
729 
730   // Emit the 'movw' instruction.
731   unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
732 
733   unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
734 
735   // Set the conditional execution predicate.
736   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
737 
738   // Encode Rd.
739   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
740 
741   // Encode imm16 as imm4:imm12
742   Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
743   Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
744   emitWordLE(Binary);
745 
746   unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
747   // Emit the 'movt' instruction.
748   Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
749 
750   // Set the conditional execution predicate.
751   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
752 
753   // Encode Rd.
754   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
755 
756   // Encode imm16 as imm4:imm1, same as movw above.
757   Binary |= Hi16 & 0xFFF;
758   Binary |= ((Hi16 >> 12) & 0xF) << 16;
759   emitWordLE(Binary);
760 }
761 
emitMOVi2piecesInstruction(const MachineInstr & MI)762 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
763   const MachineOperand &MO0 = MI.getOperand(0);
764   const MachineOperand &MO1 = MI.getOperand(1);
765   assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
766                                                   "Not a valid so_imm value!");
767   unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
768   unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
769 
770   // Emit the 'mov' instruction.
771   unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
772 
773   // Set the conditional execution predicate.
774   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
775 
776   // Encode Rd.
777   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
778 
779   // Encode so_imm.
780   // Set bit I(25) to identify this is the immediate form of <shifter_op>
781   Binary |= 1 << ARMII::I_BitShift;
782   Binary |= getMachineSoImmOpValue(V1);
783   emitWordLE(Binary);
784 
785   // Now the 'orr' instruction.
786   Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
787 
788   // Set the conditional execution predicate.
789   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
790 
791   // Encode Rd.
792   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
793 
794   // Encode Rn.
795   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
796 
797   // Encode so_imm.
798   // Set bit I(25) to identify this is the immediate form of <shifter_op>
799   Binary |= 1 << ARMII::I_BitShift;
800   Binary |= getMachineSoImmOpValue(V2);
801   emitWordLE(Binary);
802 }
803 
emitLEApcrelInstruction(const MachineInstr & MI)804 void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) {
805   // It's basically add r, pc, (LCPI - $+8)
806   const MCInstrDesc &MCID = MI.getDesc();
807 
808   unsigned Binary = 0;
809 
810   // Set the conditional execution predicate
811   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
812 
813   // Encode S bit if MI modifies CPSR.
814   Binary |= getAddrModeSBit(MI, MCID);
815 
816   // Encode Rd.
817   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
818 
819   // Encode Rn which is PC.
820   Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
821 
822   // Encode the displacement which is a so_imm.
823   // Set bit I(25) to identify this is the immediate form of <shifter_op>
824   Binary |= 1 << ARMII::I_BitShift;
825   emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry);
826 
827   emitWordLE(Binary);
828 }
829 
emitLEApcrelJTInstruction(const MachineInstr & MI)830 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
831   // It's basically add r, pc, (LJTI - $+8)
832 
833   const MCInstrDesc &MCID = MI.getDesc();
834 
835   // Emit the 'add' instruction.
836   unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
837 
838   // Set the conditional execution predicate
839   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
840 
841   // Encode S bit if MI modifies CPSR.
842   Binary |= getAddrModeSBit(MI, MCID);
843 
844   // Encode Rd.
845   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
846 
847   // Encode Rn which is PC.
848   Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
849 
850   // Encode the displacement.
851   Binary |= 1 << ARMII::I_BitShift;
852   emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
853 
854   emitWordLE(Binary);
855 }
856 
emitPseudoMoveInstruction(const MachineInstr & MI)857 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
858   unsigned Opcode = MI.getDesc().Opcode;
859 
860   // Part of binary is determined by TableGn.
861   unsigned Binary = getBinaryCodeForInstr(MI);
862 
863   // Set the conditional execution predicate
864   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
865 
866   // Encode S bit if MI modifies CPSR.
867   if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
868     Binary |= 1 << ARMII::S_BitShift;
869 
870   // Encode register def if there is one.
871   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
872 
873   // Encode the shift operation.
874   switch (Opcode) {
875   default: break;
876   case ARM::RRX:
877     // rrx
878     Binary |= 0x6 << 4;
879     break;
880   case ARM::MOVsrl_flag:
881     // lsr #1
882     Binary |= (0x2 << 4) | (1 << 7);
883     break;
884   case ARM::MOVsra_flag:
885     // asr #1
886     Binary |= (0x4 << 4) | (1 << 7);
887     break;
888   }
889 
890   // Encode register Rm.
891   Binary |= getMachineOpValue(MI, 1);
892 
893   emitWordLE(Binary);
894 }
895 
addPCLabel(unsigned LabelID)896 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
897   DEBUG(errs() << "  ** LPC" << LabelID << " @ "
898         << (void*)MCE.getCurrentPCValue() << '\n');
899   JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
900 }
901 
emitPseudoInstruction(const MachineInstr & MI)902 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
903   unsigned Opcode = MI.getDesc().Opcode;
904   switch (Opcode) {
905   default:
906     llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
907   case ARM::B:
908     emitBranchInstruction(MI);
909     break;
910   case ARM::BR_JTr:
911   case ARM::BR_JTm:
912   case ARM::BR_JTadd:
913     emitMiscBranchInstruction(MI);
914     break;
915   case ARM::BX_CALL:
916   case ARM::BMOVPCRX_CALL:
917   case ARM::BXr9_CALL:
918   case ARM::BMOVPCRXr9_CALL: {
919     // First emit mov lr, pc
920     unsigned Binary = 0x01a0e00f;
921     Binary |= II->getPredicate(&MI) << ARMII::CondShift;
922     emitWordLE(Binary);
923 
924     // and then emit the branch.
