1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "ABIInfo.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Attributes.h"
26 #include "llvm/Support/CallSite.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/InlineAsm.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 using namespace clang;
31 using namespace CodeGen;
32
33 /***/
34
ClangCallConvToLLVMCallConv(CallingConv CC)35 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
36 switch (CC) {
37 default: return llvm::CallingConv::C;
38 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
39 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
40 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
41 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
42 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
43 // TODO: add support for CC_X86Pascal to llvm
44 }
45 }
46
47 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
48 /// qualification.
49 /// FIXME: address space qualification?
GetThisType(ASTContext & Context,const CXXRecordDecl * RD)50 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
51 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
52 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
53 }
54
55 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)56 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
57 return MD->getType()->getCanonicalTypeUnqualified()
58 .getAs<FunctionProtoType>();
59 }
60
61 /// Returns the "extra-canonicalized" return type, which discards
62 /// qualifiers on the return type. Codegen doesn't care about them,
63 /// and it makes ABI code a little easier to be able to assume that
64 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)65 static CanQualType GetReturnType(QualType RetTy) {
66 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
67 }
68
69 const CGFunctionInfo &
getFunctionInfo(CanQual<FunctionNoProtoType> FTNP)70 CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) {
71 return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
72 llvm::SmallVector<CanQualType, 16>(),
73 FTNP->getExtInfo());
74 }
75
76 /// \param Args - contains any initial parameters besides those
77 /// in the formal type
getFunctionInfo(CodeGenTypes & CGT,llvm::SmallVectorImpl<CanQualType> & ArgTys,CanQual<FunctionProtoType> FTP)78 static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT,
79 llvm::SmallVectorImpl<CanQualType> &ArgTys,
80 CanQual<FunctionProtoType> FTP) {
81 // FIXME: Kill copy.
82 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
83 ArgTys.push_back(FTP->getArgType(i));
84 CanQualType ResTy = FTP->getResultType().getUnqualifiedType();
85 return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
86 }
87
88 const CGFunctionInfo &
getFunctionInfo(CanQual<FunctionProtoType> FTP)89 CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) {
90 llvm::SmallVector<CanQualType, 16> ArgTys;
91 return ::getFunctionInfo(*this, ArgTys, FTP);
92 }
93
getCallingConventionForDecl(const Decl * D)94 static CallingConv getCallingConventionForDecl(const Decl *D) {
95 // Set the appropriate calling convention for the Function.
96 if (D->hasAttr<StdCallAttr>())
97 return CC_X86StdCall;
98
99 if (D->hasAttr<FastCallAttr>())
100 return CC_X86FastCall;
101
102 if (D->hasAttr<ThisCallAttr>())
103 return CC_X86ThisCall;
104
105 if (D->hasAttr<PascalAttr>())
106 return CC_X86Pascal;
107
108 if (PcsAttr *PCS = D->getAttr<PcsAttr>())
109 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
110
111 return CC_C;
112 }
113
getFunctionInfo(const CXXRecordDecl * RD,const FunctionProtoType * FTP)114 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD,
115 const FunctionProtoType *FTP) {
116 llvm::SmallVector<CanQualType, 16> ArgTys;
117
118 // Add the 'this' pointer.
119 ArgTys.push_back(GetThisType(Context, RD));
120
121 return ::getFunctionInfo(*this, ArgTys,
122 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
123 }
124
getFunctionInfo(const CXXMethodDecl * MD)125 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
126 llvm::SmallVector<CanQualType, 16> ArgTys;
127
128 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
129 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
130
131 // Add the 'this' pointer unless this is a static method.
132 if (MD->isInstance())
133 ArgTys.push_back(GetThisType(Context, MD->getParent()));
134
135 return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD));
136 }
137
getFunctionInfo(const CXXConstructorDecl * D,CXXCtorType Type)138 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D,
139 CXXCtorType Type) {
140 llvm::SmallVector<CanQualType, 16> ArgTys;
141 ArgTys.push_back(GetThisType(Context, D->getParent()));
142 CanQualType ResTy = Context.VoidTy;
143
144 TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys);
145
146 CanQual<FunctionProtoType> FTP = GetFormalType(D);
147
148 // Add the formal parameters.
149 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
150 ArgTys.push_back(FTP->getArgType(i));
151
152 return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
153 }
154
getFunctionInfo(const CXXDestructorDecl * D,CXXDtorType Type)155 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D,
156 CXXDtorType Type) {
157 llvm::SmallVector<CanQualType, 2> ArgTys;
158 ArgTys.push_back(GetThisType(Context, D->getParent()));
159 CanQualType ResTy = Context.VoidTy;
160
161 TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys);
162
163 CanQual<FunctionProtoType> FTP = GetFormalType(D);
164 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
165
166 return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
167 }
168
getFunctionInfo(const FunctionDecl * FD)169 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
170 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
171 if (MD->isInstance())
172 return getFunctionInfo(MD);
173
174 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
175 assert(isa<FunctionType>(FTy));
176 if (isa<FunctionNoProtoType>(FTy))
177 return getFunctionInfo(FTy.getAs<FunctionNoProtoType>());
178 assert(isa<FunctionProtoType>(FTy));
179 return getFunctionInfo(FTy.getAs<FunctionProtoType>());
180 }
181
getFunctionInfo(const ObjCMethodDecl * MD)182 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
183 llvm::SmallVector<CanQualType, 16> ArgTys;
184 ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType()));
185 ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
186 // FIXME: Kill copy?
187 for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
188 e = MD->param_end(); i != e; ++i) {
189 ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
190 }
191
192 FunctionType::ExtInfo einfo;
193 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
194
195 if (getContext().getLangOptions().ObjCAutoRefCount &&
196 MD->hasAttr<NSReturnsRetainedAttr>())
197 einfo = einfo.withProducesResult(true);
198
199 return getFunctionInfo(GetReturnType(MD->getResultType()), ArgTys, einfo);
200 }
201
getFunctionInfo(GlobalDecl GD)202 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) {
203 // FIXME: Do we need to handle ObjCMethodDecl?
204 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
205
206 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
207 return getFunctionInfo(CD, GD.getCtorType());
208
209 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
210 return getFunctionInfo(DD, GD.getDtorType());
211
212 return getFunctionInfo(FD);
213 }
214
getFunctionInfo(QualType ResTy,const CallArgList & Args,const FunctionType::ExtInfo & Info)215 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
216 const CallArgList &Args,
217 const FunctionType::ExtInfo &Info) {
218 // FIXME: Kill copy.
219 llvm::SmallVector<CanQualType, 16> ArgTys;
220 for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
221 i != e; ++i)
222 ArgTys.push_back(Context.getCanonicalParamType(i->Ty));
223 return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
224 }
225
getFunctionInfo(QualType ResTy,const FunctionArgList & Args,const FunctionType::ExtInfo & Info)226 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
227 const FunctionArgList &Args,
228 const FunctionType::ExtInfo &Info) {
229 // FIXME: Kill copy.
