• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Builtin calls as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "CGObjCRuntime.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/Basic/TargetBuiltins.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25 
26 using namespace clang;
27 using namespace CodeGen;
28 using namespace llvm;
29 
EmitMemoryBarrier(CodeGenFunction & CGF,bool LoadLoad,bool LoadStore,bool StoreLoad,bool StoreStore,bool Device)30 static void EmitMemoryBarrier(CodeGenFunction &CGF,
31                               bool LoadLoad, bool LoadStore,
32                               bool StoreLoad, bool StoreStore,
33                               bool Device) {
34   Value *True = CGF.Builder.getTrue();
35   Value *False = CGF.Builder.getFalse();
36   Value *C[5] = { LoadLoad ? True : False,
37                   LoadStore ? True : False,
38                   StoreLoad ? True : False,
39                   StoreStore ? True : False,
40                   Device ? True : False };
41   CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::memory_barrier), C);
42 }
43 
44 /// Emit the conversions required to turn the given value into an
45 /// integer of the given size.
EmitToInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::IntegerType * IntType)46 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
47                         QualType T, llvm::IntegerType *IntType) {
48   V = CGF.EmitToMemory(V, T);
49 
50   if (V->getType()->isPointerTy())
51     return CGF.Builder.CreatePtrToInt(V, IntType);
52 
53   assert(V->getType() == IntType);
54   return V;
55 }
56 
EmitFromInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::Type * ResultType)57 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
58                           QualType T, llvm::Type *ResultType) {
59   V = CGF.EmitFromMemory(V, T);
60 
61   if (ResultType->isPointerTy())
62     return CGF.Builder.CreateIntToPtr(V, ResultType);
63 
64   assert(V->getType() == ResultType);
65   return V;
66 }
67 
68 // The atomic builtins are also full memory barriers. This is a utility for
69 // wrapping a call to the builtins with memory barriers.
EmitCallWithBarrier(CodeGenFunction & CGF,Value * Fn,ArrayRef<Value * > Args)70 static Value *EmitCallWithBarrier(CodeGenFunction &CGF, Value *Fn,
71                                   ArrayRef<Value *> Args) {
72   // FIXME: We need a target hook for whether this applies to device memory or
73   // not.
74   bool Device = true;
75 
76   // Create barriers both before and after the call.
77   EmitMemoryBarrier(CGF, true, true, true, true, Device);
78   Value *Result = CGF.Builder.CreateCall(Fn, Args);
79   EmitMemoryBarrier(CGF, true, true, true, true, Device);
80   return Result;
81 }
82 
83 /// Utility to insert an atomic instruction based on Instrinsic::ID
84 /// and the expression node.
EmitBinaryAtomic(CodeGenFunction & CGF,Intrinsic::ID Id,const CallExpr * E)85 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
86                                Intrinsic::ID Id, const CallExpr *E) {
87   QualType T = E->getType();
88   assert(E->getArg(0)->getType()->isPointerType());
89   assert(CGF.getContext().hasSameUnqualifiedType(T,
90                                   E->getArg(0)->getType()->getPointeeType()));
91   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
92 
93   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
94   unsigned AddrSpace =
95     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
96 
97   llvm::IntegerType *IntType =
98     llvm::IntegerType::get(CGF.getLLVMContext(),
99                            CGF.getContext().getTypeSize(T));
100   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
101 
102   llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
103   llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes);
104 
105   llvm::Value *Args[2];
106   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
107   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
108   llvm::Type *ValueType = Args[1]->getType();
109   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
110 
111   llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args);
112   Result = EmitFromInt(CGF, Result, T, ValueType);
113   return RValue::get(Result);
114 }
115 
116 /// Utility to insert an atomic instruction based Instrinsic::ID and
117 /// the expression node, where the return value is the result of the
118 /// operation.
EmitBinaryAtomicPost(CodeGenFunction & CGF,Intrinsic::ID Id,const CallExpr * E,Instruction::BinaryOps Op)119 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
120                                    Intrinsic::ID Id, const CallExpr *E,
121                                    Instruction::BinaryOps Op) {
122   QualType T = E->getType();
123   assert(E->getArg(0)->getType()->isPointerType());
124   assert(CGF.getContext().hasSameUnqualifiedType(T,
125                                   E->getArg(0)->getType()->getPointeeType()));
126   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
127 
128   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
129   unsigned AddrSpace =
130     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
131 
132   llvm::IntegerType *IntType =
133     llvm::IntegerType::get(CGF.getLLVMContext(),
134                            CGF.getContext().getTypeSize(T));
135   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
136 
137   llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
138   llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes);
139 
140   llvm::Value *Args[2];
141   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
142   llvm::Type *ValueType = Args[1]->getType();
143   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
144   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
145 
146   llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args);
147   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
148   Result = EmitFromInt(CGF, Result, T, ValueType);
149   return RValue::get(Result);
150 }
151 
152 /// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
153 /// which must be a scalar floating point type.
EmitFAbs(CodeGenFunction & CGF,Value * V,QualType ValTy)154 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
155   const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
156   assert(ValTyP && "isn't scalar fp type!");
157 
158   StringRef FnName;
159   switch (ValTyP->getKind()) {
160   default: assert(0 && "Isn't a scalar fp type!");
161   case BuiltinType::Float:      FnName = "fabsf"; break;
162   case BuiltinType::Double:     FnName = "fabs"; break;
163   case BuiltinType::LongDouble: FnName = "fabsl"; break;
164   }
165 
166   // The prototype is something that takes and returns whatever V's type is.
167   llvm::Type *ArgTys[] = { V->getType() };
168   llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), ArgTys,
169                                                    false);
170   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
171 
172   return CGF.Builder.CreateCall(Fn, V, "abs");
173 }
174 
EmitBuiltinExpr(const FunctionDecl * FD,unsigned BuiltinID,const CallExpr * E)175 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
176                                         unsigned BuiltinID, const CallExpr *E) {
177   // See if we can constant fold this builtin.  If so, don't emit it at all.
178   Expr::EvalResult Result;
179   if (E->Evaluate(Result, CGM.getContext()) &&
180       !Result.hasSideEffects()) {
181     if (Result.Val.isInt())
182       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
183                                                 Result.Val.getInt()));
184     if (Result.Val.isFloat())
185       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
186                                                Result.Val.getFloat()));
187   }
188 
189   switch (BuiltinID) {
190   default: break;  // Handle intrinsics and libm functions below.
191   case Builtin::BI__builtin___CFStringMakeConstantString:
192   case Builtin::BI__builtin___NSStringMakeConstantString:
193     return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
194   case Builtin::BI__builtin_stdarg_start:
195   case Builtin::BI__builtin_va_start:
196   case Builtin::BI__builtin_va_end: {
197     Value *ArgValue = EmitVAListRef(E->getArg(0));
198     llvm::Type *DestType = Int8PtrTy;
199     if (ArgValue->getType() != DestType)
200       ArgValue = Builder.CreateBitCast(ArgValue, DestType,
201                                        ArgValue->getName().data());
202 
203     Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
204       Intrinsic::vaend : Intrinsic::vastart;
205     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
206   }
207   case Builtin::BI__builtin_va_copy: {
208     Value *DstPtr = EmitVAListRef(E->getArg(0));
209     Value *SrcPtr = EmitVAListRef(E->getArg(1));
210 
211     llvm::Type *Type = Int8PtrTy;
212 
213     DstPtr = Builder.CreateBitCast(DstPtr, Type);
214     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
215     return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
216                                            DstPtr, SrcPtr));
217   }
218   case Builtin::BI__builtin_abs: {
219     Value *ArgValue = EmitScalarExpr(E->getArg(0));
220 
221     Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
222     Value *CmpResult =
223     Builder.CreateICmpSGE(ArgValue,
224                           llvm::Constant::getNullValue(ArgValue->getType()),
225                                                             "abscond");
226     Value *Result =
227       Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
228 
229     return RValue::get(Result);
230   }
231   case Builtin::BI__builtin_ctz:
232   case Builtin::BI__builtin_ctzl:
233   case Builtin::BI__builtin_ctzll: {
234     Value *ArgValue = EmitScalarExpr(E->getArg(0));
235 
236     llvm::Type *ArgType = ArgValue->getType();
237     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
238 
239     llvm::Type *ResultType = ConvertType(E->getType());
240     Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
241     if (Result->getType() != ResultType)
242       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
243                                      "cast");
244     return RValue::get(Result);
245   }
246   case Builtin::BI__builtin_clz:
247   case Builtin::BI__builtin_clzl:
248   case Builtin::BI__builtin_clzll: {
249     Value *ArgValue = EmitScalarExpr(E->getArg(0));
250 
251     llvm::Type *ArgType = ArgValue->getType();
252     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
253 
254     llvm::Type *ResultType = ConvertType(E->getType());
255     Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
256     if (Result->getType() != ResultType)
257       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
258                                      "cast");
259     return RValue::get(Result);
260   }
261   case Builtin::BI__builtin_ffs:
262   case Builtin::BI__builtin_ffsl:
263   case Builtin::BI__builtin_ffsll: {
264     // ffs(x) -> x ? cttz(x) + 1 : 0
265     Value *ArgValue = EmitScalarExpr(E->getArg(0));
266 
267     llvm::Type *ArgType = ArgValue->getType();
268     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
269 
270     llvm::Type *ResultType = ConvertType(E->getType());
271     Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"),
272                                    llvm::ConstantInt::get(ArgType, 1), "tmp");
273     Value *Zero = llvm::Constant::getNullValue(ArgType);
274     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
275     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
276     if (Result->getType() != ResultType)
277       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
278                                      "cast");
279     return RValue::get(Result);
280   }
281   case Builtin::BI__builtin_parity:
282   case Builtin::BI__builtin_parityl:
283   case Builtin::BI__builtin_parityll: {
284     // parity(x) -> ctpop(x) & 1
285     Value *ArgValue = EmitScalarExpr(E->getArg(0));
286 
287     llvm::Type *ArgType = ArgValue->getType();
288     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
289 
290     llvm::Type *ResultType = ConvertType(E->getType());
291     Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp");
292     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1),
293                                       "tmp");
294     if (Result->getType() != ResultType)
295       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
296                                      "cast");
297     return RValue::get(Result);
298   }
299   case Builtin::BI__builtin_popcount:
300   case Builtin::BI__builtin_popcountl:
301   case Builtin::BI__builtin_popcountll: {
302     Value *ArgValue = EmitScalarExpr(E->getArg(0));
303 
304     llvm::Type *ArgType = ArgValue->getType();
305     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
306 
307     llvm::Type *ResultType = ConvertType(E->getType());
308     Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
309     if (Result->getType() != ResultType)
310       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
311                                      "cast");
312     return RValue::get(Result);
313   }
314   case Builtin::BI__builtin_expect: {
315     Value *ArgValue = EmitScalarExpr(E->getArg(0));
316     llvm::Type *ArgType = ArgValue->getType();
317 
318     Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
319     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
320 
321     Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
322                                         "expval");
323     return RValue::get(Result);
324   }
325   case Builtin::BI__builtin_bswap32:
326   case Builtin::BI__builtin_bswap64: {
327     Value *ArgValue = EmitScalarExpr(E->getArg(0));
328     llvm::Type *ArgType = ArgValue->getType();
329     Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
330     return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
331   }
332   case Builtin::BI__builtin_object_size: {
333     // We pass this builtin onto the optimizer so that it can
334     // figure out the object size in more complex cases.
335     llvm::Type *ResType = ConvertType(E->getType());
336 
337     // LLVM only supports 0 and 2, make sure that we pass along that
338     // as a boolean.