925     emitMiscBranchInstruction(MI);
926     break;
927   }
928   case TargetOpcode::INLINEASM: {
929     // We allow inline assembler nodes with empty bodies - they can
930     // implicitly define registers, which is ok for JIT.
931     if (MI.getOperand(0).getSymbolName()[0]) {
932       report_fatal_error("JIT does not support inline asm!");
933     }
934     break;
935   }
936   case TargetOpcode::PROLOG_LABEL:
937   case TargetOpcode::EH_LABEL:
938     MCE.emitLabel(MI.getOperand(0).getMCSymbol());
939     break;
940   case TargetOpcode::IMPLICIT_DEF:
941   case TargetOpcode::KILL:
942     // Do nothing.
943     break;
944   case ARM::CONSTPOOL_ENTRY:
945     emitConstPoolInstruction(MI);
946     break;
947   case ARM::LDMIA_RET:
948     emitLoadStoreMultipleInstruction(MI);
949     break;
950   case ARM::PICADD: {
951     // Remember of the address of the PC label for relocation later.
952     addPCLabel(MI.getOperand(2).getImm());
953     // PICADD is just an add instruction that implicitly read pc.
954     emitDataProcessingInstruction(MI, 0, ARM::PC);
955     break;
956   }
957   case ARM::PICLDR:
958   case ARM::PICLDRB:
959   case ARM::PICSTR:
960   case ARM::PICSTRB: {
961     // Remember of the address of the PC label for relocation later.
962     addPCLabel(MI.getOperand(2).getImm());
963     // These are just load / store instructions that implicitly read pc.
964     emitLoadStoreInstruction(MI, 0, ARM::PC);
965     break;
966   }
967   case ARM::PICLDRH:
968   case ARM::PICLDRSH:
969   case ARM::PICLDRSB:
970   case ARM::PICSTRH: {
971     // Remember of the address of the PC label for relocation later.
972     addPCLabel(MI.getOperand(2).getImm());
973     // These are just load / store instructions that implicitly read pc.
974     emitMiscLoadStoreInstruction(MI, ARM::PC);
975     break;
976   }
977 
978   case ARM::MOVi32imm:
979     // Two instructions to materialize a constant.
980     if (Subtarget->hasV6T2Ops())
981       emitMOVi32immInstruction(MI);
982     else
983       emitMOVi2piecesInstruction(MI);
984     break;
985   case ARM::LEApcrel:
986     // Materialize constantpool index address.
987     emitLEApcrelInstruction(MI);
988     break;
989   case ARM::LEApcrelJT:
990     // Materialize jumptable address.
991     emitLEApcrelJTInstruction(MI);
992     break;
993   case ARM::RRX:
994   case ARM::MOVsrl_flag:
995   case ARM::MOVsra_flag:
996     emitPseudoMoveInstruction(MI);
997     break;
998   }
999 }
1000 
getMachineSoRegOpValue(const MachineInstr & MI,const MCInstrDesc & MCID,const MachineOperand & MO,unsigned OpIdx)1001 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
1002                                                 const MCInstrDesc &MCID,
1003                                                 const MachineOperand &MO,
1004                                                 unsigned OpIdx) {
1005   unsigned Binary = getMachineOpValue(MI, MO);
1006 
1007   const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
1008   const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
1009   ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
1010 
1011   // Encode the shift opcode.
1012   unsigned SBits = 0;
1013   unsigned Rs = MO1.getReg();
1014   if (Rs) {
1015     // Set shift operand (bit[7:4]).
1016     // LSL - 0001
1017     // LSR - 0011
1018     // ASR - 0101
1019     // ROR - 0111
1020     // RRX - 0110 and bit[11:8] clear.
1021     switch (SOpc) {
1022     default: llvm_unreachable("Unknown shift opc!");
1023     case ARM_AM::lsl: SBits = 0x1; break;
1024     case ARM_AM::lsr: SBits = 0x3; break;
1025     case ARM_AM::asr: SBits = 0x5; break;
1026     case ARM_AM::ror: SBits = 0x7; break;
1027     case ARM_AM::rrx: SBits = 0x6; break;
1028     }
1029   } else {
1030     // Set shift operand (bit[6:4]).
1031     // LSL - 000
1032     // LSR - 010
1033     // ASR - 100
1034     // ROR - 110
1035     switch (SOpc) {
1036     default: llvm_unreachable("Unknown shift opc!");
1037     case ARM_AM::lsl: SBits = 0x0; break;
1038     case ARM_AM::lsr: SBits = 0x2; break;
1039     case ARM_AM::asr: SBits = 0x4; break;
1040     case ARM_AM::ror: SBits = 0x6; break;
1041     }
1042   }
1043   Binary |= SBits << 4;
1044   if (SOpc == ARM_AM::rrx)
1045     return Binary;
1046 
1047   // Encode the shift operation Rs or shift_imm (except rrx).
1048   if (Rs) {
1049     // Encode Rs bit[11:8].
1050     assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
1051     return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
1052   }
1053 
1054   // Encode shift_imm bit[11:7].
1055   return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
1056 }
1057 
getMachineSoImmOpValue(unsigned SoImm)1058 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
1059   int SoImmVal = ARM_AM::getSOImmVal(SoImm);
1060   assert(SoImmVal != -1 && "Not a valid so_imm value!");
1061 
1062   // Encode rotate_imm.
1063   unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
1064     << ARMII::SoRotImmShift;
1065 
1066   // Encode immed_8.
