1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "jit"
16 #include "ARM.h"
17 #include "ARMAddressingModes.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMRelocations.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassManager.h"
27 #include "llvm/CodeGen/JITCodeEmitter.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #ifndef NDEBUG
39 #include <iomanip>
40 #endif
41 using namespace llvm;
42
43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45 namespace {
46
47 class ARMCodeEmitter : public MachineFunctionPass {
48 ARMJITInfo *JTI;
49 const ARMInstrInfo *II;
50 const TargetData *TD;
51 const ARMSubtarget *Subtarget;
52 TargetMachine &TM;
53 JITCodeEmitter &MCE;
54 MachineModuleInfo *MMI;
55 const std::vector<MachineConstantPoolEntry> *MCPEs;
56 const std::vector<MachineJumpTableEntry> *MJTEs;
57 bool IsPIC;
58 bool IsThumb;
59
getAnalysisUsage(AnalysisUsage & AU) const60 void getAnalysisUsage(AnalysisUsage &AU) const {
61 AU.addRequired<MachineModuleInfo>();
62 MachineFunctionPass::getAnalysisUsage(AU);
63 }
64
65 static char ID;
66 public:
ARMCodeEmitter(TargetMachine & tm,JITCodeEmitter & mce)67 ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68 : MachineFunctionPass(ID), JTI(0),
69 II((const ARMInstrInfo *)tm.getInstrInfo()),
70 TD(tm.getTargetData()), TM(tm),
71 MCE(mce), MCPEs(0), MJTEs(0),
72 IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74 /// getBinaryCodeForInstr - This function, generated by the
75 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76 /// machine instructions.
77 unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79 bool runOnMachineFunction(MachineFunction &MF);
80
getPassName() const81 virtual const char *getPassName() const {
82 return "ARM Machine Code Emitter";
83 }
84
85 void emitInstruction(const MachineInstr &MI);
86
87 private:
88
89 void emitWordLE(unsigned Binary);
90 void emitDWordLE(uint64_t Binary);
91 void emitConstantToMemory(unsigned CPI, const Constant *CV);
92 void emitConstPoolInstruction(const MachineInstr &MI);
93 void emitMOVi32immInstruction(const MachineInstr &MI);
94 void emitMOVi2piecesInstruction(const MachineInstr &MI);
95 void emitLEApcrelInstruction(const MachineInstr &MI);
96 void emitLEApcrelJTInstruction(const MachineInstr &MI);
97 void emitPseudoMoveInstruction(const MachineInstr &MI);
98 void addPCLabel(unsigned LabelID);
99 void emitPseudoInstruction(const MachineInstr &MI);
100 unsigned getMachineSoRegOpValue(const MachineInstr &MI,
101 const MCInstrDesc &MCID,
102 const MachineOperand &MO,
103 unsigned OpIdx);
104
105 unsigned getMachineSoImmOpValue(unsigned SoImm);
106 unsigned getAddrModeSBit(const MachineInstr &MI,
107 const MCInstrDesc &MCID) const;
108
109 void emitDataProcessingInstruction(const MachineInstr &MI,
110 unsigned ImplicitRd = 0,
111 unsigned ImplicitRn = 0);
112
113 void emitLoadStoreInstruction(const MachineInstr &MI,
114 unsigned ImplicitRd = 0,
115 unsigned ImplicitRn = 0);
116
117 void emitMiscLoadStoreInstruction(const MachineInstr &MI,
118 unsigned ImplicitRn = 0);
119
120 void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
121
122 void emitMulFrmInstruction(const MachineInstr &MI);
123
124 void emitExtendInstruction(const MachineInstr &MI);
125
126 void emitMiscArithInstruction(const MachineInstr &MI);
127
128 void emitSaturateInstruction(const MachineInstr &MI);
129
130 void emitBranchInstruction(const MachineInstr &MI);
131
132 void emitInlineJumpTable(unsigned JTIndex);
133
134 void emitMiscBranchInstruction(const MachineInstr &MI);
135
136 void emitVFPArithInstruction(const MachineInstr &MI);
137
138 void emitVFPConversionInstruction(const MachineInstr &MI);
139
140 void emitVFPLoadStoreInstruction(const MachineInstr &MI);
141
142 void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
143
144 void emitMiscInstruction(const MachineInstr &MI);
145
146 void emitNEONLaneInstruction(const MachineInstr &MI);
147 void emitNEONDupInstruction(const MachineInstr &MI);
148 void emitNEON1RegModImmInstruction(const MachineInstr &MI);
149 void emitNEON2RegInstruction(const MachineInstr &MI);
150 void emitNEON3RegInstruction(const MachineInstr &MI);
151
152 /// getMachineOpValue - Return binary encoding of operand. If the machine
153 /// operand requires relocation, record the relocation and return zero.
154 unsigned getMachineOpValue(const MachineInstr &MI,
155 const MachineOperand &MO) const;
getMachineOpValue(const MachineInstr & MI,unsigned OpIdx) const156 unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
157 return getMachineOpValue(MI, MI.getOperand(OpIdx));
158 }
159
160 // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
161 // TableGen'erated getBinaryCodeForInstr() function to encode any
162 // operand values, instead querying getMachineOpValue() directly for
163 // each operand it needs to encode. Thus, any of the new encoder
164 // helper functions can simply return 0 as the values the return
165 // are already handled elsewhere. They are placeholders to allow this
166 // encoder to continue to function until the MC encoder is sufficiently
167 // far along that this one can be eliminated entirely.
NEONThumb2DataIPostEncoder(const MachineInstr & MI,unsigned Val) const168 unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
169 const { return 0; }
NEONThumb2LoadStorePostEncoder(const MachineInstr & MI,unsigned Val) const170 unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
171 const { return 0; }
NEONThumb2DupPostEncoder(const MachineInstr & MI,unsigned Val) const172 unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
173 const { return 0; }
VFPThumb2PostEncoder(const MachineInstr & MI,unsigned Val) const174 unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
175 const {
176 if (IsThumb) {
177 Val &= 0x0FFFFFFF;
178 Val |= 0xE0000000;
179 }
180 return Val;
181 }
getAdrLabelOpValue(const MachineInstr & MI,unsigned Op) const182 unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
183 const { return 0; }
getThumbAdrLabelOpValue(const MachineInstr & MI,unsigned Op) const184 unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
185 const { return 0; }
getThumbBLTargetOpValue(const MachineInstr & MI,unsigned Op) const186 unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
187 const { return 0; }
getThumbBLXTargetOpValue(const MachineInstr & MI,unsigned Op) const188 unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
189 const { return 0; }
getThumbBRTargetOpValue(const MachineInstr & MI,unsigned Op) const190 unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
191 const { return 0; }
getThumbBCCTargetOpValue(const MachineInstr & MI,unsigned Op) const192 unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
193 const { return 0; }
getThumbCBTargetOpValue(const MachineInstr & MI,unsigned Op) const194 unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
195 const { return 0; }
getBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const196 unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
197 const { return 0; }
getUnconditionalBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const198 unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
199 unsigned Op) const { return 0; }
getARMBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const200 unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
201 const { return 0; }
getCCOutOpValue(const MachineInstr & MI,unsigned Op) const202 unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
203 const { return 0; }
getSOImmOpValue(const MachineInstr & MI,unsigned Op) const204 unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
205 const { return 0; }
getT2SOImmOpValue(const MachineInstr & MI,unsigned Op) const206 unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
207 const { return 0; }
getSORegOpValue(const MachineInstr & MI,unsigned Op) const208 unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
209 const { return 0; }
getThumbAddrModeRegRegOpValue(const MachineInstr & MI,unsigned Op) const210 unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
211 const { return 0; }
getT2AddrModeImm12OpValue(const MachineInstr & MI,unsigned Op) const212 unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
213 const { return 0; }
getT2AddrModeImm8OpValue(const MachineInstr & MI,unsigned Op) const214 unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
215 const { return 0; }
getT2AddrModeImm8s4OpValue(const MachineInstr & MI,unsigned Op) const216 unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
217 const { return 0; }
getT2AddrModeImm8OffsetOpValue(const MachineInstr & MI,unsigned Op) const218 unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
219 const { return 0; }
getT2AddrModeImm12OffsetOpValue(const MachineInstr & MI,unsigned Op) const220 unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
221 const { return 0; }
getT2AddrModeSORegOpValue(const MachineInstr & MI,unsigned Op) const222 unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
223 const { return 0; }
getT2SORegOpValue(const MachineInstr & MI,unsigned Op) const224 unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
225 const { return 0; }
getRotImmOpValue(const MachineInstr & MI,unsigned Op) const226 unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
227 const { return 0; }
getImmMinusOneOpValue(const MachineInstr & MI,unsigned Op) const228 unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
229 const { return 0; }
getT2AdrLabelOpValue(const MachineInstr & MI,unsigned Op) const230 unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
231 const { return 0; }
getAddrMode6AddressOpValue(const MachineInstr & MI,unsigned Op) const232 unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
233 const { return 0; }
getAddrMode6OneLane32AddressOpValue(const MachineInstr & MI,unsigned Op) const234 unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
235 unsigned Op)
236 const { return 0; }
getAddrMode6DupAddressOpValue(const MachineInstr & MI,unsigned Op) const237 unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
238 const { return 0; }
getAddrMode6OffsetOpValue(const MachineInstr & MI,unsigned Op) const239 unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
240 const { return 0; }
getBitfieldInvertedMaskOpValue(const MachineInstr & MI,unsigned Op) const241 unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
242 unsigned Op) const { return 0; }
getMsbOpValue(const MachineInstr & MI,unsigned Op) const243 unsigned getMsbOpValue(const MachineInstr &MI,
244 unsigned Op) const { return 0; }
getSsatBitPosValue(const MachineInstr & MI,unsigned Op) const245 unsigned getSsatBitPosValue(const MachineInstr &MI,
246 unsigned Op) const { return 0; }
getLdStmModeOpValue(const MachineInstr & MI,unsigned OpIdx) const247 uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
248 const {return 0; }
getLdStSORegOpValue(const MachineInstr & MI,unsigned OpIdx) const249 uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
250 const { return 0; }
251
getAddrModeImm12OpValue(const MachineInstr & MI,unsigned Op) const252 unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
253 const {
254 // {17-13} = reg
255 // {12} = (U)nsigned (add == '1', sub == '0')
256 // {11-0} = imm12
257 const MachineOperand &MO = MI.getOperand(Op);
258 const MachineOperand &MO1 = MI.getOperand(Op + 1);
259 if (!MO.isReg()) {
260 emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
261 return 0;
262 }
263 unsigned Reg = getARMRegisterNumbering(MO.getReg());
264 int32_t Imm12 = MO1.getImm();
265 uint32_t Binary;
266 Binary = Imm12 & 0xfff;
267 if (Imm12 >= 0)
268 Binary |= (1 << 12);
269 Binary |= (Reg << 13);
270 return Binary;
271 }
272
getHiLo16ImmOpValue(const MachineInstr & MI,unsigned Op) const273 unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op)
274 const {
275 const MCInstrDesc &MCID = MI.getDesc();
276 const MachineOperand &MO = MI.getOperand(Op);
277
278 unsigned Reloc = (MCID.Opcode == ARM::MOVi16 ?