339     Value *Ty = EmitScalarExpr(E->getArg(1));
340     ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
341     assert(CI);
342     uint64_t val = CI->getZExtValue();
343     CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
344 
345     Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType);
346     return RValue::get(Builder.CreateCall2(F,
347                                            EmitScalarExpr(E->getArg(0)),
348                                            CI));
349   }
350   case Builtin::BI__builtin_prefetch: {
351     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
352     // FIXME: Technically these constants should of type 'int', yes?
353     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
354       llvm::ConstantInt::get(Int32Ty, 0);
355     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
356       llvm::ConstantInt::get(Int32Ty, 3);
357     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
358     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
359     return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
360   }
361   case Builtin::BI__builtin_trap: {
362     Value *F = CGM.getIntrinsic(Intrinsic::trap);
363     return RValue::get(Builder.CreateCall(F));
364   }
365   case Builtin::BI__builtin_unreachable: {
366     if (CatchUndefined)
367       EmitBranch(getTrapBB());
368     else
369       Builder.CreateUnreachable();
370 
371     // We do need to preserve an insertion point.
372     EmitBlock(createBasicBlock("unreachable.cont"));
373 
374     return RValue::get(0);
375   }
376 
377   case Builtin::BI__builtin_powi:
378   case Builtin::BI__builtin_powif:
379   case Builtin::BI__builtin_powil: {
380     Value *Base = EmitScalarExpr(E->getArg(0));
381     Value *Exponent = EmitScalarExpr(E->getArg(1));
382     llvm::Type *ArgType = Base->getType();
383     Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
384     return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
385   }
386 
387   case Builtin::BI__builtin_isgreater:
388   case Builtin::BI__builtin_isgreaterequal:
389   case Builtin::BI__builtin_isless:
390   case Builtin::BI__builtin_islessequal:
391   case Builtin::BI__builtin_islessgreater:
392   case Builtin::BI__builtin_isunordered: {
393     // Ordered comparisons: we know the arguments to these are matching scalar
394     // floating point values.
395     Value *LHS = EmitScalarExpr(E->getArg(0));
396     Value *RHS = EmitScalarExpr(E->getArg(1));
397 
398     switch (BuiltinID) {
399     default: assert(0 && "Unknown ordered comparison");
400     case Builtin::BI__builtin_isgreater:
401       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
402       break;
403     case Builtin::BI__builtin_isgreaterequal:
404       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
405       break;
406     case Builtin::BI__builtin_isless:
407       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
408       break;
409     case Builtin::BI__builtin_islessequal:
410       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
411       break;
412     case Builtin::BI__builtin_islessgreater:
413       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
414       break;
415     case Builtin::BI__builtin_isunordered:
416       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
417       break;
418     }
419     // ZExt bool to int type.
420     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
421                                           "tmp"));
422   }
423   case Builtin::BI__builtin_isnan: {
424     Value *V = EmitScalarExpr(E->getArg(0));
425     V = Builder.CreateFCmpUNO(V, V, "cmp");
426     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
427   }
428 
429   case Builtin::BI__builtin_isinf: {
430     // isinf(x) --> fabs(x) == infinity
431     Value *V = EmitScalarExpr(E->getArg(0));
432     V = EmitFAbs(*this, V, E->getArg(0)->getType());
433 
434     V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
435     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
436   }
437 
438   // TODO: BI__builtin_isinf_sign
439   //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
440 
441   case Builtin::BI__builtin_isnormal: {
442     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
443     Value *V = EmitScalarExpr(E->getArg(0));
444     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
445 
446     Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
447     Value *IsLessThanInf =
448       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
449     APFloat Smallest = APFloat::getSmallestNormalized(
450                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
451     Value *IsNormal =
452       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
453                             "isnormal");
454     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
455     V = Builder.CreateAnd(V, IsNormal, "and");
456     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
457   }
458 
459   case Builtin::BI__builtin_isfinite: {
460     // isfinite(x) --> x == x && fabs(x) != infinity; }
461     Value *V = EmitScalarExpr(E->getArg(0));
462     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
463 
464     Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
465     Value *IsNotInf =
466       Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
467 
468     V = Builder.CreateAnd(Eq, IsNotInf, "and");
469     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
470   }
471 
472   case Builtin::BI__builtin_fpclassify: {
473     Value *V = EmitScalarExpr(E->getArg(5));
474     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
475 
476     // Create Result
477     BasicBlock *Begin = Builder.GetInsertBlock();
478     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
479     Builder.SetInsertPoint(End);
480     PHINode *Result =
481       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
482                         "fpclassify_result");
483 
484     // if (V==0) return FP_ZERO
485     Builder.SetInsertPoint(Begin);
486     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
487                                           "iszero");
488     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
489     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
490     Builder.CreateCondBr(IsZero, End, NotZero);
491     Result->addIncoming(ZeroLiteral, Begin);
492 
493     // if (V != V) return FP_NAN
494     Builder.SetInsertPoint(NotZero);
495     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
496     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
497     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
498     Builder.CreateCondBr(IsNan, End, NotNan);
499     Result->addIncoming(NanLiteral, NotZero);
500 
501     // if (fabs(V) == infinity) return FP_INFINITY
502     Builder.SetInsertPoint(NotNan);
503     Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
504     Value *IsInf =
505       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
506                             "isinf");
507     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
508     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
509     Builder.CreateCondBr(IsInf, End, NotInf);
510     Result->addIncoming(InfLiteral, NotNan);
511 
512     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
513     Builder.SetInsertPoint(NotInf);
514     APFloat Smallest = APFloat::getSmallestNormalized(
515         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
516     Value *IsNormal =
517       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
518                             "isnormal");
519     Value *NormalResult =
520       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
521                            EmitScalarExpr(E->getArg(3)));
522     Builder.CreateBr(End);
523     Result->addIncoming(NormalResult, NotInf);
524 
525     // return Result
526     Builder.SetInsertPoint(End);
527     return RValue::get(Result);
528   }
529 
530   case Builtin::BIalloca:
531   case Builtin::BI__builtin_alloca: {
532     Value *Size = EmitScalarExpr(E->getArg(0));
533     return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size, "tmp"));
534   }
535   case Builtin::BIbzero:
536   case Builtin::BI__builtin_bzero: {
537     Value *Address = EmitScalarExpr(E->getArg(0));
538     Value *SizeVal = EmitScalarExpr(E->getArg(1));
539     Builder.CreateMemSet(Address, Builder.getInt8(0), SizeVal, 1, false);
540     return RValue::get(Address);
541   }
542   case Builtin::BImemcpy:
543   case Builtin::BI__builtin_memcpy: {
544     Value *Address = EmitScalarExpr(E->getArg(0));
545     Value *SrcAddr = EmitScalarExpr(E->getArg(1));
546     Value *SizeVal = EmitScalarExpr(E->getArg(2));
547     Builder.CreateMemCpy(Address, SrcAddr, SizeVal, 1, false);
548     return RValue::get(Address);
549   }
550 
551   case Builtin::BI__builtin___memcpy_chk: {
552     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
553     if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
554         !E->getArg(3)->isEvaluatable(CGM.getContext()))
555       break;
556     llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
557     llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
558     if (Size.ugt(DstSize))
559       break;
560     Value *Dest = EmitScalarExpr(E->getArg(0));
561     Value *Src = EmitScalarExpr(E->getArg(1));
562     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
563     Builder.CreateMemCpy(Dest, Src, SizeVal, 1, false);
564     return RValue::get(Dest);
565   }
566 
567   case Builtin::BI__builtin_objc_memmove_collectable: {
568     Value *Address = EmitScalarExpr(E->getArg(0));
569     Value *SrcAddr = EmitScalarExpr(E->getArg(1));
570     Value *SizeVal = EmitScalarExpr(E->getArg(2));
571     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
572                                                   Address, SrcAddr, SizeVal);
573     return RValue::get(Address);
574   }
575 
576   case Builtin::BI__builtin___memmove_chk: {
577     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
578     if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
579         !E->getArg(3)->isEvaluatable(CGM.getContext()))
580       break;
581     llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
582     llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
583     if (Size.ugt(DstSize))
584       break;
585     Value *Dest = EmitScalarExpr(E->getArg(0));
586     Value *Src = EmitScalarExpr(E->getArg(1));
587     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
588     Builder.CreateMemMove(Dest, Src, SizeVal, 1, false);
589     return RValue::get(Dest);
590   }
591 
592   case Builtin::BImemmove:
593   case Builtin::BI__builtin_memmove: {
594     Value *Address = EmitScalarExpr(E->getArg(0));
595     Value *SrcAddr = EmitScalarExpr(E->getArg(1));
596     Value *SizeVal = EmitScalarExpr(E->getArg(2));
597     Builder.CreateMemMove(Address, SrcAddr, SizeVal, 1, false);
598     return RValue::get(Address);
599   }
600   case Builtin::BImemset:
601   case Builtin::BI__builtin_memset: {
602     Value *Address = EmitScalarExpr(E->getArg(0));
603     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
604                                          Builder.getInt8Ty());
605     Value *SizeVal = EmitScalarExpr(E->getArg(2));
606     Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
607     return RValue::get(Address);
608   }
609   case Builtin::BI__builtin___memset_chk: {
610     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
611     if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
612         !E->getArg(3)->isEvaluatable(CGM.getContext()))
613       break;
614     llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
615     llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
616     if (Size.ugt(DstSize))
617       break;
618     Value *Address = EmitScalarExpr(E->getArg(0));
619     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
620                                          Builder.getInt8Ty());
621     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
622     Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
623 
624     return RValue::get(Address);
625   }
626   case Builtin::BI__builtin_dwarf_cfa: {
627     // The offset in bytes from the first argument to the CFA.
628     //
629     // Why on earth is this in the frontend?  Is there any reason at
630     // all that the backend can't reasonably determine this while
631     // lowering llvm.eh.dwarf.cfa()?
632     //
633     // TODO: If there's a satisfactory reason, add a target hook for
634     // this instead of hard-coding 0, which is correct for most targets.
635     int32_t Offset = 0;
636 
637     Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
638     return RValue::get(Builder.CreateCall(F,
639                                       llvm::ConstantInt::get(Int32Ty, Offset)));
640   }
641   case Builtin::BI__builtin_return_address: {
642     Value *Depth = EmitScalarExpr(E->getArg(0));
643     Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
644     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
645     return RValue::get(Builder.CreateCall(F, Depth));
646   }
647   case Builtin::BI__builtin_frame_address: {
648     Value *Depth = EmitScalarExpr(E->getArg(0));
649     Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
650     Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
651     return RValue::get(Builder.CreateCall(F, Depth));
652   }
653   case Builtin::BI__builtin_extract_return_addr: {
654     Value *Address = EmitScalarExpr(E->getArg(0));
655     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
656     return RValue::get(Result);
657   }
658   case Builtin::BI__builtin_frob_return_addr: {
659     Value *Address = EmitScalarExpr(E->getArg(0));
660     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
661     return RValue::get(Result);
662   }
663   case Builtin::BI__builtin_dwarf_sp_column: {
664     llvm::IntegerType *Ty
665       = cast<llvm::IntegerType>(ConvertType(E->getType()));
666     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
667     if (Column == -1) {
668       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
669       return RValue::get(llvm::UndefValue::get(Ty));
670     }
671     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
672   }
673   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
674     Value *Address = EmitScalarExpr(E->getArg(0));
675     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
676       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
677     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
678   }
679   case Builtin::BI__builtin_eh_return: {
680     Value *Int = EmitScalarExpr(E->getArg(0));
681     Value *Ptr = EmitScalarExpr(E->getArg(1));
682 
683     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
684     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
685            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
686     Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
687                                   ? Intrinsic::eh_return_i32
688                                   : Intrinsic::eh_return_i64);
689     Builder.CreateCall2(F, Int, Ptr);
690     Builder.CreateUnreachable();
691 
692     // We do need to preserve an insertion point.