230 llvm::SmallVector<CanQualType, 16> ArgTys;
231 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
232 i != e; ++i)
233 ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
234 return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
235 }
236
getNullaryFunctionInfo()237 const CGFunctionInfo &CodeGenTypes::getNullaryFunctionInfo() {
238 llvm::SmallVector<CanQualType, 1> args;
239 return getFunctionInfo(getContext().VoidTy, args, FunctionType::ExtInfo());
240 }
241
getFunctionInfo(CanQualType ResTy,const llvm::SmallVectorImpl<CanQualType> & ArgTys,const FunctionType::ExtInfo & Info)242 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
243 const llvm::SmallVectorImpl<CanQualType> &ArgTys,
244 const FunctionType::ExtInfo &Info) {
245 #ifndef NDEBUG
246 for (llvm::SmallVectorImpl<CanQualType>::const_iterator
247 I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
248 assert(I->isCanonicalAsParam());
249 #endif
250
251 unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC());
252
253 // Lookup or create unique function info.
254 llvm::FoldingSetNodeID ID;
255 CGFunctionInfo::Profile(ID, Info, ResTy, ArgTys.begin(), ArgTys.end());
256
257 void *InsertPos = 0;
258 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
259 if (FI)
260 return *FI;
261
262 // Construct the function info.
263 FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getProducesResult(),
264 Info.getHasRegParm(), Info.getRegParm(), ResTy,
265 ArgTys.data(), ArgTys.size());
266 FunctionInfos.InsertNode(FI, InsertPos);
267
268 bool Inserted = FunctionsBeingProcessed.insert(FI); (void)Inserted;
269 assert(Inserted && "Recursively being processed?");
270
271 // Compute ABI information.
272 getABIInfo().computeInfo(*FI);
273
274 // Loop over all of the computed argument and return value info. If any of
275 // them are direct or extend without a specified coerce type, specify the
276 // default now.
277 ABIArgInfo &RetInfo = FI->getReturnInfo();
278 if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0)
279 RetInfo.setCoerceToType(ConvertType(FI->getReturnType()));
280
281 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
282 I != E; ++I)
283 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
284 I->info.setCoerceToType(ConvertType(I->type));
285
286 bool Erased = FunctionsBeingProcessed.erase(FI); (void)Erased;
287 assert(Erased && "Not in set?");
288
289 return *FI;
290 }
291
CGFunctionInfo(unsigned _CallingConvention,bool _NoReturn,bool returnsRetained,bool _HasRegParm,unsigned _RegParm,CanQualType ResTy,const CanQualType * ArgTys,unsigned NumArgTys)292 CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
293 bool _NoReturn, bool returnsRetained,
294 bool _HasRegParm, unsigned _RegParm,
295 CanQualType ResTy,
296 const CanQualType *ArgTys,
297 unsigned NumArgTys)
298 : CallingConvention(_CallingConvention),
299 EffectiveCallingConvention(_CallingConvention),
300 NoReturn(_NoReturn), ReturnsRetained(returnsRetained),
301 HasRegParm(_HasRegParm), RegParm(_RegParm)
302 {
303 NumArgs = NumArgTys;
304
305 // FIXME: Coallocate with the CGFunctionInfo object.
306 Args = new ArgInfo[1 + NumArgTys];
307 Args[0].type = ResTy;
308 for (unsigned i = 0; i != NumArgTys; ++i)
309 Args[1 + i].type = ArgTys[i];
310 }
311
312 /***/
313
GetExpandedTypes(QualType type,llvm::SmallVectorImpl<llvm::Type * > & expandedTypes)314 void CodeGenTypes::GetExpandedTypes(QualType type,
315 llvm::SmallVectorImpl<llvm::Type*> &expandedTypes) {
316 const RecordType *RT = type->getAsStructureType();
317 assert(RT && "Can only expand structure types.");
318 const RecordDecl *RD = RT->getDecl();
319 assert(!RD->hasFlexibleArrayMember() &&
320 "Cannot expand structure with flexible array.");
321
322 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
323 i != e; ++i) {
324 const FieldDecl *FD = *i;
325 assert(!FD->isBitField() &&
326 "Cannot expand structure with bit-field members.");
327
328 QualType fieldType = FD->getType();
329 if (fieldType->isRecordType())
330 GetExpandedTypes(fieldType, expandedTypes);
331 else
332 expandedTypes.push_back(ConvertType(fieldType));
333 }
334 }
335
336 llvm::Function::arg_iterator
ExpandTypeFromArgs(QualType Ty,LValue LV,llvm::Function::arg_iterator AI)337 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
338 llvm::Function::arg_iterator AI) {
339 const RecordType *RT = Ty->getAsStructureType();
340 assert(RT && "Can only expand structure types.");
341
342 RecordDecl *RD = RT->getDecl();
343 assert(LV.isSimple() &&
344 "Unexpected non-simple lvalue during struct expansion.");
345 llvm::Value *Addr = LV.getAddress();
346 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
347 i != e; ++i) {
348 FieldDecl *FD = *i;
349 QualType FT = FD->getType();
350
351 // FIXME: What are the right qualifiers here?
352 LValue LV = EmitLValueForField(Addr, FD, 0);
353 if (CodeGenFunction::hasAggregateLLVMType(FT)) {
354 AI = ExpandTypeFromArgs(FT, LV, AI);
355 } else {
356 EmitStoreThroughLValue(RValue::get(AI), LV);
357 ++AI;
358 }
359 }
360
361 return AI;
362 }
363
364 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
365 /// accessing some number of bytes out of it, try to gep into the struct to get
366 /// at its inner goodness. Dive as deep as possible without entering an element
367 /// with an in-memory size smaller than DstSize.
368 static llvm::Value *
EnterStructPointerForCoercedAccess(llvm::Value * SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)369 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
370 llvm::StructType *SrcSTy,
371 uint64_t DstSize, CodeGenFunction &CGF) {
372 // We can't dive into a zero-element struct.
373 if (SrcSTy->getNumElements() == 0) return SrcPtr;
374
375 llvm::Type *FirstElt = SrcSTy->getElementType(0);
376
377 // If the first elt is at least as large as what we're looking for, or if the
378 // first element is the same size as the whole struct, we can enter it.
379 uint64_t FirstEltSize =
380 CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
381 if (FirstEltSize < DstSize &&
382 FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
383 return SrcPtr;
384
385 // GEP into the first element.
386 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
387
388 // If the first element is a struct, recurse.
389 llvm::Type *SrcTy =
390 cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
391 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
392 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
393
394 return SrcPtr;
395 }
396
397 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
398 /// are either integers or pointers. This does a truncation of the value if it
399 /// is too large or a zero extension if it is too small.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)400 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
401 llvm::Type *Ty,
402 CodeGenFunction &CGF) {
403 if (Val->getType() == Ty)
404 return Val;
405
406 if (isa<llvm::PointerType>(Val->getType())) {
407 // If this is Pointer->Pointer avoid conversion to and from int.
408 if (isa<llvm::PointerType>(Ty))
409 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
410
411 // Convert the pointer to an integer so we can play with its width.
412 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
413 }
414
415 llvm::Type *DestIntTy = Ty;
416 if (isa<llvm::PointerType>(DestIntTy))
417 DestIntTy = CGF.IntPtrTy;
418
419 if (Val->getType() != DestIntTy)
420 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
421
422 if (isa<llvm::PointerType>(Ty))
423 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
424 return Val;
425 }
426
427
428
429 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
430 /// a pointer to an object of type \arg Ty.
431 ///
432 /// This safely handles the case when the src type is smaller than the
433 /// destination type; in this situation the values of bits which not
434 /// present in the src are undefined.