279 ARM::reloc_arm_movw : ARM::reloc_arm_movt);
280
281 if (!MO.isImm()) {
282 emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
283 return 0;
284 }
285 unsigned Imm16 = static_cast<unsigned>(MO.getImm());
286 return Imm16;
287 }
288
getAddrMode2OpValue(const MachineInstr & MI,unsigned OpIdx) const289 uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
290 const { return 0;}
getAddrMode2OffsetOpValue(const MachineInstr & MI,unsigned OpIdx) const291 uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
292 const { return 0;}
getAddrMode3OffsetOpValue(const MachineInstr & MI,unsigned OpIdx) const293 uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
294 const { return 0;}
getAddrMode3OpValue(const MachineInstr & MI,unsigned Op) const295 uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
296 const { return 0; }
getAddrModeThumbSPOpValue(const MachineInstr & MI,unsigned Op) const297 uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
298 const { return 0; }
getAddrModeSOpValue(const MachineInstr & MI,unsigned Op) const299 uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
300 const { return 0; }
getAddrModeISOpValue(const MachineInstr & MI,unsigned Op) const301 uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
302 const { return 0; }
getAddrModePCOpValue(const MachineInstr & MI,unsigned Op) const303 uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
304 const { return 0; }
getAddrMode5OpValue(const MachineInstr & MI,unsigned Op) const305 uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
306 // {12-9} = reg
307 // {8} = (U)nsigned (add == '1', sub == '0')
308 // {7-0} = imm8
309 uint32_t Binary = 0;
310 const MachineOperand &MO = MI.getOperand(Op);
311 uint32_t Reg = getMachineOpValue(MI, MO);
312 Binary |= (Reg << 9);
313
314 // If there is a non-zero immediate offset, encode it.
315 if (MO.isReg()) {
316 const MachineOperand &MO1 = MI.getOperand(Op + 1);
317 if (uint32_t ImmOffs = ARM_AM::getAM5Offset(MO1.getImm())) {
318 if (ARM_AM::getAM5Op(MO1.getImm()) == ARM_AM::add)
319 Binary |= 1 << 8;
320 Binary |= ImmOffs & 0xff;
321 return Binary;
322 }
323 }
324
325 // If immediate offset is omitted, default to +0.
326 Binary |= 1 << 8;
327 return Binary;
328 }
getNEONVcvtImm32OpValue(const MachineInstr & MI,unsigned Op) const329 unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
330 const { return 0; }
331
getRegisterListOpValue(const MachineInstr & MI,unsigned Op) const332 unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
333 const { return 0; }
334
getShiftRight8Imm(const MachineInstr & MI,unsigned Op) const335 unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
336 const { return 0; }
getShiftRight16Imm(const MachineInstr & MI,unsigned Op) const337 unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
338 const { return 0; }
getShiftRight32Imm(const MachineInstr & MI,unsigned Op) const339 unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
340 const { return 0; }
getShiftRight64Imm(const MachineInstr & MI,unsigned Op) const341 unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
342 const { return 0; }
343
344 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
345 /// machine operand requires relocation, record the relocation and return
346 /// zero.
347 unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
348 unsigned Reloc);
349
350 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
351 ///
352 unsigned getShiftOp(unsigned Imm) const ;
353
354 /// Routines that handle operands which add machine relocations which are
355 /// fixed up by the relocation stage.
356 void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
357 bool MayNeedFarStub, bool Indirect,
358 intptr_t ACPV = 0) const;
359 void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
360 void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
361 void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
362 void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
363 intptr_t JTBase = 0) const;
364 };
365 }
366
367 char ARMCodeEmitter::ID = 0;
368
369 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
370 /// code to the specified MCE object.
createARMJITCodeEmitterPass(ARMBaseTargetMachine & TM,JITCodeEmitter & JCE)371 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
372 JITCodeEmitter &JCE) {
373 return new ARMCodeEmitter(TM, JCE);
374 }
375
runOnMachineFunction(MachineFunction & MF)376 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
377 assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
378 MF.getTarget().getRelocationModel() != Reloc::Static) &&
379 "JIT relocation model must be set to static or default!");
380 JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
381 II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
382 TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
383 Subtarget = &TM.getSubtarget<ARMSubtarget>();
384 MCPEs = &MF.getConstantPool()->getConstants();
385 MJTEs = 0;
386 if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
387 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
388 IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
389 JTI->Initialize(MF, IsPIC);
390 MMI = &getAnalysis<MachineModuleInfo>();
391 MCE.setModuleInfo(MMI);
392
393 do {
394 DEBUG(errs() << "JITTing function '"
395 << MF.getFunction()->getName() << "'\n");
396 MCE.startFunction(MF);
397 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
398 MBB != E; ++MBB) {
399 MCE.StartMachineBasicBlock(MBB);
400 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
401 I != E; ++I)
402 emitInstruction(*I);
403 }
404 } while (MCE.finishFunction(MF));
405
406 return false;
407 }
408
409 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
410 ///
getShiftOp(unsigned Imm) const411 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
412 switch (ARM_AM::getAM2ShiftOpc(Imm)) {
413 default: llvm_unreachable("Unknown shift opc!");
414 case ARM_AM::asr: return 2;
415 case ARM_AM::lsl: return 0;
416 case ARM_AM::lsr: return 1;
417 case ARM_AM::ror:
418 case ARM_AM::rrx: return 3;
419 }
420 return 0;
421 }
422
423 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
424 /// machine operand requires relocation, record the relocation and return zero.
getMovi32Value(const MachineInstr & MI,const MachineOperand & MO,unsigned Reloc)425 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
426 const MachineOperand &MO,
427 unsigned Reloc) {
428 assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
429 && "Relocation to this function should be for movt or movw");
430
431 if (MO.isImm())
432 return static_cast<unsigned>(MO.getImm());
433 else if (MO.isGlobal())
434 emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
435 else if (MO.isSymbol())
436 emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
437 else if (MO.isMBB())
438 emitMachineBasicBlock(MO.getMBB(), Reloc);
439 else {
440 #ifndef NDEBUG
441 errs() << MO;
442 #endif
443 llvm_unreachable("Unsupported operand type for movw/movt");
444 }
445 return 0;
446 }
447
448 /// getMachineOpValue - Return binary encoding of operand. If the machine
449 /// operand requires relocation, record the relocation and return zero.
getMachineOpValue(const MachineInstr & MI,const MachineOperand & MO) const450 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
451 const MachineOperand &MO) const {
452 if (MO.isReg())
453 return getARMRegisterNumbering(MO.getReg());
454 else if (MO.isImm())
455 return static_cast<unsigned>(MO.getImm());
456 else if (MO.isFPImm())
457 return static_cast<unsigned>(MO.getFPImm()->getValueAPF()
458 .bitcastToAPInt().getHiBits(32).getLimitedValue());
459 else if (MO.isGlobal())
460 emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
461 else if (MO.isSymbol())
462 emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
463 else if (MO.isCPI()) {
464 const MCInstrDesc &MCID = MI.getDesc();
465 // For VFP load, the immediate offset is multiplied by 4.