693     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
694 
695     return RValue::get(0);
696   }
697   case Builtin::BI__builtin_unwind_init: {
698     Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
699     return RValue::get(Builder.CreateCall(F));
700   }
701   case Builtin::BI__builtin_extend_pointer: {
702     // Extends a pointer to the size of an _Unwind_Word, which is
703     // uint64_t on all platforms.  Generally this gets poked into a
704     // register and eventually used as an address, so if the
705     // addressing registers are wider than pointers and the platform
706     // doesn't implicitly ignore high-order bits when doing
707     // addressing, we need to make sure we zext / sext based on
708     // the platform's expectations.
709     //
710     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
711 
712     // Cast the pointer to intptr_t.
713     Value *Ptr = EmitScalarExpr(E->getArg(0));
714     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
715 
716     // If that's 64 bits, we're done.
717     if (IntPtrTy->getBitWidth() == 64)
718       return RValue::get(Result);
719 
720     // Otherwise, ask the codegen data what to do.
721     if (getTargetHooks().extendPointerWithSExt())
722       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
723     else
724       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
725   }
726   case Builtin::BI__builtin_setjmp: {
727     // Buffer is a void**.
728     Value *Buf = EmitScalarExpr(E->getArg(0));
729 
730     // Store the frame pointer to the setjmp buffer.
731     Value *FrameAddr =
732       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
733                          ConstantInt::get(Int32Ty, 0));
734     Builder.CreateStore(FrameAddr, Buf);
735 
736     // Store the stack pointer to the setjmp buffer.
737     Value *StackAddr =
738       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
739     Value *StackSaveSlot =
740       Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
741     Builder.CreateStore(StackAddr, StackSaveSlot);
742 
743     // Call LLVM's EH setjmp, which is lightweight.
744     Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
745     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
746     return RValue::get(Builder.CreateCall(F, Buf));
747   }
748   case Builtin::BI__builtin_longjmp: {
749     Value *Buf = EmitScalarExpr(E->getArg(0));
750     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
751 
752     // Call LLVM's EH longjmp, which is lightweight.
753     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
754 
755     // longjmp doesn't return; mark this as unreachable.
756     Builder.CreateUnreachable();
757 
758     // We do need to preserve an insertion point.
759     EmitBlock(createBasicBlock("longjmp.cont"));
760 
761     return RValue::get(0);
762   }
763   case Builtin::BI__sync_fetch_and_add:
764   case Builtin::BI__sync_fetch_and_sub:
765   case Builtin::BI__sync_fetch_and_or:
766   case Builtin::BI__sync_fetch_and_and:
767   case Builtin::BI__sync_fetch_and_xor:
768   case Builtin::BI__sync_add_and_fetch:
769   case Builtin::BI__sync_sub_and_fetch:
770   case Builtin::BI__sync_and_and_fetch:
771   case Builtin::BI__sync_or_and_fetch:
772   case Builtin::BI__sync_xor_and_fetch:
773   case Builtin::BI__sync_val_compare_and_swap:
774   case Builtin::BI__sync_bool_compare_and_swap:
775   case Builtin::BI__sync_lock_test_and_set:
776   case Builtin::BI__sync_lock_release:
777   case Builtin::BI__sync_swap:
778     assert(0 && "Shouldn't make it through sema");
779   case Builtin::BI__sync_fetch_and_add_1:
780   case Builtin::BI__sync_fetch_and_add_2:
781   case Builtin::BI__sync_fetch_and_add_4:
782   case Builtin::BI__sync_fetch_and_add_8:
783   case Builtin::BI__sync_fetch_and_add_16:
784     return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E);
785   case Builtin::BI__sync_fetch_and_sub_1:
786   case Builtin::BI__sync_fetch_and_sub_2:
787   case Builtin::BI__sync_fetch_and_sub_4:
788   case Builtin::BI__sync_fetch_and_sub_8:
789   case Builtin::BI__sync_fetch_and_sub_16:
790     return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E);
791   case Builtin::BI__sync_fetch_and_or_1:
792   case Builtin::BI__sync_fetch_and_or_2:
793   case Builtin::BI__sync_fetch_and_or_4:
794   case Builtin::BI__sync_fetch_and_or_8:
795   case Builtin::BI__sync_fetch_and_or_16:
796     return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E);
797   case Builtin::BI__sync_fetch_and_and_1:
798   case Builtin::BI__sync_fetch_and_and_2:
799   case Builtin::BI__sync_fetch_and_and_4:
800   case Builtin::BI__sync_fetch_and_and_8:
801   case Builtin::BI__sync_fetch_and_and_16:
802     return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E);
803   case Builtin::BI__sync_fetch_and_xor_1:
804   case Builtin::BI__sync_fetch_and_xor_2:
805   case Builtin::BI__sync_fetch_and_xor_4:
806   case Builtin::BI__sync_fetch_and_xor_8:
807   case Builtin::BI__sync_fetch_and_xor_16:
808     return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E);
809 
810   // Clang extensions: not overloaded yet.
811   case Builtin::BI__sync_fetch_and_min:
812     return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E);
813   case Builtin::BI__sync_fetch_and_max:
814     return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E);
815   case Builtin::BI__sync_fetch_and_umin:
816     return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E);
817   case Builtin::BI__sync_fetch_and_umax:
818     return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E);
819 
820   case Builtin::BI__sync_add_and_fetch_1:
821   case Builtin::BI__sync_add_and_fetch_2:
822   case Builtin::BI__sync_add_and_fetch_4:
823   case Builtin::BI__sync_add_and_fetch_8:
824   case Builtin::BI__sync_add_and_fetch_16:
825     return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E,
826                                 llvm::Instruction::Add);
827   case Builtin::BI__sync_sub_and_fetch_1:
828   case Builtin::BI__sync_sub_and_fetch_2:
829   case Builtin::BI__sync_sub_and_fetch_4:
830   case Builtin::BI__sync_sub_and_fetch_8:
831   case Builtin::BI__sync_sub_and_fetch_16:
832     return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E,
833                                 llvm::Instruction::Sub);
834   case Builtin::BI__sync_and_and_fetch_1:
835   case Builtin::BI__sync_and_and_fetch_2:
836   case Builtin::BI__sync_and_and_fetch_4:
837   case Builtin::BI__sync_and_and_fetch_8:
838   case Builtin::BI__sync_and_and_fetch_16:
839     return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E,
840                                 llvm::Instruction::And);
841   case Builtin::BI__sync_or_and_fetch_1:
842   case Builtin::BI__sync_or_and_fetch_2:
843   case Builtin::BI__sync_or_and_fetch_4:
844   case Builtin::BI__sync_or_and_fetch_8:
845   case Builtin::BI__sync_or_and_fetch_16:
846     return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E,
847                                 llvm::Instruction::Or);
848   case Builtin::BI__sync_xor_and_fetch_1:
849   case Builtin::BI__sync_xor_and_fetch_2:
850   case Builtin::BI__sync_xor_and_fetch_4:
851   case Builtin::BI__sync_xor_and_fetch_8:
852   case Builtin::BI__sync_xor_and_fetch_16:
853     return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E,
854                                 llvm::Instruction::Xor);
855 
856   case Builtin::BI__sync_val_compare_and_swap_1:
857   case Builtin::BI__sync_val_compare_and_swap_2:
858   case Builtin::BI__sync_val_compare_and_swap_4:
859   case Builtin::BI__sync_val_compare_and_swap_8:
860   case Builtin::BI__sync_val_compare_and_swap_16: {
861     QualType T = E->getType();
862     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
863     unsigned AddrSpace =
864       cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
865 
866     llvm::IntegerType *IntType =
867       llvm::IntegerType::get(getLLVMContext(),
868                              getContext().getTypeSize(T));
869     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
870     llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
871     Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
872                                     IntrinsicTypes);
873 
874     Value *Args[3];
875     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
876     Args[1] = EmitScalarExpr(E->getArg(1));
877     llvm::Type *ValueType = Args[1]->getType();
878     Args[1] = EmitToInt(*this, Args[1], T, IntType);
879     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
880 
881     Value *Result = EmitCallWithBarrier(*this, AtomF, Args);
882     Result = EmitFromInt(*this, Result, T, ValueType);
883     return RValue::get(Result);
884   }
885 
886   case Builtin::BI__sync_bool_compare_and_swap_1:
887   case Builtin::BI__sync_bool_compare_and_swap_2:
888   case Builtin::BI__sync_bool_compare_and_swap_4:
889   case Builtin::BI__sync_bool_compare_and_swap_8:
890   case Builtin::BI__sync_bool_compare_and_swap_16: {
891     QualType T = E->getArg(1)->getType();
892     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
893     unsigned AddrSpace =
894       cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
895 
896     llvm::IntegerType *IntType =
897       llvm::IntegerType::get(getLLVMContext(),
898                              getContext().getTypeSize(T));
899     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
900     llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
901     Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
902                                     IntrinsicTypes);
903 
904     Value *Args[3];
905     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
906     Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
907     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
908 
909     Value *OldVal = Args[1];
910     Value *PrevVal = EmitCallWithBarrier(*this, AtomF, Args);
911     Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
912     // zext bool to int.
913     Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
914     return RValue::get(Result);
915   }
916 
917   case Builtin::BI__sync_swap_1:
918   case Builtin::BI__sync_swap_2:
919   case Builtin::BI__sync_swap_4:
920   case Builtin::BI__sync_swap_8:
921   case Builtin::BI__sync_swap_16:
922     return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
923 
924   case Builtin::BI__sync_lock_test_and_set_1:
925   case Builtin::BI__sync_lock_test_and_set_2:
926   case Builtin::BI__sync_lock_test_and_set_4:
927   case Builtin::BI__sync_lock_test_and_set_8:
928   case Builtin::BI__sync_lock_test_and_set_16:
929     return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
930 
931   case Builtin::BI__sync_lock_release_1:
932   case Builtin::BI__sync_lock_release_2:
933   case Builtin::BI__sync_lock_release_4:
934   case Builtin::BI__sync_lock_release_8:
935   case Builtin::BI__sync_lock_release_16: {
936     Value *Ptr = EmitScalarExpr(E->getArg(0));
937     llvm::Type *ElTy =
938       cast<llvm::PointerType>(Ptr->getType())->getElementType();
939     llvm::StoreInst *Store =
940       Builder.CreateStore(llvm::Constant::getNullValue(ElTy), Ptr);
941     Store->setVolatile(true);
942     return RValue::get(0);
943   }
944 
945   case Builtin::BI__sync_synchronize: {
946     // We assume like gcc appears to, that this only applies to cached memory.
947     EmitMemoryBarrier(*this, true, true, true, true, false);
948     return RValue::get(0);
949   }
950 
951   case Builtin::BI__builtin_llvm_memory_barrier: {
952     Value *C[5] = {
953       EmitScalarExpr(E->getArg(0)),
954       EmitScalarExpr(E->getArg(1)),
955       EmitScalarExpr(E->getArg(2)),
956       EmitScalarExpr(E->getArg(3)),
957       EmitScalarExpr(E->getArg(4))
958     };
959     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C);
960     return RValue::get(0);
961   }
962 
963     // Library functions with special handling.
964   case Builtin::BIsqrt:
965   case Builtin::BIsqrtf:
966   case Builtin::BIsqrtl: {
967     // TODO: there is currently no set of optimizer flags
968     // sufficient for us to rewrite sqrt to @llvm.sqrt.
969     // -fmath-errno=0 is not good enough; we need finiteness.
