1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Builtin calls as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "TargetInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "CGObjCRuntime.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/Basic/TargetBuiltins.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25
26 using namespace clang;
27 using namespace CodeGen;
28 using namespace llvm;
29
EmitMemoryBarrier(CodeGenFunction & CGF,bool LoadLoad,bool LoadStore,bool StoreLoad,bool StoreStore,bool Device)30 static void EmitMemoryBarrier(CodeGenFunction &CGF,
31 bool LoadLoad, bool LoadStore,
32 bool StoreLoad, bool StoreStore,
33 bool Device) {
34 Value *True = CGF.Builder.getTrue();
35 Value *False = CGF.Builder.getFalse();
36 Value *C[5] = { LoadLoad ? True : False,
37 LoadStore ? True : False,
38 StoreLoad ? True : False,
39 StoreStore ? True : False,
40 Device ? True : False };
41 CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::memory_barrier), C);
42 }
43
44 /// Emit the conversions required to turn the given value into an
45 /// integer of the given size.
EmitToInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::IntegerType * IntType)46 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
47 QualType T, llvm::IntegerType *IntType) {
48 V = CGF.EmitToMemory(V, T);
49
50 if (V->getType()->isPointerTy())
51 return CGF.Builder.CreatePtrToInt(V, IntType);
52
53 assert(V->getType() == IntType);
54 return V;
55 }
56
EmitFromInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::Type * ResultType)57 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
58 QualType T, llvm::Type *ResultType) {
59 V = CGF.EmitFromMemory(V, T);
60
61 if (ResultType->isPointerTy())
62 return CGF.Builder.CreateIntToPtr(V, ResultType);
63
64 assert(V->getType() == ResultType);
65 return V;
66 }
67
68 // The atomic builtins are also full memory barriers. This is a utility for
69 // wrapping a call to the builtins with memory barriers.
EmitCallWithBarrier(CodeGenFunction & CGF,Value * Fn,ArrayRef<Value * > Args)70 static Value *EmitCallWithBarrier(CodeGenFunction &CGF, Value *Fn,
71 ArrayRef<Value *> Args) {
72 // FIXME: We need a target hook for whether this applies to device memory or
73 // not.
74 bool Device = true;
75
76 // Create barriers both before and after the call.
77 EmitMemoryBarrier(CGF, true, true, true, true, Device);
78 Value *Result = CGF.Builder.CreateCall(Fn, Args);
79 EmitMemoryBarrier(CGF, true, true, true, true, Device);
80 return Result;
81 }
82
83 /// Utility to insert an atomic instruction based on Instrinsic::ID
84 /// and the expression node.
EmitBinaryAtomic(CodeGenFunction & CGF,Intrinsic::ID Id,const CallExpr * E)85 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
86 Intrinsic::ID Id, const CallExpr *E) {
87 QualType T = E->getType();
88 assert(E->getArg(0)->getType()->isPointerType());
89 assert(CGF.getContext().hasSameUnqualifiedType(T,
90 E->getArg(0)->getType()->getPointeeType()));
91 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
92
93 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
94 unsigned AddrSpace =
95 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
96
97 llvm::IntegerType *IntType =
98 llvm::IntegerType::get(CGF.getLLVMContext(),
99 CGF.getContext().getTypeSize(T));
100 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
101
102 llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
103 llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes);
104
105 llvm::Value *Args[2];
106 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
107 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
108 llvm::Type *ValueType = Args[1]->getType();
109 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
110
111 llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args);
112 Result = EmitFromInt(CGF, Result, T, ValueType);
113 return RValue::get(Result);
114 }
115
116 /// Utility to insert an atomic instruction based Instrinsic::ID and
117 /// the expression node, where the return value is the result of the
118 /// operation.
EmitBinaryAtomicPost(CodeGenFunction & CGF,Intrinsic::ID Id,const CallExpr * E,Instruction::BinaryOps Op)119 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
120 Intrinsic::ID Id, const CallExpr *E,
121 Instruction::BinaryOps Op) {
122 QualType T = E->getType();
123 assert(E->getArg(0)->getType()->isPointerType());
124 assert(CGF.getContext().hasSameUnqualifiedType(T,
125 E->getArg(0)->getType()->getPointeeType()));
126 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
127
128 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
129 unsigned AddrSpace =
130 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
131
132 llvm::IntegerType *IntType =
133 llvm::IntegerType::get(CGF.getLLVMContext(),
134 CGF.getContext().getTypeSize(T));
135 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
136
137 llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
138 llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes);
139
140 llvm::Value *Args[2];
141 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
142 llvm::Type *ValueType = Args[1]->getType();
143 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
144 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
145
146 llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args);
147 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
148 Result = EmitFromInt(CGF, Result, T, ValueType);
149 return RValue::get(Result);
150 }
151
152 /// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
153 /// which must be a scalar floating point type.
EmitFAbs(CodeGenFunction & CGF,Value * V,QualType ValTy)154 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
155 const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
156 assert(ValTyP && "isn't scalar fp type!");
157
158 StringRef FnName;
159 switch (ValTyP->getKind()) {
160 default: assert(0 && "Isn't a scalar fp type!");
161 case BuiltinType::Float: FnName = "fabsf"; break;
162 case BuiltinType::Double: FnName = "fabs"; break;
163 case BuiltinType::LongDouble: FnName = "fabsl"; break;
164 }
165
166 // The prototype is something that takes and returns whatever V's type is.
167 llvm::Type *ArgTys[] = { V->getType() };
168 llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), ArgTys,
169 false);
170 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
171
172 return CGF.Builder.CreateCall(Fn, V, "abs");
173 }
174
EmitBuiltinExpr(const FunctionDecl * FD,unsigned BuiltinID,const CallExpr * E)175 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
176 unsigned BuiltinID, const CallExpr *E) {
177 // See if we can constant fold this builtin. If so, don't emit it at all.
178 Expr::EvalResult Result;
179 if (E->Evaluate(Result, CGM.getContext()) &&
180 !Result.hasSideEffects()) {
181 if (Result.Val.isInt())
182 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
183 Result.Val.getInt()));
184 if (Result.Val.isFloat())
185 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
186 Result.Val.getFloat()));
187 }
188
189 switch (BuiltinID) {
190 default: break; // Handle intrinsics and libm functions below.
191 case Builtin::BI__builtin___CFStringMakeConstantString:
192 case Builtin::BI__builtin___NSStringMakeConstantString:
193 return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
194 case Builtin::BI__builtin_stdarg_start:
195 case Builtin::BI__builtin_va_start:
196 case Builtin::BI__builtin_va_end: {
197 Value *ArgValue = EmitVAListRef(E->getArg(0));
198 llvm::Type *DestType = Int8PtrTy;
199 if (ArgValue->getType() != DestType)
200 ArgValue = Builder.CreateBitCast(ArgValue, DestType,
201 ArgValue->getName().data());
202
203 Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
204 Intrinsic::vaend : Intrinsic::vastart;
205 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
206 }
207 case Builtin::BI__builtin_va_copy: {
208 Value *DstPtr = EmitVAListRef(E->getArg(0));
209 Value *SrcPtr = EmitVAListRef(E->getArg(1));
210
211 llvm::Type *Type = Int8PtrTy;
212
213 DstPtr = Builder.CreateBitCast(DstPtr, Type);
214 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
215 return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
216 DstPtr, SrcPtr));
217 }
218 case Builtin::BI__builtin_abs: {
219 Value *ArgValue = EmitScalarExpr(E->getArg(0));
220
221 Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
222 Value *CmpResult =
223 Builder.CreateICmpSGE(ArgValue,
224 llvm::Constant::getNullValue(ArgValue->getType()),
225 "abscond");
226 Value *Result =
227 Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
228
229 return RValue::get(Result);
230 }
231 case Builtin::BI__builtin_ctz:
232 case Builtin::BI__builtin_ctzl:
233 case Builtin::BI__builtin_ctzll: {
234 Value *ArgValue = EmitScalarExpr(E->getArg(0));
235
236 llvm::Type *ArgType = ArgValue->getType();
237 Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
238
239 llvm::Type *ResultType = ConvertType(E->getType());
240 Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
241 if (Result->getType() != ResultType)
242 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
243 "cast");
244 return RValue::get(Result);
245 }
246 case Builtin::BI__builtin_clz:
247 case Builtin::BI__builtin_clzl:
248 case Builtin::BI__builtin_clzll: {
249 Value *ArgValue = EmitScalarExpr(E->getArg(0));
250
251 llvm::Type *ArgType = ArgValue->getType();
252 Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
253
254 llvm::Type *ResultType = ConvertType(E->getType());
255 Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
256 if (Result->getType() != ResultType)
257 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
258 "cast");
259 return RValue::get(Result);
260 }
261 case Builtin::BI__builtin_ffs:
262 case Builtin::BI__builtin_ffsl:
263 case Builtin::BI__builtin_ffsll: {
264 // ffs(x) -> x ? cttz(x) + 1 : 0
265 Value *ArgValue = EmitScalarExpr(E->getArg(0));
266
267 llvm::Type *ArgType = ArgValue->getType();
268 Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
269
270 llvm::Type *ResultType = ConvertType(E->getType());
271 Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"),
272 llvm::ConstantInt::get(ArgType, 1), "tmp");
273 Value *Zero = llvm::Constant::getNullValue(ArgType);
274 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
275 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
276 if (Result->getType() != ResultType)
277 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
278 "cast");
279 return RValue::get(Result);
280 }
281 case Builtin::BI__builtin_parity:
282 case Builtin::BI__builtin_parityl:
283 case Builtin::BI__builtin_parityll: {
284 // parity(x) -> ctpop(x) & 1
285 Value *ArgValue = EmitScalarExpr(E->getArg(0));
286
287 llvm::Type *ArgType = ArgValue->getType();
288 Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
289
290 llvm::Type *ResultType = ConvertType(E->getType());
291 Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp");
292 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1),
293 "tmp");
294 if (Result->getType() != ResultType)
295 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
296 "cast");
297 return RValue::get(Result);
298 }
299 case Builtin::BI__builtin_popcount:
300 case Builtin::BI__builtin_popcountl:
301 case Builtin::BI__builtin_popcountll: {
302 Value *ArgValue = EmitScalarExpr(E->getArg(0));
303
304 llvm::Type *ArgType = ArgValue->getType();
305 Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
306
307 llvm::Type *ResultType = ConvertType(E->getType());
308 Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
309 if (Result->getType() != ResultType)
310 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
311 "cast");
312 return RValue::get(Result);
313 }
314 case Builtin::BI__builtin_expect: {
315 Value *ArgValue = EmitScalarExpr(E->getArg(0));
316 llvm::Type *ArgType = ArgValue->getType();
317
318 Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
319 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
320
321 Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
322 "expval");
323 return RValue::get(Result);
324 }
325 case Builtin::BI__builtin_bswap32:
326 case Builtin::BI__builtin_bswap64: {
327 Value *ArgValue = EmitScalarExpr(E->getArg(0));
328 llvm::Type *ArgType = ArgValue->getType();
329 Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
330 return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
331 }
332 case Builtin::BI__builtin_object_size: {
333 // We pass this builtin onto the optimizer so that it can
334 // figure out the object size in more complex cases.
335 llvm::Type *ResType = ConvertType(E->getType());
336
337 // LLVM only supports 0 and 2, make sure that we pass along that
338 // as a boolean.