466 unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
467 ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
468 emitConstPoolAddress(MO.getIndex(), Reloc);
469 } else if (MO.isJTI())
470 emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
471 else if (MO.isMBB())
472 emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
473 else
474 llvm_unreachable("Unable to encode MachineOperand!");
475 return 0;
476 }
477
478 /// emitGlobalAddress - Emit the specified address to the code stream.
479 ///
emitGlobalAddress(const GlobalValue * GV,unsigned Reloc,bool MayNeedFarStub,bool Indirect,intptr_t ACPV) const480 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
481 bool MayNeedFarStub, bool Indirect,
482 intptr_t ACPV) const {
483 MachineRelocation MR = Indirect
484 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
485 const_cast<GlobalValue *>(GV),
486 ACPV, MayNeedFarStub)
487 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
488 const_cast<GlobalValue *>(GV), ACPV,
489 MayNeedFarStub);
490 MCE.addRelocation(MR);
491 }
492
493 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
494 /// be emitted to the current location in the function, and allow it to be PC
495 /// relative.
496 void ARMCodeEmitter::
emitExternalSymbolAddress(const char * ES,unsigned Reloc) const497 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
498 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
499 Reloc, ES));
500 }
501
502 /// emitConstPoolAddress - Arrange for the address of an constant pool
503 /// to be emitted to the current location in the function, and allow it to be PC
504 /// relative.
emitConstPoolAddress(unsigned CPI,unsigned Reloc) const505 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
506 // Tell JIT emitter we'll resolve the address.
507 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
508 Reloc, CPI, 0, true));
509 }
510
511 /// emitJumpTableAddress - Arrange for the address of a jump table to
512 /// be emitted to the current location in the function, and allow it to be PC
513 /// relative.
514 void ARMCodeEmitter::
emitJumpTableAddress(unsigned JTIndex,unsigned Reloc) const515 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
516 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
517 Reloc, JTIndex, 0, true));
518 }
519
520 /// emitMachineBasicBlock - Emit the specified address basic block.
emitMachineBasicBlock(MachineBasicBlock * BB,unsigned Reloc,intptr_t JTBase) const521 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
522 unsigned Reloc,
523 intptr_t JTBase) const {
524 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
525 Reloc, BB, JTBase));
526 }
527
emitWordLE(unsigned Binary)528 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
529 DEBUG(errs() << " 0x";
530 errs().write_hex(Binary) << "\n");
531 MCE.emitWordLE(Binary);
532 }
533
emitDWordLE(uint64_t Binary)534 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
535 DEBUG(errs() << " 0x";
536 errs().write_hex(Binary) << "\n");
537 MCE.emitDWordLE(Binary);
538 }
539
emitInstruction(const MachineInstr & MI)540 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
541 DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
542
543 MCE.processDebugLoc(MI.getDebugLoc(), true);
544
545 ++NumEmitted; // Keep track of the # of mi's emitted
546 switch (MI.getDesc().TSFlags & ARMII::FormMask) {
547 default: {
548 llvm_unreachable("Unhandled instruction encoding format!");
549 break;
550 }
551 case ARMII::MiscFrm:
552 if (MI.getOpcode() == ARM::LEApcrelJT) {
553 // Materialize jumptable address.
554 emitLEApcrelJTInstruction(MI);
555 break;
556 }
557 llvm_unreachable("Unhandled instruction encoding!");
558 break;
559 case ARMII::Pseudo:
560 emitPseudoInstruction(MI);
561 break;
562 case ARMII::DPFrm:
563 case ARMII::DPSoRegFrm:
564 emitDataProcessingInstruction(MI);
565 break;
566 case ARMII::LdFrm:
567 case ARMII::StFrm:
568 emitLoadStoreInstruction(MI);
569 break;
570 case ARMII::LdMiscFrm:
571 case ARMII::StMiscFrm:
572 emitMiscLoadStoreInstruction(MI);
573 break;
574 case ARMII::LdStMulFrm:
575 emitLoadStoreMultipleInstruction(MI);
576 break;
577 case ARMII::MulFrm:
578 emitMulFrmInstruction(MI);
579 break;
580 case ARMII::ExtFrm:
581 emitExtendInstruction(MI);
582 break;
583 case ARMII::ArithMiscFrm:
584 emitMiscArithInstruction(MI);
585 break;
586 case ARMII::SatFrm:
587 emitSaturateInstruction(MI);
588 break;
589 case ARMII::BrFrm:
590 emitBranchInstruction(MI);
591 break;
592 case ARMII::BrMiscFrm:
593 emitMiscBranchInstruction(MI);
594 break;
595 // VFP instructions.
596 case ARMII::VFPUnaryFrm:
597 case ARMII::VFPBinaryFrm:
598 emitVFPArithInstruction(MI);
599 break;
600 case ARMII::VFPConv1Frm:
601 case ARMII::VFPConv2Frm:
602 case ARMII::VFPConv3Frm:
603 case ARMII::VFPConv4Frm:
604 case ARMII::VFPConv5Frm:
605 emitVFPConversionInstruction(MI);
606 break;
607 case ARMII::VFPLdStFrm:
608 emitVFPLoadStoreInstruction(MI);
609 break;
610 case ARMII::VFPLdStMulFrm:
611 emitVFPLoadStoreMultipleInstruction(MI);
612 break;
613 case ARMII::VFPMiscFrm:
614 emitMiscInstruction(MI);
615 break;
616 // NEON instructions.
617 case ARMII::NGetLnFrm:
618 case ARMII::NSetLnFrm:
619 emitNEONLaneInstruction(MI);
620 break;
621 case ARMII::NDupFrm:
622 emitNEONDupInstruction(MI);
623 break;
624 case ARMII::N1RegModImmFrm:
625 emitNEON1RegModImmInstruction(MI);
626 break;
627 case ARMII::N2RegFrm:
628 emitNEON2RegInstruction(MI);
629 break;
630 case ARMII::N3RegFrm:
631 emitNEON3RegInstruction(MI);
632 break;
633 }
634 MCE.processDebugLoc(MI.getDebugLoc(), false);
635 }
636
emitConstantToMemory(unsigned CPI,const Constant * C)637 void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) {
638 DEBUG({
639 errs() << " ** Constant pool #" << CPI << " @ "
640 << (void*)MCE.getCurrentPCValue() << " ";
641 if (const Function *F = dyn_cast<Function>(C))
642 errs() << F->getName();
643 else
644 errs() << *C;
645 errs() << '\n';
646 });
647
648 switch (C->getValueID()) {
649 default: {
650 llvm_unreachable("Unable to handle this constantpool entry!");
651 break;
652 }
653 case Value::GlobalVariableVal: {
654 emitGlobalAddress(static_cast<const GlobalValue*>(C),
655 ARM::reloc_arm_absolute, isa<Function>(C), false);
656 emitWordLE(0);
657 break;
658 }
659 case Value::ConstantIntVal: {
660 const ConstantInt *CI = static_cast<const ConstantInt*>(C);
661 uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
662 emitWordLE(Val);
663 break;
664 }
665 case Value::ConstantFPVal: {
666 const ConstantFP *CFP = static_cast<const ConstantFP*>(C);
667 if (CFP->getType()->isFloatTy())
668 emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
669 else if (CFP->getType()->isDoubleTy())
670 emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
671 else {
672 llvm_unreachable("Unable to handle this constantpool entry!");
673 }
674 break;
675 }
676 case Value::ConstantArrayVal: {
677 const ConstantArray *CA = static_cast<const ConstantArray*>(C);
678 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
679 emitConstantToMemory(CPI, CA->getOperand(i));
680 break;
681 }
682 case Value::ConstantVectorVal:{
683 //FIXME:emit vector
684 const ConstantVector *CV = static_cast<const ConstantVector*>(C);
685 break;
686 }
687 }
688
689 return;
690 }
691
emitConstPoolInstruction(const MachineInstr & MI)692 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
693 unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
694 unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
695 const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
696
697 // Remember the CONSTPOOL_ENTRY address for later relocation.
698 JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
699
700 // Emit constpool island entry. In most cases, the actual values will be
701 // resolved and relocated after code emission.