1067   Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
1068   return Binary;
1069 }
1070 
getAddrModeSBit(const MachineInstr & MI,const MCInstrDesc & MCID) const1071 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
1072                                          const MCInstrDesc &MCID) const {
1073   for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e; --i){
1074     const MachineOperand &MO = MI.getOperand(i-1);
1075     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
1076       return 1 << ARMII::S_BitShift;
1077   }
1078   return 0;
1079 }
1080 
emitDataProcessingInstruction(const MachineInstr & MI,unsigned ImplicitRd,unsigned ImplicitRn)1081 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
1082                                                    unsigned ImplicitRd,
1083                                                    unsigned ImplicitRn) {
1084   const MCInstrDesc &MCID = MI.getDesc();
1085 
1086   // Part of binary is determined by TableGn.
1087   unsigned Binary = getBinaryCodeForInstr(MI);
1088 
1089   if (MCID.Opcode == ARM::MOVi16 || MCID.Opcode == ARM::MOVTi16) {
1090       emitWordLE(Binary);
1091       return;
1092   }
1093 
1094   // Set the conditional execution predicate
1095   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1096 
1097   // Encode S bit if MI modifies CPSR.
1098   Binary |= getAddrModeSBit(MI, MCID);
1099 
1100   // Encode register def if there is one.
1101   unsigned NumDefs = MCID.getNumDefs();
1102   unsigned OpIdx = 0;
1103   if (NumDefs)
1104     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1105   else if (ImplicitRd)
1106     // Special handling for implicit use (e.g. PC).
1107     Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1108 
1109   if (MCID.Opcode == ARM::MOVi16) {
1110       // Get immediate from MI.
1111       unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1112                       ARM::reloc_arm_movw);
1113       // Encode imm which is the same as in emitMOVi32immInstruction().
1114       Binary |= Lo16 & 0xFFF;
1115       Binary |= ((Lo16 >> 12) & 0xF) << 16;
1116       emitWordLE(Binary);
1117       return;
1118   } else if(MCID.Opcode == ARM::MOVTi16) {
1119       unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1120                        ARM::reloc_arm_movt) >> 16);
1121       Binary |= Hi16 & 0xFFF;
1122       Binary |= ((Hi16 >> 12) & 0xF) << 16;
1123       emitWordLE(Binary);
1124       return;
1125   } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
1126       uint32_t v = ~MI.getOperand(2).getImm();
1127       int32_t lsb = CountTrailingZeros_32(v);
1128       int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
1129       // Instr{20-16} = msb, Instr{11-7} = lsb
1130       Binary |= (msb & 0x1F) << 16;
1131       Binary |= (lsb & 0x1F) << 7;
1132       emitWordLE(Binary);
1133       return;
1134   } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
1135       // Encode Rn in Instr{0-3}
1136       Binary |= getMachineOpValue(MI, OpIdx++);
1137 
1138       uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1139       uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1140 
1141       // Instr{20-16} = widthm1, Instr{11-7} = lsb
1142       Binary |= (widthm1 & 0x1F) << 16;
1143       Binary |= (lsb & 0x1F) << 7;
1144       emitWordLE(Binary);
1145       return;
1146   }
1147 
1148   // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1149   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1150     ++OpIdx;
1151 
1152   // Encode first non-shifter register operand if there is one.
1153   bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
1154   if (!isUnary) {
1155     if (ImplicitRn)
1156       // Special handling for implicit use (e.g. PC).
1157       Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1158     else {
1159       Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1160       ++OpIdx;
1161     }
1162   }
1163 
1164   // Encode shifter operand.
1165   const MachineOperand &MO = MI.getOperand(OpIdx);
1166   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1167     // Encode SoReg.
1168     emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
1169     return;
1170   }
1171 
1172   if (MO.isReg()) {
1173     // Encode register Rm.
1174     emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
1175     return;
1176   }
1177 
1178   // Encode so_imm.
1179   Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1180 
1181   emitWordLE(Binary);
1182 }
1183 
emitLoadStoreInstruction(const MachineInstr & MI,unsigned ImplicitRd,unsigned ImplicitRn)1184 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1185                                               unsigned ImplicitRd,
1186                                               unsigned ImplicitRn) {
1187   const MCInstrDesc &MCID = MI.getDesc();
1188   unsigned Form = MCID.TSFlags & ARMII::FormMask;
1189   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1190 
1191   // Part of binary is determined by TableGn.
1192   unsigned Binary = getBinaryCodeForInstr(MI);
1193 
1194   // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1195   if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1196       MI.getOpcode() == ARM::STRi12 || MI.getOpcode() == ARM::LDRBi12 ||
1197       MI.getOpcode() == ARM::STRBi12) {
1198     emitWordLE(Binary);
1199     return;
1200   }
1201 
1202   if (MI.getOpcode() == ARM::BR_JTm)
1203     Binary = 0x710F000;
1204   else if (MI.getOpcode() == ARM::BR_JTr)
1205     Binary = 0x1A0F000;
1206 
1207   // Set the conditional execution predicate
1208   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1209 
1210   unsigned OpIdx = 0;
1211 
1212   // Operand 0 of a pre- and post-indexed store is the address base
1213   // writeback. Skip it.
1214   bool Skipped = false;
1215   if (IsPrePost && Form == ARMII::StFrm) {
1216     ++OpIdx;
1217     Skipped = true;
1218   }
1219 
1220   // Set first operand
1221   if (ImplicitRd)
1222     // Special handling for implicit use (e.g. PC).
1223     Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1224   else
1225     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1226 
1227   // Set second operand
1228   if (ImplicitRn)
1229     // Special handling for implicit use (e.g. PC).
1230     Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1231   else
1232     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1233 
1234   // If this is a two-address operand, skip it. e.g. LDR_PRE.