339 Value *Ty = EmitScalarExpr(E->getArg(1));
340 ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
341 assert(CI);
342 uint64_t val = CI->getZExtValue();
343 CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
344
345 Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType);
346 return RValue::get(Builder.CreateCall2(F,
347 EmitScalarExpr(E->getArg(0)),
348 CI));
349 }
350 case Builtin::BI__builtin_prefetch: {
351 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
352 // FIXME: Technically these constants should of type 'int', yes?
353 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
354 llvm::ConstantInt::get(Int32Ty, 0);
355 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
356 llvm::ConstantInt::get(Int32Ty, 3);
357 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
358 Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
359 return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
360 }
361 case Builtin::BI__builtin_trap: {
362 Value *F = CGM.getIntrinsic(Intrinsic::trap);
363 return RValue::get(Builder.CreateCall(F));
364 }
365 case Builtin::BI__builtin_unreachable: {
366 if (CatchUndefined)
367 EmitBranch(getTrapBB());
368 else
369 Builder.CreateUnreachable();
370
371 // We do need to preserve an insertion point.
372 EmitBlock(createBasicBlock("unreachable.cont"));
373
374 return RValue::get(0);
375 }
376
377 case Builtin::BI__builtin_powi:
378 case Builtin::BI__builtin_powif:
379 case Builtin::BI__builtin_powil: {
380 Value *Base = EmitScalarExpr(E->getArg(0));
381 Value *Exponent = EmitScalarExpr(E->getArg(1));
382 llvm::Type *ArgType = Base->getType();
383 Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
384 return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
385 }
386
387 case Builtin::BI__builtin_isgreater:
388 case Builtin::BI__builtin_isgreaterequal:
389 case Builtin::BI__builtin_isless:
390 case Builtin::BI__builtin_islessequal:
391 case Builtin::BI__builtin_islessgreater:
392 case Builtin::BI__builtin_isunordered: {
393 // Ordered comparisons: we know the arguments to these are matching scalar
394 // floating point values.
395 Value *LHS = EmitScalarExpr(E->getArg(0));
396 Value *RHS = EmitScalarExpr(E->getArg(1));
397
398 switch (BuiltinID) {
399 default: assert(0 && "Unknown ordered comparison");
400 case Builtin::BI__builtin_isgreater:
401 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
402 break;
403 case Builtin::BI__builtin_isgreaterequal:
404 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
405 break;
406 case Builtin::BI__builtin_isless:
407 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
408 break;
409 case Builtin::BI__builtin_islessequal:
410 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
411 break;
412 case Builtin::BI__builtin_islessgreater:
413 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
414 break;
415 case Builtin::BI__builtin_isunordered:
416 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
417 break;
418 }
419 // ZExt bool to int type.
420 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
421 "tmp"));
422 }
423 case Builtin::BI__builtin_isnan: {
424 Value *V = EmitScalarExpr(E->getArg(0));
425 V = Builder.CreateFCmpUNO(V, V, "cmp");
426 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
427 }
428
429 case Builtin::BI__builtin_isinf: {
430 // isinf(x) --> fabs(x) == infinity
431 Value *V = EmitScalarExpr(E->getArg(0));
432 V = EmitFAbs(*this, V, E->getArg(0)->getType());
433
434 V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
435 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
436 }
437
438 // TODO: BI__builtin_isinf_sign
439 // isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
440
441 case Builtin::BI__builtin_isnormal: {
442 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
443 Value *V = EmitScalarExpr(E->getArg(0));
444 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
445
446 Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
447 Value *IsLessThanInf =
448 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
449 APFloat Smallest = APFloat::getSmallestNormalized(
450 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
451 Value *IsNormal =
452 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
453 "isnormal");
454 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
455 V = Builder.CreateAnd(V, IsNormal, "and");
456 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
457 }
458
459 case Builtin::BI__builtin_isfinite: {
460 // isfinite(x) --> x == x && fabs(x) != infinity; }
461 Value *V = EmitScalarExpr(E->getArg(0));
462 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
463
464 Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
465 Value *IsNotInf =
466 Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
467
468 V = Builder.CreateAnd(Eq, IsNotInf, "and");
469 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
470 }
471
472 case Builtin::BI__builtin_fpclassify: {
473 Value *V = EmitScalarExpr(E->getArg(5));
474 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
475
476 // Create Result
477 BasicBlock *Begin = Builder.GetInsertBlock();
478 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
479 Builder.SetInsertPoint(End);
480 PHINode *Result =
481 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
482 "fpclassify_result");
483
484 // if (V==0) return FP_ZERO
485 Builder.SetInsertPoint(Begin);
486 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
487 "iszero");
488 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
489 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
490 Builder.CreateCondBr(IsZero, End, NotZero);
491 Result->addIncoming(ZeroLiteral, Begin);
492
493 // if (V != V) return FP_NAN
494 Builder.SetInsertPoint(NotZero);
495 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
496 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
497 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
498 Builder.CreateCondBr(IsNan, End, NotNan);
499 Result->addIncoming(NanLiteral, NotZero);
500
501 // if (fabs(V) == infinity) return FP_INFINITY
502 Builder.SetInsertPoint(NotNan);
503 Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
504 Value *IsInf =
505 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
506 "isinf");
507 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
508 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
509 Builder.CreateCondBr(IsInf, End, NotInf);
510 Result->addIncoming(InfLiteral, NotNan);
511
512 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
513 Builder.SetInsertPoint(NotInf);
514 APFloat Smallest = APFloat::getSmallestNormalized(
515 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
516 Value *IsNormal =
517 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
518 "isnormal");
519 Value *NormalResult =
520 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
521 EmitScalarExpr(E->getArg(3)));
522 Builder.CreateBr(End);
523 Result->addIncoming(NormalResult, NotInf);
524
525 // return Result
526 Builder.SetInsertPoint(End);
527 return RValue::get(Result);
528 }
529
530 case Builtin::BIalloca:
531 case Builtin::BI__builtin_alloca: {
532 Value *Size = EmitScalarExpr(E->getArg(0));
533 return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size, "tmp"));
534 }
535 case Builtin::BIbzero:
536 case Builtin::BI__builtin_bzero: {
537 Value *Address = EmitScalarExpr(E->getArg(0));
538 Value *SizeVal = EmitScalarExpr(E->getArg(1));
539 Builder.CreateMemSet(Address, Builder.getInt8(0), SizeVal, 1, false);
540 return RValue::get(Address);
541 }
542 case Builtin::BImemcpy:
543 case Builtin::BI__builtin_memcpy: {
544 Value *Address = EmitScalarExpr(E->getArg(0));
545 Value *SrcAddr = EmitScalarExpr(E->getArg(1));
546 Value *SizeVal = EmitScalarExpr(E->getArg(2));
547 Builder.CreateMemCpy(Address, SrcAddr, SizeVal, 1, false);
548 return RValue::get(Address);
549 }
550
551 case Builtin::BI__builtin___memcpy_chk: {
552 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
553 if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
554 !E->getArg(3)->isEvaluatable(CGM.getContext()))
555 break;
556 llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
557 llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
558 if (Size.ugt(DstSize))
559 break;
560 Value *Dest = EmitScalarExpr(E->getArg(0));
561 Value *Src = EmitScalarExpr(E->getArg(1));
562 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
563 Builder.CreateMemCpy(Dest, Src, SizeVal, 1, false);
564 return RValue::get(Dest);
565 }
566
567 case Builtin::BI__builtin_objc_memmove_collectable: {
568 Value *Address = EmitScalarExpr(E->getArg(0));
569 Value *SrcAddr = EmitScalarExpr(E->getArg(1));
570 Value *SizeVal = EmitScalarExpr(E->getArg(2));
571 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
572 Address, SrcAddr, SizeVal);
573 return RValue::get(Address);
574 }
575
576 case Builtin::BI__builtin___memmove_chk: {
577 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
578 if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
579 !E->getArg(3)->isEvaluatable(CGM.getContext()))
580 break;
581 llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
582 llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
583 if (Size.ugt(DstSize))
584 break;
585 Value *Dest = EmitScalarExpr(E->getArg(0));
586 Value *Src = EmitScalarExpr(E->getArg(1));
587 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
588 Builder.CreateMemMove(Dest, Src, SizeVal, 1, false);
589 return RValue::get(Dest);
590 }
591
592 case Builtin::BImemmove:
593 case Builtin::BI__builtin_memmove: {
594 Value *Address = EmitScalarExpr(E->getArg(0));
595 Value *SrcAddr = EmitScalarExpr(E->getArg(1));
596 Value *SizeVal = EmitScalarExpr(E->getArg(2));
597 Builder.CreateMemMove(Address, SrcAddr, SizeVal, 1, false);
598 return RValue::get(Address);
599 }
600 case Builtin::BImemset:
601 case Builtin::BI__builtin_memset: {
602 Value *Address = EmitScalarExpr(E->getArg(0));
603 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
604 Builder.getInt8Ty());
605 Value *SizeVal = EmitScalarExpr(E->getArg(2));
606 Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
607 return RValue::get(Address);
608 }
609 case Builtin::BI__builtin___memset_chk: {
610 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
611 if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
612 !E->getArg(3)->isEvaluatable(CGM.getContext()))
613 break;
614 llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
615 llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
616 if (Size.ugt(DstSize))
617 break;
618 Value *Address = EmitScalarExpr(E->getArg(0));
619 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
620 Builder.getInt8Ty());
621 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
622 Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
623
624 return RValue::get(Address);
625 }
626 case Builtin::BI__builtin_dwarf_cfa: {
627 // The offset in bytes from the first argument to the CFA.
628 //
629 // Why on earth is this in the frontend? Is there any reason at
630 // all that the backend can't reasonably determine this while
631 // lowering llvm.eh.dwarf.cfa()?
632 //
633 // TODO: If there's a satisfactory reason, add a target hook for
634 // this instead of hard-coding 0, which is correct for most targets.
635 int32_t Offset = 0;
636
637 Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
638 return RValue::get(Builder.CreateCall(F,
639 llvm::ConstantInt::get(Int32Ty, Offset)));
640 }
641 case Builtin::BI__builtin_return_address: {
642 Value *Depth = EmitScalarExpr(E->getArg(0));
643 Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
644 Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
645 return RValue::get(Builder.CreateCall(F, Depth));
646 }
647 case Builtin::BI__builtin_frame_address: {
648 Value *Depth = EmitScalarExpr(E->getArg(0));
649 Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
650 Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
651 return RValue::get(Builder.CreateCall(F, Depth));
652 }
653 case Builtin::BI__builtin_extract_return_addr: {
654 Value *Address = EmitScalarExpr(E->getArg(0));
655 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
656 return RValue::get(Result);
657 }
658 case Builtin::BI__builtin_frob_return_addr: {
659 Value *Address = EmitScalarExpr(E->getArg(0));
660 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
661 return RValue::get(Result);
662 }
663 case Builtin::BI__builtin_dwarf_sp_column: {
664 llvm::IntegerType *Ty
665 = cast<llvm::IntegerType>(ConvertType(E->getType()));
666 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
667 if (Column == -1) {
668 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
669 return RValue::get(llvm::UndefValue::get(Ty));
670 }
671 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
672 }
673 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
674 Value *Address = EmitScalarExpr(E->getArg(0));
675 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
676 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
677 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
678 }
679 case Builtin::BI__builtin_eh_return: {
680 Value *Int = EmitScalarExpr(E->getArg(0));
681 Value *Ptr = EmitScalarExpr(E->getArg(1));
682
683 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
684 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
685 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
686 Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
687 ? Intrinsic::eh_return_i32
688 : Intrinsic::eh_return_i64);
689 Builder.CreateCall2(F, Int, Ptr);
690 Builder.CreateUnreachable();
691
692 // We do need to preserve an insertion point.