CreateCoercedLoad(llvm::Value * SrcPtr,llvm::Type * Ty,CodeGenFunction & CGF)435 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
436 llvm::Type *Ty,
437 CodeGenFunction &CGF) {
438 llvm::Type *SrcTy =
439 cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
440
441 // If SrcTy and Ty are the same, just do a load.
442 if (SrcTy == Ty)
443 return CGF.Builder.CreateLoad(SrcPtr);
444
445 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
446
447 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
448 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
449 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
450 }
451
452 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
453
454 // If the source and destination are integer or pointer types, just do an
455 // extension or truncation to the desired type.
456 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
457 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
458 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
459 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
460 }
461
462 // If load is legal, just bitcast the src pointer.
463 if (SrcSize >= DstSize) {
464 // Generally SrcSize is never greater than DstSize, since this means we are
465 // losing bits. However, this can happen in cases where the structure has
466 // additional padding, for example due to a user specified alignment.
467 //
468 // FIXME: Assert that we aren't truncating non-padding bits when have access
469 // to that information.
470 llvm::Value *Casted =
471 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
472 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
473 // FIXME: Use better alignment / avoid requiring aligned load.
474 Load->setAlignment(1);
475 return Load;
476 }
477
478 // Otherwise do coercion through memory. This is stupid, but
479 // simple.
480 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
481 llvm::Value *Casted =
482 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
483 llvm::StoreInst *Store =
484 CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
485 // FIXME: Use better alignment / avoid requiring aligned store.
486 Store->setAlignment(1);
487 return CGF.Builder.CreateLoad(Tmp);
488 }
489
490 // Function to store a first-class aggregate into memory. We prefer to
491 // store the elements rather than the aggregate to be more friendly to
492 // fast-isel.
493 // FIXME: Do we need to recurse here?
BuildAggStore(CodeGenFunction & CGF,llvm::Value * Val,llvm::Value * DestPtr,bool DestIsVolatile,bool LowAlignment)494 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
495 llvm::Value *DestPtr, bool DestIsVolatile,
496 bool LowAlignment) {
497 // Prefer scalar stores to first-class aggregate stores.
498 if (llvm::StructType *STy =
499 dyn_cast<llvm::StructType>(Val->getType())) {
500 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
501 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
502 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
503 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
504 DestIsVolatile);
505 if (LowAlignment)
506 SI->setAlignment(1);
507 }
508 } else {
509 CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
510 }
511 }
512
513 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
514 /// where the source and destination may have different types.
515 ///
516 /// This safely handles the case when the src type is larger than the
517 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,llvm::Value * DstPtr,bool DstIsVolatile,CodeGenFunction & CGF)518 static void CreateCoercedStore(llvm::Value *Src,
519 llvm::Value *DstPtr,
520 bool DstIsVolatile,
521 CodeGenFunction &CGF) {
522 llvm::Type *SrcTy = Src->getType();
523 llvm::Type *DstTy =
524 cast<llvm::PointerType>(DstPtr->getType())->getElementType();
525 if (SrcTy == DstTy) {
526 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
527 return;
528 }
529
530 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
531
532 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
533 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
534 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
535 }
536
537 // If the source and destination are integer or pointer types, just do an
538 // extension or truncation to the desired type.
539 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
540 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
541 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
542 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
543 return;
544 }
545
546 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
547
548 // If store is legal, just bitcast the src pointer.
549 if (SrcSize <= DstSize) {
550 llvm::Value *Casted =
551 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
552 // FIXME: Use better alignment / avoid requiring aligned store.
553 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
554 } else {
555 // Otherwise do coercion through memory. This is stupid, but
556 // simple.
557
558 // Generally SrcSize is never greater than DstSize, since this means we are
559 // losing bits. However, this can happen in cases where the structure has
560 // additional padding, for example due to a user specified alignment.
561 //
562 // FIXME: Assert that we aren't truncating non-padding bits when have access
563 // to that information.
564 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
565 CGF.Builder.CreateStore(Src, Tmp);
566 llvm::Value *Casted =
567 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
568 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
569 // FIXME: Use better alignment / avoid requiring aligned load.
570 Load->setAlignment(1);
571 CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
572 }
573 }
574
575 /***/
576
ReturnTypeUsesSRet(const CGFunctionInfo & FI)577 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
578 return FI.getReturnInfo().isIndirect();
579 }
580
ReturnTypeUsesFPRet(QualType ResultType)581 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
582 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
583 switch (BT->getKind()) {
584 default:
585 return false;
586 case BuiltinType::Float:
587 return getContext().Target.useObjCFPRetForRealType(TargetInfo::Float);
588 case BuiltinType::Double:
589 return getContext().Target.useObjCFPRetForRealType(TargetInfo::Double);
590 case BuiltinType::LongDouble:
591 return getContext().Target.useObjCFPRetForRealType(
592 TargetInfo::LongDouble);
593 }
594 }
595
596 return false;
597 }
598
GetFunctionType(GlobalDecl GD)599 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
600 const CGFunctionInfo &FI = getFunctionInfo(GD);
601
602 // For definition purposes, don't consider a K&R function variadic.
603 bool Variadic = false;
604 if (const FunctionProtoType *FPT =
605 cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>())
606 Variadic = FPT->isVariadic();
607
608 return GetFunctionType(FI, Variadic);
609 }
610
611 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI,bool isVariadic)612 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool isVariadic) {
613
614 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
615 assert(Inserted && "Recursively being processed?");
616
617 llvm::SmallVector<llvm::Type*, 8> argTypes;
618 llvm::Type *resultType = 0;
619
620 const ABIArgInfo &retAI = FI.getReturnInfo();
621 switch (retAI.getKind()) {
622 case ABIArgInfo::Expand:
623 llvm_unreachable("Invalid ABI kind for return argument");
624
625 case ABIArgInfo::Extend:
626 case ABIArgInfo::Direct:
627 resultType = retAI.getCoerceToType();
628 break;
629
630 case ABIArgInfo::Indirect: {
631 assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
632 resultType = llvm::Type::getVoidTy(getLLVMContext());
633
634 QualType ret = FI.getReturnType();
635 llvm::Type *ty = ConvertType(ret);
636 unsigned addressSpace = Context.getTargetAddressSpace(ret);
637 argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
638 break;
639 }
640
641 case ABIArgInfo::Ignore:
642 resultType = llvm::Type::getVoidTy(getLLVMContext());
643 break;
644 }
645
646 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
647 ie = FI.arg_end(); it != ie; ++it) {
648 const ABIArgInfo &argAI = it->info;
649
650 switch (argAI.getKind()) {
651 case ABIArgInfo::Ignore:
652 break;
653
654 case ABIArgInfo::Indirect: {
655 // indirect arguments are always on the stack, which is addr space #0.
656 llvm::Type *LTy = ConvertTypeForMem(it->type);
657 argTypes.push_back(LTy->getPointerTo());
658 break;
659 }
660
661 case ABIArgInfo::Extend:
662 case ABIArgInfo::Direct: {
663 // If the coerce-to type is a first class aggregate, flatten it. Either
664 // way is semantically identical, but fast-isel and the optimizer
665 // generally likes scalar values better than FCAs.