970     // We could probably precondition the call with an ult
971     // against 0, but is that worth the complexity?
972     break;
973   }
974 
975   case Builtin::BIpow:
976   case Builtin::BIpowf:
977   case Builtin::BIpowl: {
978     // Rewrite sqrt to intrinsic if allowed.
979     if (!FD->hasAttr<ConstAttr>())
980       break;
981     Value *Base = EmitScalarExpr(E->getArg(0));
982     Value *Exponent = EmitScalarExpr(E->getArg(1));
983     llvm::Type *ArgType = Base->getType();
984     Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
985     return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
986   }
987 
988   case Builtin::BIfma:
989   case Builtin::BIfmaf:
990   case Builtin::BIfmal:
991   case Builtin::BI__builtin_fma:
992   case Builtin::BI__builtin_fmaf:
993   case Builtin::BI__builtin_fmal: {
994     // Rewrite fma to intrinsic.
995     Value *FirstArg = EmitScalarExpr(E->getArg(0));
996     llvm::Type *ArgType = FirstArg->getType();
997     Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
998     return RValue::get(Builder.CreateCall3(F, FirstArg,
999                                               EmitScalarExpr(E->getArg(1)),
1000                                               EmitScalarExpr(E->getArg(2)),
1001                                               "tmp"));
1002   }
1003 
1004   case Builtin::BI__builtin_signbit:
1005   case Builtin::BI__builtin_signbitf:
1006   case Builtin::BI__builtin_signbitl: {
1007     LLVMContext &C = CGM.getLLVMContext();
1008 
1009     Value *Arg = EmitScalarExpr(E->getArg(0));
1010     llvm::Type *ArgTy = Arg->getType();
1011     if (ArgTy->isPPC_FP128Ty())
1012       break; // FIXME: I'm not sure what the right implementation is here.
1013     int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1014     llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1015     Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1016     Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1017     Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1018     return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1019   }
1020   }
1021 
1022   // If this is an alias for a libm function (e.g. __builtin_sin) turn it into
1023   // that function.
1024   if (getContext().BuiltinInfo.isLibFunction(BuiltinID) ||
1025       getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1026     return EmitCall(E->getCallee()->getType(),
1027                     CGM.getBuiltinLibFunction(FD, BuiltinID),
1028                     ReturnValueSlot(), E->arg_begin(), E->arg_end(), FD);
1029 
1030   // See if we have a target specific intrinsic.
1031   const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1032   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1033   if (const char *Prefix =
1034       llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
1035     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1036 
1037   if (IntrinsicID != Intrinsic::not_intrinsic) {
1038     SmallVector<Value*, 16> Args;
1039 
1040     // Find out if any arguments are required to be integer constant
1041     // expressions.
1042     unsigned ICEArguments = 0;
1043     ASTContext::GetBuiltinTypeError Error;
1044     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1045     assert(Error == ASTContext::GE_None && "Should not codegen an error");
1046 
1047     Function *F = CGM.getIntrinsic(IntrinsicID);
1048     llvm::FunctionType *FTy = F->getFunctionType();
1049 
1050     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1051       Value *ArgValue;
1052       // If this is a normal argument, just emit it as a scalar.
1053       if ((ICEArguments & (1 << i)) == 0) {
1054         ArgValue = EmitScalarExpr(E->getArg(i));
1055       } else {
1056         // If this is required to be a constant, constant fold it so that we
1057         // know that the generated intrinsic gets a ConstantInt.
1058         llvm::APSInt Result;
1059         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1060         assert(IsConst && "Constant arg isn't actually constant?");
1061         (void)IsConst;
1062         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1063       }
1064 
1065       // If the intrinsic arg type is different from the builtin arg type
1066       // we need to do a bit cast.
1067       llvm::Type *PTy = FTy->getParamType(i);
1068       if (PTy != ArgValue->getType()) {
1069         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1070                "Must be able to losslessly bit cast to param");
1071         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1072       }
1073 
1074       Args.push_back(ArgValue);
1075     }
1076 
1077     Value *V = Builder.CreateCall(F, Args);
1078     QualType BuiltinRetType = E->getType();
1079 
1080     llvm::Type *RetTy = llvm::Type::getVoidTy(getLLVMContext());
1081     if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
1082 
1083     if (RetTy != V->getType()) {
1084       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1085              "Must be able to losslessly bit cast result type");
1086       V = Builder.CreateBitCast(V, RetTy);
1087     }
1088 
1089     return RValue::get(V);
1090   }
1091 
1092   // See if we have a target specific builtin that needs to be lowered.
1093   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1094     return RValue::get(V);
1095 
1096   ErrorUnsupported(E, "builtin function");
1097 
1098   // Unknown builtin, for now just dump it out and return undef.
1099   if (hasAggregateLLVMType(E->getType()))
1100     return RValue::getAggregate(CreateMemTemp(E->getType()));
1101   return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
1102 }
1103 
EmitTargetBuiltinExpr(unsigned BuiltinID,const CallExpr * E)1104 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1105                                               const CallExpr *E) {
1106   switch (Target.getTriple().getArch()) {
1107   case llvm::Triple::arm:
1108   case llvm::Triple::thumb:
1109     return EmitARMBuiltinExpr(BuiltinID, E);
1110   case llvm::Triple::x86:
1111   case llvm::Triple::x86_64:
1112     return EmitX86BuiltinExpr(BuiltinID, E);
1113   case llvm::Triple::ppc:
1114   case llvm::Triple::ppc64:
1115     return EmitPPCBuiltinExpr(BuiltinID, E);
1116   default:
1117     return 0;
1118   }
1119 }
1120 
GetNeonType(LLVMContext & C,unsigned type,bool q)1121 static llvm::VectorType *GetNeonType(LLVMContext &C, unsigned type, bool q) {
1122   switch (type) {
1123     default: break;
1124     case 0:
1125     case 5: return llvm::VectorType::get(llvm::Type::getInt8Ty(C), 8 << (int)q);
1126     case 6:
1127     case 7:
1128     case 1: return llvm::VectorType::get(llvm::Type::getInt16Ty(C),4 << (int)q);
1129     case 2: return llvm::VectorType::get(llvm::Type::getInt32Ty(C),2 << (int)q);
1130     case 3: return llvm::VectorType::get(llvm::Type::getInt64Ty(C),1 << (int)q);
1131     case 4: return llvm::VectorType::get(llvm::Type::getFloatTy(C),2 << (int)q);
1132   };
1133   return 0;
1134 }
1135 
EmitNeonSplat(Value * V,Constant * C)1136 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1137   unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1138   SmallVector<Constant*, 16> Indices(nElts, C);
1139   Value* SV = llvm::ConstantVector::get(Indices);
1140   return Builder.CreateShuffleVector(V, V, SV, "lane");
1141 }
1142 
EmitNeonCall(Function * F,SmallVectorImpl<Value * > & Ops,const char * name,unsigned shift,bool rightshift)1143 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1144                                      const char *name,
1145                                      unsigned shift, bool rightshift) {
1146   unsigned j = 0;
1147   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1148        ai != ae; ++ai, ++j)
1149     if (shift > 0 && shift == j)
1150       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1151     else
1152       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1153 
1154   return Builder.CreateCall(F, Ops, name);
1155 }
1156 
EmitNeonShiftVector(Value * V,llvm::Type * Ty,bool neg)1157 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1158                                             bool neg) {
1159   ConstantInt *CI = cast<ConstantInt>(V);
1160   int SV = CI->getSExtValue();
1161 
1162   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1163   llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1164   SmallVector<llvm::Constant*, 16> CV(VTy->getNumElements(), C);
1165   return llvm::ConstantVector::get(CV);
1166 }
1167 
1168 /// GetPointeeAlignment - Given an expression with a pointer type, find the
1169 /// alignment of the type referenced by the pointer.  Skip over implicit
1170 /// casts.
GetPointeeAlignment(CodeGenFunction & CGF,const Expr * Addr)1171 static Value *GetPointeeAlignment(CodeGenFunction &CGF, const Expr *Addr) {
1172   unsigned Align = 1;
1173   // Check if the type is a pointer.  The implicit cast operand might not be.
1174   while (Addr->getType()->isPointerType()) {
1175     QualType PtTy = Addr->getType()->getPointeeType();
1176     unsigned NewA = CGF.getContext().getTypeAlignInChars(PtTy).getQuantity();
1177     if (NewA > Align)
1178       Align = NewA;
1179 
1180     // If the address is an implicit cast, repeat with the cast operand.
1181     if (const ImplicitCastExpr *CastAddr = dyn_cast<ImplicitCastExpr>(Addr)) {
1182       Addr = CastAddr->getSubExpr();
1183       continue;
1184     }
1185     break;
1186   }
1187   return llvm::ConstantInt::get(CGF.Int32Ty, Align);
1188 }
1189 
EmitARMBuiltinExpr(unsigned BuiltinID,const CallExpr * E)1190 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
1191                                            const CallExpr *E) {
1192   if (BuiltinID == ARM::BI__clear_cache) {
1193     const FunctionDecl *FD = E->getDirectCallee();
1194     // Oddly people write this call without args on occasion and gcc accepts
1195     // it - it's also marked as varargs in the description file.
1196     llvm::SmallVector<Value*, 2> Ops;
1197     for (unsigned i = 0; i < E->getNumArgs(); i++)
1198       Ops.push_back(EmitScalarExpr(E->getArg(i)));
1199     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1200     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1201     llvm::StringRef Name = FD->getName();
1202     return Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
1203   }
1204 
1205   if (BuiltinID == ARM::BI__builtin_arm_ldrexd) {
1206     Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
1207 
1208     Value *LdPtr = EmitScalarExpr(E->getArg(0));
1209     Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
1210 
1211     Value *Val0 = Builder.CreateExtractValue(Val, 1);
1212     Value *Val1 = Builder.CreateExtractValue(Val, 0);
1213     Val0 = Builder.CreateZExt(Val0, Int64Ty);
1214     Val1 = Builder.CreateZExt(Val1, Int64Ty);
1215 
1216     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
1217     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
1218     return Builder.CreateOr(Val, Val1);
1219   }
1220 
1221   if (BuiltinID == ARM::BI__builtin_arm_strexd) {
1222     Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
1223     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
1224 
1225     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
1226     Value *Tmp = Builder.CreateAlloca(Int64Ty, One, "tmp");
1227     Value *Val = EmitScalarExpr(E->getArg(0));
1228     Builder.CreateStore(Val, Tmp);
1229 
1230     Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
1231     Val = Builder.CreateLoad(LdPtr);
1232 
1233     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
1234     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
1235     Value *StPtr = EmitScalarExpr(E->getArg(1));
1236     return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
1237   }
1238 
1239   llvm::SmallVector<Value*, 4> Ops;
1240   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++)
1241     Ops.push_back(EmitScalarExpr(E->getArg(i)));
1242 
1243   llvm::APSInt Result;
1244   const Expr *Arg = E->getArg(E->getNumArgs()-1);
1245   if (!Arg->isIntegerConstantExpr(Result, getContext()))
1246     return 0;
1247 
1248   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
1249       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
1250     // Determine the overloaded type of this builtin.
1251     llvm::Type *Ty;
1252     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
1253       Ty = llvm::Type::getFloatTy(getLLVMContext());
1254     else
1255       Ty = llvm::Type::getDoubleTy(getLLVMContext());
1256 
1257     // Determine whether this is an unsigned conversion or not.
1258     bool usgn = Result.getZExtValue() == 1;
1259     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
1260 
1261     // Call the appropriate intrinsic.
1262     Function *F = CGM.getIntrinsic(Int, Ty);
1263     return Builder.CreateCall(F, Ops, "vcvtr");
1264   }
1265 
1266   // Determine the type of this overloaded NEON intrinsic.