693 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
694
695 return RValue::get(0);
696 }
697 case Builtin::BI__builtin_unwind_init: {
698 Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
699 return RValue::get(Builder.CreateCall(F));
700 }
701 case Builtin::BI__builtin_extend_pointer: {
702 // Extends a pointer to the size of an _Unwind_Word, which is
703 // uint64_t on all platforms. Generally this gets poked into a
704 // register and eventually used as an address, so if the
705 // addressing registers are wider than pointers and the platform
706 // doesn't implicitly ignore high-order bits when doing
707 // addressing, we need to make sure we zext / sext based on
708 // the platform's expectations.
709 //
710 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
711
712 // Cast the pointer to intptr_t.
713 Value *Ptr = EmitScalarExpr(E->getArg(0));
714 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
715
716 // If that's 64 bits, we're done.
717 if (IntPtrTy->getBitWidth() == 64)
718 return RValue::get(Result);
719
720 // Otherwise, ask the codegen data what to do.
721 if (getTargetHooks().extendPointerWithSExt())
722 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
723 else
724 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
725 }
726 case Builtin::BI__builtin_setjmp: {
727 // Buffer is a void**.
728 Value *Buf = EmitScalarExpr(E->getArg(0));
729
730 // Store the frame pointer to the setjmp buffer.
731 Value *FrameAddr =
732 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
733 ConstantInt::get(Int32Ty, 0));
734 Builder.CreateStore(FrameAddr, Buf);
735
736 // Store the stack pointer to the setjmp buffer.
737 Value *StackAddr =
738 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
739 Value *StackSaveSlot =
740 Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
741 Builder.CreateStore(StackAddr, StackSaveSlot);
742
743 // Call LLVM's EH setjmp, which is lightweight.
744 Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
745 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
746 return RValue::get(Builder.CreateCall(F, Buf));
747 }
748 case Builtin::BI__builtin_longjmp: {
749 Value *Buf = EmitScalarExpr(E->getArg(0));
750 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
751
752 // Call LLVM's EH longjmp, which is lightweight.
753 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
754
755 // longjmp doesn't return; mark this as unreachable.
756 Builder.CreateUnreachable();
757
758 // We do need to preserve an insertion point.
759 EmitBlock(createBasicBlock("longjmp.cont"));
760
761 return RValue::get(0);
762 }
763 case Builtin::BI__sync_fetch_and_add:
764 case Builtin::BI__sync_fetch_and_sub:
765 case Builtin::BI__sync_fetch_and_or:
766 case Builtin::BI__sync_fetch_and_and:
767 case Builtin::BI__sync_fetch_and_xor:
768 case Builtin::BI__sync_add_and_fetch:
769 case Builtin::BI__sync_sub_and_fetch:
770 case Builtin::BI__sync_and_and_fetch:
771 case Builtin::BI__sync_or_and_fetch:
772 case Builtin::BI__sync_xor_and_fetch:
773 case Builtin::BI__sync_val_compare_and_swap:
774 case Builtin::BI__sync_bool_compare_and_swap:
775 case Builtin::BI__sync_lock_test_and_set:
776 case Builtin::BI__sync_lock_release:
777 case Builtin::BI__sync_swap:
778 assert(0 && "Shouldn't make it through sema");
779 case Builtin::BI__sync_fetch_and_add_1:
780 case Builtin::BI__sync_fetch_and_add_2:
781 case Builtin::BI__sync_fetch_and_add_4:
782 case Builtin::BI__sync_fetch_and_add_8:
783 case Builtin::BI__sync_fetch_and_add_16:
784 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E);
785 case Builtin::BI__sync_fetch_and_sub_1:
786 case Builtin::BI__sync_fetch_and_sub_2:
787 case Builtin::BI__sync_fetch_and_sub_4:
788 case Builtin::BI__sync_fetch_and_sub_8:
789 case Builtin::BI__sync_fetch_and_sub_16:
790 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E);
791 case Builtin::BI__sync_fetch_and_or_1:
792 case Builtin::BI__sync_fetch_and_or_2:
793 case Builtin::BI__sync_fetch_and_or_4:
794 case Builtin::BI__sync_fetch_and_or_8:
795 case Builtin::BI__sync_fetch_and_or_16:
796 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E);
797 case Builtin::BI__sync_fetch_and_and_1:
798 case Builtin::BI__sync_fetch_and_and_2:
799 case Builtin::BI__sync_fetch_and_and_4:
800 case Builtin::BI__sync_fetch_and_and_8:
801 case Builtin::BI__sync_fetch_and_and_16:
802 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E);
803 case Builtin::BI__sync_fetch_and_xor_1:
804 case Builtin::BI__sync_fetch_and_xor_2:
805 case Builtin::BI__sync_fetch_and_xor_4:
806 case Builtin::BI__sync_fetch_and_xor_8:
807 case Builtin::BI__sync_fetch_and_xor_16:
808 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E);
809
810 // Clang extensions: not overloaded yet.
811 case Builtin::BI__sync_fetch_and_min:
812 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E);
813 case Builtin::BI__sync_fetch_and_max:
814 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E);
815 case Builtin::BI__sync_fetch_and_umin:
816 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E);
817 case Builtin::BI__sync_fetch_and_umax:
818 return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E);
819
820 case Builtin::BI__sync_add_and_fetch_1:
821 case Builtin::BI__sync_add_and_fetch_2:
822 case Builtin::BI__sync_add_and_fetch_4:
823 case Builtin::BI__sync_add_and_fetch_8:
824 case Builtin::BI__sync_add_and_fetch_16:
825 return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E,
826 llvm::Instruction::Add);
827 case Builtin::BI__sync_sub_and_fetch_1:
828 case Builtin::BI__sync_sub_and_fetch_2:
829 case Builtin::BI__sync_sub_and_fetch_4:
830 case Builtin::BI__sync_sub_and_fetch_8:
831 case Builtin::BI__sync_sub_and_fetch_16:
832 return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E,
833 llvm::Instruction::Sub);
834 case Builtin::BI__sync_and_and_fetch_1:
835 case Builtin::BI__sync_and_and_fetch_2:
836 case Builtin::BI__sync_and_and_fetch_4:
837 case Builtin::BI__sync_and_and_fetch_8:
838 case Builtin::BI__sync_and_and_fetch_16:
839 return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E,
840 llvm::Instruction::And);
841 case Builtin::BI__sync_or_and_fetch_1:
842 case Builtin::BI__sync_or_and_fetch_2:
843 case Builtin::BI__sync_or_and_fetch_4:
844 case Builtin::BI__sync_or_and_fetch_8:
845 case Builtin::BI__sync_or_and_fetch_16:
846 return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E,
847 llvm::Instruction::Or);
848 case Builtin::BI__sync_xor_and_fetch_1:
849 case Builtin::BI__sync_xor_and_fetch_2:
850 case Builtin::BI__sync_xor_and_fetch_4:
851 case Builtin::BI__sync_xor_and_fetch_8:
852 case Builtin::BI__sync_xor_and_fetch_16:
853 return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E,
854 llvm::Instruction::Xor);
855
856 case Builtin::BI__sync_val_compare_and_swap_1:
857 case Builtin::BI__sync_val_compare_and_swap_2:
858 case Builtin::BI__sync_val_compare_and_swap_4:
859 case Builtin::BI__sync_val_compare_and_swap_8:
860 case Builtin::BI__sync_val_compare_and_swap_16: {
861 QualType T = E->getType();
862 llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
863 unsigned AddrSpace =
864 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
865
866 llvm::IntegerType *IntType =
867 llvm::IntegerType::get(getLLVMContext(),
868 getContext().getTypeSize(T));
869 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
870 llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
871 Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
872 IntrinsicTypes);
873
874 Value *Args[3];
875 Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
876 Args[1] = EmitScalarExpr(E->getArg(1));
877 llvm::Type *ValueType = Args[1]->getType();
878 Args[1] = EmitToInt(*this, Args[1], T, IntType);
879 Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
880
881 Value *Result = EmitCallWithBarrier(*this, AtomF, Args);
882 Result = EmitFromInt(*this, Result, T, ValueType);
883 return RValue::get(Result);
884 }
885
886 case Builtin::BI__sync_bool_compare_and_swap_1:
887 case Builtin::BI__sync_bool_compare_and_swap_2:
888 case Builtin::BI__sync_bool_compare_and_swap_4:
889 case Builtin::BI__sync_bool_compare_and_swap_8:
890 case Builtin::BI__sync_bool_compare_and_swap_16: {
891 QualType T = E->getArg(1)->getType();
892 llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
893 unsigned AddrSpace =
894 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
895
896 llvm::IntegerType *IntType =
897 llvm::IntegerType::get(getLLVMContext(),
898 getContext().getTypeSize(T));
899 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
900 llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
901 Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
902 IntrinsicTypes);
903
904 Value *Args[3];
905 Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
906 Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
907 Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
908
909 Value *OldVal = Args[1];
910 Value *PrevVal = EmitCallWithBarrier(*this, AtomF, Args);
911 Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
912 // zext bool to int.
913 Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
914 return RValue::get(Result);
915 }
916
917 case Builtin::BI__sync_swap_1:
918 case Builtin::BI__sync_swap_2:
919 case Builtin::BI__sync_swap_4:
920 case Builtin::BI__sync_swap_8:
921 case Builtin::BI__sync_swap_16:
922 return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
923
924 case Builtin::BI__sync_lock_test_and_set_1:
925 case Builtin::BI__sync_lock_test_and_set_2:
926 case Builtin::BI__sync_lock_test_and_set_4:
927 case Builtin::BI__sync_lock_test_and_set_8:
928 case Builtin::BI__sync_lock_test_and_set_16:
929 return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
930
931 case Builtin::BI__sync_lock_release_1:
932 case Builtin::BI__sync_lock_release_2:
933 case Builtin::BI__sync_lock_release_4:
934 case Builtin::BI__sync_lock_release_8:
935 case Builtin::BI__sync_lock_release_16: {
936 Value *Ptr = EmitScalarExpr(E->getArg(0));
937 llvm::Type *ElTy =
938 cast<llvm::PointerType>(Ptr->getType())->getElementType();
939 llvm::StoreInst *Store =
940 Builder.CreateStore(llvm::Constant::getNullValue(ElTy), Ptr);
941 Store->setVolatile(true);
942 return RValue::get(0);
943 }
944
945 case Builtin::BI__sync_synchronize: {
946 // We assume like gcc appears to, that this only applies to cached memory.
947 EmitMemoryBarrier(*this, true, true, true, true, false);
948 return RValue::get(0);
949 }
950
951 case Builtin::BI__builtin_llvm_memory_barrier: {
952 Value *C[5] = {
953 EmitScalarExpr(E->getArg(0)),
954 EmitScalarExpr(E->getArg(1)),
955 EmitScalarExpr(E->getArg(2)),
956 EmitScalarExpr(E->getArg(3)),
957 EmitScalarExpr(E->getArg(4))
958 };
959 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C);
960 return RValue::get(0);
961 }
962
963 // Library functions with special handling.
964 case Builtin::BIsqrt:
965 case Builtin::BIsqrtf:
966 case Builtin::BIsqrtl: {
967 // TODO: there is currently no set of optimizer flags
968 // sufficient for us to rewrite sqrt to @llvm.sqrt.
969 // -fmath-errno=0 is not good enough; we need finiteness.
970 // We could probably precondition the call with an ult
971 // against 0, but is that worth the complexity?