1235   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1236     ++OpIdx;
1237 
1238   const MachineOperand &MO2 = MI.getOperand(OpIdx);
1239   unsigned AM2Opc = (ImplicitRn == ARM::PC)
1240     ? 0 : MI.getOperand(OpIdx+1).getImm();
1241 
1242   // Set bit U(23) according to sign of immed value (positive or negative).
1243   Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1244              ARMII::U_BitShift);
1245   if (!MO2.getReg()) { // is immediate
1246     if (ARM_AM::getAM2Offset(AM2Opc))
1247       // Set the value of offset_12 field
1248       Binary |= ARM_AM::getAM2Offset(AM2Opc);
1249     emitWordLE(Binary);
1250     return;
1251   }
1252 
1253   // Set bit I(25), because this is not in immediate encoding.
1254   Binary |= 1 << ARMII::I_BitShift;
1255   assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1256   // Set bit[3:0] to the corresponding Rm register
1257   Binary |= getARMRegisterNumbering(MO2.getReg());
1258 
1259   // If this instr is in scaled register offset/index instruction, set
1260   // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1261   if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1262     Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1263     Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1264   }
1265 
1266   emitWordLE(Binary);
1267 }
1268 
emitMiscLoadStoreInstruction(const MachineInstr & MI,unsigned ImplicitRn)1269 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1270                                                   unsigned ImplicitRn) {
1271   const MCInstrDesc &MCID = MI.getDesc();
1272   unsigned Form = MCID.TSFlags & ARMII::FormMask;
1273   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1274 
1275   // Part of binary is determined by TableGn.
1276   unsigned Binary = getBinaryCodeForInstr(MI);
1277 
1278   // Set the conditional execution predicate
1279   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1280 
1281   unsigned OpIdx = 0;
1282 
1283   // Operand 0 of a pre- and post-indexed store is the address base
1284   // writeback. Skip it.
1285   bool Skipped = false;
1286   if (IsPrePost && Form == ARMII::StMiscFrm) {
1287     ++OpIdx;
1288     Skipped = true;
1289   }
1290 
1291   // Set first operand
1292   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1293 
1294   // Skip LDRD and STRD's second operand.
1295   if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
1296     ++OpIdx;
1297 
1298   // Set second operand
1299   if (ImplicitRn)
1300     // Special handling for implicit use (e.g. PC).
1301     Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1302   else
1303     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1304 
1305   // If this is a two-address operand, skip it. e.g. LDRH_POST.
1306   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1307     ++OpIdx;
1308 
1309   const MachineOperand &MO2 = MI.getOperand(OpIdx);
1310   unsigned AM3Opc = (ImplicitRn == ARM::PC)
1311     ? 0 : MI.getOperand(OpIdx+1).getImm();
1312 
1313   // Set bit U(23) according to sign of immed value (positive or negative)
1314   Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1315              ARMII::U_BitShift);
1316 
1317   // If this instr is in register offset/index encoding, set bit[3:0]
1318   // to the corresponding Rm register.
1319   if (MO2.getReg()) {
1320     Binary |= getARMRegisterNumbering(MO2.getReg());
1321     emitWordLE(Binary);
1322     return;
1323   }
1324 
1325   // This instr is in immediate offset/index encoding, set bit 22 to 1.
1326   Binary |= 1 << ARMII::AM3_I_BitShift;
1327   if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1328     // Set operands
1329     Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1330     Binary |= (ImmOffs & 0xF);                      // immedL
1331   }
1332 
1333   emitWordLE(Binary);
1334 }
1335 
getAddrModeUPBits(unsigned Mode)1336 static unsigned getAddrModeUPBits(unsigned Mode) {
1337   unsigned Binary = 0;
1338 
1339   // Set addressing mode by modifying bits U(23) and P(24)
1340   // IA - Increment after  - bit U = 1 and bit P = 0
1341   // IB - Increment before - bit U = 1 and bit P = 1
1342   // DA - Decrement after  - bit U = 0 and bit P = 0
1343   // DB - Decrement before - bit U = 0 and bit P = 1
1344   switch (Mode) {
1345   default: llvm_unreachable("Unknown addressing sub-mode!");
1346   case ARM_AM::da:                                     break;
1347   case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1348   case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1349   case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1350   }
1351 
1352   return Binary;
1353 }
1354 
emitLoadStoreMultipleInstruction(const MachineInstr & MI)1355 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1356   const MCInstrDesc &MCID = MI.getDesc();
1357   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1358 
1359   // Part of binary is determined by TableGn.
1360   unsigned Binary = getBinaryCodeForInstr(MI);
1361 
1362   if (MCID.getOpcode() == ARM::LDMIA_RET) {
1363     IsUpdating = true;
1364     Binary |= 0x8B00000;
1365   }
1366 
1367   // Set the conditional execution predicate
1368   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1369 
1370   // Skip operand 0 of an instruction with base register update.
1371   unsigned OpIdx = 0;
1372   if (IsUpdating)
1373     ++OpIdx;
1374 
1375   // Set base address operand
1376   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1377 
1378   // Set addressing mode by modifying bits U(23) and P(24)
1379   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1380   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1381 
1382   // Set bit W(21)
1383   if (IsUpdating)
1384     Binary |= 0x1 << ARMII::W_BitShift;
1385 
1386   // Set registers
1387   for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1388     const MachineOperand &MO = MI.getOperand(i);
1389     if (!MO.isReg() || MO.isImplicit())
1390       break;
1391     unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1392     assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1393            RegNum < 16);
1394     Binary |= 0x1 << RegNum;
1395   }
1396 
1397   emitWordLE(Binary);
1398 }
1399 
emitMulFrmInstruction(const MachineInstr & MI)1400 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1401   const MCInstrDesc &MCID = MI.getDesc();
1402 
1403   // Part of binary is determined by TableGn.