702 if (MCPE.isMachineConstantPoolEntry()) {
703 ARMConstantPoolValue *ACPV =
704 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
705
706 DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ "
707 << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
708
709 assert(ACPV->isGlobalValue() && "unsupported constant pool value");
710 const GlobalValue *GV = ACPV->getGV();
711 if (GV) {
712 Reloc::Model RelocM = TM.getRelocationModel();
713 emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
714 isa<Function>(GV),
715 Subtarget->GVIsIndirectSymbol(GV, RelocM),
716 (intptr_t)ACPV);
717 } else {
718 emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
719 }
720 emitWordLE(0);
721 } else {
722 emitConstantToMemory(CPI, MCPE.Val.ConstVal);
723 }
724 }
725
emitMOVi32immInstruction(const MachineInstr & MI)726 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
727 const MachineOperand &MO0 = MI.getOperand(0);
728 const MachineOperand &MO1 = MI.getOperand(1);
729
730 // Emit the 'movw' instruction.
731 unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000
732
733 unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
734
735 // Set the conditional execution predicate.
736 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
737
738 // Encode Rd.
739 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
740
741 // Encode imm16 as imm4:imm12
742 Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
743 Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
744 emitWordLE(Binary);
745
746 unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
747 // Emit the 'movt' instruction.
748 Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
749
750 // Set the conditional execution predicate.
751 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
752
753 // Encode Rd.
754 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
755
756 // Encode imm16 as imm4:imm1, same as movw above.
757 Binary |= Hi16 & 0xFFF;
758 Binary |= ((Hi16 >> 12) & 0xF) << 16;
759 emitWordLE(Binary);
760 }
761
emitMOVi2piecesInstruction(const MachineInstr & MI)762 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
763 const MachineOperand &MO0 = MI.getOperand(0);
764 const MachineOperand &MO1 = MI.getOperand(1);
765 assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
766 "Not a valid so_imm value!");
767 unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
768 unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
769
770 // Emit the 'mov' instruction.
771 unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
772
773 // Set the conditional execution predicate.
774 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
775
776 // Encode Rd.
777 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
778
779 // Encode so_imm.
780 // Set bit I(25) to identify this is the immediate form of <shifter_op>
781 Binary |= 1 << ARMII::I_BitShift;
782 Binary |= getMachineSoImmOpValue(V1);
783 emitWordLE(Binary);
784
785 // Now the 'orr' instruction.
786 Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
787
788 // Set the conditional execution predicate.
789 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
790
791 // Encode Rd.
792 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
793
794 // Encode Rn.
795 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
796
797 // Encode so_imm.
798 // Set bit I(25) to identify this is the immediate form of <shifter_op>
799 Binary |= 1 << ARMII::I_BitShift;
800 Binary |= getMachineSoImmOpValue(V2);
801 emitWordLE(Binary);
802 }
803
emitLEApcrelInstruction(const MachineInstr & MI)804 void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) {
805 // It's basically add r, pc, (LCPI - $+8)
806 const MCInstrDesc &MCID = MI.getDesc();
807
808 unsigned Binary = 0;
809
810 // Set the conditional execution predicate
811 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
812
813 // Encode S bit if MI modifies CPSR.
814 Binary |= getAddrModeSBit(MI, MCID);
815
816 // Encode Rd.
817 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
818
819 // Encode Rn which is PC.
820 Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
821
822 // Encode the displacement which is a so_imm.
823 // Set bit I(25) to identify this is the immediate form of <shifter_op>
824 Binary |= 1 << ARMII::I_BitShift;
825 emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry);
826
827 emitWordLE(Binary);
828 }
829
emitLEApcrelJTInstruction(const MachineInstr & MI)830 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
831 // It's basically add r, pc, (LJTI - $+8)
832
833 const MCInstrDesc &MCID = MI.getDesc();
834
835 // Emit the 'add' instruction.
836 unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100
837
838 // Set the conditional execution predicate
839 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
840
841 // Encode S bit if MI modifies CPSR.
842 Binary |= getAddrModeSBit(MI, MCID);
843
844 // Encode Rd.
845 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
846
847 // Encode Rn which is PC.
848 Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
849
850 // Encode the displacement.
851 Binary |= 1 << ARMII::I_BitShift;
852 emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
853
854 emitWordLE(Binary);
855 }
856
emitPseudoMoveInstruction(const MachineInstr & MI)857 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
858 unsigned Opcode = MI.getDesc().Opcode;
859
860 // Part of binary is determined by TableGn.
861 unsigned Binary = getBinaryCodeForInstr(MI);
862
863 // Set the conditional execution predicate
864 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
865
866 // Encode S bit if MI modifies CPSR.
867 if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
868 Binary |= 1 << ARMII::S_BitShift;
869
870 // Encode register def if there is one.
871 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
872
873 // Encode the shift operation.
874 switch (Opcode) {
875 default: break;
876 case ARM::RRX:
877 // rrx
878 Binary |= 0x6 << 4;
879 break;
880 case ARM::MOVsrl_flag:
881 // lsr #1
882 Binary |= (0x2 << 4) | (1 << 7);
883 break;
884 case ARM::MOVsra_flag:
885 // asr #1
886 Binary |= (0x4 << 4) | (1 << 7);
887 break;
888 }
889
890 // Encode register Rm.
891 Binary |= getMachineOpValue(MI, 1);
892
893 emitWordLE(Binary);
894 }
895
addPCLabel(unsigned LabelID)896 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
897 DEBUG(errs() << " ** LPC" << LabelID << " @ "
898 << (void*)MCE.getCurrentPCValue() << '\n');
899 JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
900 }
901
emitPseudoInstruction(const MachineInstr & MI)902 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
903 unsigned Opcode = MI.getDesc().Opcode;
904 switch (Opcode) {
905 default:
906 llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
907 case ARM::B:
908 emitBranchInstruction(MI);
909 break;
910 case ARM::BR_JTr:
911 case ARM::BR_JTm:
912 case ARM::BR_JTadd:
913 emitMiscBranchInstruction(MI);
914 break;
915 case ARM::BX_CALL:
916 case ARM::BMOVPCRX_CALL:
917 case ARM::BXr9_CALL:
918 case ARM::BMOVPCRXr9_CALL: {
919 // First emit mov lr, pc
920 unsigned Binary = 0x01a0e00f;
921 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
922 emitWordLE(Binary);
923
924 // and then emit the branch.
925 emitMiscBranchInstruction(MI);
926 break;
927 }
928 case TargetOpcode::INLINEASM: {
929 // We allow inline assembler nodes with empty bodies - they can
930 // implicitly define registers, which is ok for JIT.
931 if (MI.getOperand(0).getSymbolName()[0]) {
932 report_fatal_error("JIT does not support inline asm!");
933 }
934 break;
935 }
936 case TargetOpcode::PROLOG_LABEL:
937 case TargetOpcode::EH_LABEL:
938 MCE.emitLabel(MI.getOperand(0).getMCSymbol());
939 break;
940 case TargetOpcode::IMPLICIT_DEF:
941 case TargetOpcode::KILL:
942 // Do nothing.
943 break;
944 case ARM::CONSTPOOL_ENTRY:
945 emitConstPoolInstruction(MI);
946 break;
947 case ARM::LDMIA_RET:
948 emitLoadStoreMultipleInstruction(MI);
949 break;
950 case ARM::PICADD: {
951 // Remember of the address of the PC label for relocation later.
952 addPCLabel(MI.getOperand(2).getImm());
953 // PICADD is just an add instruction that implicitly read pc.
954 emitDataProcessingInstruction(MI, 0, ARM::PC);
955 break;
956 }
957 case ARM::PICLDR:
958 case ARM::PICLDRB:
959 case ARM::PICSTR:
960 case ARM::PICSTRB: {
961 // Remember of the address of the PC label for relocation later.
962 addPCLabel(MI.getOperand(2).getImm());
963 // These are just load / store instructions that implicitly read pc.
964 emitLoadStoreInstruction(MI, 0, ARM::PC);
965 break;
966 }
967 case ARM::PICLDRH:
968 case ARM::PICLDRSH:
969 case ARM::PICLDRSB:
970 case ARM::PICSTRH: {
971 // Remember of the address of the PC label for relocation later.
972 addPCLabel(MI.getOperand(2).getImm());
973 // These are just load / store instructions that implicitly read pc.
974 emitMiscLoadStoreInstruction(MI, ARM::PC);
975 break;
976 }
977
978 case ARM::MOVi32imm:
979 // Two instructions to materialize a constant.
980 if (Subtarget->hasV6T2Ops())
981 emitMOVi32immInstruction(MI);
982 else
983 emitMOVi2piecesInstruction(MI);
984 break;
985 case ARM::LEApcrel:
986 // Materialize constantpool index address.
987 emitLEApcrelInstruction(MI);
988 break;
989 case ARM::LEApcrelJT:
990 // Materialize jumptable address.
991 emitLEApcrelJTInstruction(MI);
992 break;
993 case ARM::RRX:
994 case ARM::MOVsrl_flag:
995 case ARM::MOVsra_flag:
996 emitPseudoMoveInstruction(MI);
997 break;
998 }
999 }
1000
getMachineSoRegOpValue(const MachineInstr & MI,const MCInstrDesc & MCID,const MachineOperand & MO,unsigned OpIdx)1001 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
1002 const MCInstrDesc &MCID,
1003 const MachineOperand &MO,
1004 unsigned OpIdx) {
1005 unsigned Binary = getMachineOpValue(MI, MO);
1006
1007 const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
1008 const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
1009 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
1010
1011 // Encode the shift opcode.