972 break;
973 }
974
975 case Builtin::BIpow:
976 case Builtin::BIpowf:
977 case Builtin::BIpowl: {
978 // Rewrite sqrt to intrinsic if allowed.
979 if (!FD->hasAttr<ConstAttr>())
980 break;
981 Value *Base = EmitScalarExpr(E->getArg(0));
982 Value *Exponent = EmitScalarExpr(E->getArg(1));
983 llvm::Type *ArgType = Base->getType();
984 Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
985 return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
986 }
987
988 case Builtin::BIfma:
989 case Builtin::BIfmaf:
990 case Builtin::BIfmal:
991 case Builtin::BI__builtin_fma:
992 case Builtin::BI__builtin_fmaf:
993 case Builtin::BI__builtin_fmal: {
994 // Rewrite fma to intrinsic.
995 Value *FirstArg = EmitScalarExpr(E->getArg(0));
996 llvm::Type *ArgType = FirstArg->getType();
997 Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
998 return RValue::get(Builder.CreateCall3(F, FirstArg,
999 EmitScalarExpr(E->getArg(1)),
1000 EmitScalarExpr(E->getArg(2)),
1001 "tmp"));
1002 }
1003
1004 case Builtin::BI__builtin_signbit:
1005 case Builtin::BI__builtin_signbitf:
1006 case Builtin::BI__builtin_signbitl: {
1007 LLVMContext &C = CGM.getLLVMContext();
1008
1009 Value *Arg = EmitScalarExpr(E->getArg(0));
1010 llvm::Type *ArgTy = Arg->getType();
1011 if (ArgTy->isPPC_FP128Ty())
1012 break; // FIXME: I'm not sure what the right implementation is here.
1013 int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1014 llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1015 Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1016 Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1017 Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1018 return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1019 }
1020 }
1021
1022 // If this is an alias for a libm function (e.g. __builtin_sin) turn it into
1023 // that function.
1024 if (getContext().BuiltinInfo.isLibFunction(BuiltinID) ||
1025 getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1026 return EmitCall(E->getCallee()->getType(),
1027 CGM.getBuiltinLibFunction(FD, BuiltinID),
1028 ReturnValueSlot(), E->arg_begin(), E->arg_end(), FD);
1029
1030 // See if we have a target specific intrinsic.
1031 const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1032 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1033 if (const char *Prefix =
1034 llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
1035 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1036
1037 if (IntrinsicID != Intrinsic::not_intrinsic) {
1038 SmallVector<Value*, 16> Args;
1039
1040 // Find out if any arguments are required to be integer constant
1041 // expressions.
1042 unsigned ICEArguments = 0;
1043 ASTContext::GetBuiltinTypeError Error;
1044 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1045 assert(Error == ASTContext::GE_None && "Should not codegen an error");
1046
1047 Function *F = CGM.getIntrinsic(IntrinsicID);
1048 llvm::FunctionType *FTy = F->getFunctionType();
1049
1050 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1051 Value *ArgValue;
1052 // If this is a normal argument, just emit it as a scalar.
1053 if ((ICEArguments & (1 << i)) == 0) {
1054 ArgValue = EmitScalarExpr(E->getArg(i));
1055 } else {
1056 // If this is required to be a constant, constant fold it so that we
1057 // know that the generated intrinsic gets a ConstantInt.
1058 llvm::APSInt Result;
1059 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1060 assert(IsConst && "Constant arg isn't actually constant?");
1061 (void)IsConst;
1062 ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1063 }
1064
1065 // If the intrinsic arg type is different from the builtin arg type
1066 // we need to do a bit cast.
1067 llvm::Type *PTy = FTy->getParamType(i);
1068 if (PTy != ArgValue->getType()) {
1069 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1070 "Must be able to losslessly bit cast to param");
1071 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1072 }
1073
1074 Args.push_back(ArgValue);
1075 }
1076
1077 Value *V = Builder.CreateCall(F, Args);
1078 QualType BuiltinRetType = E->getType();
1079
1080 llvm::Type *RetTy = llvm::Type::getVoidTy(getLLVMContext());
1081 if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
1082
1083 if (RetTy != V->getType()) {
1084 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1085 "Must be able to losslessly bit cast result type");
1086 V = Builder.CreateBitCast(V, RetTy);
1087 }
1088
1089 return RValue::get(V);
1090 }
1091
1092 // See if we have a target specific builtin that needs to be lowered.
1093 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1094 return RValue::get(V);
1095
1096 ErrorUnsupported(E, "builtin function");
1097
1098 // Unknown builtin, for now just dump it out and return undef.
1099 if (hasAggregateLLVMType(E->getType()))
1100 return RValue::getAggregate(CreateMemTemp(E->getType()));
1101 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
1102 }
1103
EmitTargetBuiltinExpr(unsigned BuiltinID,const CallExpr * E)1104 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1105 const CallExpr *E) {
1106 switch (Target.getTriple().getArch()) {
1107 case llvm::Triple::arm:
1108 case llvm::Triple::thumb:
1109 return EmitARMBuiltinExpr(BuiltinID, E);
1110 case llvm::Triple::x86:
1111 case llvm::Triple::x86_64:
1112 return EmitX86BuiltinExpr(BuiltinID, E);
1113 case llvm::Triple::ppc:
1114 case llvm::Triple::ppc64:
1115 return EmitPPCBuiltinExpr(BuiltinID, E);
1116 default:
1117 return 0;
1118 }
1119 }
1120
GetNeonType(LLVMContext & C,unsigned type,bool q)1121 static llvm::VectorType *GetNeonType(LLVMContext &C, unsigned type, bool q) {
1122 switch (type) {
1123 default: break;
1124 case 0:
1125 case 5: return llvm::VectorType::get(llvm::Type::getInt8Ty(C), 8 << (int)q);
1126 case 6:
1127 case 7:
1128 case 1: return llvm::VectorType::get(llvm::Type::getInt16Ty(C),4 << (int)q);
1129 case 2: return llvm::VectorType::get(llvm::Type::getInt32Ty(C),2 << (int)q);
1130 case 3: return llvm::VectorType::get(llvm::Type::getInt64Ty(C),1 << (int)q);
1131 case 4: return llvm::VectorType::get(llvm::Type::getFloatTy(C),2 << (int)q);
1132 };
1133 return 0;
1134 }
1135
EmitNeonSplat(Value * V,Constant * C)1136 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1137 unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1138 SmallVector<Constant*, 16> Indices(nElts, C);
1139 Value* SV = llvm::ConstantVector::get(Indices);
1140 return Builder.CreateShuffleVector(V, V, SV, "lane");
1141 }
1142
EmitNeonCall(Function * F,SmallVectorImpl<Value * > & Ops,const char * name,unsigned shift,bool rightshift)1143 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1144 const char *name,
1145 unsigned shift, bool rightshift) {
1146 unsigned j = 0;
1147 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1148 ai != ae; ++ai, ++j)
1149 if (shift > 0 && shift == j)
1150 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1151 else
1152 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1153
1154 return Builder.CreateCall(F, Ops, name);
1155 }
1156
EmitNeonShiftVector(Value * V,llvm::Type * Ty,bool neg)1157 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1158 bool neg) {
1159 ConstantInt *CI = cast<ConstantInt>(V);
1160 int SV = CI->getSExtValue();
1161
1162 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1163 llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1164 SmallVector<llvm::Constant*, 16> CV(VTy->getNumElements(), C);
1165 return llvm::ConstantVector::get(CV);
1166 }
1167
1168 /// GetPointeeAlignment - Given an expression with a pointer type, find the
1169 /// alignment of the type referenced by the pointer. Skip over implicit
1170 /// casts.
GetPointeeAlignment(CodeGenFunction & CGF,const Expr * Addr)1171 static Value *GetPointeeAlignment(CodeGenFunction &CGF, const Expr *Addr) {
1172 unsigned Align = 1;
1173 // Check if the type is a pointer. The implicit cast operand might not be.
1174 while (Addr->getType()->isPointerType()) {
1175 QualType PtTy = Addr->getType()->getPointeeType();
1176 unsigned NewA = CGF.getContext().getTypeAlignInChars(PtTy).getQuantity();
1177 if (NewA > Align)
1178 Align = NewA;
1179
1180 // If the address is an implicit cast, repeat with the cast operand.
1181 if (const ImplicitCastExpr *CastAddr = dyn_cast<ImplicitCastExpr>(Addr)) {
1182 Addr = CastAddr->getSubExpr();
1183 continue;
1184 }
1185 break;
1186 }
1187 return llvm::ConstantInt::get(CGF.Int32Ty, Align);
1188 }
1189
EmitARMBuiltinExpr(unsigned BuiltinID,const CallExpr * E)1190 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
1191 const CallExpr *E) {
1192 if (BuiltinID == ARM::BI__clear_cache) {
1193 const FunctionDecl *FD = E->getDirectCallee();
1194 // Oddly people write this call without args on occasion and gcc accepts
1195 // it - it's also marked as varargs in the description file.
1196 llvm::SmallVector<Value*, 2> Ops;
1197 for (unsigned i = 0; i < E->getNumArgs(); i++)
1198 Ops.push_back(EmitScalarExpr(E->getArg(i)));
1199 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1200 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1201 llvm::StringRef Name = FD->getName();
1202 return Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
1203 }
1204
1205 if (BuiltinID == ARM::BI__builtin_arm_ldrexd) {
1206 Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
1207
1208 Value *LdPtr = EmitScalarExpr(E->getArg(0));
1209 Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
1210
1211 Value *Val0 = Builder.CreateExtractValue(Val, 1);
1212 Value *Val1 = Builder.CreateExtractValue(Val, 0);
1213 Val0 = Builder.CreateZExt(Val0, Int64Ty);
1214 Val1 = Builder.CreateZExt(Val1, Int64Ty);
1215
1216 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
1217 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
1218 return Builder.CreateOr(Val, Val1);
1219 }
1220
1221 if (BuiltinID == ARM::BI__builtin_arm_strexd) {
1222 Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
1223 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
1224
1225 Value *One = llvm::ConstantInt::get(Int32Ty, 1);
1226 Value *Tmp = Builder.CreateAlloca(Int64Ty, One, "tmp");
1227 Value *Val = EmitScalarExpr(E->getArg(0));
1228 Builder.CreateStore(Val, Tmp);
1229
1230 Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
1231 Val = Builder.CreateLoad(LdPtr);
1232
1233 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
1234 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
1235 Value *StPtr = EmitScalarExpr(E->getArg(1));
1236 return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
1237 }
1238
1239 llvm::SmallVector<Value*, 4> Ops;
1240 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++)
1241 Ops.push_back(EmitScalarExpr(E->getArg(i)));
1242
1243 llvm::APSInt Result;
1244 const Expr *Arg = E->getArg(E->getNumArgs()-1);
1245 if (!Arg->isIntegerConstantExpr(Result, getContext()))
1246 return 0;
1247
1248 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
1249 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
1250 // Determine the overloaded type of this builtin.
1251 llvm::Type *Ty;
1252 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
1253 Ty = llvm::Type::getFloatTy(getLLVMContext());
1254 else
1255 Ty = llvm::Type::getDoubleTy(getLLVMContext());
1256
1257 // Determine whether this is an unsigned conversion or not.
1258 bool usgn = Result.getZExtValue() == 1;
1259 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
1260
1261 // Call the appropriate intrinsic.
1262 Function *F = CGM.getIntrinsic(Int, Ty);
1263 return Builder.CreateCall(F, Ops, "vcvtr");
1264 }
1265
1266 // Determine the type of this overloaded NEON intrinsic.