1267   unsigned type = Result.getZExtValue();
1268   bool usgn = type & 0x08;
1269   bool quad = type & 0x10;
1270   bool poly = (type & 0x7) == 5 || (type & 0x7) == 6;
1271   (void)poly;  // Only used in assert()s.
1272   bool rightShift = false;
1273 
1274   llvm::VectorType *VTy = GetNeonType(getLLVMContext(), type & 0x7, quad);
1275   llvm::Type *Ty = VTy;
1276   if (!Ty)
1277     return 0;
1278 
1279   unsigned Int;
1280   switch (BuiltinID) {
1281   default: return 0;
1282   case ARM::BI__builtin_neon_vabd_v:
1283   case ARM::BI__builtin_neon_vabdq_v:
1284     Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
1285     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
1286   case ARM::BI__builtin_neon_vabs_v:
1287   case ARM::BI__builtin_neon_vabsq_v:
1288     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
1289                         Ops, "vabs");
1290   case ARM::BI__builtin_neon_vaddhn_v:
1291     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, Ty),
1292                         Ops, "vaddhn");
1293   case ARM::BI__builtin_neon_vcale_v:
1294     std::swap(Ops[0], Ops[1]);
1295   case ARM::BI__builtin_neon_vcage_v: {
1296     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
1297     return EmitNeonCall(F, Ops, "vcage");
1298   }
1299   case ARM::BI__builtin_neon_vcaleq_v:
1300     std::swap(Ops[0], Ops[1]);
1301   case ARM::BI__builtin_neon_vcageq_v: {
1302     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
1303     return EmitNeonCall(F, Ops, "vcage");
1304   }
1305   case ARM::BI__builtin_neon_vcalt_v:
1306     std::swap(Ops[0], Ops[1]);
1307   case ARM::BI__builtin_neon_vcagt_v: {
1308     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
1309     return EmitNeonCall(F, Ops, "vcagt");
1310   }
1311   case ARM::BI__builtin_neon_vcaltq_v:
1312     std::swap(Ops[0], Ops[1]);
1313   case ARM::BI__builtin_neon_vcagtq_v: {
1314     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
1315     return EmitNeonCall(F, Ops, "vcagt");
1316   }
1317   case ARM::BI__builtin_neon_vcls_v:
1318   case ARM::BI__builtin_neon_vclsq_v: {
1319     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
1320     return EmitNeonCall(F, Ops, "vcls");
1321   }
1322   case ARM::BI__builtin_neon_vclz_v:
1323   case ARM::BI__builtin_neon_vclzq_v: {
1324     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vclz, Ty);
1325     return EmitNeonCall(F, Ops, "vclz");
1326   }
1327   case ARM::BI__builtin_neon_vcnt_v:
1328   case ARM::BI__builtin_neon_vcntq_v: {
1329     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcnt, Ty);
1330     return EmitNeonCall(F, Ops, "vcnt");
1331   }
1332   case ARM::BI__builtin_neon_vcvt_f16_v: {
1333     assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f16_v builtin");
1334     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
1335     return EmitNeonCall(F, Ops, "vcvt");
1336   }
1337   case ARM::BI__builtin_neon_vcvt_f32_f16: {
1338     assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f32_f16 builtin");
1339     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
1340     return EmitNeonCall(F, Ops, "vcvt");
1341   }
1342   case ARM::BI__builtin_neon_vcvt_f32_v:
1343   case ARM::BI__builtin_neon_vcvtq_f32_v: {
1344     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1345     Ty = GetNeonType(getLLVMContext(), 4, quad);
1346     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
1347                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
1348   }
1349   case ARM::BI__builtin_neon_vcvt_s32_v:
1350   case ARM::BI__builtin_neon_vcvt_u32_v:
1351   case ARM::BI__builtin_neon_vcvtq_s32_v:
1352   case ARM::BI__builtin_neon_vcvtq_u32_v: {
1353     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(getLLVMContext(), 4, quad));
1354     return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
1355                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
1356   }
1357   case ARM::BI__builtin_neon_vcvt_n_f32_v:
1358   case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
1359     llvm::Type *Tys[2] = { GetNeonType(getLLVMContext(), 4, quad), Ty };
1360     Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp : Intrinsic::arm_neon_vcvtfxs2fp;
1361     Function *F = CGM.getIntrinsic(Int, Tys);
1362     return EmitNeonCall(F, Ops, "vcvt_n");
1363   }
1364   case ARM::BI__builtin_neon_vcvt_n_s32_v:
1365   case ARM::BI__builtin_neon_vcvt_n_u32_v:
1366   case ARM::BI__builtin_neon_vcvtq_n_s32_v:
1367   case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
1368     llvm::Type *Tys[2] = { Ty, GetNeonType(getLLVMContext(), 4, quad) };
1369     Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu : Intrinsic::arm_neon_vcvtfp2fxs;
1370     Function *F = CGM.getIntrinsic(Int, Tys);
1371     return EmitNeonCall(F, Ops, "vcvt_n");
1372   }
1373   case ARM::BI__builtin_neon_vext_v:
1374   case ARM::BI__builtin_neon_vextq_v: {
1375     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
1376     SmallVector<Constant*, 16> Indices;
1377     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1378       Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
1379 
1380     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1381     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1382     Value *SV = llvm::ConstantVector::get(Indices);
1383     return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
1384   }
1385   case ARM::BI__builtin_neon_vget_lane_i8:
1386   case ARM::BI__builtin_neon_vget_lane_i16:
1387   case ARM::BI__builtin_neon_vget_lane_i32:
1388   case ARM::BI__builtin_neon_vget_lane_i64:
1389   case ARM::BI__builtin_neon_vget_lane_f32:
1390   case ARM::BI__builtin_neon_vgetq_lane_i8:
1391   case ARM::BI__builtin_neon_vgetq_lane_i16:
1392   case ARM::BI__builtin_neon_vgetq_lane_i32:
1393   case ARM::BI__builtin_neon_vgetq_lane_i64:
1394   case ARM::BI__builtin_neon_vgetq_lane_f32:
1395     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
1396                                         "vget_lane");
1397   case ARM::BI__builtin_neon_vhadd_v:
1398   case ARM::BI__builtin_neon_vhaddq_v:
1399     Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
1400     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
1401   case ARM::BI__builtin_neon_vhsub_v:
1402   case ARM::BI__builtin_neon_vhsubq_v:
1403     Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
1404     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
1405   case ARM::BI__builtin_neon_vld1_v:
1406   case ARM::BI__builtin_neon_vld1q_v:
1407     Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1408     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
1409                         Ops, "vld1");
1410   case ARM::BI__builtin_neon_vld1_lane_v:
1411   case ARM::BI__builtin_neon_vld1q_lane_v:
1412     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1413     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1414     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1415     Ops[0] = Builder.CreateLoad(Ops[0]);
1416     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
1417   case ARM::BI__builtin_neon_vld1_dup_v:
1418   case ARM::BI__builtin_neon_vld1q_dup_v: {
1419     Value *V = UndefValue::get(Ty);
1420     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1421     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1422     Ops[0] = Builder.CreateLoad(Ops[0]);
1423     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1424     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
1425     return EmitNeonSplat(Ops[0], CI);
1426   }
1427   case ARM::BI__builtin_neon_vld2_v:
1428   case ARM::BI__builtin_neon_vld2q_v: {
1429     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
1430     Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1431     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
1432     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1433     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1434     return Builder.CreateStore(Ops[1], Ops[0]);
1435   }
1436   case ARM::BI__builtin_neon_vld3_v:
1437   case ARM::BI__builtin_neon_vld3q_v: {
1438     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
1439     Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1440     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
1441     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1442     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1443     return Builder.CreateStore(Ops[1], Ops[0]);
1444   }
1445   case ARM::BI__builtin_neon_vld4_v:
1446   case ARM::BI__builtin_neon_vld4q_v: {
1447     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
1448     Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1449     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
1450     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1451     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1452     return Builder.CreateStore(Ops[1], Ops[0]);
1453   }
1454   case ARM::BI__builtin_neon_vld2_lane_v:
1455   case ARM::BI__builtin_neon_vld2q_lane_v: {
1456     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
1457     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1458     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1459     Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1460     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops.begin() + 1, Ops.end()),
1461                                 "vld2_lane");
1462     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1463     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1464     return Builder.CreateStore(Ops[1], Ops[0]);
1465   }
1466   case ARM::BI__builtin_neon_vld3_lane_v:
1467   case ARM::BI__builtin_neon_vld3q_lane_v: {
1468     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
1469     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1470     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1471     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1472     Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1473     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops.begin() + 1, Ops.end()),
1474                                 "vld3_lane");
1475     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1476     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1477     return Builder.CreateStore(Ops[1], Ops[0]);
1478   }
1479   case ARM::BI__builtin_neon_vld4_lane_v:
1480   case ARM::BI__builtin_neon_vld4q_lane_v: {
1481     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
1482     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1483     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1484     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1485     Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
1486     Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1487     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops.begin() + 1, Ops.end()),
1488                                 "vld3_lane");
1489     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1490     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1491     return Builder.CreateStore(Ops[1], Ops[0]);
1492   }
1493   case ARM::BI__builtin_neon_vld2_dup_v:
1494   case ARM::BI__builtin_neon_vld3_dup_v:
1495   case ARM::BI__builtin_neon_vld4_dup_v: {
1496     // Handle 64-bit elements as a special-case.  There is no "dup" needed.
1497     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
1498       switch (BuiltinID) {
1499       case ARM::BI__builtin_neon_vld2_dup_v:
1500         Int = Intrinsic::arm_neon_vld2;
1501         break;
1502       case ARM::BI__builtin_neon_vld3_dup_v:
1503         Int = Intrinsic::arm_neon_vld2;
1504         break;
1505       case ARM::BI__builtin_neon_vld4_dup_v:
1506         Int = Intrinsic::arm_neon_vld2;
1507         break;
1508       default: assert(0 && "unknown vld_dup intrinsic?");
1509       }
1510       Function *F = CGM.getIntrinsic(Int, Ty);
1511       Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1512       Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
1513       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1514       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1515       return Builder.CreateStore(Ops[1], Ops[0]);
1516     }
1517     switch (BuiltinID) {
1518     case ARM::BI__builtin_neon_vld2_dup_v:
1519       Int = Intrinsic::arm_neon_vld2lane;
1520       break;
1521     case ARM::BI__builtin_neon_vld3_dup_v:
1522       Int = Intrinsic::arm_neon_vld2lane;
1523       break;
1524     case ARM::BI__builtin_neon_vld4_dup_v:
1525       Int = Intrinsic::arm_neon_vld2lane;
1526       break;
1527     default: assert(0 && "unknown vld_dup intrinsic?");
1528     }
1529     Function *F = CGM.getIntrinsic(Int, Ty);
1530     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
1531 
1532     SmallVector<Value*, 6> Args;
1533     Args.push_back(Ops[1]);
1534     Args.append(STy->getNumElements(), UndefValue::get(Ty));
1535 
1536     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1537     Args.push_back(CI);
1538     Args.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1539 
1540     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
1541     // splat lane 0 to all elts in each vector of the result.