1012 unsigned SBits = 0;
1013 unsigned Rs = MO1.getReg();
1014 if (Rs) {
1015 // Set shift operand (bit[7:4]).
1016 // LSL - 0001
1017 // LSR - 0011
1018 // ASR - 0101
1019 // ROR - 0111
1020 // RRX - 0110 and bit[11:8] clear.
1021 switch (SOpc) {
1022 default: llvm_unreachable("Unknown shift opc!");
1023 case ARM_AM::lsl: SBits = 0x1; break;
1024 case ARM_AM::lsr: SBits = 0x3; break;
1025 case ARM_AM::asr: SBits = 0x5; break;
1026 case ARM_AM::ror: SBits = 0x7; break;
1027 case ARM_AM::rrx: SBits = 0x6; break;
1028 }
1029 } else {
1030 // Set shift operand (bit[6:4]).
1031 // LSL - 000
1032 // LSR - 010
1033 // ASR - 100
1034 // ROR - 110
1035 switch (SOpc) {
1036 default: llvm_unreachable("Unknown shift opc!");
1037 case ARM_AM::lsl: SBits = 0x0; break;
1038 case ARM_AM::lsr: SBits = 0x2; break;
1039 case ARM_AM::asr: SBits = 0x4; break;
1040 case ARM_AM::ror: SBits = 0x6; break;
1041 }
1042 }
1043 Binary |= SBits << 4;
1044 if (SOpc == ARM_AM::rrx)
1045 return Binary;
1046
1047 // Encode the shift operation Rs or shift_imm (except rrx).
1048 if (Rs) {
1049 // Encode Rs bit[11:8].
1050 assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
1051 return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
1052 }
1053
1054 // Encode shift_imm bit[11:7].
1055 return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
1056 }
1057
getMachineSoImmOpValue(unsigned SoImm)1058 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
1059 int SoImmVal = ARM_AM::getSOImmVal(SoImm);
1060 assert(SoImmVal != -1 && "Not a valid so_imm value!");
1061
1062 // Encode rotate_imm.
1063 unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
1064 << ARMII::SoRotImmShift;
1065
1066 // Encode immed_8.
1067 Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
1068 return Binary;
1069 }
1070
getAddrModeSBit(const MachineInstr & MI,const MCInstrDesc & MCID) const1071 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
1072 const MCInstrDesc &MCID) const {
1073 for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e; --i){
1074 const MachineOperand &MO = MI.getOperand(i-1);
1075 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
1076 return 1 << ARMII::S_BitShift;
1077 }
1078 return 0;
1079 }
1080
emitDataProcessingInstruction(const MachineInstr & MI,unsigned ImplicitRd,unsigned ImplicitRn)1081 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
1082 unsigned ImplicitRd,
1083 unsigned ImplicitRn) {
1084 const MCInstrDesc &MCID = MI.getDesc();
1085
1086 // Part of binary is determined by TableGn.
1087 unsigned Binary = getBinaryCodeForInstr(MI);
1088
1089 if (MCID.Opcode == ARM::MOVi16 || MCID.Opcode == ARM::MOVTi16) {
1090 emitWordLE(Binary);
1091 return;
1092 }
1093
1094 // Set the conditional execution predicate
1095 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1096
1097 // Encode S bit if MI modifies CPSR.
1098 Binary |= getAddrModeSBit(MI, MCID);
1099
1100 // Encode register def if there is one.
1101 unsigned NumDefs = MCID.getNumDefs();
1102 unsigned OpIdx = 0;
1103 if (NumDefs)
1104 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1105 else if (ImplicitRd)
1106 // Special handling for implicit use (e.g. PC).
1107 Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1108
1109 if (MCID.Opcode == ARM::MOVi16) {
1110 // Get immediate from MI.
1111 unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1112 ARM::reloc_arm_movw);
1113 // Encode imm which is the same as in emitMOVi32immInstruction().
1114 Binary |= Lo16 & 0xFFF;
1115 Binary |= ((Lo16 >> 12) & 0xF) << 16;
1116 emitWordLE(Binary);
1117 return;
1118 } else if(MCID.Opcode == ARM::MOVTi16) {
1119 unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1120 ARM::reloc_arm_movt) >> 16);
1121 Binary |= Hi16 & 0xFFF;
1122 Binary |= ((Hi16 >> 12) & 0xF) << 16;
1123 emitWordLE(Binary);
1124 return;
1125 } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
1126 uint32_t v = ~MI.getOperand(2).getImm();
1127 int32_t lsb = CountTrailingZeros_32(v);
1128 int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
1129 // Instr{20-16} = msb, Instr{11-7} = lsb
1130 Binary |= (msb & 0x1F) << 16;
1131 Binary |= (lsb & 0x1F) << 7;
1132 emitWordLE(Binary);
1133 return;
1134 } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
1135 // Encode Rn in Instr{0-3}
1136 Binary |= getMachineOpValue(MI, OpIdx++);
1137
1138 uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1139 uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1140
1141 // Instr{20-16} = widthm1, Instr{11-7} = lsb
1142 Binary |= (widthm1 & 0x1F) << 16;
1143 Binary |= (lsb & 0x1F) << 7;
1144 emitWordLE(Binary);
1145 return;
1146 }
1147
1148 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1149 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1150 ++OpIdx;
1151
1152 // Encode first non-shifter register operand if there is one.
1153 bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
1154 if (!isUnary) {
1155 if (ImplicitRn)
1156 // Special handling for implicit use (e.g. PC).
1157 Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1158 else {
1159 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1160 ++OpIdx;
1161 }
1162 }
1163
1164 // Encode shifter operand.
1165 const MachineOperand &MO = MI.getOperand(OpIdx);
1166 if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1167 // Encode SoReg.
1168 emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
1169 return;
1170 }
1171
1172 if (MO.isReg()) {
1173 // Encode register Rm.
1174 emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
1175 return;
1176 }
1177
1178 // Encode so_imm.
1179 Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1180
1181 emitWordLE(Binary);
1182 }
1183
emitLoadStoreInstruction(const MachineInstr & MI,unsigned ImplicitRd,unsigned ImplicitRn)1184 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1185 unsigned ImplicitRd,
1186 unsigned ImplicitRn) {
1187 const MCInstrDesc &MCID = MI.getDesc();
1188 unsigned Form = MCID.TSFlags & ARMII::FormMask;
1189 bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1190
1191 // Part of binary is determined by TableGn.
1192 unsigned Binary = getBinaryCodeForInstr(MI);
1193
1194 // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1195 if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1196 MI.getOpcode() == ARM::STRi12 || MI.getOpcode() == ARM::LDRBi12 ||
1197 MI.getOpcode() == ARM::STRBi12) {
1198 emitWordLE(Binary);
1199 return;
1200 }
1201
1202 if (MI.getOpcode() == ARM::BR_JTm)
1203 Binary = 0x710F000;
1204 else if (MI.getOpcode() == ARM::BR_JTr)
1205 Binary = 0x1A0F000;
1206
1207 // Set the conditional execution predicate
1208 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1209
1210 unsigned OpIdx = 0;
1211
1212 // Operand 0 of a pre- and post-indexed store is the address base
1213 // writeback. Skip it.
1214 bool Skipped = false;
1215 if (IsPrePost && Form == ARMII::StFrm) {
1216 ++OpIdx;
1217 Skipped = true;
1218 }
1219
1220 // Set first operand
1221 if (ImplicitRd)
1222 // Special handling for implicit use (e.g. PC).
1223 Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1224 else
1225 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1226
1227 // Set second operand
1228 if (ImplicitRn)
1229 // Special handling for implicit use (e.g. PC).
1230 Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1231 else
1232 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1233
1234 // If this is a two-address operand, skip it. e.g. LDR_PRE.
1235 if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1236 ++OpIdx;
1237
1238 const MachineOperand &MO2 = MI.getOperand(OpIdx);
1239 unsigned AM2Opc = (ImplicitRn == ARM::PC)
1240 ? 0 : MI.getOperand(OpIdx+1).getImm();
1241
1242 // Set bit U(23) according to sign of immed value (positive or negative).
1243 Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1244 ARMII::U_BitShift);
1245 if (!MO2.getReg()) { // is immediate
1246 if (ARM_AM::getAM2Offset(AM2Opc))
1247 // Set the value of offset_12 field
1248 Binary |= ARM_AM::getAM2Offset(AM2Opc);
1249 emitWordLE(Binary);
1250 return;
1251 }
1252
1253 // Set bit I(25), because this is not in immediate encoding.