1267 unsigned type = Result.getZExtValue();
1268 bool usgn = type & 0x08;
1269 bool quad = type & 0x10;
1270 bool poly = (type & 0x7) == 5 || (type & 0x7) == 6;
1271 (void)poly; // Only used in assert()s.
1272 bool rightShift = false;
1273
1274 llvm::VectorType *VTy = GetNeonType(getLLVMContext(), type & 0x7, quad);
1275 llvm::Type *Ty = VTy;
1276 if (!Ty)
1277 return 0;
1278
1279 unsigned Int;
1280 switch (BuiltinID) {
1281 default: return 0;
1282 case ARM::BI__builtin_neon_vabd_v:
1283 case ARM::BI__builtin_neon_vabdq_v:
1284 Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
1285 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
1286 case ARM::BI__builtin_neon_vabs_v:
1287 case ARM::BI__builtin_neon_vabsq_v:
1288 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
1289 Ops, "vabs");
1290 case ARM::BI__builtin_neon_vaddhn_v:
1291 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, Ty),
1292 Ops, "vaddhn");
1293 case ARM::BI__builtin_neon_vcale_v:
1294 std::swap(Ops[0], Ops[1]);
1295 case ARM::BI__builtin_neon_vcage_v: {
1296 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
1297 return EmitNeonCall(F, Ops, "vcage");
1298 }
1299 case ARM::BI__builtin_neon_vcaleq_v:
1300 std::swap(Ops[0], Ops[1]);
1301 case ARM::BI__builtin_neon_vcageq_v: {
1302 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
1303 return EmitNeonCall(F, Ops, "vcage");
1304 }
1305 case ARM::BI__builtin_neon_vcalt_v:
1306 std::swap(Ops[0], Ops[1]);
1307 case ARM::BI__builtin_neon_vcagt_v: {
1308 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
1309 return EmitNeonCall(F, Ops, "vcagt");
1310 }
1311 case ARM::BI__builtin_neon_vcaltq_v:
1312 std::swap(Ops[0], Ops[1]);
1313 case ARM::BI__builtin_neon_vcagtq_v: {
1314 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
1315 return EmitNeonCall(F, Ops, "vcagt");
1316 }
1317 case ARM::BI__builtin_neon_vcls_v:
1318 case ARM::BI__builtin_neon_vclsq_v: {
1319 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
1320 return EmitNeonCall(F, Ops, "vcls");
1321 }
1322 case ARM::BI__builtin_neon_vclz_v:
1323 case ARM::BI__builtin_neon_vclzq_v: {
1324 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vclz, Ty);
1325 return EmitNeonCall(F, Ops, "vclz");
1326 }
1327 case ARM::BI__builtin_neon_vcnt_v:
1328 case ARM::BI__builtin_neon_vcntq_v: {
1329 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcnt, Ty);
1330 return EmitNeonCall(F, Ops, "vcnt");
1331 }
1332 case ARM::BI__builtin_neon_vcvt_f16_v: {
1333 assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f16_v builtin");
1334 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
1335 return EmitNeonCall(F, Ops, "vcvt");
1336 }
1337 case ARM::BI__builtin_neon_vcvt_f32_f16: {
1338 assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f32_f16 builtin");
1339 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
1340 return EmitNeonCall(F, Ops, "vcvt");
1341 }
1342 case ARM::BI__builtin_neon_vcvt_f32_v:
1343 case ARM::BI__builtin_neon_vcvtq_f32_v: {
1344 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1345 Ty = GetNeonType(getLLVMContext(), 4, quad);
1346 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
1347 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
1348 }
1349 case ARM::BI__builtin_neon_vcvt_s32_v:
1350 case ARM::BI__builtin_neon_vcvt_u32_v:
1351 case ARM::BI__builtin_neon_vcvtq_s32_v:
1352 case ARM::BI__builtin_neon_vcvtq_u32_v: {
1353 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(getLLVMContext(), 4, quad));
1354 return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
1355 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
1356 }
1357 case ARM::BI__builtin_neon_vcvt_n_f32_v:
1358 case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
1359 llvm::Type *Tys[2] = { GetNeonType(getLLVMContext(), 4, quad), Ty };
1360 Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp : Intrinsic::arm_neon_vcvtfxs2fp;
1361 Function *F = CGM.getIntrinsic(Int, Tys);
1362 return EmitNeonCall(F, Ops, "vcvt_n");
1363 }
1364 case ARM::BI__builtin_neon_vcvt_n_s32_v:
1365 case ARM::BI__builtin_neon_vcvt_n_u32_v:
1366 case ARM::BI__builtin_neon_vcvtq_n_s32_v:
1367 case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
1368 llvm::Type *Tys[2] = { Ty, GetNeonType(getLLVMContext(), 4, quad) };
1369 Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu : Intrinsic::arm_neon_vcvtfp2fxs;
1370 Function *F = CGM.getIntrinsic(Int, Tys);
1371 return EmitNeonCall(F, Ops, "vcvt_n");
1372 }
1373 case ARM::BI__builtin_neon_vext_v:
1374 case ARM::BI__builtin_neon_vextq_v: {
1375 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
1376 SmallVector<Constant*, 16> Indices;
1377 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1378 Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
1379
1380 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1381 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1382 Value *SV = llvm::ConstantVector::get(Indices);
1383 return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
1384 }
1385 case ARM::BI__builtin_neon_vget_lane_i8:
1386 case ARM::BI__builtin_neon_vget_lane_i16:
1387 case ARM::BI__builtin_neon_vget_lane_i32:
1388 case ARM::BI__builtin_neon_vget_lane_i64:
1389 case ARM::BI__builtin_neon_vget_lane_f32:
1390 case ARM::BI__builtin_neon_vgetq_lane_i8:
1391 case ARM::BI__builtin_neon_vgetq_lane_i16:
1392 case ARM::BI__builtin_neon_vgetq_lane_i32:
1393 case ARM::BI__builtin_neon_vgetq_lane_i64:
1394 case ARM::BI__builtin_neon_vgetq_lane_f32:
1395 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
1396 "vget_lane");
1397 case ARM::BI__builtin_neon_vhadd_v:
1398 case ARM::BI__builtin_neon_vhaddq_v:
1399 Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
1400 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
1401 case ARM::BI__builtin_neon_vhsub_v:
1402 case ARM::BI__builtin_neon_vhsubq_v:
1403 Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
1404 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
1405 case ARM::BI__builtin_neon_vld1_v:
1406 case ARM::BI__builtin_neon_vld1q_v:
1407 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1408 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
1409 Ops, "vld1");
1410 case ARM::BI__builtin_neon_vld1_lane_v:
1411 case ARM::BI__builtin_neon_vld1q_lane_v:
1412 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1413 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1414 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1415 Ops[0] = Builder.CreateLoad(Ops[0]);
1416 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
1417 case ARM::BI__builtin_neon_vld1_dup_v:
1418 case ARM::BI__builtin_neon_vld1q_dup_v: {
1419 Value *V = UndefValue::get(Ty);
1420 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1421 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1422 Ops[0] = Builder.CreateLoad(Ops[0]);
1423 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1424 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
1425 return EmitNeonSplat(Ops[0], CI);
1426 }
1427 case ARM::BI__builtin_neon_vld2_v:
1428 case ARM::BI__builtin_neon_vld2q_v: {
1429 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
1430 Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1431 Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
1432 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1433 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1434 return Builder.CreateStore(Ops[1], Ops[0]);
1435 }
1436 case ARM::BI__builtin_neon_vld3_v:
1437 case ARM::BI__builtin_neon_vld3q_v: {
1438 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
1439 Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1440 Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
1441 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1442 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1443 return Builder.CreateStore(Ops[1], Ops[0]);
1444 }
1445 case ARM::BI__builtin_neon_vld4_v:
1446 case ARM::BI__builtin_neon_vld4q_v: {
1447 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
1448 Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1449 Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
1450 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1451 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1452 return Builder.CreateStore(Ops[1], Ops[0]);
1453 }
1454 case ARM::BI__builtin_neon_vld2_lane_v:
1455 case ARM::BI__builtin_neon_vld2q_lane_v: {
1456 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
1457 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1458 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1459 Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1460 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops.begin() + 1, Ops.end()),
1461 "vld2_lane");
1462 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1463 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1464 return Builder.CreateStore(Ops[1], Ops[0]);
1465 }
1466 case ARM::BI__builtin_neon_vld3_lane_v:
1467 case ARM::BI__builtin_neon_vld3q_lane_v: {
1468 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
1469 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1470 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1471 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1472 Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1473 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops.begin() + 1, Ops.end()),
1474 "vld3_lane");
1475 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1476 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1477 return Builder.CreateStore(Ops[1], Ops[0]);
1478 }
1479 case ARM::BI__builtin_neon_vld4_lane_v:
1480 case ARM::BI__builtin_neon_vld4q_lane_v: {
1481 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
1482 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1483 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1484 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1485 Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
1486 Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1487 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops.begin() + 1, Ops.end()),
1488 "vld3_lane");
1489 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1490 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1491 return Builder.CreateStore(Ops[1], Ops[0]);
1492 }
1493 case ARM::BI__builtin_neon_vld2_dup_v:
1494 case ARM::BI__builtin_neon_vld3_dup_v:
1495 case ARM::BI__builtin_neon_vld4_dup_v: {
1496 // Handle 64-bit elements as a special-case. There is no "dup" needed.
1497 if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
1498 switch (BuiltinID) {
1499 case ARM::BI__builtin_neon_vld2_dup_v:
1500 Int = Intrinsic::arm_neon_vld2;
1501 break;
1502 case ARM::BI__builtin_neon_vld3_dup_v:
1503 Int = Intrinsic::arm_neon_vld2;
1504 break;
1505 case ARM::BI__builtin_neon_vld4_dup_v:
1506 Int = Intrinsic::arm_neon_vld2;
1507 break;
1508 default: assert(0 && "unknown vld_dup intrinsic?");
1509 }
1510 Function *F = CGM.getIntrinsic(Int, Ty);
1511 Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1512 Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
1513 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1514 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1515 return Builder.CreateStore(Ops[1], Ops[0]);
1516 }
1517 switch (BuiltinID) {
1518 case ARM::BI__builtin_neon_vld2_dup_v:
1519 Int = Intrinsic::arm_neon_vld2lane;
1520 break;
1521 case ARM::BI__builtin_neon_vld3_dup_v:
1522 Int = Intrinsic::arm_neon_vld2lane;
1523 break;
1524 case ARM::BI__builtin_neon_vld4_dup_v:
1525 Int = Intrinsic::arm_neon_vld2lane;
1526 break;
1527 default: assert(0 && "unknown vld_dup intrinsic?");
1528 }
1529 Function *F = CGM.getIntrinsic(Int, Ty);
1530 llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
1531
1532 SmallVector<Value*, 6> Args;
1533 Args.push_back(Ops[1]);
1534 Args.append(STy->getNumElements(), UndefValue::get(Ty));
1535
1536 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1537 Args.push_back(CI);
1538 Args.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1539
1540 Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
1541 // splat lane 0 to all elts in each vector of the result.