1542     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1543       Value *Val = Builder.CreateExtractValue(Ops[1], i);
1544       Value *Elt = Builder.CreateBitCast(Val, Ty);
1545       Elt = EmitNeonSplat(Elt, CI);
1546       Elt = Builder.CreateBitCast(Elt, Val->getType());
1547       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
1548     }
1549     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1550     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1551     return Builder.CreateStore(Ops[1], Ops[0]);
1552   }
1553   case ARM::BI__builtin_neon_vmax_v:
1554   case ARM::BI__builtin_neon_vmaxq_v:
1555     Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
1556     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
1557   case ARM::BI__builtin_neon_vmin_v:
1558   case ARM::BI__builtin_neon_vminq_v:
1559     Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
1560     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
1561   case ARM::BI__builtin_neon_vmovl_v: {
1562     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
1563     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
1564     if (usgn)
1565       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
1566     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
1567   }
1568   case ARM::BI__builtin_neon_vmovn_v: {
1569     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
1570     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
1571     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
1572   }
1573   case ARM::BI__builtin_neon_vmul_v:
1574   case ARM::BI__builtin_neon_vmulq_v:
1575     assert(poly && "vmul builtin only supported for polynomial types");
1576     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
1577                         Ops, "vmul");
1578   case ARM::BI__builtin_neon_vmull_v:
1579     Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
1580     Int = poly ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
1581     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
1582   case ARM::BI__builtin_neon_vpadal_v:
1583   case ARM::BI__builtin_neon_vpadalq_v: {
1584     Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
1585     // The source operand type has twice as many elements of half the size.
1586     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1587     llvm::Type *EltTy =
1588       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1589     llvm::Type *NarrowTy =
1590       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1591     llvm::Type *Tys[2] = { Ty, NarrowTy };
1592     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
1593   }
1594   case ARM::BI__builtin_neon_vpadd_v:
1595     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
1596                         Ops, "vpadd");
1597   case ARM::BI__builtin_neon_vpaddl_v:
1598   case ARM::BI__builtin_neon_vpaddlq_v: {
1599     Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
1600     // The source operand type has twice as many elements of half the size.
1601     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1602     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1603     llvm::Type *NarrowTy =
1604       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1605     llvm::Type *Tys[2] = { Ty, NarrowTy };
1606     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
1607   }
1608   case ARM::BI__builtin_neon_vpmax_v:
1609     Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
1610     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
1611   case ARM::BI__builtin_neon_vpmin_v:
1612     Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
1613     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
1614   case ARM::BI__builtin_neon_vqabs_v:
1615   case ARM::BI__builtin_neon_vqabsq_v:
1616     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
1617                         Ops, "vqabs");
1618   case ARM::BI__builtin_neon_vqadd_v:
1619   case ARM::BI__builtin_neon_vqaddq_v:
1620     Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
1621     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
1622   case ARM::BI__builtin_neon_vqdmlal_v:
1623     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, Ty),
1624                         Ops, "vqdmlal");
1625   case ARM::BI__builtin_neon_vqdmlsl_v:
1626     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, Ty),
1627                         Ops, "vqdmlsl");
1628   case ARM::BI__builtin_neon_vqdmulh_v:
1629   case ARM::BI__builtin_neon_vqdmulhq_v:
1630     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
1631                         Ops, "vqdmulh");
1632   case ARM::BI__builtin_neon_vqdmull_v:
1633     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
1634                         Ops, "vqdmull");
1635   case ARM::BI__builtin_neon_vqmovn_v:
1636     Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
1637     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
1638   case ARM::BI__builtin_neon_vqmovun_v:
1639     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
1640                         Ops, "vqdmull");
1641   case ARM::BI__builtin_neon_vqneg_v:
1642   case ARM::BI__builtin_neon_vqnegq_v:
1643     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
1644                         Ops, "vqneg");
1645   case ARM::BI__builtin_neon_vqrdmulh_v:
1646   case ARM::BI__builtin_neon_vqrdmulhq_v:
1647     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
1648                         Ops, "vqrdmulh");
1649   case ARM::BI__builtin_neon_vqrshl_v:
1650   case ARM::BI__builtin_neon_vqrshlq_v:
1651     Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
1652     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
1653   case ARM::BI__builtin_neon_vqrshrn_n_v:
1654     Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
1655     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
1656                         1, true);
1657   case ARM::BI__builtin_neon_vqrshrun_n_v:
1658     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
1659                         Ops, "vqrshrun_n", 1, true);
1660   case ARM::BI__builtin_neon_vqshl_v:
1661   case ARM::BI__builtin_neon_vqshlq_v:
1662     Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1663     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
1664   case ARM::BI__builtin_neon_vqshl_n_v:
1665   case ARM::BI__builtin_neon_vqshlq_n_v:
1666     Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1667     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
1668                         1, false);
1669   case ARM::BI__builtin_neon_vqshlu_n_v:
1670   case ARM::BI__builtin_neon_vqshluq_n_v:
1671     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
1672                         Ops, "vqshlu", 1, false);
1673   case ARM::BI__builtin_neon_vqshrn_n_v:
1674     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
1675     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
1676                         1, true);
1677   case ARM::BI__builtin_neon_vqshrun_n_v:
1678     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
1679                         Ops, "vqshrun_n", 1, true);
1680   case ARM::BI__builtin_neon_vqsub_v:
1681   case ARM::BI__builtin_neon_vqsubq_v:
1682     Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
1683     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
1684   case ARM::BI__builtin_neon_vraddhn_v:
1685     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
1686                         Ops, "vraddhn");
1687   case ARM::BI__builtin_neon_vrecpe_v:
1688   case ARM::BI__builtin_neon_vrecpeq_v:
1689     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
1690                         Ops, "vrecpe");
1691   case ARM::BI__builtin_neon_vrecps_v:
1692   case ARM::BI__builtin_neon_vrecpsq_v:
1693     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
1694                         Ops, "vrecps");
1695   case ARM::BI__builtin_neon_vrhadd_v:
1696   case ARM::BI__builtin_neon_vrhaddq_v:
1697     Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
1698     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
1699   case ARM::BI__builtin_neon_vrshl_v:
1700   case ARM::BI__builtin_neon_vrshlq_v:
1701     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1702     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
1703   case ARM::BI__builtin_neon_vrshrn_n_v:
1704     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
1705                         Ops, "vrshrn_n", 1, true);
1706   case ARM::BI__builtin_neon_vrshr_n_v:
1707   case ARM::BI__builtin_neon_vrshrq_n_v:
1708     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1709     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
1710   case ARM::BI__builtin_neon_vrsqrte_v:
1711   case ARM::BI__builtin_neon_vrsqrteq_v:
1712     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
1713                         Ops, "vrsqrte");
1714   case ARM::BI__builtin_neon_vrsqrts_v:
1715   case ARM::BI__builtin_neon_vrsqrtsq_v:
1716     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
1717                         Ops, "vrsqrts");
1718   case ARM::BI__builtin_neon_vrsra_n_v:
1719   case ARM::BI__builtin_neon_vrsraq_n_v:
1720     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1721     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1722     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
1723     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1724     Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
1725     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
1726   case ARM::BI__builtin_neon_vrsubhn_v:
1727     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
1728                         Ops, "vrsubhn");
1729   case ARM::BI__builtin_neon_vset_lane_i8:
1730   case ARM::BI__builtin_neon_vset_lane_i16:
1731   case ARM::BI__builtin_neon_vset_lane_i32:
1732   case ARM::BI__builtin_neon_vset_lane_i64:
1733   case ARM::BI__builtin_neon_vset_lane_f32:
1734   case ARM::BI__builtin_neon_vsetq_lane_i8:
1735   case ARM::BI__builtin_neon_vsetq_lane_i16:
1736   case ARM::BI__builtin_neon_vsetq_lane_i32:
1737   case ARM::BI__builtin_neon_vsetq_lane_i64:
1738   case ARM::BI__builtin_neon_vsetq_lane_f32:
1739     Ops.push_back(EmitScalarExpr(E->getArg(2)));
1740     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
1741   case ARM::BI__builtin_neon_vshl_v:
1742   case ARM::BI__builtin_neon_vshlq_v:
1743     Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
1744     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
1745   case ARM::BI__builtin_neon_vshll_n_v:
1746     Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
1747     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
1748   case ARM::BI__builtin_neon_vshl_n_v:
1749   case ARM::BI__builtin_neon_vshlq_n_v:
1750     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1751     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n");
1752   case ARM::BI__builtin_neon_vshrn_n_v:
1753     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
1754                         Ops, "vshrn_n", 1, true);
1755   case ARM::BI__builtin_neon_vshr_n_v:
1756   case ARM::BI__builtin_neon_vshrq_n_v:
1757     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1758     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1759     if (usgn)
1760       return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
1761     else
1762       return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
1763   case ARM::BI__builtin_neon_vsri_n_v:
1764   case ARM::BI__builtin_neon_vsriq_n_v:
1765     rightShift = true;
1766   case ARM::BI__builtin_neon_vsli_n_v:
1767   case ARM::BI__builtin_neon_vsliq_n_v:
1768     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
1769     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
1770                         Ops, "vsli_n");
1771   case ARM::BI__builtin_neon_vsra_n_v:
1772   case ARM::BI__builtin_neon_vsraq_n_v:
1773     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1774     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1775     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
1776     if (usgn)
1777       Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
1778     else
1779       Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
1780     return Builder.CreateAdd(Ops[0], Ops[1]);
1781   case ARM::BI__builtin_neon_vst1_v:
1782   case ARM::BI__builtin_neon_vst1q_v:
1783     Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1784     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
1785                         Ops, "");
1786   case ARM::BI__builtin_neon_vst1_lane_v:
1787   case ARM::BI__builtin_neon_vst1q_lane_v:
1788     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1789     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
1790     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1791     return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
1792   case ARM::BI__builtin_neon_vst2_v:
1793   case ARM::BI__builtin_neon_vst2q_v:
1794     Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1795     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
1796                         Ops, "");
1797   case ARM::BI__builtin_neon_vst2_lane_v:
1798   case ARM::BI__builtin_neon_vst2q_lane_v:
1799     Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1800     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
1801                         Ops, "");
1802   case ARM::BI__builtin_neon_vst3_v:
1803   case ARM::BI__builtin_neon_vst3q_v:
1804     Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1805     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
1806                         Ops, "");
1807   case ARM::BI__builtin_neon_vst3_lane_v:
1808   case ARM::BI__builtin_neon_vst3q_lane_v:
1809     Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1810     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
1811                         Ops, "");
1812   case ARM::BI__builtin_neon_vst4_v:
1813   case ARM::BI__builtin_neon_vst4q_v:
1814     Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1815     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
1816                         Ops, "");
1817   case ARM::BI__builtin_neon_vst4_lane_v:
1818   case ARM::BI__builtin_neon_vst4q_lane_v:
1819     Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1820     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
1821                         Ops, "");
1822   case ARM::BI__builtin_neon_vsubhn_v:
1823     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, Ty),
1824                         Ops, "vsubhn");
1825   case ARM::BI__builtin_neon_vtbl1_v:
1826     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
1827                         Ops, "vtbl1");
1828   case ARM::BI__builtin_neon_vtbl2_v:
1829     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
1830                         Ops, "vtbl2");
1831   case ARM::BI__builtin_neon_vtbl3_v:
1832     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
1833                         Ops, "vtbl3");
1834   case ARM::BI__builtin_neon_vtbl4_v:
1835     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
1836                         Ops, "vtbl4");
1837   case ARM::BI__builtin_neon_vtbx1_v:
1838     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
1839                         Ops, "vtbx1");
1840   case ARM::BI__builtin_neon_vtbx2_v:
1841     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
1842                         Ops, "vtbx2");
1843   case ARM::BI__builtin_neon_vtbx3_v:
1844     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
1845                         Ops, "vtbx3");
1846   case ARM::BI__builtin_neon_vtbx4_v:
1847     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
1848                         Ops, "vtbx4");
1849   case ARM::BI__builtin_neon_vtst_v:
1850   case ARM::BI__builtin_neon_vtstq_v: {
1851     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1852     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1853     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
1854     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
1855                                 ConstantAggregateZero::get(Ty));
1856     return Builder.CreateSExt(Ops[0], Ty, "vtst");
1857   }
1858   case ARM::BI__builtin_neon_vtrn_v:
1859   case ARM::BI__builtin_neon_vtrnq_v: {
1860     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1861     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1862     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1863     Value *SV = 0;
1864 
1865     for (unsigned vi = 0; vi != 2; ++vi) {
1866       SmallVector<Constant*, 16> Indices;
1867       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1868         Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
1869         Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
1870       }
1871       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1872       SV = llvm::ConstantVector::get(Indices);
1873       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
1874       SV = Builder.CreateStore(SV, Addr);
1875     }
1876     return SV;
1877   }
1878   case ARM::BI__builtin_neon_vuzp_v:
1879   case ARM::BI__builtin_neon_vuzpq_v: {
1880     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1881     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1882     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1883     Value *SV = 0;
1884 
1885     for (unsigned vi = 0; vi != 2; ++vi) {
1886       SmallVector<Constant*, 16> Indices;
1887       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1888         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
1889 
1890       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1891       SV = llvm::ConstantVector::get(Indices);
1892       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
1893       SV = Builder.CreateStore(SV, Addr);
1894     }
1895     return SV;
1896   }
1897   case ARM::BI__builtin_neon_vzip_v:
1898   case ARM::BI__builtin_neon_vzipq_v: {
1899     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1900     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1901     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1902     Value *SV = 0;
1903 
1904     for (unsigned vi = 0; vi != 2; ++vi) {
1905       SmallVector<Constant*, 16> Indices;
1906       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1907         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
1908         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
1909       }
1910       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1911       SV = llvm::ConstantVector::get(Indices);
1912       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
1913       SV = Builder.CreateStore(SV, Addr);
1914     }
1915     return SV;
1916   }
1917   }
1918 }
1919 
1920 llvm::Value *CodeGenFunction::
BuildVector(const llvm::SmallVectorImpl<llvm::Value * > & Ops)1921 BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops) {
1922   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
1923          "Not a power-of-two sized vector!");
1924   bool AllConstants = true;
1925   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
1926     AllConstants &= isa<Constant>(Ops[i]);
1927 
1928   // If this is a constant vector, create a ConstantVector.