666 llvm::Type *argType = argAI.getCoerceToType();
667 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
668 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
669 argTypes.push_back(st->getElementType(i));
670 } else {
671 argTypes.push_back(argType);
672 }
673 break;
674 }
675
676 case ABIArgInfo::Expand:
677 GetExpandedTypes(it->type, argTypes);
678 break;
679 }
680 }
681
682 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
683 assert(Erased && "Not in set?");
684
685 return llvm::FunctionType::get(resultType, argTypes, isVariadic);
686 }
687
GetFunctionTypeForVTable(GlobalDecl GD)688 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
689 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
690 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
691
692 if (!isFuncTypeConvertible(FPT))
693 return llvm::StructType::get(getLLVMContext());
694
695 const CGFunctionInfo *Info;
696 if (isa<CXXDestructorDecl>(MD))
697 Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType());
698 else
699 Info = &getFunctionInfo(MD);
700 return GetFunctionType(*Info, FPT->isVariadic());
701 }
702
ConstructAttributeList(const CGFunctionInfo & FI,const Decl * TargetDecl,AttributeListType & PAL,unsigned & CallingConv)703 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
704 const Decl *TargetDecl,
705 AttributeListType &PAL,
706 unsigned &CallingConv) {
707 unsigned FuncAttrs = 0;
708 unsigned RetAttrs = 0;
709
710 CallingConv = FI.getEffectiveCallingConvention();
711
712 if (FI.isNoReturn())
713 FuncAttrs |= llvm::Attribute::NoReturn;
714
715 // FIXME: handle sseregparm someday...
716 if (TargetDecl) {
717 if (TargetDecl->hasAttr<NoThrowAttr>())
718 FuncAttrs |= llvm::Attribute::NoUnwind;
719 else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
720 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
721 if (FPT && FPT->isNothrow(getContext()))
722 FuncAttrs |= llvm::Attribute::NoUnwind;
723 }
724
725 if (TargetDecl->hasAttr<NoReturnAttr>())
726 FuncAttrs |= llvm::Attribute::NoReturn;
727 if (TargetDecl->hasAttr<ConstAttr>())
728 FuncAttrs |= llvm::Attribute::ReadNone;
729 else if (TargetDecl->hasAttr<PureAttr>())
730 FuncAttrs |= llvm::Attribute::ReadOnly;
731 if (TargetDecl->hasAttr<MallocAttr>())
732 RetAttrs |= llvm::Attribute::NoAlias;
733 }
734
735 if (CodeGenOpts.OptimizeSize)
736 FuncAttrs |= llvm::Attribute::OptimizeForSize;
737 if (CodeGenOpts.DisableRedZone)
738 FuncAttrs |= llvm::Attribute::NoRedZone;
739 if (CodeGenOpts.NoImplicitFloat)
740 FuncAttrs |= llvm::Attribute::NoImplicitFloat;
741
742 QualType RetTy = FI.getReturnType();
743 unsigned Index = 1;
744 const ABIArgInfo &RetAI = FI.getReturnInfo();
745 switch (RetAI.getKind()) {
746 case ABIArgInfo::Extend:
747 if (RetTy->hasSignedIntegerRepresentation())
748 RetAttrs |= llvm::Attribute::SExt;
749 else if (RetTy->hasUnsignedIntegerRepresentation())
750 RetAttrs |= llvm::Attribute::ZExt;
751 break;
752 case ABIArgInfo::Direct:
753 case ABIArgInfo::Ignore:
754 break;
755
756 case ABIArgInfo::Indirect:
757 PAL.push_back(llvm::AttributeWithIndex::get(Index,
758 llvm::Attribute::StructRet));
759 ++Index;
760 // sret disables readnone and readonly
761 FuncAttrs &= ~(llvm::Attribute::ReadOnly |
762 llvm::Attribute::ReadNone);
763 break;
764
765 case ABIArgInfo::Expand:
766 assert(0 && "Invalid ABI kind for return argument");
767 }
768
769 if (RetAttrs)
770 PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
771
772 // FIXME: RegParm should be reduced in case of global register variable.
773 signed RegParm;
774 if (FI.getHasRegParm())
775 RegParm = FI.getRegParm();
776 else
777 RegParm = CodeGenOpts.NumRegisterParameters;
778
779 unsigned PointerWidth = getContext().Target.getPointerWidth(0);
780 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
781 ie = FI.arg_end(); it != ie; ++it) {
782 QualType ParamType = it->type;
783 const ABIArgInfo &AI = it->info;
784 unsigned Attributes = 0;
785
786 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
787 // have the corresponding parameter variable. It doesn't make
788 // sense to do it here because parameters are so messed up.
789 switch (AI.getKind()) {
790 case ABIArgInfo::Extend:
791 if (ParamType->isSignedIntegerOrEnumerationType())
792 Attributes |= llvm::Attribute::SExt;
793 else if (ParamType->isUnsignedIntegerOrEnumerationType())
794 Attributes |= llvm::Attribute::ZExt;
795 // FALL THROUGH
796 case ABIArgInfo::Direct:
797 if (RegParm > 0 &&
798 (ParamType->isIntegerType() || ParamType->isPointerType())) {
799 RegParm -=
800 (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
801 if (RegParm >= 0)
802 Attributes |= llvm::Attribute::InReg;
803 }
804 // FIXME: handle sseregparm someday...
805
806 if (llvm::StructType *STy =
807 dyn_cast<llvm::StructType>(AI.getCoerceToType()))
808 Index += STy->getNumElements()-1; // 1 will be added below.
809 break;
810
811 case ABIArgInfo::Indirect:
812 if (AI.getIndirectByVal())
813 Attributes |= llvm::Attribute::ByVal;
814
815 Attributes |=
816 llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
817 // byval disables readnone and readonly.
818 FuncAttrs &= ~(llvm::Attribute::ReadOnly |
819 llvm::Attribute::ReadNone);
820 break;
821
822 case ABIArgInfo::Ignore:
823 // Skip increment, no matching LLVM parameter.
824 continue;
825
826 case ABIArgInfo::Expand: {
827 llvm::SmallVector<llvm::Type*, 8> types;
828 // FIXME: This is rather inefficient. Do we ever actually need to do
829 // anything here? The result should be just reconstructed on the other
830 // side, so extension should be a non-issue.
831 getTypes().GetExpandedTypes(ParamType, types);
832 Index += types.size();
833 continue;
834 }
835 }
836
837 if (Attributes)
838 PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
839 ++Index;
840 }
841 if (FuncAttrs)
842 PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
843 }
844
845 /// An argument came in as a promoted argument; demote it back to its
846 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)847 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
848 const VarDecl *var,
849 llvm::Value *value) {
850 llvm::Type *varType = CGF.ConvertType(var->getType());
851
852 // This can happen with promotions that actually don't change the
853 // underlying type, like the enum promotions.
854 if (value->getType() == varType) return value;
855
856 assert((varType->isIntegerTy() || varType->isFloatingPointTy())
857 && "unexpected promotion type");
858
859 if (isa<llvm::IntegerType>(varType))
860 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
861
862 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
863 }
864
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)865 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
866 llvm::Function *Fn,
867 const FunctionArgList &Args) {
868 // If this is an implicit-return-zero function, go ahead and
869 // initialize the return value. TODO: it might be nice to have
870 // a more general mechanism for this that didn't require synthesized
871 // return statements.
872 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
873 if (FD->hasImplicitReturnZero()) {
874 QualType RetTy = FD->getResultType().getUnqualifiedType();
875 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
876 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
877 Builder.CreateStore(Zero, ReturnValue);
878 }
879 }
880
881 // FIXME: We no longer need the types from FunctionArgList; lift up and
882 // simplify.