1542 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1543 Value *Val = Builder.CreateExtractValue(Ops[1], i);
1544 Value *Elt = Builder.CreateBitCast(Val, Ty);
1545 Elt = EmitNeonSplat(Elt, CI);
1546 Elt = Builder.CreateBitCast(Elt, Val->getType());
1547 Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
1548 }
1549 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1550 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1551 return Builder.CreateStore(Ops[1], Ops[0]);
1552 }
1553 case ARM::BI__builtin_neon_vmax_v:
1554 case ARM::BI__builtin_neon_vmaxq_v:
1555 Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
1556 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
1557 case ARM::BI__builtin_neon_vmin_v:
1558 case ARM::BI__builtin_neon_vminq_v:
1559 Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
1560 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
1561 case ARM::BI__builtin_neon_vmovl_v: {
1562 llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
1563 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
1564 if (usgn)
1565 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
1566 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
1567 }
1568 case ARM::BI__builtin_neon_vmovn_v: {
1569 llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
1570 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
1571 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
1572 }
1573 case ARM::BI__builtin_neon_vmul_v:
1574 case ARM::BI__builtin_neon_vmulq_v:
1575 assert(poly && "vmul builtin only supported for polynomial types");
1576 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
1577 Ops, "vmul");
1578 case ARM::BI__builtin_neon_vmull_v:
1579 Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
1580 Int = poly ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
1581 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
1582 case ARM::BI__builtin_neon_vpadal_v:
1583 case ARM::BI__builtin_neon_vpadalq_v: {
1584 Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
1585 // The source operand type has twice as many elements of half the size.
1586 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1587 llvm::Type *EltTy =
1588 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1589 llvm::Type *NarrowTy =
1590 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1591 llvm::Type *Tys[2] = { Ty, NarrowTy };
1592 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
1593 }
1594 case ARM::BI__builtin_neon_vpadd_v:
1595 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
1596 Ops, "vpadd");
1597 case ARM::BI__builtin_neon_vpaddl_v:
1598 case ARM::BI__builtin_neon_vpaddlq_v: {
1599 Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
1600 // The source operand type has twice as many elements of half the size.
1601 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1602 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1603 llvm::Type *NarrowTy =
1604 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1605 llvm::Type *Tys[2] = { Ty, NarrowTy };
1606 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
1607 }
1608 case ARM::BI__builtin_neon_vpmax_v:
1609 Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
1610 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
1611 case ARM::BI__builtin_neon_vpmin_v:
1612 Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
1613 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
1614 case ARM::BI__builtin_neon_vqabs_v:
1615 case ARM::BI__builtin_neon_vqabsq_v:
1616 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
1617 Ops, "vqabs");
1618 case ARM::BI__builtin_neon_vqadd_v:
1619 case ARM::BI__builtin_neon_vqaddq_v:
1620 Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
1621 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
1622 case ARM::BI__builtin_neon_vqdmlal_v:
1623 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, Ty),
1624 Ops, "vqdmlal");
1625 case ARM::BI__builtin_neon_vqdmlsl_v:
1626 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, Ty),
1627 Ops, "vqdmlsl");
1628 case ARM::BI__builtin_neon_vqdmulh_v:
1629 case ARM::BI__builtin_neon_vqdmulhq_v:
1630 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
1631 Ops, "vqdmulh");
1632 case ARM::BI__builtin_neon_vqdmull_v:
1633 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
1634 Ops, "vqdmull");
1635 case ARM::BI__builtin_neon_vqmovn_v:
1636 Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
1637 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
1638 case ARM::BI__builtin_neon_vqmovun_v:
1639 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
1640 Ops, "vqdmull");
1641 case ARM::BI__builtin_neon_vqneg_v:
1642 case ARM::BI__builtin_neon_vqnegq_v:
1643 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
1644 Ops, "vqneg");
1645 case ARM::BI__builtin_neon_vqrdmulh_v:
1646 case ARM::BI__builtin_neon_vqrdmulhq_v:
1647 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
1648 Ops, "vqrdmulh");
1649 case ARM::BI__builtin_neon_vqrshl_v:
1650 case ARM::BI__builtin_neon_vqrshlq_v:
1651 Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
1652 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
1653 case ARM::BI__builtin_neon_vqrshrn_n_v:
1654 Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
1655 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
1656 1, true);
1657 case ARM::BI__builtin_neon_vqrshrun_n_v:
1658 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
1659 Ops, "vqrshrun_n", 1, true);
1660 case ARM::BI__builtin_neon_vqshl_v:
1661 case ARM::BI__builtin_neon_vqshlq_v:
1662 Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1663 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
1664 case ARM::BI__builtin_neon_vqshl_n_v:
1665 case ARM::BI__builtin_neon_vqshlq_n_v:
1666 Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1667 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
1668 1, false);
1669 case ARM::BI__builtin_neon_vqshlu_n_v:
1670 case ARM::BI__builtin_neon_vqshluq_n_v:
1671 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
1672 Ops, "vqshlu", 1, false);
1673 case ARM::BI__builtin_neon_vqshrn_n_v:
1674 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
1675 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
1676 1, true);
1677 case ARM::BI__builtin_neon_vqshrun_n_v:
1678 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
1679 Ops, "vqshrun_n", 1, true);
1680 case ARM::BI__builtin_neon_vqsub_v:
1681 case ARM::BI__builtin_neon_vqsubq_v:
1682 Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
1683 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
1684 case ARM::BI__builtin_neon_vraddhn_v:
1685 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
1686 Ops, "vraddhn");
1687 case ARM::BI__builtin_neon_vrecpe_v:
1688 case ARM::BI__builtin_neon_vrecpeq_v:
1689 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
1690 Ops, "vrecpe");
1691 case ARM::BI__builtin_neon_vrecps_v:
1692 case ARM::BI__builtin_neon_vrecpsq_v:
1693 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
1694 Ops, "vrecps");
1695 case ARM::BI__builtin_neon_vrhadd_v:
1696 case ARM::BI__builtin_neon_vrhaddq_v:
1697 Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
1698 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
1699 case ARM::BI__builtin_neon_vrshl_v:
1700 case ARM::BI__builtin_neon_vrshlq_v:
1701 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1702 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
1703 case ARM::BI__builtin_neon_vrshrn_n_v:
1704 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
1705 Ops, "vrshrn_n", 1, true);
1706 case ARM::BI__builtin_neon_vrshr_n_v:
1707 case ARM::BI__builtin_neon_vrshrq_n_v:
1708 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1709 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
1710 case ARM::BI__builtin_neon_vrsqrte_v:
1711 case ARM::BI__builtin_neon_vrsqrteq_v:
1712 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
1713 Ops, "vrsqrte");
1714 case ARM::BI__builtin_neon_vrsqrts_v:
1715 case ARM::BI__builtin_neon_vrsqrtsq_v:
1716 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
1717 Ops, "vrsqrts");
1718 case ARM::BI__builtin_neon_vrsra_n_v:
1719 case ARM::BI__builtin_neon_vrsraq_n_v:
1720 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1721 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1722 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
1723 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1724 Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
1725 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
1726 case ARM::BI__builtin_neon_vrsubhn_v:
1727 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
1728 Ops, "vrsubhn");
1729 case ARM::BI__builtin_neon_vset_lane_i8:
1730 case ARM::BI__builtin_neon_vset_lane_i16:
1731 case ARM::BI__builtin_neon_vset_lane_i32:
1732 case ARM::BI__builtin_neon_vset_lane_i64:
1733 case ARM::BI__builtin_neon_vset_lane_f32:
1734 case ARM::BI__builtin_neon_vsetq_lane_i8:
1735 case ARM::BI__builtin_neon_vsetq_lane_i16:
1736 case ARM::BI__builtin_neon_vsetq_lane_i32:
1737 case ARM::BI__builtin_neon_vsetq_lane_i64:
1738 case ARM::BI__builtin_neon_vsetq_lane_f32:
1739 Ops.push_back(EmitScalarExpr(E->getArg(2)));
1740 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
1741 case ARM::BI__builtin_neon_vshl_v:
1742 case ARM::BI__builtin_neon_vshlq_v:
1743 Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
1744 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
1745 case ARM::BI__builtin_neon_vshll_n_v:
1746 Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
1747 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
1748 case ARM::BI__builtin_neon_vshl_n_v:
1749 case ARM::BI__builtin_neon_vshlq_n_v:
1750 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1751 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n");
1752 case ARM::BI__builtin_neon_vshrn_n_v:
1753 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
1754 Ops, "vshrn_n", 1, true);
1755 case ARM::BI__builtin_neon_vshr_n_v:
1756 case ARM::BI__builtin_neon_vshrq_n_v:
1757 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1758 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1759 if (usgn)
1760 return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
1761 else
1762 return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
1763 case ARM::BI__builtin_neon_vsri_n_v:
1764 case ARM::BI__builtin_neon_vsriq_n_v:
1765 rightShift = true;
1766 case ARM::BI__builtin_neon_vsli_n_v:
1767 case ARM::BI__builtin_neon_vsliq_n_v:
1768 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
1769 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
1770 Ops, "vsli_n");
1771 case ARM::BI__builtin_neon_vsra_n_v:
1772 case ARM::BI__builtin_neon_vsraq_n_v:
1773 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1774 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1775 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
1776 if (usgn)
1777 Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
1778 else
1779 Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
1780 return Builder.CreateAdd(Ops[0], Ops[1]);
1781 case ARM::BI__builtin_neon_vst1_v:
1782 case ARM::BI__builtin_neon_vst1q_v:
1783 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1784 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
1785 Ops, "");
1786 case ARM::BI__builtin_neon_vst1_lane_v:
1787 case ARM::BI__builtin_neon_vst1q_lane_v:
1788 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1789 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
1790 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1791 return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
1792 case ARM::BI__builtin_neon_vst2_v:
1793 case ARM::BI__builtin_neon_vst2q_v:
1794 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1795 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
1796 Ops, "");
1797 case ARM::BI__builtin_neon_vst2_lane_v:
1798 case ARM::BI__builtin_neon_vst2q_lane_v:
1799 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1800 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
1801 Ops, "");
1802 case ARM::BI__builtin_neon_vst3_v:
1803 case ARM::BI__builtin_neon_vst3q_v:
1804 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1805 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
1806 Ops, "");
1807 case ARM::BI__builtin_neon_vst3_lane_v:
1808 case ARM::BI__builtin_neon_vst3q_lane_v:
1809 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1810 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
1811 Ops, "");
1812 case ARM::BI__builtin_neon_vst4_v:
1813 case ARM::BI__builtin_neon_vst4q_v:
1814 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1815 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
1816 Ops, "");
1817 case ARM::BI__builtin_neon_vst4_lane_v:
1818 case ARM::BI__builtin_neon_vst4q_lane_v:
1819 Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1820 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
1821 Ops, "");
1822 case ARM::BI__builtin_neon_vsubhn_v:
1823 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, Ty),
1824 Ops, "vsubhn");
1825 case ARM::BI__builtin_neon_vtbl1_v:
1826 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
1827 Ops, "vtbl1");
1828 case ARM::BI__builtin_neon_vtbl2_v:
1829 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
1830 Ops, "vtbl2");
1831 case ARM::BI__builtin_neon_vtbl3_v:
1832 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
1833 Ops, "vtbl3");
1834 case ARM::BI__builtin_neon_vtbl4_v:
1835 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
1836 Ops, "vtbl4");
1837 case ARM::BI__builtin_neon_vtbx1_v:
1838 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
1839 Ops, "vtbx1");
1840 case ARM::BI__builtin_neon_vtbx2_v:
1841 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
1842 Ops, "vtbx2");
1843 case ARM::BI__builtin_neon_vtbx3_v:
1844 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
1845 Ops, "vtbx3");
1846 case ARM::BI__builtin_neon_vtbx4_v:
1847 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
1848 Ops, "vtbx4");
1849 case ARM::BI__builtin_neon_vtst_v:
1850 case ARM::BI__builtin_neon_vtstq_v: {
1851 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1852 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1853 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
1854 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
1855 ConstantAggregateZero::get(Ty));
1856 return Builder.CreateSExt(Ops[0], Ty, "vtst");
1857 }
1858 case ARM::BI__builtin_neon_vtrn_v:
1859 case ARM::BI__builtin_neon_vtrnq_v: {
1860 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1861 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1862 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1863 Value *SV = 0;
1864
1865 for (unsigned vi = 0; vi != 2; ++vi) {
1866 SmallVector<Constant*, 16> Indices;
1867 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1868 Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
1869 Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
1870 }
1871 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1872 SV = llvm::ConstantVector::get(Indices);
1873 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
1874 SV = Builder.CreateStore(SV, Addr);
1875 }
1876 return SV;
1877 }
1878 case ARM::BI__builtin_neon_vuzp_v:
1879 case ARM::BI__builtin_neon_vuzpq_v: {
1880 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1881 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1882 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1883 Value *SV = 0;
1884
1885 for (unsigned vi = 0; vi != 2; ++vi) {
1886 SmallVector<Constant*, 16> Indices;
1887 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1888 Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
1889
1890 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1891 SV = llvm::ConstantVector::get(Indices);
1892 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
1893 SV = Builder.CreateStore(SV, Addr);
1894 }
1895 return SV;
1896 }
1897 case ARM::BI__builtin_neon_vzip_v:
1898 case ARM::BI__builtin_neon_vzipq_v: {
1899 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1900 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1901 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1902 Value *SV = 0;
1903
1904 for (unsigned vi = 0; vi != 2; ++vi) {
1905 SmallVector<Constant*, 16> Indices;
1906 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1907 Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
1908 Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
1909 }
1910 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1911 SV = llvm::ConstantVector::get(Indices);
1912 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
1913 SV = Builder.CreateStore(SV, Addr);
1914 }
1915 return SV;
1916 }
1917 }
1918 }
1919
1920 llvm::Value *CodeGenFunction::
BuildVector(const llvm::SmallVectorImpl<llvm::Value * > & Ops)1921 BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops) {
1922 assert((Ops.size() & (Ops.size() - 1)) == 0 &&
1923 "Not a power-of-two sized vector!");
1924 bool AllConstants = true;
1925 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
1926 AllConstants &= isa<Constant>(Ops[i]);
1927
1928 // If this is a constant vector, create a ConstantVector.