1404   unsigned Binary = getBinaryCodeForInstr(MI);
1405 
1406   // Set the conditional execution predicate
1407   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1408 
1409   // Encode S bit if MI modifies CPSR.
1410   Binary |= getAddrModeSBit(MI, MCID);
1411 
1412   // 32x32->64bit operations have two destination registers. The number
1413   // of register definitions will tell us if that's what we're dealing with.
1414   unsigned OpIdx = 0;
1415   if (MCID.getNumDefs() == 2)
1416     Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1417 
1418   // Encode Rd
1419   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1420 
1421   // Encode Rm
1422   Binary |= getMachineOpValue(MI, OpIdx++);
1423 
1424   // Encode Rs
1425   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1426 
1427   // Many multiple instructions (e.g. MLA) have three src operands. Encode
1428   // it as Rn (for multiply, that's in the same offset as RdLo.
1429   if (MCID.getNumOperands() > OpIdx &&
1430       !MCID.OpInfo[OpIdx].isPredicate() &&
1431       !MCID.OpInfo[OpIdx].isOptionalDef())
1432     Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1433 
1434   emitWordLE(Binary);
1435 }
1436 
emitExtendInstruction(const MachineInstr & MI)1437 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1438   const MCInstrDesc &MCID = MI.getDesc();
1439 
1440   // Part of binary is determined by TableGn.
1441   unsigned Binary = getBinaryCodeForInstr(MI);
1442 
1443   // Set the conditional execution predicate
1444   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1445 
1446   unsigned OpIdx = 0;
1447 
1448   // Encode Rd
1449   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1450 
1451   const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1452   const MachineOperand &MO2 = MI.getOperand(OpIdx);
1453   if (MO2.isReg()) {
1454     // Two register operand form.
1455     // Encode Rn.
1456     Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1457 
1458     // Encode Rm.
1459     Binary |= getMachineOpValue(MI, MO2);
1460     ++OpIdx;
1461   } else {
1462     Binary |= getMachineOpValue(MI, MO1);
1463   }
1464 
1465   // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1466   if (MI.getOperand(OpIdx).isImm() &&
1467       !MCID.OpInfo[OpIdx].isPredicate() &&
1468       !MCID.OpInfo[OpIdx].isOptionalDef())
1469     Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1470 
1471   emitWordLE(Binary);
1472 }
1473 
emitMiscArithInstruction(const MachineInstr & MI)1474 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1475   const MCInstrDesc &MCID = MI.getDesc();
1476 
1477   // Part of binary is determined by TableGn.
1478   unsigned Binary = getBinaryCodeForInstr(MI);
1479 
1480   // Set the conditional execution predicate
1481   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1482 
1483   // PKH instructions are finished at this point
1484   if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
1485     emitWordLE(Binary);
1486     return;
1487   }
1488 
1489   unsigned OpIdx = 0;
1490 
1491   // Encode Rd
1492   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1493 
1494   const MachineOperand &MO = MI.getOperand(OpIdx++);
1495   if (OpIdx == MCID.getNumOperands() ||
1496       MCID.OpInfo[OpIdx].isPredicate() ||
1497       MCID.OpInfo[OpIdx].isOptionalDef()) {
1498     // Encode Rm and it's done.
1499     Binary |= getMachineOpValue(MI, MO);
1500     emitWordLE(Binary);
1501     return;
1502   }
1503 
1504   // Encode Rn.
1505   Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1506 
1507   // Encode Rm.
1508   Binary |= getMachineOpValue(MI, OpIdx++);
1509 
1510   // Encode shift_imm.
1511   unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1512   if (MCID.Opcode == ARM::PKHTB) {
1513     assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1514     if (ShiftAmt == 32)
1515       ShiftAmt = 0;
1516   }
1517   assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1518   Binary |= ShiftAmt << ARMII::ShiftShift;
1519 
1520   emitWordLE(Binary);
1521 }
1522 
emitSaturateInstruction(const MachineInstr & MI)1523 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1524   const MCInstrDesc &MCID = MI.getDesc();
1525 
1526   // Part of binary is determined by TableGen.
1527   unsigned Binary = getBinaryCodeForInstr(MI);
1528 
1529   // Set the conditional execution predicate
1530   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1531 
1532   // Encode Rd
1533   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1534 
1535   // Encode saturate bit position.
1536   unsigned Pos = MI.getOperand(1).getImm();
1537   if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
1538     Pos -= 1;
1539   assert((Pos < 16 || (Pos < 32 &&
1540                        MCID.Opcode != ARM::SSAT16 &&
1541                        MCID.Opcode != ARM::USAT16)) &&
1542          "saturate bit position out of range");
1543   Binary |= Pos << 16;
1544 
1545   // Encode Rm
1546   Binary |= getMachineOpValue(MI, 2);
1547 
1548   // Encode shift_imm.
1549   if (MCID.getNumOperands() == 4) {
1550     unsigned ShiftOp = MI.getOperand(3).getImm();
1551     ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1552     if (Opc == ARM_AM::asr)
1553       Binary |= (1 << 6);
1554     unsigned ShiftAmt = MI.getOperand(3).getImm();
1555     if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1556       ShiftAmt = 0;
1557     assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1558     Binary |= ShiftAmt << ARMII::ShiftShift;
1559   }
1560 
1561   emitWordLE(Binary);
1562 }
1563 
emitBranchInstruction(const MachineInstr & MI)1564 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1565   const MCInstrDesc &MCID = MI.getDesc();
1566 
1567   if (MCID.Opcode == ARM::TPsoft) {
1568     llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1569   }
1570 
1571   // Part of binary is determined by TableGn.