1929   if (AllConstants) {
1930     std::vector<llvm::Constant*> CstOps;
1931     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1932       CstOps.push_back(cast<Constant>(Ops[i]));
1933     return llvm::ConstantVector::get(CstOps);
1934   }
1935 
1936   // Otherwise, insertelement the values to build the vector.
1937   Value *Result =
1938     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
1939 
1940   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1941     Result = Builder.CreateInsertElement(Result, Ops[i],
1942                llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), i));
1943 
1944   return Result;
1945 }
1946 
EmitX86BuiltinExpr(unsigned BuiltinID,const CallExpr * E)1947 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
1948                                            const CallExpr *E) {
1949   llvm::SmallVector<Value*, 4> Ops;
1950 
1951   // Find out if any arguments are required to be integer constant expressions.
1952   unsigned ICEArguments = 0;
1953   ASTContext::GetBuiltinTypeError Error;
1954   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1955   assert(Error == ASTContext::GE_None && "Should not codegen an error");
1956 
1957   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1958     // If this is a normal argument, just emit it as a scalar.
1959     if ((ICEArguments & (1 << i)) == 0) {
1960       Ops.push_back(EmitScalarExpr(E->getArg(i)));
1961       continue;
1962     }
1963 
1964     // If this is required to be a constant, constant fold it so that we know
1965     // that the generated intrinsic gets a ConstantInt.
1966     llvm::APSInt Result;
1967     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
1968     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
1969     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
1970   }
1971 
1972   switch (BuiltinID) {
1973   default: return 0;
1974   case X86::BI__builtin_ia32_pslldi128:
1975   case X86::BI__builtin_ia32_psllqi128:
1976   case X86::BI__builtin_ia32_psllwi128:
1977   case X86::BI__builtin_ia32_psradi128:
1978   case X86::BI__builtin_ia32_psrawi128:
1979   case X86::BI__builtin_ia32_psrldi128:
1980   case X86::BI__builtin_ia32_psrlqi128:
1981   case X86::BI__builtin_ia32_psrlwi128: {
1982     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
1983     llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
1984     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1985     Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
1986                                          Ops[1], Zero, "insert");
1987     Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
1988     const char *name = 0;
1989     Intrinsic::ID ID = Intrinsic::not_intrinsic;
1990 
1991     switch (BuiltinID) {
1992     default: assert(0 && "Unsupported shift intrinsic!");
1993     case X86::BI__builtin_ia32_pslldi128:
1994       name = "pslldi";
1995       ID = Intrinsic::x86_sse2_psll_d;
1996       break;
1997     case X86::BI__builtin_ia32_psllqi128:
1998       name = "psllqi";
1999       ID = Intrinsic::x86_sse2_psll_q;
2000       break;
2001     case X86::BI__builtin_ia32_psllwi128:
2002       name = "psllwi";
2003       ID = Intrinsic::x86_sse2_psll_w;
2004       break;
2005     case X86::BI__builtin_ia32_psradi128:
2006       name = "psradi";
2007       ID = Intrinsic::x86_sse2_psra_d;
2008       break;
2009     case X86::BI__builtin_ia32_psrawi128:
2010       name = "psrawi";
2011       ID = Intrinsic::x86_sse2_psra_w;
2012       break;
2013     case X86::BI__builtin_ia32_psrldi128:
2014       name = "psrldi";
2015       ID = Intrinsic::x86_sse2_psrl_d;
2016       break;
2017     case X86::BI__builtin_ia32_psrlqi128:
2018       name = "psrlqi";
2019       ID = Intrinsic::x86_sse2_psrl_q;
2020       break;
2021     case X86::BI__builtin_ia32_psrlwi128:
2022       name = "psrlwi";
2023       ID = Intrinsic::x86_sse2_psrl_w;
2024       break;
2025     }
2026     llvm::Function *F = CGM.getIntrinsic(ID);
2027     return Builder.CreateCall(F, Ops, name);
2028   }
2029   case X86::BI__builtin_ia32_vec_init_v8qi:
2030   case X86::BI__builtin_ia32_vec_init_v4hi:
2031   case X86::BI__builtin_ia32_vec_init_v2si:
2032     return Builder.CreateBitCast(BuildVector(Ops),
2033                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
2034   case X86::BI__builtin_ia32_vec_ext_v2si:
2035     return Builder.CreateExtractElement(Ops[0],
2036                                   llvm::ConstantInt::get(Ops[1]->getType(), 0));
2037   case X86::BI__builtin_ia32_pslldi:
2038   case X86::BI__builtin_ia32_psllqi:
2039   case X86::BI__builtin_ia32_psllwi:
2040   case X86::BI__builtin_ia32_psradi:
2041   case X86::BI__builtin_ia32_psrawi:
2042   case X86::BI__builtin_ia32_psrldi:
2043   case X86::BI__builtin_ia32_psrlqi:
2044   case X86::BI__builtin_ia32_psrlwi: {
2045     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
2046     llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 1);
2047     Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
2048     const char *name = 0;
2049     Intrinsic::ID ID = Intrinsic::not_intrinsic;
2050 
2051     switch (BuiltinID) {
2052     default: assert(0 && "Unsupported shift intrinsic!");
2053     case X86::BI__builtin_ia32_pslldi:
2054       name = "pslldi";
2055       ID = Intrinsic::x86_mmx_psll_d;
2056       break;
2057     case X86::BI__builtin_ia32_psllqi:
2058       name = "psllqi";
2059       ID = Intrinsic::x86_mmx_psll_q;
2060       break;
2061     case X86::BI__builtin_ia32_psllwi:
2062       name = "psllwi";
2063       ID = Intrinsic::x86_mmx_psll_w;
2064       break;
2065     case X86::BI__builtin_ia32_psradi:
2066       name = "psradi";
2067       ID = Intrinsic::x86_mmx_psra_d;
2068       break;
2069     case X86::BI__builtin_ia32_psrawi:
2070       name = "psrawi";
2071       ID = Intrinsic::x86_mmx_psra_w;
2072       break;
2073     case X86::BI__builtin_ia32_psrldi:
2074       name = "psrldi";
2075       ID = Intrinsic::x86_mmx_psrl_d;
2076       break;
2077     case X86::BI__builtin_ia32_psrlqi:
2078       name = "psrlqi";
2079       ID = Intrinsic::x86_mmx_psrl_q;
2080       break;
2081     case X86::BI__builtin_ia32_psrlwi:
2082       name = "psrlwi";
2083       ID = Intrinsic::x86_mmx_psrl_w;
2084       break;
2085     }
2086     llvm::Function *F = CGM.getIntrinsic(ID);
2087     return Builder.CreateCall(F, Ops, name);
2088   }
2089   case X86::BI__builtin_ia32_cmpps: {
2090     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
2091     return Builder.CreateCall(F, Ops, "cmpps");
2092   }
2093   case X86::BI__builtin_ia32_cmpss: {
2094     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
2095     return Builder.CreateCall(F, Ops, "cmpss");
2096   }
2097   case X86::BI__builtin_ia32_ldmxcsr: {
2098     llvm::Type *PtrTy = Int8PtrTy;
2099     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2100     Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2101     Builder.CreateStore(Ops[0], Tmp);
2102     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
2103                               Builder.CreateBitCast(Tmp, PtrTy));
2104   }
2105   case X86::BI__builtin_ia32_stmxcsr: {
2106     llvm::Type *PtrTy = Int8PtrTy;
2107     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2108     Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2109     One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
2110                              Builder.CreateBitCast(Tmp, PtrTy));
2111     return Builder.CreateLoad(Tmp, "stmxcsr");
2112   }
2113   case X86::BI__builtin_ia32_cmppd: {
2114     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
2115     return Builder.CreateCall(F, Ops, "cmppd");
2116   }
2117   case X86::BI__builtin_ia32_cmpsd: {
2118     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
2119     return Builder.CreateCall(F, Ops, "cmpsd");
2120   }
2121   case X86::BI__builtin_ia32_storehps:
2122   case X86::BI__builtin_ia32_storelps: {
2123     llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
2124     llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2125 
2126     // cast val v2i64
2127     Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
2128 
2129     // extract (0, 1)
2130     unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
2131     llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
2132     Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
2133 
2134     // cast pointer to i64 & store
2135     Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
2136     return Builder.CreateStore(Ops[1], Ops[0]);
2137   }
2138   case X86::BI__builtin_ia32_palignr: {
2139     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2140 
2141     // If palignr is shifting the pair of input vectors less than 9 bytes,
2142     // emit a shuffle instruction.
2143     if (shiftVal <= 8) {
2144       llvm::SmallVector<llvm::Constant*, 8> Indices;
2145       for (unsigned i = 0; i != 8; ++i)
2146         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2147 
2148       Value* SV = llvm::ConstantVector::get(Indices);
2149       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2150     }
2151 
2152     // If palignr is shifting the pair of input vectors more than 8 but less
2153     // than 16 bytes, emit a logical right shift of the destination.
2154     if (shiftVal < 16) {
2155       // MMX has these as 1 x i64 vectors for some odd optimization reasons.
2156       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
2157 
2158       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2159       Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
2160 
2161       // create i32 constant
2162       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
2163       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2164     }
2165 
2166     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2167     return llvm::Constant::getNullValue(ConvertType(E->getType()));
2168   }
2169   case X86::BI__builtin_ia32_palignr128: {
2170     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2171 
2172     // If palignr is shifting the pair of input vectors less than 17 bytes,
2173     // emit a shuffle instruction.