883
884 // Emit allocs for param decls. Give the LLVM Argument nodes names.
885 llvm::Function::arg_iterator AI = Fn->arg_begin();
886
887 // Name the struct return argument.
888 if (CGM.ReturnTypeUsesSRet(FI)) {
889 AI->setName("agg.result");
890 ++AI;
891 }
892
893 assert(FI.arg_size() == Args.size() &&
894 "Mismatch between function signature & arguments.");
895 unsigned ArgNo = 1;
896 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
897 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
898 i != e; ++i, ++info_it, ++ArgNo) {
899 const VarDecl *Arg = *i;
900 QualType Ty = info_it->type;
901 const ABIArgInfo &ArgI = info_it->info;
902
903 bool isPromoted =
904 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
905
906 switch (ArgI.getKind()) {
907 case ABIArgInfo::Indirect: {
908 llvm::Value *V = AI;
909
910 if (hasAggregateLLVMType(Ty)) {
911 // Aggregates and complex variables are accessed by reference. All we
912 // need to do is realign the value, if requested
913 if (ArgI.getIndirectRealign()) {
914 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
915
916 // Copy from the incoming argument pointer to the temporary with the
917 // appropriate alignment.
918 //
919 // FIXME: We should have a common utility for generating an aggregate
920 // copy.
921 llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
922 CharUnits Size = getContext().getTypeSizeInChars(Ty);
923 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
924 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
925 Builder.CreateMemCpy(Dst,
926 Src,
927 llvm::ConstantInt::get(IntPtrTy,
928 Size.getQuantity()),
929 ArgI.getIndirectAlign(),
930 false);
931 V = AlignedTemp;
932 }
933 } else {
934 // Load scalar value from indirect argument.
935 CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
936 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
937
938 if (isPromoted)
939 V = emitArgumentDemotion(*this, Arg, V);
940 }
941 EmitParmDecl(*Arg, V, ArgNo);
942 break;
943 }
944
945 case ABIArgInfo::Extend:
946 case ABIArgInfo::Direct: {
947 // If we have the trivial case, handle it with no muss and fuss.
948 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
949 ArgI.getCoerceToType() == ConvertType(Ty) &&
950 ArgI.getDirectOffset() == 0) {
951 assert(AI != Fn->arg_end() && "Argument mismatch!");
952 llvm::Value *V = AI;
953
954 if (Arg->getType().isRestrictQualified())
955 AI->addAttr(llvm::Attribute::NoAlias);
956
957 // Ensure the argument is the correct type.
958 if (V->getType() != ArgI.getCoerceToType())
959 V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
960
961 if (isPromoted)
962 V = emitArgumentDemotion(*this, Arg, V);
963
964 EmitParmDecl(*Arg, V, ArgNo);
965 break;
966 }
967
968 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce");
969
970 // The alignment we need to use is the max of the requested alignment for
971 // the argument plus the alignment required by our access code below.
972 unsigned AlignmentToUse =
973 CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
974 AlignmentToUse = std::max(AlignmentToUse,
975 (unsigned)getContext().getDeclAlign(Arg).getQuantity());
976
977 Alloca->setAlignment(AlignmentToUse);
978 llvm::Value *V = Alloca;
979 llvm::Value *Ptr = V; // Pointer to store into.
980
981 // If the value is offset in memory, apply the offset now.
982 if (unsigned Offs = ArgI.getDirectOffset()) {
983 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
984 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
985 Ptr = Builder.CreateBitCast(Ptr,
986 llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
987 }
988
989 // If the coerce-to type is a first class aggregate, we flatten it and
990 // pass the elements. Either way is semantically identical, but fast-isel
991 // and the optimizer generally likes scalar values better than FCAs.
992 if (llvm::StructType *STy =
993 dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) {
994 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
995
996 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
997 assert(AI != Fn->arg_end() && "Argument mismatch!");
998 AI->setName(Arg->getName() + ".coerce" + llvm::Twine(i));
999 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1000 Builder.CreateStore(AI++, EltPtr);
1001 }
1002 } else {
1003 // Simple case, just do a coerced store of the argument into the alloca.
1004 assert(AI != Fn->arg_end() && "Argument mismatch!");
1005 AI->setName(Arg->getName() + ".coerce");
1006 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1007 }
1008
1009
1010 // Match to what EmitParmDecl is expecting for this type.
1011 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1012 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1013 if (isPromoted)
1014 V = emitArgumentDemotion(*this, Arg, V);
1015 }
1016 EmitParmDecl(*Arg, V, ArgNo);
1017 continue; // Skip ++AI increment, already done.
1018 }
1019
1020 case ABIArgInfo::Expand: {
1021 // If this structure was expanded into multiple arguments then
1022 // we need to create a temporary and reconstruct it from the
1023 // arguments.
1024 llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr");
1025 llvm::Function::arg_iterator End =
1026 ExpandTypeFromArgs(Ty, MakeAddrLValue(Temp, Ty), AI);
1027 EmitParmDecl(*Arg, Temp, ArgNo);
1028
1029 // Name the arguments used in expansion and increment AI.
1030 unsigned Index = 0;
1031 for (; AI != End; ++AI, ++Index)
1032 AI->setName(Arg->getName() + "." + llvm::Twine(Index));
1033 continue;
1034 }
1035
1036 case ABIArgInfo::Ignore:
1037 // Initialize the local variable appropriately.
1038 if (hasAggregateLLVMType(Ty))
1039 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1040 else
1041 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1042 ArgNo);
1043
1044 // Skip increment, no matching LLVM parameter.
1045 continue;
1046 }
1047
1048 ++AI;
1049 }
1050 assert(AI == Fn->arg_end() && "Argument mismatch!");
1051 }
1052
1053 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)1054 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1055 llvm::Value *result) {
1056 // We must be immediately followed the cast.
1057 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1058 if (BB->empty()) return 0;
1059 if (&BB->back() != result) return 0;
1060
1061 llvm::Type *resultType = result->getType();
1062
1063 // result is in a BasicBlock and is therefore an Instruction.
1064 llvm::Instruction *generator = cast<llvm::Instruction>(result);
1065
1066 llvm::SmallVector<llvm::Instruction*,4> insnsToKill;
1067
1068 // Look for:
1069 // %generator = bitcast %type1* %generator2 to %type2*
1070 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1071 // We would have emitted this as a constant if the operand weren't
1072 // an Instruction.
1073 generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1074
1075 // Require the generator to be immediately followed by the cast.
1076 if (generator->getNextNode() != bitcast)
1077 return 0;
1078
1079 insnsToKill.push_back(bitcast);
1080 }
1081
1082 // Look for:
1083 // %generator = call i8* @objc_retain(i8* %originalResult)
1084 // or
1085 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1086 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1087 if (!call) return 0;
1088
1089 bool doRetainAutorelease;
1090
1091 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1092 doRetainAutorelease = true;
1093 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1094 .objc_retainAutoreleasedReturnValue) {
1095 doRetainAutorelease = false;
1096
1097 // Look for an inline asm immediately preceding the call and kill it, too.