1572   unsigned Binary = getBinaryCodeForInstr(MI);
1573 
1574   if (MCID.Opcode == ARM::B) {
1575     Binary = 0xEA000000;
1576   }
1577 
1578   // Set the conditional execution predicate
1579   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1580 
1581   // Set signed_immed_24 field
1582   Binary |= getMachineOpValue(MI, 0);
1583 
1584   emitWordLE(Binary);
1585 }
1586 
emitInlineJumpTable(unsigned JTIndex)1587 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1588   // Remember the base address of the inline jump table.
1589   uintptr_t JTBase = MCE.getCurrentPCValue();
1590   JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1591   DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1592                << '\n');
1593 
1594   // Now emit the jump table entries.
1595   const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1596   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1597     if (IsPIC)
1598       // DestBB address - JT base.
1599       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1600     else
1601       // Absolute DestBB address.
1602       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1603     emitWordLE(0);
1604   }
1605 }
1606 
emitMiscBranchInstruction(const MachineInstr & MI)1607 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1608   const MCInstrDesc &MCID = MI.getDesc();
1609 
1610   // Handle jump tables.
1611   if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
1612     // First emit a ldr pc, [] instruction.
1613     emitDataProcessingInstruction(MI, ARM::PC);
1614 
1615     // Then emit the inline jump table.
1616     unsigned JTIndex =
1617       (MCID.Opcode == ARM::BR_JTr)
1618       ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1619     emitInlineJumpTable(JTIndex);
1620     return;
1621   } else if (MCID.Opcode == ARM::BR_JTm) {
1622     // First emit a ldr pc, [] instruction.
1623     emitLoadStoreInstruction(MI, ARM::PC);
1624 
1625     // Then emit the inline jump table.
1626     emitInlineJumpTable(MI.getOperand(3).getIndex());
1627     return;
1628   }
1629 
1630   // Part of binary is determined by TableGn.
1631   unsigned Binary = getBinaryCodeForInstr(MI);
1632 
1633   // Set the conditional execution predicate
1634   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1635 
1636   if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
1637     // The return register is LR.
1638     Binary |= getARMRegisterNumbering(ARM::LR);
1639   else
1640     // otherwise, set the return register
1641     Binary |= getMachineOpValue(MI, 0);
1642 
1643   emitWordLE(Binary);
1644 }
1645 
encodeVFPRd(const MachineInstr & MI,unsigned OpIdx)1646 static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1647   unsigned RegD = MI.getOperand(OpIdx).getReg();
1648   unsigned Binary = 0;
1649   bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1650   RegD = getARMRegisterNumbering(RegD);
1651   if (!isSPVFP) {
1652     Binary |=  (RegD & 0x0F)       << ARMII::RegRdShift;
1653     Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift;
1654   } else {
1655     Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1656     Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1657   }
1658   return Binary;
1659 }
1660 
encodeVFPRn(const MachineInstr & MI,unsigned OpIdx)1661 static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1662   unsigned RegN = MI.getOperand(OpIdx).getReg();
1663   unsigned Binary = 0;
1664   bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1665   RegN = getARMRegisterNumbering(RegN);
1666   if (!isSPVFP) {
1667     Binary |=  (RegN & 0x0F)       << ARMII::RegRnShift;
1668     Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift;
1669   } else {
1670     Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1671     Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1672   }
1673   return Binary;
1674 }
1675 
encodeVFPRm(const MachineInstr & MI,unsigned OpIdx)1676 static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1677   unsigned RegM = MI.getOperand(OpIdx).getReg();
1678   unsigned Binary = 0;
1679   bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1680   RegM = getARMRegisterNumbering(RegM);
1681   if (!isSPVFP) {
1682     Binary |=  (RegM & 0x0F);
1683     Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift;
1684   } else {
1685     Binary |= ((RegM & 0x1E) >> 1);
1686     Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1687   }
1688   return Binary;
1689 }
1690 
emitVFPArithInstruction(const MachineInstr & MI)1691 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1692   const MCInstrDesc &MCID = MI.getDesc();
1693 
1694   // Part of binary is determined by TableGn.
1695   unsigned Binary = getBinaryCodeForInstr(MI);
1696 
1697   // Set the conditional execution predicate
1698   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1699 
1700   unsigned OpIdx = 0;
1701 
1702   // Encode Dd / Sd.
1703   Binary |= encodeVFPRd(MI, OpIdx++);
1704 
1705   // If this is a two-address operand, skip it, e.g. FMACD.
1706   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1707     ++OpIdx;
1708 
1709   // Encode Dn / Sn.
1710   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1711     Binary |= encodeVFPRn(MI, OpIdx++);
1712 
1713   if (OpIdx == MCID.getNumOperands() ||
1714       MCID.OpInfo[OpIdx].isPredicate() ||
1715       MCID.OpInfo[OpIdx].isOptionalDef()) {
1716     // FCMPEZD etc. has only one operand.
1717     emitWordLE(Binary);
1718     return;
1719   }
1720 
1721   // Encode Dm / Sm.
1722   Binary |= encodeVFPRm(MI, OpIdx);
1723 
1724   emitWordLE(Binary);
1725 }
1726 
emitVFPConversionInstruction(const MachineInstr & MI)1727 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1728   const MCInstrDesc &MCID = MI.getDesc();
1729   unsigned Form = MCID.TSFlags & ARMII::FormMask;
1730 
1731   // Part of binary is determined by TableGn.
1732   unsigned Binary = getBinaryCodeForInstr(MI);
1733 
1734   // Set the conditional execution predicate
1735   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1736 
1737   switch (Form) {
1738   default: break;
1739   case ARMII::VFPConv1Frm:
1740   case ARMII::VFPConv2Frm:
1741   case ARMII::VFPConv3Frm:
1742     // Encode Dd / Sd.