1254 Binary |= 1 << ARMII::I_BitShift;
1255 assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1256 // Set bit[3:0] to the corresponding Rm register
1257 Binary |= getARMRegisterNumbering(MO2.getReg());
1258
1259 // If this instr is in scaled register offset/index instruction, set
1260 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1261 if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1262 Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
1263 Binary |= ShImm << ARMII::ShiftShift; // shift_immed
1264 }
1265
1266 emitWordLE(Binary);
1267 }
1268
emitMiscLoadStoreInstruction(const MachineInstr & MI,unsigned ImplicitRn)1269 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1270 unsigned ImplicitRn) {
1271 const MCInstrDesc &MCID = MI.getDesc();
1272 unsigned Form = MCID.TSFlags & ARMII::FormMask;
1273 bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1274
1275 // Part of binary is determined by TableGn.
1276 unsigned Binary = getBinaryCodeForInstr(MI);
1277
1278 // Set the conditional execution predicate
1279 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1280
1281 unsigned OpIdx = 0;
1282
1283 // Operand 0 of a pre- and post-indexed store is the address base
1284 // writeback. Skip it.
1285 bool Skipped = false;
1286 if (IsPrePost && Form == ARMII::StMiscFrm) {
1287 ++OpIdx;
1288 Skipped = true;
1289 }
1290
1291 // Set first operand
1292 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1293
1294 // Skip LDRD and STRD's second operand.
1295 if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
1296 ++OpIdx;
1297
1298 // Set second operand
1299 if (ImplicitRn)
1300 // Special handling for implicit use (e.g. PC).
1301 Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1302 else
1303 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1304
1305 // If this is a two-address operand, skip it. e.g. LDRH_POST.
1306 if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1307 ++OpIdx;
1308
1309 const MachineOperand &MO2 = MI.getOperand(OpIdx);
1310 unsigned AM3Opc = (ImplicitRn == ARM::PC)
1311 ? 0 : MI.getOperand(OpIdx+1).getImm();
1312
1313 // Set bit U(23) according to sign of immed value (positive or negative)
1314 Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1315 ARMII::U_BitShift);
1316
1317 // If this instr is in register offset/index encoding, set bit[3:0]
1318 // to the corresponding Rm register.
1319 if (MO2.getReg()) {
1320 Binary |= getARMRegisterNumbering(MO2.getReg());
1321 emitWordLE(Binary);
1322 return;
1323 }
1324
1325 // This instr is in immediate offset/index encoding, set bit 22 to 1.
1326 Binary |= 1 << ARMII::AM3_I_BitShift;
1327 if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1328 // Set operands
1329 Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
1330 Binary |= (ImmOffs & 0xF); // immedL
1331 }
1332
1333 emitWordLE(Binary);
1334 }
1335
getAddrModeUPBits(unsigned Mode)1336 static unsigned getAddrModeUPBits(unsigned Mode) {
1337 unsigned Binary = 0;
1338
1339 // Set addressing mode by modifying bits U(23) and P(24)
1340 // IA - Increment after - bit U = 1 and bit P = 0
1341 // IB - Increment before - bit U = 1 and bit P = 1
1342 // DA - Decrement after - bit U = 0 and bit P = 0
1343 // DB - Decrement before - bit U = 0 and bit P = 1
1344 switch (Mode) {
1345 default: llvm_unreachable("Unknown addressing sub-mode!");
1346 case ARM_AM::da: break;
1347 case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1348 case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1349 case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1350 }
1351
1352 return Binary;
1353 }
1354
emitLoadStoreMultipleInstruction(const MachineInstr & MI)1355 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1356 const MCInstrDesc &MCID = MI.getDesc();
1357 bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1358
1359 // Part of binary is determined by TableGn.
1360 unsigned Binary = getBinaryCodeForInstr(MI);
1361
1362 if (MCID.getOpcode() == ARM::LDMIA_RET) {
1363 IsUpdating = true;
1364 Binary |= 0x8B00000;
1365 }
1366
1367 // Set the conditional execution predicate
1368 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1369
1370 // Skip operand 0 of an instruction with base register update.
1371 unsigned OpIdx = 0;
1372 if (IsUpdating)
1373 ++OpIdx;
1374
1375 // Set base address operand
1376 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1377
1378 // Set addressing mode by modifying bits U(23) and P(24)
1379 ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1380 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1381
1382 // Set bit W(21)
1383 if (IsUpdating)
1384 Binary |= 0x1 << ARMII::W_BitShift;
1385
1386 // Set registers
1387 for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1388 const MachineOperand &MO = MI.getOperand(i);
1389 if (!MO.isReg() || MO.isImplicit())
1390 break;
1391 unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1392 assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1393 RegNum < 16);
1394 Binary |= 0x1 << RegNum;
1395 }
1396
1397 emitWordLE(Binary);
1398 }
1399
emitMulFrmInstruction(const MachineInstr & MI)1400 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1401 const MCInstrDesc &MCID = MI.getDesc();
1402
1403 // Part of binary is determined by TableGn.
1404 unsigned Binary = getBinaryCodeForInstr(MI);
1405
1406 // Set the conditional execution predicate
1407 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1408
1409 // Encode S bit if MI modifies CPSR.
1410 Binary |= getAddrModeSBit(MI, MCID);
1411
1412 // 32x32->64bit operations have two destination registers. The number
1413 // of register definitions will tell us if that's what we're dealing with.
1414 unsigned OpIdx = 0;
1415 if (MCID.getNumDefs() == 2)
1416 Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1417
1418 // Encode Rd
1419 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1420
1421 // Encode Rm
1422 Binary |= getMachineOpValue(MI, OpIdx++);
1423
1424 // Encode Rs
1425 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1426
1427 // Many multiple instructions (e.g. MLA) have three src operands. Encode
1428 // it as Rn (for multiply, that's in the same offset as RdLo.
1429 if (MCID.getNumOperands() > OpIdx &&
1430 !MCID.OpInfo[OpIdx].isPredicate() &&
1431 !MCID.OpInfo[OpIdx].isOptionalDef())
1432 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1433
1434 emitWordLE(Binary);
1435 }
1436
emitExtendInstruction(const MachineInstr & MI)1437 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1438 const MCInstrDesc &MCID = MI.getDesc();
1439
1440 // Part of binary is determined by TableGn.
1441 unsigned Binary = getBinaryCodeForInstr(MI);
1442
1443 // Set the conditional execution predicate
1444 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1445
1446 unsigned OpIdx = 0;
1447
1448 // Encode Rd
1449 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1450
1451 const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1452 const MachineOperand &MO2 = MI.getOperand(OpIdx);
1453 if (MO2.isReg()) {
1454 // Two register operand form.
1455 // Encode Rn.
1456 Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1457
1458 // Encode Rm.
1459 Binary |= getMachineOpValue(MI, MO2);
1460 ++OpIdx;
1461 } else {
1462 Binary |= getMachineOpValue(MI, MO1);
1463 }
1464
1465 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1466 if (MI.getOperand(OpIdx).isImm() &&
1467 !MCID.OpInfo[OpIdx].isPredicate() &&
1468 !MCID.OpInfo[OpIdx].isOptionalDef())
1469 Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1470
1471 emitWordLE(Binary);
1472 }
1473
emitMiscArithInstruction(const MachineInstr & MI)1474 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1475 const MCInstrDesc &MCID = MI.getDesc();
1476
1477 // Part of binary is determined by TableGn.
1478 unsigned Binary = getBinaryCodeForInstr(MI);
1479
1480 // Set the conditional execution predicate
1481 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1482
1483 // PKH instructions are finished at this point
1484 if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
1485 emitWordLE(Binary);
1486 return;
1487 }
1488
1489 unsigned OpIdx = 0;
1490
1491 // Encode Rd
1492 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1493
1494 const MachineOperand &MO = MI.getOperand(OpIdx++);
1495 if (OpIdx == MCID.getNumOperands() ||
1496 MCID.OpInfo[OpIdx].isPredicate() ||
1497 MCID.OpInfo[OpIdx].isOptionalDef()) {
1498 // Encode Rm and it's done.
1499 Binary |= getMachineOpValue(MI, MO);
1500 emitWordLE(Binary);
1501 return;
1502 }
1503
1504 // Encode Rn.
1505 Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1506
1507 // Encode Rm.
1508 Binary |= getMachineOpValue(MI, OpIdx++);
1509
1510 // Encode shift_imm.
1511 unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1512 if (MCID.Opcode == ARM::PKHTB) {
1513 assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1514 if (ShiftAmt == 32)
1515 ShiftAmt = 0;
1516 }
1517 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1518 Binary |= ShiftAmt << ARMII::ShiftShift;
1519
1520 emitWordLE(Binary);
1521 }
1522
emitSaturateInstruction(const MachineInstr & MI)1523 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1524 const MCInstrDesc &MCID = MI.getDesc();
1525
1526 // Part of binary is determined by TableGen.
1527 unsigned Binary = getBinaryCodeForInstr(MI);
1528
1529 // Set the conditional execution predicate
1530 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1531
1532 // Encode Rd
1533 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1534
1535 // Encode saturate bit position.