2174     if (shiftVal <= 16) {
2175       llvm::SmallVector<llvm::Constant*, 16> Indices;
2176       for (unsigned i = 0; i != 16; ++i)
2177         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2178 
2179       Value* SV = llvm::ConstantVector::get(Indices);
2180       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2181     }
2182 
2183     // If palignr is shifting the pair of input vectors more than 16 but less
2184     // than 32 bytes, emit a logical right shift of the destination.
2185     if (shiftVal < 32) {
2186       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2187 
2188       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2189       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2190 
2191       // create i32 constant
2192       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
2193       return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2194     }
2195 
2196     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2197     return llvm::Constant::getNullValue(ConvertType(E->getType()));
2198   }
2199   case X86::BI__builtin_ia32_movntps:
2200   case X86::BI__builtin_ia32_movntpd:
2201   case X86::BI__builtin_ia32_movntdq:
2202   case X86::BI__builtin_ia32_movnti: {
2203     llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
2204                                            Builder.getInt32(1));
2205 
2206     // Convert the type of the pointer to a pointer to the stored type.
2207     Value *BC = Builder.CreateBitCast(Ops[0],
2208                                 llvm::PointerType::getUnqual(Ops[1]->getType()),
2209                                       "cast");
2210     StoreInst *SI = Builder.CreateStore(Ops[1], BC);
2211     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
2212     SI->setAlignment(16);
2213     return SI;
2214   }
2215   // 3DNow!
2216   case X86::BI__builtin_ia32_pavgusb:
2217   case X86::BI__builtin_ia32_pf2id:
2218   case X86::BI__builtin_ia32_pfacc:
2219   case X86::BI__builtin_ia32_pfadd:
2220   case X86::BI__builtin_ia32_pfcmpeq:
2221   case X86::BI__builtin_ia32_pfcmpge:
2222   case X86::BI__builtin_ia32_pfcmpgt:
2223   case X86::BI__builtin_ia32_pfmax:
2224   case X86::BI__builtin_ia32_pfmin:
2225   case X86::BI__builtin_ia32_pfmul:
2226   case X86::BI__builtin_ia32_pfrcp:
2227   case X86::BI__builtin_ia32_pfrcpit1:
2228   case X86::BI__builtin_ia32_pfrcpit2:
2229   case X86::BI__builtin_ia32_pfrsqrt:
2230   case X86::BI__builtin_ia32_pfrsqit1:
2231   case X86::BI__builtin_ia32_pfrsqrtit1:
2232   case X86::BI__builtin_ia32_pfsub:
2233   case X86::BI__builtin_ia32_pfsubr:
2234   case X86::BI__builtin_ia32_pi2fd:
2235   case X86::BI__builtin_ia32_pmulhrw:
2236   case X86::BI__builtin_ia32_pf2iw:
2237   case X86::BI__builtin_ia32_pfnacc:
2238   case X86::BI__builtin_ia32_pfpnacc:
2239   case X86::BI__builtin_ia32_pi2fw:
2240   case X86::BI__builtin_ia32_pswapdsf:
2241   case X86::BI__builtin_ia32_pswapdsi: {
2242     const char *name = 0;
2243     Intrinsic::ID ID = Intrinsic::not_intrinsic;
2244     switch(BuiltinID) {
2245     case X86::BI__builtin_ia32_pavgusb:
2246       name = "pavgusb";
2247       ID = Intrinsic::x86_3dnow_pavgusb;
2248       break;
2249     case X86::BI__builtin_ia32_pf2id:
2250       name = "pf2id";
2251       ID = Intrinsic::x86_3dnow_pf2id;
2252       break;
2253     case X86::BI__builtin_ia32_pfacc:
2254       name = "pfacc";
2255       ID = Intrinsic::x86_3dnow_pfacc;
2256       break;
2257     case X86::BI__builtin_ia32_pfadd:
2258       name = "pfadd";
2259       ID = Intrinsic::x86_3dnow_pfadd;
2260       break;
2261     case X86::BI__builtin_ia32_pfcmpeq:
2262       name = "pfcmpeq";
2263       ID = Intrinsic::x86_3dnow_pfcmpeq;
2264       break;
2265     case X86::BI__builtin_ia32_pfcmpge:
2266       name = "pfcmpge";
2267       ID = Intrinsic::x86_3dnow_pfcmpge;
2268       break;
2269     case X86::BI__builtin_ia32_pfcmpgt:
2270       name = "pfcmpgt";
2271       ID = Intrinsic::x86_3dnow_pfcmpgt;
2272       break;
2273     case X86::BI__builtin_ia32_pfmax:
2274       name = "pfmax";
2275       ID = Intrinsic::x86_3dnow_pfmax;
2276       break;
2277     case X86::BI__builtin_ia32_pfmin:
2278       name = "pfmin";
2279       ID = Intrinsic::x86_3dnow_pfmin;
2280       break;
2281     case X86::BI__builtin_ia32_pfmul:
2282       name = "pfmul";
2283       ID = Intrinsic::x86_3dnow_pfmul;
2284       break;
2285     case X86::BI__builtin_ia32_pfrcp:
2286       name = "pfrcp";
2287       ID = Intrinsic::x86_3dnow_pfrcp;
2288       break;
2289     case X86::BI__builtin_ia32_pfrcpit1:
2290       name = "pfrcpit1";
2291       ID = Intrinsic::x86_3dnow_pfrcpit1;
2292       break;
2293     case X86::BI__builtin_ia32_pfrcpit2:
2294       name = "pfrcpit2";
2295       ID = Intrinsic::x86_3dnow_pfrcpit2;
2296       break;
2297     case X86::BI__builtin_ia32_pfrsqrt:
2298       name = "pfrsqrt";
2299       ID = Intrinsic::x86_3dnow_pfrsqrt;
2300       break;
2301     case X86::BI__builtin_ia32_pfrsqit1:
2302     case X86::BI__builtin_ia32_pfrsqrtit1:
2303       name = "pfrsqit1";
2304       ID = Intrinsic::x86_3dnow_pfrsqit1;
2305       break;
2306     case X86::BI__builtin_ia32_pfsub:
2307       name = "pfsub";
2308       ID = Intrinsic::x86_3dnow_pfsub;
2309       break;
2310     case X86::BI__builtin_ia32_pfsubr:
2311       name = "pfsubr";
2312       ID = Intrinsic::x86_3dnow_pfsubr;
2313       break;
2314     case X86::BI__builtin_ia32_pi2fd:
2315       name = "pi2fd";
2316       ID = Intrinsic::x86_3dnow_pi2fd;
2317       break;
2318     case X86::BI__builtin_ia32_pmulhrw:
2319       name = "pmulhrw";
2320       ID = Intrinsic::x86_3dnow_pmulhrw;
2321       break;
2322     case X86::BI__builtin_ia32_pf2iw:
2323       name = "pf2iw";
2324       ID = Intrinsic::x86_3dnowa_pf2iw;
2325       break;
2326     case X86::BI__builtin_ia32_pfnacc:
2327       name = "pfnacc";
2328       ID = Intrinsic::x86_3dnowa_pfnacc;
2329       break;
2330     case X86::BI__builtin_ia32_pfpnacc:
2331       name = "pfpnacc";
2332       ID = Intrinsic::x86_3dnowa_pfpnacc;
2333       break;
2334     case X86::BI__builtin_ia32_pi2fw:
2335       name = "pi2fw";
2336       ID = Intrinsic::x86_3dnowa_pi2fw;
2337       break;
2338     case X86::BI__builtin_ia32_pswapdsf:
2339     case X86::BI__builtin_ia32_pswapdsi:
2340       name = "pswapd";
2341       ID = Intrinsic::x86_3dnowa_pswapd;
2342       break;
2343     }
2344     llvm::Function *F = CGM.getIntrinsic(ID);
2345     return Builder.CreateCall(F, Ops, name);
2346   }
2347   }
2348 }
2349 
EmitPPCBuiltinExpr(unsigned BuiltinID,const CallExpr * E)2350 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
2351                                            const CallExpr *E) {
2352   llvm::SmallVector<Value*, 4> Ops;
2353 
2354   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
2355     Ops.push_back(EmitScalarExpr(E->getArg(i)));
2356 
2357   Intrinsic::ID ID = Intrinsic::not_intrinsic;
2358 
2359   switch (BuiltinID) {
2360   default: return 0;
2361 
2362   // vec_ld, vec_lvsl, vec_lvsr
2363   case PPC::BI__builtin_altivec_lvx:
2364   case PPC::BI__builtin_altivec_lvxl:
2365   case PPC::BI__builtin_altivec_lvebx:
2366   case PPC::BI__builtin_altivec_lvehx:
2367   case PPC::BI__builtin_altivec_lvewx:
2368   case PPC::BI__builtin_altivec_lvsl:
2369   case PPC::BI__builtin_altivec_lvsr:
2370   {
2371     Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
2372 
2373     Ops[0] = Builder.CreateGEP(Ops[1], Ops[0], "tmp");
2374     Ops.pop_back();
2375 
2376     switch (BuiltinID) {
2377     default: assert(0 && "Unsupported ld/lvsl/lvsr intrinsic!");
2378     case PPC::BI__builtin_altivec_lvx:
2379       ID = Intrinsic::ppc_altivec_lvx;
2380       break;
2381     case PPC::BI__builtin_altivec_lvxl:
2382       ID = Intrinsic::ppc_altivec_lvxl;
2383       break;
2384     case PPC::BI__builtin_altivec_lvebx:
2385       ID = Intrinsic::ppc_altivec_lvebx;
2386       break;
2387     case PPC::BI__builtin_altivec_lvehx:
2388       ID = Intrinsic::ppc_altivec_lvehx;
2389       break;
2390     case PPC::BI__builtin_altivec_lvewx:
2391       ID = Intrinsic::ppc_altivec_lvewx;
2392       break;
2393     case PPC::BI__builtin_altivec_lvsl:
2394       ID = Intrinsic::ppc_altivec_lvsl;
2395       break;
2396     case PPC::BI__builtin_altivec_lvsr:
2397       ID = Intrinsic::ppc_altivec_lvsr;
2398       break;
2399     }
2400     llvm::Function *F = CGM.getIntrinsic(ID);
2401     return Builder.CreateCall(F, Ops, "");
2402   }
2403 
2404   // vec_st
2405   case PPC::BI__builtin_altivec_stvx:
2406   case PPC::BI__builtin_altivec_stvxl:
2407   case PPC::BI__builtin_altivec_stvebx:
2408   case PPC::BI__builtin_altivec_stvehx:
2409   case PPC::BI__builtin_altivec_stvewx:
2410   {
2411     Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
2412     Ops[1] = Builder.CreateGEP(Ops[2], Ops[1], "tmp");
2413     Ops.pop_back();
2414 
2415     switch (BuiltinID) {
2416     default: assert(0 && "Unsupported st intrinsic!");
2417     case PPC::BI__builtin_altivec_stvx:
2418       ID = Intrinsic::ppc_altivec_stvx;
2419       break;
2420     case PPC::BI__builtin_altivec_stvxl:
2421       ID = Intrinsic::ppc_altivec_stvxl;
2422       break;
2423     case PPC::BI__builtin_altivec_stvebx:
2424       ID = Intrinsic::ppc_altivec_stvebx;
2425       break;
2426     case PPC::BI__builtin_altivec_stvehx:
2427       ID = Intrinsic::ppc_altivec_stvehx;
2428       break;
2429     case PPC::BI__builtin_altivec_stvewx:
2430       ID = Intrinsic::ppc_altivec_stvewx;
2431       break;
2432     }
2433     llvm::Function *F = CGM.getIntrinsic(ID);
2434     return Builder.CreateCall(F, Ops, "");
2435   }
2436   }
2437   return 0;
2438 }
2439