1743     Binary |= encodeVFPRd(MI, 0);
1744     break;
1745   case ARMII::VFPConv4Frm:
1746     // Encode Dn / Sn.
1747     Binary |= encodeVFPRn(MI, 0);
1748     break;
1749   case ARMII::VFPConv5Frm:
1750     // Encode Dm / Sm.
1751     Binary |= encodeVFPRm(MI, 0);
1752     break;
1753   }
1754 
1755   switch (Form) {
1756   default: break;
1757   case ARMII::VFPConv1Frm:
1758     // Encode Dm / Sm.
1759     Binary |= encodeVFPRm(MI, 1);
1760     break;
1761   case ARMII::VFPConv2Frm:
1762   case ARMII::VFPConv3Frm:
1763     // Encode Dn / Sn.
1764     Binary |= encodeVFPRn(MI, 1);
1765     break;
1766   case ARMII::VFPConv4Frm:
1767   case ARMII::VFPConv5Frm:
1768     // Encode Dd / Sd.
1769     Binary |= encodeVFPRd(MI, 1);
1770     break;
1771   }
1772 
1773   if (Form == ARMII::VFPConv5Frm)
1774     // Encode Dn / Sn.
1775     Binary |= encodeVFPRn(MI, 2);
1776   else if (Form == ARMII::VFPConv3Frm)
1777     // Encode Dm / Sm.
1778     Binary |= encodeVFPRm(MI, 2);
1779 
1780   emitWordLE(Binary);
1781 }
1782 
emitVFPLoadStoreInstruction(const MachineInstr & MI)1783 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1784   // Part of binary is determined by TableGn.
1785   unsigned Binary = getBinaryCodeForInstr(MI);
1786 
1787   // Set the conditional execution predicate
1788   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1789 
1790   if (MI.getOpcode() == ARM::VLDRS || MI.getOpcode() == ARM::VLDRD ||
1791       MI.getOpcode() == ARM::VSTRS || MI.getOpcode() == ARM::VSTRD){
1792     emitWordLE(Binary);
1793     return;
1794   }
1795 
1796   unsigned OpIdx = 0;
1797 
1798   // Encode Dd / Sd.
1799   Binary |= encodeVFPRd(MI, OpIdx++);
1800 
1801   // Encode address base.
1802   const MachineOperand &Base = MI.getOperand(OpIdx++);
1803   Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1804 
1805   // If there is a non-zero immediate offset, encode it.
1806   if (Base.isReg()) {
1807     const MachineOperand &Offset = MI.getOperand(OpIdx);
1808     if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1809       if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1810         Binary |= 1 << ARMII::U_BitShift;
1811       Binary |= ImmOffs;
1812       emitWordLE(Binary);
1813       return;
1814     }
1815   }
1816 
1817   // If immediate offset is omitted, default to +0.
1818   Binary |= 1 << ARMII::U_BitShift;
1819 
1820   emitWordLE(Binary);
1821 }
1822 
1823 void
emitVFPLoadStoreMultipleInstruction(const MachineInstr & MI)1824 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1825   const MCInstrDesc &MCID = MI.getDesc();
1826   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1827 
1828   // Part of binary is determined by TableGn.
1829   unsigned Binary = getBinaryCodeForInstr(MI);
1830 
1831   // Set the conditional execution predicate
1832   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1833 
1834   // Skip operand 0 of an instruction with base register update.
1835   unsigned OpIdx = 0;
1836   if (IsUpdating)
1837     ++OpIdx;
1838 
1839   // Set base address operand
1840   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1841 
1842   // Set addressing mode by modifying bits U(23) and P(24)
1843   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1844   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1845 
1846   // Set bit W(21)
1847   if (IsUpdating)
1848     Binary |= 0x1 << ARMII::W_BitShift;
1849 
1850   // First register is encoded in Dd.
1851   Binary |= encodeVFPRd(MI, OpIdx+2);
1852 
1853   // Count the number of registers.
1854   unsigned NumRegs = 1;
1855   for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1856     const MachineOperand &MO = MI.getOperand(i);
1857     if (!MO.isReg() || MO.isImplicit())
1858       break;
1859     ++NumRegs;
1860   }
1861   // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1862   // Otherwise, it will be 0, in the case of 32-bit registers.
1863   if(Binary & 0x100)
1864     Binary |= NumRegs * 2;
1865   else
1866     Binary |= NumRegs;
1867 
1868   emitWordLE(Binary);
1869 }
1870 
emitMiscInstruction(const MachineInstr & MI)1871 void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1872   unsigned Opcode = MI.getDesc().Opcode;
1873   // Part of binary is determined by TableGn.