1098 llvm::Instruction *prev = call->getPrevNode();
1099 if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
1100 if (asmCall->getCalledValue()
1101 == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
1102 insnsToKill.push_back(prev);
1103 } else {
1104 return 0;
1105 }
1106
1107 result = call->getArgOperand(0);
1108 insnsToKill.push_back(call);
1109
1110 // Keep killing bitcasts, for sanity. Note that we no longer care
1111 // about precise ordering as long as there's exactly one use.
1112 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1113 if (!bitcast->hasOneUse()) break;
1114 insnsToKill.push_back(bitcast);
1115 result = bitcast->getOperand(0);
1116 }
1117
1118 // Delete all the unnecessary instructions, from latest to earliest.
1119 for (llvm::SmallVectorImpl<llvm::Instruction*>::iterator
1120 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1121 (*i)->eraseFromParent();
1122
1123 // Do the fused retain/autorelease if we were asked to.
1124 if (doRetainAutorelease)
1125 result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1126
1127 // Cast back to the result type.
1128 return CGF.Builder.CreateBitCast(result, resultType);
1129 }
1130
1131 /// Emit an ARC autorelease of the result of a function.
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)1132 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1133 llvm::Value *result) {
1134 // At -O0, try to emit a fused retain/autorelease.
1135 if (CGF.shouldUseFusedARCCalls())
1136 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1137 return fused;
1138
1139 return CGF.EmitARCAutoreleaseReturnValue(result);
1140 }
1141
EmitFunctionEpilog(const CGFunctionInfo & FI)1142 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1143 // Functions with no result always return void.
1144 if (ReturnValue == 0) {
1145 Builder.CreateRetVoid();
1146 return;
1147 }
1148
1149 llvm::DebugLoc RetDbgLoc;
1150 llvm::Value *RV = 0;
1151 QualType RetTy = FI.getReturnType();
1152 const ABIArgInfo &RetAI = FI.getReturnInfo();
1153
1154 switch (RetAI.getKind()) {
1155 case ABIArgInfo::Indirect: {
1156 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1157 if (RetTy->isAnyComplexType()) {
1158 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1159 StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1160 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1161 // Do nothing; aggregrates get evaluated directly into the destination.
1162 } else {
1163 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1164 false, Alignment, RetTy);
1165 }
1166 break;
1167 }
1168
1169 case ABIArgInfo::Extend:
1170 case ABIArgInfo::Direct:
1171 if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1172 RetAI.getDirectOffset() == 0) {
1173 // The internal return value temp always will have pointer-to-return-type
1174 // type, just do a load.
1175
1176 // If the instruction right before the insertion point is a store to the
1177 // return value, we can elide the load, zap the store, and usually zap the
1178 // alloca.
1179 llvm::BasicBlock *InsertBB = Builder.GetInsertBlock();
1180 llvm::StoreInst *SI = 0;
1181 if (InsertBB->empty() ||
1182 !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) ||
1183 SI->getPointerOperand() != ReturnValue || SI->isVolatile()) {
1184 RV = Builder.CreateLoad(ReturnValue);
1185 } else {
1186 // Get the stored value and nuke the now-dead store.
1187 RetDbgLoc = SI->getDebugLoc();
1188 RV = SI->getValueOperand();
1189 SI->eraseFromParent();
1190
1191 // If that was the only use of the return value, nuke it as well now.
1192 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1193 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1194 ReturnValue = 0;
1195 }
1196 }
1197 } else {
1198 llvm::Value *V = ReturnValue;
1199 // If the value is offset in memory, apply the offset now.
1200 if (unsigned Offs = RetAI.getDirectOffset()) {
1201 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1202 V = Builder.CreateConstGEP1_32(V, Offs);
1203 V = Builder.CreateBitCast(V,
1204 llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1205 }
1206
1207 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1208 }
1209
1210 // In ARC, end functions that return a retainable type with a call
1211 // to objc_autoreleaseReturnValue.
1212 if (AutoreleaseResult) {
1213 assert(getLangOptions().ObjCAutoRefCount &&
1214 !FI.isReturnsRetained() &&
1215 RetTy->isObjCRetainableType());
1216 RV = emitAutoreleaseOfResult(*this, RV);
1217 }
1218
1219 break;
1220
1221 case ABIArgInfo::Ignore:
1222 break;
1223
1224 case ABIArgInfo::Expand:
1225 assert(0 && "Invalid ABI kind for return argument");
1226 }
1227
1228 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1229 if (!RetDbgLoc.isUnknown())
1230 Ret->setDebugLoc(RetDbgLoc);
1231 }
1232
EmitDelegateCallArg(CallArgList & args,const VarDecl * param)1233 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1234 const VarDecl *param) {
1235 // StartFunction converted the ABI-lowered parameter(s) into a
1236 // local alloca. We need to turn that into an r-value suitable
1237 // for EmitCall.
1238 llvm::Value *local = GetAddrOfLocalVar(param);
1239
1240 QualType type = param->getType();
1241
1242 // For the most part, we just need to load the alloca, except:
1243 // 1) aggregate r-values are actually pointers to temporaries, and
1244 // 2) references to aggregates are pointers directly to the aggregate.
1245 // I don't know why references to non-aggregates are different here.
1246 if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1247 if (hasAggregateLLVMType(ref->getPointeeType()))
1248 return args.add(RValue::getAggregate(local), type);
1249
1250 // Locals which are references to scalars are represented
1251 // with allocas holding the pointer.
1252 return args.add(RValue::get(Builder.CreateLoad(local)), type);
1253 }
1254
1255 if (type->isAnyComplexType()) {
1256 ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1257 return args.add(RValue::getComplex(complex), type);
1258 }
1259
1260 if (hasAggregateLLVMType(type))
1261 return args.add(RValue::getAggregate(local), type);
1262
1263 unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1264 llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1265 return args.add(RValue::get(value), type);
1266 }
1267
isProvablyNull(llvm::Value * addr)1268 static bool isProvablyNull(llvm::Value *addr) {
1269 return isa<llvm::ConstantPointerNull>(addr);
1270 }
1271
isProvablyNonNull(llvm::Value * addr)1272 static bool isProvablyNonNull(llvm::Value *addr) {
1273 return isa<llvm::AllocaInst>(addr);
1274 }
1275
1276 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)1277 static void emitWriteback(CodeGenFunction &CGF,
1278 const CallArgList::Writeback &writeback) {
1279 llvm::Value *srcAddr = writeback.Address;
1280 assert(!isProvablyNull(srcAddr) &&
1281 "shouldn't have writeback for provably null argument");
1282
1283 llvm::BasicBlock *contBB = 0;
1284
1285 // If the argument wasn't provably non-null, we need to null check
1286 // before doing the store.
1287 bool provablyNonNull = isProvablyNonNull(srcAddr);
1288 if (!provablyNonNull) {
1289 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1290 contBB = CGF.createBasicBlock("icr.done");
1291
1292 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1293 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1294 CGF.EmitBlock(writebackBB);
1295 }
1296
1297 // Load the value to writeback.
1298 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1299
1300 // Cast it back, in case we're writing an id to a Foo* or something.
1301 value = CGF.Builder.CreateBitCast(value,
1302 cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1303 "icr.writeback-cast");
1304
1305 // Perform the writeback.
1306 QualType srcAddrType = writeback.AddressType;
1307 CGF.EmitStoreThroughLValue(RValue::get(value),
1308 CGF.MakeAddrLValue(srcAddr, srcAddrType));
1309
1310 // Jump to the continuation block.