1929 if (AllConstants) {
1930 std::vector<llvm::Constant*> CstOps;
1931 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1932 CstOps.push_back(cast<Constant>(Ops[i]));
1933 return llvm::ConstantVector::get(CstOps);
1934 }
1935
1936 // Otherwise, insertelement the values to build the vector.
1937 Value *Result =
1938 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
1939
1940 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1941 Result = Builder.CreateInsertElement(Result, Ops[i],
1942 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), i));
1943
1944 return Result;
1945 }
1946
EmitX86BuiltinExpr(unsigned BuiltinID,const CallExpr * E)1947 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
1948 const CallExpr *E) {
1949 llvm::SmallVector<Value*, 4> Ops;
1950
1951 // Find out if any arguments are required to be integer constant expressions.
1952 unsigned ICEArguments = 0;
1953 ASTContext::GetBuiltinTypeError Error;
1954 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1955 assert(Error == ASTContext::GE_None && "Should not codegen an error");
1956
1957 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1958 // If this is a normal argument, just emit it as a scalar.
1959 if ((ICEArguments & (1 << i)) == 0) {
1960 Ops.push_back(EmitScalarExpr(E->getArg(i)));
1961 continue;
1962 }
1963
1964 // If this is required to be a constant, constant fold it so that we know
1965 // that the generated intrinsic gets a ConstantInt.
1966 llvm::APSInt Result;
1967 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
1968 assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
1969 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
1970 }
1971
1972 switch (BuiltinID) {
1973 default: return 0;
1974 case X86::BI__builtin_ia32_pslldi128:
1975 case X86::BI__builtin_ia32_psllqi128:
1976 case X86::BI__builtin_ia32_psllwi128:
1977 case X86::BI__builtin_ia32_psradi128:
1978 case X86::BI__builtin_ia32_psrawi128:
1979 case X86::BI__builtin_ia32_psrldi128:
1980 case X86::BI__builtin_ia32_psrlqi128:
1981 case X86::BI__builtin_ia32_psrlwi128: {
1982 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
1983 llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
1984 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1985 Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
1986 Ops[1], Zero, "insert");
1987 Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
1988 const char *name = 0;
1989 Intrinsic::ID ID = Intrinsic::not_intrinsic;
1990
1991 switch (BuiltinID) {
1992 default: assert(0 && "Unsupported shift intrinsic!");
1993 case X86::BI__builtin_ia32_pslldi128:
1994 name = "pslldi";
1995 ID = Intrinsic::x86_sse2_psll_d;
1996 break;
1997 case X86::BI__builtin_ia32_psllqi128:
1998 name = "psllqi";
1999 ID = Intrinsic::x86_sse2_psll_q;
2000 break;
2001 case X86::BI__builtin_ia32_psllwi128:
2002 name = "psllwi";
2003 ID = Intrinsic::x86_sse2_psll_w;
2004 break;
2005 case X86::BI__builtin_ia32_psradi128:
2006 name = "psradi";
2007 ID = Intrinsic::x86_sse2_psra_d;
2008 break;
2009 case X86::BI__builtin_ia32_psrawi128:
2010 name = "psrawi";
2011 ID = Intrinsic::x86_sse2_psra_w;
2012 break;
2013 case X86::BI__builtin_ia32_psrldi128:
2014 name = "psrldi";
2015 ID = Intrinsic::x86_sse2_psrl_d;
2016 break;
2017 case X86::BI__builtin_ia32_psrlqi128:
2018 name = "psrlqi";
2019 ID = Intrinsic::x86_sse2_psrl_q;
2020 break;
2021 case X86::BI__builtin_ia32_psrlwi128:
2022 name = "psrlwi";
2023 ID = Intrinsic::x86_sse2_psrl_w;
2024 break;
2025 }
2026 llvm::Function *F = CGM.getIntrinsic(ID);
2027 return Builder.CreateCall(F, Ops, name);
2028 }
2029 case X86::BI__builtin_ia32_vec_init_v8qi:
2030 case X86::BI__builtin_ia32_vec_init_v4hi:
2031 case X86::BI__builtin_ia32_vec_init_v2si:
2032 return Builder.CreateBitCast(BuildVector(Ops),
2033 llvm::Type::getX86_MMXTy(getLLVMContext()));
2034 case X86::BI__builtin_ia32_vec_ext_v2si:
2035 return Builder.CreateExtractElement(Ops[0],
2036 llvm::ConstantInt::get(Ops[1]->getType(), 0));
2037 case X86::BI__builtin_ia32_pslldi:
2038 case X86::BI__builtin_ia32_psllqi:
2039 case X86::BI__builtin_ia32_psllwi:
2040 case X86::BI__builtin_ia32_psradi:
2041 case X86::BI__builtin_ia32_psrawi:
2042 case X86::BI__builtin_ia32_psrldi:
2043 case X86::BI__builtin_ia32_psrlqi:
2044 case X86::BI__builtin_ia32_psrlwi: {
2045 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
2046 llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 1);
2047 Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
2048 const char *name = 0;
2049 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2050
2051 switch (BuiltinID) {
2052 default: assert(0 && "Unsupported shift intrinsic!");
2053 case X86::BI__builtin_ia32_pslldi:
2054 name = "pslldi";
2055 ID = Intrinsic::x86_mmx_psll_d;
2056 break;
2057 case X86::BI__builtin_ia32_psllqi:
2058 name = "psllqi";
2059 ID = Intrinsic::x86_mmx_psll_q;
2060 break;
2061 case X86::BI__builtin_ia32_psllwi:
2062 name = "psllwi";
2063 ID = Intrinsic::x86_mmx_psll_w;
2064 break;
2065 case X86::BI__builtin_ia32_psradi:
2066 name = "psradi";
2067 ID = Intrinsic::x86_mmx_psra_d;
2068 break;
2069 case X86::BI__builtin_ia32_psrawi:
2070 name = "psrawi";
2071 ID = Intrinsic::x86_mmx_psra_w;
2072 break;
2073 case X86::BI__builtin_ia32_psrldi:
2074 name = "psrldi";
2075 ID = Intrinsic::x86_mmx_psrl_d;
2076 break;
2077 case X86::BI__builtin_ia32_psrlqi:
2078 name = "psrlqi";
2079 ID = Intrinsic::x86_mmx_psrl_q;
2080 break;
2081 case X86::BI__builtin_ia32_psrlwi:
2082 name = "psrlwi";
2083 ID = Intrinsic::x86_mmx_psrl_w;
2084 break;
2085 }
2086 llvm::Function *F = CGM.getIntrinsic(ID);
2087 return Builder.CreateCall(F, Ops, name);
2088 }
2089 case X86::BI__builtin_ia32_cmpps: {
2090 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
2091 return Builder.CreateCall(F, Ops, "cmpps");
2092 }
2093 case X86::BI__builtin_ia32_cmpss: {
2094 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
2095 return Builder.CreateCall(F, Ops, "cmpss");
2096 }
2097 case X86::BI__builtin_ia32_ldmxcsr: {
2098 llvm::Type *PtrTy = Int8PtrTy;
2099 Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2100 Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2101 Builder.CreateStore(Ops[0], Tmp);
2102 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
2103 Builder.CreateBitCast(Tmp, PtrTy));
2104 }
2105 case X86::BI__builtin_ia32_stmxcsr: {
2106 llvm::Type *PtrTy = Int8PtrTy;
2107 Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2108 Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2109 One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
2110 Builder.CreateBitCast(Tmp, PtrTy));
2111 return Builder.CreateLoad(Tmp, "stmxcsr");
2112 }
2113 case X86::BI__builtin_ia32_cmppd: {
2114 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
2115 return Builder.CreateCall(F, Ops, "cmppd");
2116 }
2117 case X86::BI__builtin_ia32_cmpsd: {
2118 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
2119 return Builder.CreateCall(F, Ops, "cmpsd");
2120 }
2121 case X86::BI__builtin_ia32_storehps:
2122 case X86::BI__builtin_ia32_storelps: {
2123 llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
2124 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2125
2126 // cast val v2i64
2127 Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
2128
2129 // extract (0, 1)
2130 unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
2131 llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
2132 Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
2133
2134 // cast pointer to i64 & store
2135 Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
2136 return Builder.CreateStore(Ops[1], Ops[0]);
2137 }
2138 case X86::BI__builtin_ia32_palignr: {
2139 unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2140
2141 // If palignr is shifting the pair of input vectors less than 9 bytes,
2142 // emit a shuffle instruction.
2143 if (shiftVal <= 8) {
2144 llvm::SmallVector<llvm::Constant*, 8> Indices;
2145 for (unsigned i = 0; i != 8; ++i)
2146 Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2147
2148 Value* SV = llvm::ConstantVector::get(Indices);
2149 return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2150 }
2151
2152 // If palignr is shifting the pair of input vectors more than 8 but less
2153 // than 16 bytes, emit a logical right shift of the destination.
2154 if (shiftVal < 16) {
2155 // MMX has these as 1 x i64 vectors for some odd optimization reasons.
2156 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
2157
2158 Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2159 Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
2160
2161 // create i32 constant
2162 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
2163 return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2164 }
2165
2166 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2167 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2168 }
2169 case X86::BI__builtin_ia32_palignr128: {
2170 unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2171
2172 // If palignr is shifting the pair of input vectors less than 17 bytes,
2173 // emit a shuffle instruction.