1874   unsigned Binary = getBinaryCodeForInstr(MI);
1875 
1876   if (Opcode == ARM::FCONSTS) {
1877     unsigned Imm = getMachineOpValue(MI, 1);
1878     Binary &= ~(0x780000 >> 19);
1879     Binary |= (Imm & 0x780000) >> 19;
1880     Binary &= ~(0x3800000 >> 7);
1881     Binary |= (Imm & 0x3800000) >> 7;
1882     Binary = VFPThumb2PostEncoder(MI, Binary);
1883   }
1884 
1885   // Set the conditional execution predicate
1886   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1887 
1888   emitWordLE(Binary);
1889 }
1890 
encodeNEONRd(const MachineInstr & MI,unsigned OpIdx)1891 static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1892   unsigned RegD = MI.getOperand(OpIdx).getReg();
1893   unsigned Binary = 0;
1894   RegD = getARMRegisterNumbering(RegD);
1895   Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1896   Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1897   return Binary;
1898 }
1899 
encodeNEONRn(const MachineInstr & MI,unsigned OpIdx)1900 static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1901   unsigned RegN = MI.getOperand(OpIdx).getReg();
1902   unsigned Binary = 0;
1903   RegN = getARMRegisterNumbering(RegN);
1904   Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1905   Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1906   return Binary;
1907 }
1908 
encodeNEONRm(const MachineInstr & MI,unsigned OpIdx)1909 static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1910   unsigned RegM = MI.getOperand(OpIdx).getReg();
1911   unsigned Binary = 0;
1912   RegM = getARMRegisterNumbering(RegM);
1913   Binary |= (RegM & 0xf);
1914   Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1915   return Binary;
1916 }
1917 
1918 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1919 /// data-processing instruction to the corresponding Thumb encoding.
convertNEONDataProcToThumb(unsigned Binary)1920 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1921   assert((Binary & 0xfe000000) == 0xf2000000 &&
1922          "not an ARM NEON data-processing instruction");
1923   unsigned UBit = (Binary >> 24) & 1;
1924   return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1925 }
1926 
emitNEONLaneInstruction(const MachineInstr & MI)1927 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1928   unsigned Binary = getBinaryCodeForInstr(MI);
1929 
1930   unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1931   const MCInstrDesc &MCID = MI.getDesc();
1932   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1933     RegTOpIdx = 0;
1934     RegNOpIdx = 1;
1935     LnOpIdx = 2;
1936   } else { // ARMII::NSetLnFrm
1937     RegTOpIdx = 2;
1938     RegNOpIdx = 0;
1939     LnOpIdx = 3;
1940   }
1941 
1942   // Set the conditional execution predicate
1943   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1944 
1945   unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1946   RegT = getARMRegisterNumbering(RegT);
1947   Binary |= (RegT << ARMII::RegRdShift);
1948   Binary |= encodeNEONRn(MI, RegNOpIdx);
1949 
1950   unsigned LaneShift;
1951   if ((Binary & (1 << 22)) != 0)
1952     LaneShift = 0; // 8-bit elements
1953   else if ((Binary & (1 << 5)) != 0)
1954     LaneShift = 1; // 16-bit elements
1955   else
1956     LaneShift = 2; // 32-bit elements
1957 
1958   unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1959   unsigned Opc1 = Lane >> 2;
1960   unsigned Opc2 = Lane & 3;
1961   assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1962   Binary |= (Opc1 << 21);
1963   Binary |= (Opc2 << 5);
1964 
1965   emitWordLE(Binary);
1966 }
1967 
emitNEONDupInstruction(const MachineInstr & MI)1968 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1969   unsigned Binary = getBinaryCodeForInstr(MI);
1970 
1971   // Set the conditional execution predicate
1972   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1973 
1974   unsigned RegT = MI.getOperand(1).getReg();
1975   RegT = getARMRegisterNumbering(RegT);
1976   Binary |= (RegT << ARMII::RegRdShift);
1977   Binary |= encodeNEONRn(MI, 0);
1978   emitWordLE(Binary);
1979 }
1980 
emitNEON1RegModImmInstruction(const MachineInstr & MI)1981 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1982   unsigned Binary = getBinaryCodeForInstr(MI);
1983   // Destination register is encoded in Dd.
1984   Binary |= encodeNEONRd(MI, 0);
1985   // Immediate fields: Op, Cmode, I, Imm3, Imm4
1986   unsigned Imm = MI.getOperand(1).getImm();
1987   unsigned Op = (Imm >> 12) & 1;
1988   unsigned Cmode = (Imm >> 8) & 0xf;
1989   unsigned I = (Imm >> 7) & 1;
1990   unsigned Imm3 = (Imm >> 4) & 0x7;
1991   unsigned Imm4 = Imm & 0xf;
1992   Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1993   if (IsThumb)
1994     Binary = convertNEONDataProcToThumb(Binary);
1995   emitWordLE(Binary);
1996 }
1997 
emitNEON2RegInstruction(const MachineInstr & MI)1998 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1999   const MCInstrDesc &MCID = MI.getDesc();
2000   unsigned Binary = getBinaryCodeForInstr(MI);
2001   // Destination register is encoded in Dd; source register in Dm.
2002   unsigned OpIdx = 0;
2003   Binary |= encodeNEONRd(MI, OpIdx++);
2004   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2005     ++OpIdx;
2006   Binary |= encodeNEONRm(MI, OpIdx);
2007   if (IsThumb)
2008     Binary = convertNEONDataProcToThumb(Binary);
2009   // FIXME: This does not handle VDUPfdf or VDUPfqf.
2010   emitWordLE(Binary);
2011 }
2012 
emitNEON3RegInstruction(const MachineInstr & MI)2013 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
2014   const MCInstrDesc &MCID = MI.getDesc();
2015   unsigned Binary = getBinaryCodeForInstr(MI);
2016   // Destination register is encoded in Dd; source registers in Dn and Dm.
2017   unsigned OpIdx = 0;
2018   Binary |= encodeNEONRd(MI, OpIdx++);
2019   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2020     ++OpIdx;
2021   Binary |= encodeNEONRn(MI, OpIdx++);
2022   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2023     ++OpIdx;
2024   Binary |= encodeNEONRm(MI, OpIdx);
2025   if (IsThumb)
2026     Binary = convertNEONDataProcToThumb(Binary);
2027   // FIXME: This does not handle VMOVDneon or VMOVQ.
2028   emitWordLE(Binary);
2029 }
2030 
2031 #include "ARMGenCodeEmitter.inc"
2032