1311 if (!provablyNonNull)
1312 CGF.EmitBlock(contBB);
1313 }
1314
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)1315 static void emitWritebacks(CodeGenFunction &CGF,
1316 const CallArgList &args) {
1317 for (CallArgList::writeback_iterator
1318 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1319 emitWriteback(CGF, *i);
1320 }
1321
1322 /// Emit an argument that's being passed call-by-writeback. That is,
1323 /// we are passing the address of
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)1324 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1325 const ObjCIndirectCopyRestoreExpr *CRE) {
1326 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1327
1328 // The dest and src types don't necessarily match in LLVM terms
1329 // because of the crazy ObjC compatibility rules.
1330
1331 llvm::PointerType *destType =
1332 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1333
1334 // If the address is a constant null, just pass the appropriate null.
1335 if (isProvablyNull(srcAddr)) {
1336 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1337 CRE->getType());
1338 return;
1339 }
1340
1341 QualType srcAddrType =
1342 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1343
1344 // Create the temporary.
1345 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1346 "icr.temp");
1347
1348 // Zero-initialize it if we're not doing a copy-initialization.
1349 bool shouldCopy = CRE->shouldCopy();
1350 if (!shouldCopy) {
1351 llvm::Value *null =
1352 llvm::ConstantPointerNull::get(
1353 cast<llvm::PointerType>(destType->getElementType()));
1354 CGF.Builder.CreateStore(null, temp);
1355 }
1356
1357 llvm::BasicBlock *contBB = 0;
1358
1359 // If the address is *not* known to be non-null, we need to switch.
1360 llvm::Value *finalArgument;
1361
1362 bool provablyNonNull = isProvablyNonNull(srcAddr);
1363 if (provablyNonNull) {
1364 finalArgument = temp;
1365 } else {
1366 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1367
1368 finalArgument = CGF.Builder.CreateSelect(isNull,
1369 llvm::ConstantPointerNull::get(destType),
1370 temp, "icr.argument");
1371
1372 // If we need to copy, then the load has to be conditional, which
1373 // means we need control flow.
1374 if (shouldCopy) {
1375 contBB = CGF.createBasicBlock("icr.cont");
1376 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1377 CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1378 CGF.EmitBlock(copyBB);
1379 }
1380 }
1381
1382 // Perform a copy if necessary.
1383 if (shouldCopy) {
1384 LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1385 RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1386 assert(srcRV.isScalar());
1387
1388 llvm::Value *src = srcRV.getScalarVal();
1389 src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1390 "icr.cast");
1391
1392 // Use an ordinary store, not a store-to-lvalue.
1393 CGF.Builder.CreateStore(src, temp);
1394 }
1395
1396 // Finish the control flow if we needed it.
1397 if (shouldCopy && !provablyNonNull)
1398 CGF.EmitBlock(contBB);
1399
1400 args.addWriteback(srcAddr, srcAddrType, temp);
1401 args.add(RValue::get(finalArgument), CRE->getType());
1402 }
1403
EmitCallArg(CallArgList & args,const Expr * E,QualType type)1404 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1405 QualType type) {
1406 if (const ObjCIndirectCopyRestoreExpr *CRE
1407 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1408 assert(getContext().getLangOptions().ObjCAutoRefCount);
1409 assert(getContext().hasSameType(E->getType(), type));
1410 return emitWritebackArg(*this, args, CRE);
1411 }
1412
1413 if (type->isReferenceType())
1414 return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1415 type);
1416
1417 if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1418 isa<ImplicitCastExpr>(E) &&
1419 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1420 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1421 assert(L.isSimple());
1422 args.add(RValue::getAggregate(L.getAddress(), L.isVolatileQualified()),
1423 type, /*NeedsCopy*/true);
1424 return;
1425 }
1426
1427 args.add(EmitAnyExprToTemp(E), type);
1428 }
1429
1430 /// Emits a call or invoke instruction to the given function, depending
1431 /// on the current state of the EH stack.
1432 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,llvm::ArrayRef<llvm::Value * > Args,const llvm::Twine & Name)1433 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1434 llvm::ArrayRef<llvm::Value *> Args,
1435 const llvm::Twine &Name) {
1436 llvm::BasicBlock *InvokeDest = getInvokeDest();
1437 if (!InvokeDest)
1438 return Builder.CreateCall(Callee, Args, Name);
1439
1440 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1441 llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest,
1442 Args, Name);
1443 EmitBlock(ContBB);
1444 return Invoke;
1445 }
1446
1447 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,const llvm::Twine & Name)1448 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1449 const llvm::Twine &Name) {
1450 return EmitCallOrInvoke(Callee, llvm::ArrayRef<llvm::Value *>(), Name);
1451 }
1452
checkArgMatches(llvm::Value * Elt,unsigned & ArgNo,llvm::FunctionType * FTy)1453 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1454 llvm::FunctionType *FTy) {
1455 if (ArgNo < FTy->getNumParams())
1456 assert(Elt->getType() == FTy->getParamType(ArgNo));
1457 else
1458 assert(FTy->isVarArg());
1459 ++ArgNo;
1460 }
1461
ExpandTypeToArgs(QualType Ty,RValue RV,llvm::SmallVector<llvm::Value *,16> & Args,llvm::FunctionType * IRFuncTy)1462 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1463 llvm::SmallVector<llvm::Value*,16> &Args,
1464 llvm::FunctionType *IRFuncTy) {
1465 const RecordType *RT = Ty->getAsStructureType();
1466 assert(RT && "Can only expand structure types.");
1467
1468 RecordDecl *RD = RT->getDecl();
1469 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1470 llvm::Value *Addr = RV.getAggregateAddr();
1471 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1472 i != e; ++i) {
1473 FieldDecl *FD = *i;
1474 QualType FT = FD->getType();
1475
1476 // FIXME: What are the right qualifiers here?
1477 LValue LV = EmitLValueForField(Addr, FD, 0);
1478 if (CodeGenFunction::hasAggregateLLVMType(FT)) {
1479 ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()),
1480 Args, IRFuncTy);
1481 continue;
1482 }
1483
1484 RValue RV = EmitLoadOfLValue(LV);
1485 assert(RV.isScalar() &&
1486 "Unexpected non-scalar rvalue during struct expansion.");
1487
1488 // Insert a bitcast as needed.
1489 llvm::Value *V = RV.getScalarVal();
1490 if (Args.size() < IRFuncTy->getNumParams() &&
1491 V->getType() != IRFuncTy->getParamType(Args.size()))
1492 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1493
1494 Args.push_back(V);
1495 }
1496 }
1497
1498
EmitCall(const CGFunctionInfo & CallInfo,llvm::Value * Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,const Decl * TargetDecl,llvm::Instruction ** callOrInvoke)1499 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1500 llvm::Value *Callee,
1501 ReturnValueSlot ReturnValue,
1502 const CallArgList &CallArgs,
1503 const Decl *TargetDecl,
1504 llvm::Instruction **callOrInvoke) {
1505 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1506 llvm::SmallVector<llvm::Value*, 16> Args;
1507
1508 // Handle struct-return functions by passing a pointer to the
1509 // location that we would like to return into.
1510 QualType RetTy = CallInfo.getReturnType();
1511 const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1512
1513 // IRArgNo - Keep track of the argument number in the callee we're looking at.