2174 if (shiftVal <= 16) {
2175 llvm::SmallVector<llvm::Constant*, 16> Indices;
2176 for (unsigned i = 0; i != 16; ++i)
2177 Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2178
2179 Value* SV = llvm::ConstantVector::get(Indices);
2180 return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2181 }
2182
2183 // If palignr is shifting the pair of input vectors more than 16 but less
2184 // than 32 bytes, emit a logical right shift of the destination.
2185 if (shiftVal < 32) {
2186 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2187
2188 Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2189 Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2190
2191 // create i32 constant
2192 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
2193 return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2194 }
2195
2196 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2197 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2198 }
2199 case X86::BI__builtin_ia32_movntps:
2200 case X86::BI__builtin_ia32_movntpd:
2201 case X86::BI__builtin_ia32_movntdq:
2202 case X86::BI__builtin_ia32_movnti: {
2203 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
2204 Builder.getInt32(1));
2205
2206 // Convert the type of the pointer to a pointer to the stored type.
2207 Value *BC = Builder.CreateBitCast(Ops[0],
2208 llvm::PointerType::getUnqual(Ops[1]->getType()),
2209 "cast");
2210 StoreInst *SI = Builder.CreateStore(Ops[1], BC);
2211 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
2212 SI->setAlignment(16);
2213 return SI;
2214 }
2215 // 3DNow!
2216 case X86::BI__builtin_ia32_pavgusb:
2217 case X86::BI__builtin_ia32_pf2id:
2218 case X86::BI__builtin_ia32_pfacc:
2219 case X86::BI__builtin_ia32_pfadd:
2220 case X86::BI__builtin_ia32_pfcmpeq:
2221 case X86::BI__builtin_ia32_pfcmpge:
2222 case X86::BI__builtin_ia32_pfcmpgt:
2223 case X86::BI__builtin_ia32_pfmax:
2224 case X86::BI__builtin_ia32_pfmin:
2225 case X86::BI__builtin_ia32_pfmul:
2226 case X86::BI__builtin_ia32_pfrcp:
2227 case X86::BI__builtin_ia32_pfrcpit1:
2228 case X86::BI__builtin_ia32_pfrcpit2:
2229 case X86::BI__builtin_ia32_pfrsqrt:
2230 case X86::BI__builtin_ia32_pfrsqit1:
2231 case X86::BI__builtin_ia32_pfrsqrtit1:
2232 case X86::BI__builtin_ia32_pfsub:
2233 case X86::BI__builtin_ia32_pfsubr:
2234 case X86::BI__builtin_ia32_pi2fd:
2235 case X86::BI__builtin_ia32_pmulhrw:
2236 case X86::BI__builtin_ia32_pf2iw:
2237 case X86::BI__builtin_ia32_pfnacc:
2238 case X86::BI__builtin_ia32_pfpnacc:
2239 case X86::BI__builtin_ia32_pi2fw:
2240 case X86::BI__builtin_ia32_pswapdsf:
2241 case X86::BI__builtin_ia32_pswapdsi: {
2242 const char *name = 0;
2243 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2244 switch(BuiltinID) {
2245 case X86::BI__builtin_ia32_pavgusb:
2246 name = "pavgusb";
2247 ID = Intrinsic::x86_3dnow_pavgusb;
2248 break;
2249 case X86::BI__builtin_ia32_pf2id:
2250 name = "pf2id";
2251 ID = Intrinsic::x86_3dnow_pf2id;
2252 break;
2253 case X86::BI__builtin_ia32_pfacc:
2254 name = "pfacc";
2255 ID = Intrinsic::x86_3dnow_pfacc;
2256 break;
2257 case X86::BI__builtin_ia32_pfadd:
2258 name = "pfadd";
2259 ID = Intrinsic::x86_3dnow_pfadd;
2260 break;
2261 case X86::BI__builtin_ia32_pfcmpeq:
2262 name = "pfcmpeq";
2263 ID = Intrinsic::x86_3dnow_pfcmpeq;
2264 break;
2265 case X86::BI__builtin_ia32_pfcmpge:
2266 name = "pfcmpge";
2267 ID = Intrinsic::x86_3dnow_pfcmpge;
2268 break;
2269 case X86::BI__builtin_ia32_pfcmpgt:
2270 name = "pfcmpgt";
2271 ID = Intrinsic::x86_3dnow_pfcmpgt;
2272 break;
2273 case X86::BI__builtin_ia32_pfmax:
2274 name = "pfmax";
2275 ID = Intrinsic::x86_3dnow_pfmax;
2276 break;
2277 case X86::BI__builtin_ia32_pfmin:
2278 name = "pfmin";
2279 ID = Intrinsic::x86_3dnow_pfmin;
2280 break;
2281 case X86::BI__builtin_ia32_pfmul:
2282 name = "pfmul";
2283 ID = Intrinsic::x86_3dnow_pfmul;
2284 break;
2285 case X86::BI__builtin_ia32_pfrcp:
2286 name = "pfrcp";
2287 ID = Intrinsic::x86_3dnow_pfrcp;
2288 break;
2289 case X86::BI__builtin_ia32_pfrcpit1:
2290 name = "pfrcpit1";
2291 ID = Intrinsic::x86_3dnow_pfrcpit1;
2292 break;
2293 case X86::BI__builtin_ia32_pfrcpit2:
2294 name = "pfrcpit2";
2295 ID = Intrinsic::x86_3dnow_pfrcpit2;
2296 break;
2297 case X86::BI__builtin_ia32_pfrsqrt:
2298 name = "pfrsqrt";
2299 ID = Intrinsic::x86_3dnow_pfrsqrt;
2300 break;
2301 case X86::BI__builtin_ia32_pfrsqit1:
2302 case X86::BI__builtin_ia32_pfrsqrtit1:
2303 name = "pfrsqit1";
2304 ID = Intrinsic::x86_3dnow_pfrsqit1;
2305 break;
2306 case X86::BI__builtin_ia32_pfsub:
2307 name = "pfsub";
2308 ID = Intrinsic::x86_3dnow_pfsub;
2309 break;
2310 case X86::BI__builtin_ia32_pfsubr:
2311 name = "pfsubr";
2312 ID = Intrinsic::x86_3dnow_pfsubr;
2313 break;
2314 case X86::BI__builtin_ia32_pi2fd:
2315 name = "pi2fd";
2316 ID = Intrinsic::x86_3dnow_pi2fd;
2317 break;
2318 case X86::BI__builtin_ia32_pmulhrw:
2319 name = "pmulhrw";
2320 ID = Intrinsic::x86_3dnow_pmulhrw;
2321 break;
2322 case X86::BI__builtin_ia32_pf2iw:
2323 name = "pf2iw";
2324 ID = Intrinsic::x86_3dnowa_pf2iw;
2325 break;
2326 case X86::BI__builtin_ia32_pfnacc:
2327 name = "pfnacc";
2328 ID = Intrinsic::x86_3dnowa_pfnacc;
2329 break;
2330 case X86::BI__builtin_ia32_pfpnacc:
2331 name = "pfpnacc";
2332 ID = Intrinsic::x86_3dnowa_pfpnacc;
2333 break;
2334 case X86::BI__builtin_ia32_pi2fw:
2335 name = "pi2fw";
2336 ID = Intrinsic::x86_3dnowa_pi2fw;
2337 break;
2338 case X86::BI__builtin_ia32_pswapdsf:
2339 case X86::BI__builtin_ia32_pswapdsi:
2340 name = "pswapd";
2341 ID = Intrinsic::x86_3dnowa_pswapd;
2342 break;
2343 }
2344 llvm::Function *F = CGM.getIntrinsic(ID);
2345 return Builder.CreateCall(F, Ops, name);
2346 }
2347 }
2348 }
2349
EmitPPCBuiltinExpr(unsigned BuiltinID,const CallExpr * E)2350 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
2351 const CallExpr *E) {
2352 llvm::SmallVector<Value*, 4> Ops;
2353
2354 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
2355 Ops.push_back(EmitScalarExpr(E->getArg(i)));
2356
2357 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2358
2359 switch (BuiltinID) {
2360 default: return 0;
2361
2362 // vec_ld, vec_lvsl, vec_lvsr
2363 case PPC::BI__builtin_altivec_lvx:
2364 case PPC::BI__builtin_altivec_lvxl:
2365 case PPC::BI__builtin_altivec_lvebx:
2366 case PPC::BI__builtin_altivec_lvehx:
2367 case PPC::BI__builtin_altivec_lvewx:
2368 case PPC::BI__builtin_altivec_lvsl:
2369 case PPC::BI__builtin_altivec_lvsr:
2370 {
2371 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
2372
2373 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0], "tmp");
2374 Ops.pop_back();
2375
2376 switch (BuiltinID) {
2377 default: assert(0 && "Unsupported ld/lvsl/lvsr intrinsic!");
2378 case PPC::BI__builtin_altivec_lvx:
2379 ID = Intrinsic::ppc_altivec_lvx;
2380 break;
2381 case PPC::BI__builtin_altivec_lvxl:
2382 ID = Intrinsic::ppc_altivec_lvxl;
2383 break;
2384 case PPC::BI__builtin_altivec_lvebx:
2385 ID = Intrinsic::ppc_altivec_lvebx;
2386 break;
2387 case PPC::BI__builtin_altivec_lvehx:
2388 ID = Intrinsic::ppc_altivec_lvehx;
2389 break;
2390 case PPC::BI__builtin_altivec_lvewx:
2391 ID = Intrinsic::ppc_altivec_lvewx;
2392 break;
2393 case PPC::BI__builtin_altivec_lvsl:
2394 ID = Intrinsic::ppc_altivec_lvsl;
2395 break;
2396 case PPC::BI__builtin_altivec_lvsr:
2397 ID = Intrinsic::ppc_altivec_lvsr;
2398 break;
2399 }
2400 llvm::Function *F = CGM.getIntrinsic(ID);
2401 return Builder.CreateCall(F, Ops, "");
2402 }
2403
2404 // vec_st
2405 case PPC::BI__builtin_altivec_stvx:
2406 case PPC::BI__builtin_altivec_stvxl:
2407 case PPC::BI__builtin_altivec_stvebx:
2408 case PPC::BI__builtin_altivec_stvehx:
2409 case PPC::BI__builtin_altivec_stvewx:
2410 {
2411 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
2412 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1], "tmp");
2413 Ops.pop_back();
2414
2415 switch (BuiltinID) {
2416 default: assert(0 && "Unsupported st intrinsic!");
2417 case PPC::BI__builtin_altivec_stvx:
2418 ID = Intrinsic::ppc_altivec_stvx;
2419 break;
2420 case PPC::BI__builtin_altivec_stvxl:
2421 ID = Intrinsic::ppc_altivec_stvxl;
2422 break;
2423 case PPC::BI__builtin_altivec_stvebx:
2424 ID = Intrinsic::ppc_altivec_stvebx;
2425 break;
2426 case PPC::BI__builtin_altivec_stvehx:
2427 ID = Intrinsic::ppc_altivec_stvehx;
2428 break;
2429 case PPC::BI__builtin_altivec_stvewx:
2430 ID = Intrinsic::ppc_altivec_stvewx;
2431 break;
2432 }
2433 llvm::Function *F = CGM.getIntrinsic(ID);
2434 return Builder.CreateCall(F, Ops, "");
2435 }
2436 }
2437 return 0;
2438 }
2439