1536 unsigned Pos = MI.getOperand(1).getImm();
1537 if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
1538 Pos -= 1;
1539 assert((Pos < 16 || (Pos < 32 &&
1540 MCID.Opcode != ARM::SSAT16 &&
1541 MCID.Opcode != ARM::USAT16)) &&
1542 "saturate bit position out of range");
1543 Binary |= Pos << 16;
1544
1545 // Encode Rm
1546 Binary |= getMachineOpValue(MI, 2);
1547
1548 // Encode shift_imm.
1549 if (MCID.getNumOperands() == 4) {
1550 unsigned ShiftOp = MI.getOperand(3).getImm();
1551 ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1552 if (Opc == ARM_AM::asr)
1553 Binary |= (1 << 6);
1554 unsigned ShiftAmt = MI.getOperand(3).getImm();
1555 if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1556 ShiftAmt = 0;
1557 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1558 Binary |= ShiftAmt << ARMII::ShiftShift;
1559 }
1560
1561 emitWordLE(Binary);
1562 }
1563
emitBranchInstruction(const MachineInstr & MI)1564 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1565 const MCInstrDesc &MCID = MI.getDesc();
1566
1567 if (MCID.Opcode == ARM::TPsoft) {
1568 llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1569 }
1570
1571 // Part of binary is determined by TableGn.
1572 unsigned Binary = getBinaryCodeForInstr(MI);
1573
1574 if (MCID.Opcode == ARM::B) {
1575 Binary = 0xEA000000;
1576 }
1577
1578 // Set the conditional execution predicate
1579 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1580
1581 // Set signed_immed_24 field
1582 Binary |= getMachineOpValue(MI, 0);
1583
1584 emitWordLE(Binary);
1585 }
1586
emitInlineJumpTable(unsigned JTIndex)1587 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1588 // Remember the base address of the inline jump table.
1589 uintptr_t JTBase = MCE.getCurrentPCValue();
1590 JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1591 DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1592 << '\n');
1593
1594 // Now emit the jump table entries.
1595 const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1596 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1597 if (IsPIC)
1598 // DestBB address - JT base.
1599 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1600 else
1601 // Absolute DestBB address.
1602 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1603 emitWordLE(0);
1604 }
1605 }
1606
emitMiscBranchInstruction(const MachineInstr & MI)1607 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1608 const MCInstrDesc &MCID = MI.getDesc();
1609
1610 // Handle jump tables.
1611 if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
1612 // First emit a ldr pc, [] instruction.
1613 emitDataProcessingInstruction(MI, ARM::PC);
1614
1615 // Then emit the inline jump table.
1616 unsigned JTIndex =
1617 (MCID.Opcode == ARM::BR_JTr)
1618 ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1619 emitInlineJumpTable(JTIndex);
1620 return;
1621 } else if (MCID.Opcode == ARM::BR_JTm) {
1622 // First emit a ldr pc, [] instruction.
1623 emitLoadStoreInstruction(MI, ARM::PC);
1624
1625 // Then emit the inline jump table.
1626 emitInlineJumpTable(MI.getOperand(3).getIndex());
1627 return;
1628 }
1629
1630 // Part of binary is determined by TableGn.
1631 unsigned Binary = getBinaryCodeForInstr(MI);
1632
1633 // Set the conditional execution predicate
1634 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1635
1636 if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
1637 // The return register is LR.
1638 Binary |= getARMRegisterNumbering(ARM::LR);
1639 else
1640 // otherwise, set the return register
1641 Binary |= getMachineOpValue(MI, 0);
1642
1643 emitWordLE(Binary);
1644 }
1645
encodeVFPRd(const MachineInstr & MI,unsigned OpIdx)1646 static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1647 unsigned RegD = MI.getOperand(OpIdx).getReg();
1648 unsigned Binary = 0;
1649 bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1650 RegD = getARMRegisterNumbering(RegD);
1651 if (!isSPVFP) {
1652 Binary |= (RegD & 0x0F) << ARMII::RegRdShift;
1653 Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift;
1654 } else {
1655 Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1656 Binary |= (RegD & 0x01) << ARMII::D_BitShift;
1657 }
1658 return Binary;
1659 }
1660
encodeVFPRn(const MachineInstr & MI,unsigned OpIdx)1661 static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1662 unsigned RegN = MI.getOperand(OpIdx).getReg();
1663 unsigned Binary = 0;
1664 bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1665 RegN = getARMRegisterNumbering(RegN);
1666 if (!isSPVFP) {
1667 Binary |= (RegN & 0x0F) << ARMII::RegRnShift;
1668 Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift;
1669 } else {
1670 Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1671 Binary |= (RegN & 0x01) << ARMII::N_BitShift;
1672 }
1673 return Binary;
1674 }
1675
encodeVFPRm(const MachineInstr & MI,unsigned OpIdx)1676 static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1677 unsigned RegM = MI.getOperand(OpIdx).getReg();
1678 unsigned Binary = 0;
1679 bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1680 RegM = getARMRegisterNumbering(RegM);
1681 if (!isSPVFP) {
1682 Binary |= (RegM & 0x0F);
1683 Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift;
1684 } else {
1685 Binary |= ((RegM & 0x1E) >> 1);
1686 Binary |= (RegM & 0x01) << ARMII::M_BitShift;
1687 }
1688 return Binary;
1689 }
1690
emitVFPArithInstruction(const MachineInstr & MI)1691 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1692 const MCInstrDesc &MCID = MI.getDesc();
1693
1694 // Part of binary is determined by TableGn.
1695 unsigned Binary = getBinaryCodeForInstr(MI);
1696
1697 // Set the conditional execution predicate
1698 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1699
1700 unsigned OpIdx = 0;
1701
1702 // Encode Dd / Sd.
1703 Binary |= encodeVFPRd(MI, OpIdx++);
1704
1705 // If this is a two-address operand, skip it, e.g. FMACD.
1706 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1707 ++OpIdx;
1708
1709 // Encode Dn / Sn.
1710 if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1711 Binary |= encodeVFPRn(MI, OpIdx++);
1712
1713 if (OpIdx == MCID.getNumOperands() ||
1714 MCID.OpInfo[OpIdx].isPredicate() ||
1715 MCID.OpInfo[OpIdx].isOptionalDef()) {
1716 // FCMPEZD etc. has only one operand.
1717 emitWordLE(Binary);
1718 return;
1719 }
1720
1721 // Encode Dm / Sm.
1722 Binary |= encodeVFPRm(MI, OpIdx);
1723
1724 emitWordLE(Binary);
1725 }
1726
emitVFPConversionInstruction(const MachineInstr & MI)1727 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1728 const MCInstrDesc &MCID = MI.getDesc();
1729 unsigned Form = MCID.TSFlags & ARMII::FormMask;
1730
1731 // Part of binary is determined by TableGn.
1732 unsigned Binary = getBinaryCodeForInstr(MI);
1733
1734 // Set the conditional execution predicate
1735 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1736
1737 switch (Form) {
1738 default: break;
1739 case ARMII::VFPConv1Frm:
1740 case ARMII::VFPConv2Frm:
1741 case ARMII::VFPConv3Frm:
1742 // Encode Dd / Sd.
1743 Binary |= encodeVFPRd(MI, 0);
1744 break;
1745 case ARMII::VFPConv4Frm:
1746 // Encode Dn / Sn.
1747 Binary |= encodeVFPRn(MI, 0);
1748 break;
1749 case ARMII::VFPConv5Frm:
1750 // Encode Dm / Sm.
1751 Binary |= encodeVFPRm(MI, 0);
1752 break;
1753 }
1754
1755 switch (Form) {
1756 default: break;
1757 case ARMII::VFPConv1Frm:
1758 // Encode Dm / Sm.
1759 Binary |= encodeVFPRm(MI, 1);
1760 break;
1761 case ARMII::VFPConv2Frm:
1762 case ARMII::VFPConv3Frm:
1763 // Encode Dn / Sn.
1764 Binary |= encodeVFPRn(MI, 1);
1765 break;
1766 case ARMII::VFPConv4Frm:
1767 case ARMII::VFPConv5Frm:
1768 // Encode Dd / Sd.
1769 Binary |= encodeVFPRd(MI, 1);
1770 break;
1771 }
1772
1773 if (Form == ARMII::VFPConv5Frm)
1774 // Encode Dn / Sn.
1775 Binary |= encodeVFPRn(MI, 2);
1776 else if (Form == ARMII::VFPConv3Frm)
1777 // Encode Dm / Sm.
1778 Binary |= encodeVFPRm(MI, 2);
1779
1780 emitWordLE(Binary);
1781 }
1782
emitVFPLoadStoreInstruction(const MachineInstr & MI)1783 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1784 // Part of binary is determined by TableGn.
1785 unsigned Binary = getBinaryCodeForInstr(MI);
1786
1787 // Set the conditional execution predicate
1788 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1789
1790 if (MI.getOpcode() == ARM::VLDRS || MI.getOpcode() == ARM::VLDRD ||
1791 MI.getOpcode() == ARM::VSTRS || MI.getOpcode() == ARM::VSTRD){
1792 emitWordLE(Binary);
1793 return;
1794 }
1795
1796 unsigned OpIdx = 0;
1797
1798 // Encode Dd / Sd.
1799 Binary |= encodeVFPRd(MI, OpIdx++);
1800
1801 // Encode address base.
1802 const MachineOperand &Base = MI.getOperand(OpIdx++);
1803 Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1804
1805 // If there is a non-zero immediate offset, encode it.
1806 if (Base.isReg()) {
1807 const MachineOperand &Offset = MI.getOperand(OpIdx);
1808 if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1809 if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1810 Binary |= 1 << ARMII::U_BitShift;
1811 Binary |= ImmOffs;
1812 emitWordLE(Binary);
1813 return;
1814 }
1815 }
1816
1817 // If immediate offset is omitted, default to +0.
1818 Binary |= 1 << ARMII::U_BitShift;
1819
1820 emitWordLE(Binary);
1821 }
1822
1823 void
emitVFPLoadStoreMultipleInstruction(const MachineInstr & MI)1824 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1825 const MCInstrDesc &MCID = MI.getDesc();
1826 bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1827
1828 // Part of binary is determined by TableGn.
1829 unsigned Binary = getBinaryCodeForInstr(MI);
1830
1831 // Set the conditional execution predicate
1832 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1833
1834 // Skip operand 0 of an instruction with base register update.
1835 unsigned OpIdx = 0;
1836 if (IsUpdating)
1837 ++OpIdx;
1838
1839 // Set base address operand
1840 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1841
1842 // Set addressing mode by modifying bits U(23) and P(24)
1843 ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1844 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1845
1846 // Set bit W(21)
1847 if (IsUpdating)
1848 Binary |= 0x1 << ARMII::W_BitShift;
1849
1850 // First register is encoded in Dd.
1851 Binary |= encodeVFPRd(MI, OpIdx+2);
1852
1853 // Count the number of registers.
1854 unsigned NumRegs = 1;
1855 for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1856 const MachineOperand &MO = MI.getOperand(i);
1857 if (!MO.isReg() || MO.isImplicit())
1858 break;
1859 ++NumRegs;
1860 }
1861 // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1862 // Otherwise, it will be 0, in the case of 32-bit registers.
1863 if(Binary & 0x100)
1864 Binary |= NumRegs * 2;
1865 else
1866 Binary |= NumRegs;
1867
1868 emitWordLE(Binary);
1869 }
1870
emitMiscInstruction(const MachineInstr & MI)1871 void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1872 unsigned Opcode = MI.getDesc().Opcode;
1873 // Part of binary is determined by TableGn.
1874 unsigned Binary = getBinaryCodeForInstr(MI);
1875
1876 if (Opcode == ARM::FCONSTS) {
1877 unsigned Imm = getMachineOpValue(MI, 1);
1878 Binary &= ~(0x780000 >> 19);
1879 Binary |= (Imm & 0x780000) >> 19;
1880 Binary &= ~(0x3800000 >> 7);
1881 Binary |= (Imm & 0x3800000) >> 7;
1882 Binary = VFPThumb2PostEncoder(MI, Binary);
1883 }
1884
1885 // Set the conditional execution predicate
1886 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1887
1888 emitWordLE(Binary);
1889 }
1890
encodeNEONRd(const MachineInstr & MI,unsigned OpIdx)1891 static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1892 unsigned RegD = MI.getOperand(OpIdx).getReg();
1893 unsigned Binary = 0;
1894 RegD = getARMRegisterNumbering(RegD);
1895 Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1896 Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1897 return Binary;
1898 }
1899
encodeNEONRn(const MachineInstr & MI,unsigned OpIdx)1900 static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1901 unsigned RegN = MI.getOperand(OpIdx).getReg();
1902 unsigned Binary = 0;
1903 RegN = getARMRegisterNumbering(RegN);
1904 Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1905 Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1906 return Binary;
1907 }
1908
encodeNEONRm(const MachineInstr & MI,unsigned OpIdx)1909 static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1910 unsigned RegM = MI.getOperand(OpIdx).getReg();
1911 unsigned Binary = 0;
1912 RegM = getARMRegisterNumbering(RegM);
1913 Binary |= (RegM & 0xf);
1914 Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1915 return Binary;
1916 }
1917
1918 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1919 /// data-processing instruction to the corresponding Thumb encoding.
convertNEONDataProcToThumb(unsigned Binary)1920 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1921 assert((Binary & 0xfe000000) == 0xf2000000 &&
1922 "not an ARM NEON data-processing instruction");
1923 unsigned UBit = (Binary >> 24) & 1;
1924 return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1925 }
1926
emitNEONLaneInstruction(const MachineInstr & MI)1927 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1928 unsigned Binary = getBinaryCodeForInstr(MI);
1929
1930 unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1931 const MCInstrDesc &MCID = MI.getDesc();
1932 if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1933 RegTOpIdx = 0;
1934 RegNOpIdx = 1;
1935 LnOpIdx = 2;
1936 } else { // ARMII::NSetLnFrm
1937 RegTOpIdx = 2;
1938 RegNOpIdx = 0;
1939 LnOpIdx = 3;
1940 }
1941
1942 // Set the conditional execution predicate
1943 Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1944
1945 unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1946 RegT = getARMRegisterNumbering(RegT);
1947 Binary |= (RegT << ARMII::RegRdShift);
1948 Binary |= encodeNEONRn(MI, RegNOpIdx);
1949
1950 unsigned LaneShift;
1951 if ((Binary & (1 << 22)) != 0)
1952 LaneShift = 0; // 8-bit elements
1953 else if ((Binary & (1 << 5)) != 0)
1954 LaneShift = 1; // 16-bit elements
1955 else
1956 LaneShift = 2; // 32-bit elements
1957
1958 unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1959 unsigned Opc1 = Lane >> 2;
1960 unsigned Opc2 = Lane & 3;
1961 assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1962 Binary |= (Opc1 << 21);
1963 Binary |= (Opc2 << 5);
1964
1965 emitWordLE(Binary);
1966 }
1967
emitNEONDupInstruction(const MachineInstr & MI)1968 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1969 unsigned Binary = getBinaryCodeForInstr(MI);
1970
1971 // Set the conditional execution predicate
1972 Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1973
1974 unsigned RegT = MI.getOperand(1).getReg();
1975 RegT = getARMRegisterNumbering(RegT);
1976 Binary |= (RegT << ARMII::RegRdShift);
1977 Binary |= encodeNEONRn(MI, 0);
1978 emitWordLE(Binary);
1979 }
1980
emitNEON1RegModImmInstruction(const MachineInstr & MI)1981 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1982 unsigned Binary = getBinaryCodeForInstr(MI);
1983 // Destination register is encoded in Dd.
1984 Binary |= encodeNEONRd(MI, 0);
1985 // Immediate fields: Op, Cmode, I, Imm3, Imm4
1986 unsigned Imm = MI.getOperand(1).getImm();
1987 unsigned Op = (Imm >> 12) & 1;
1988 unsigned Cmode = (Imm >> 8) & 0xf;
1989 unsigned I = (Imm >> 7) & 1;
1990 unsigned Imm3 = (Imm >> 4) & 0x7;
1991 unsigned Imm4 = Imm & 0xf;
1992 Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1993 if (IsThumb)
1994 Binary = convertNEONDataProcToThumb(Binary);
1995 emitWordLE(Binary);
1996 }
1997
emitNEON2RegInstruction(const MachineInstr & MI)1998 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1999 const MCInstrDesc &MCID = MI.getDesc();
2000 unsigned Binary = getBinaryCodeForInstr(MI);
2001 // Destination register is encoded in Dd; source register in Dm.
2002 unsigned OpIdx = 0;
2003 Binary |= encodeNEONRd(MI, OpIdx++);
2004 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2005 ++OpIdx;
2006 Binary |= encodeNEONRm(MI, OpIdx);
2007 if (IsThumb)
2008 Binary = convertNEONDataProcToThumb(Binary);
2009 // FIXME: This does not handle VDUPfdf or VDUPfqf.
2010 emitWordLE(Binary);
2011 }
2012
emitNEON3RegInstruction(const MachineInstr & MI)2013 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
2014 const MCInstrDesc &MCID = MI.getDesc();
2015 unsigned Binary = getBinaryCodeForInstr(MI);
2016 // Destination register is encoded in Dd; source registers in Dn and Dm.
2017 unsigned OpIdx = 0;
2018 Binary |= encodeNEONRd(MI, OpIdx++);
2019 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2020 ++OpIdx;
2021 Binary |= encodeNEONRn(MI, OpIdx++);
2022 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2023 ++OpIdx;
2024 Binary |= encodeNEONRm(MI, OpIdx);
2025 if (IsThumb)
2026 Binary = convertNEONDataProcToThumb(Binary);
2027 // FIXME: This does not handle VMOVDneon or VMOVQ.
2028 emitWordLE(Binary);
2029 }
2030
2031 #include "ARMGenCodeEmitter.inc"
2032