1514 unsigned IRArgNo = 0;
1515 llvm::FunctionType *IRFuncTy =
1516 cast<llvm::FunctionType>(
1517 cast<llvm::PointerType>(Callee->getType())->getElementType());
1518
1519 // If the call returns a temporary with struct return, create a temporary
1520 // alloca to hold the result, unless one is given to us.
1521 if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1522 llvm::Value *Value = ReturnValue.getValue();
1523 if (!Value)
1524 Value = CreateMemTemp(RetTy);
1525 Args.push_back(Value);
1526 checkArgMatches(Value, IRArgNo, IRFuncTy);
1527 }
1528
1529 assert(CallInfo.arg_size() == CallArgs.size() &&
1530 "Mismatch between function signature & arguments.");
1531 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1532 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1533 I != E; ++I, ++info_it) {
1534 const ABIArgInfo &ArgInfo = info_it->info;
1535 RValue RV = I->RV;
1536
1537 unsigned TypeAlign =
1538 getContext().getTypeAlignInChars(I->Ty).getQuantity();
1539 switch (ArgInfo.getKind()) {
1540 case ABIArgInfo::Indirect: {
1541 if (RV.isScalar() || RV.isComplex()) {
1542 // Make a temporary alloca to pass the argument.
1543 llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1544 if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1545 AI->setAlignment(ArgInfo.getIndirectAlign());
1546 Args.push_back(AI);
1547
1548 if (RV.isScalar())
1549 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1550 TypeAlign, I->Ty);
1551 else
1552 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1553
1554 // Validate argument match.
1555 checkArgMatches(AI, IRArgNo, IRFuncTy);
1556 } else {
1557 // We want to avoid creating an unnecessary temporary+copy here;
1558 // however, we need one in two cases:
1559 // 1. If the argument is not byval, and we are required to copy the
1560 // source. (This case doesn't occur on any common architecture.)
1561 // 2. If the argument is byval, RV is not sufficiently aligned, and
1562 // we cannot force it to be sufficiently aligned.
1563 llvm::Value *Addr = RV.getAggregateAddr();
1564 unsigned Align = ArgInfo.getIndirectAlign();
1565 const llvm::TargetData *TD = &CGM.getTargetData();
1566 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
1567 (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
1568 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
1569 // Create an aligned temporary, and copy to it.
1570 llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1571 if (Align > AI->getAlignment())
1572 AI->setAlignment(Align);
1573 Args.push_back(AI);
1574 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
1575
1576 // Validate argument match.
1577 checkArgMatches(AI, IRArgNo, IRFuncTy);
1578 } else {
1579 // Skip the extra memcpy call.
1580 Args.push_back(Addr);
1581
1582 // Validate argument match.
1583 checkArgMatches(Addr, IRArgNo, IRFuncTy);
1584 }
1585 }
1586 break;
1587 }
1588
1589 case ABIArgInfo::Ignore:
1590 break;
1591
1592 case ABIArgInfo::Extend:
1593 case ABIArgInfo::Direct: {
1594 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
1595 ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
1596 ArgInfo.getDirectOffset() == 0) {
1597 llvm::Value *V;
1598 if (RV.isScalar())
1599 V = RV.getScalarVal();
1600 else
1601 V = Builder.CreateLoad(RV.getAggregateAddr());
1602
1603 // If the argument doesn't match, perform a bitcast to coerce it. This
1604 // can happen due to trivial type mismatches.
1605 if (IRArgNo < IRFuncTy->getNumParams() &&
1606 V->getType() != IRFuncTy->getParamType(IRArgNo))
1607 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
1608 Args.push_back(V);
1609
1610 checkArgMatches(V, IRArgNo, IRFuncTy);
1611 break;
1612 }
1613
1614 // FIXME: Avoid the conversion through memory if possible.
1615 llvm::Value *SrcPtr;
1616 if (RV.isScalar()) {
1617 SrcPtr = CreateMemTemp(I->Ty, "coerce");
1618 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
1619 } else if (RV.isComplex()) {
1620 SrcPtr = CreateMemTemp(I->Ty, "coerce");
1621 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
1622 } else
1623 SrcPtr = RV.getAggregateAddr();
1624
1625 // If the value is offset in memory, apply the offset now.
1626 if (unsigned Offs = ArgInfo.getDirectOffset()) {
1627 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
1628 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
1629 SrcPtr = Builder.CreateBitCast(SrcPtr,
1630 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
1631
1632 }
1633
1634 // If the coerce-to type is a first class aggregate, we flatten it and
1635 // pass the elements. Either way is semantically identical, but fast-isel
1636 // and the optimizer generally likes scalar values better than FCAs.
1637 if (llvm::StructType *STy =
1638 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
1639 SrcPtr = Builder.CreateBitCast(SrcPtr,
1640 llvm::PointerType::getUnqual(STy));
1641 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1642 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
1643 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
1644 // We don't know what we're loading from.
1645 LI->setAlignment(1);
1646 Args.push_back(LI);
1647
1648 // Validate argument match.
1649 checkArgMatches(LI, IRArgNo, IRFuncTy);
1650 }
1651 } else {
1652 // In the simple case, just pass the coerced loaded value.
1653 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
1654 *this));
1655
1656 // Validate argument match.
1657 checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
1658 }
1659
1660 break;
1661 }
1662
1663 case ABIArgInfo::Expand:
1664 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
1665 IRArgNo = Args.size();
1666 break;
1667 }
1668 }
1669
1670 // If the callee is a bitcast of a function to a varargs pointer to function
1671 // type, check to see if we can remove the bitcast. This handles some cases
1672 // with unprototyped functions.
1673 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
1674 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
1675 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
1676 llvm::FunctionType *CurFT =
1677 cast<llvm::FunctionType>(CurPT->getElementType());
1678 llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
1679
1680 if (CE->getOpcode() == llvm::Instruction::BitCast &&
1681 ActualFT->getReturnType() == CurFT->getReturnType() &&
1682 ActualFT->getNumParams() == CurFT->getNumParams() &&
1683 ActualFT->getNumParams() == Args.size() &&
1684 (CurFT->isVarArg() || !ActualFT->isVarArg())) {
1685 bool ArgsMatch = true;
1686 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
1687 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
1688 ArgsMatch = false;
1689 break;
1690 }
1691
1692 // Strip the cast if we can get away with it. This is a nice cleanup,
1693 // but also allows us to inline the function at -O0 if it is marked
1694 // always_inline.
1695 if (ArgsMatch)
1696 Callee = CalleeF;
1697 }
1698 }
1699
1700 unsigned CallingConv;
1701 CodeGen::AttributeListType AttributeList;
1702 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
1703 llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
1704 AttributeList.end());
1705
1706 llvm::BasicBlock *InvokeDest = 0;
1707 if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
1708 InvokeDest = getInvokeDest();
1709
1710 llvm::CallSite CS;
1711 if (!InvokeDest) {
1712 CS = Builder.CreateCall(Callee, Args);
1713 } else {
1714 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
1715 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
1716 EmitBlock(Cont);
1717 }
1718 if (callOrInvoke)
1719 *callOrInvoke = CS.getInstruction();
1720
1721 CS.setAttributes(Attrs);
1722 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1723
1724 // If the call doesn't return, finish the basic block and clear the
1725 // insertion point; this allows the rest of IRgen to discard
1726 // unreachable code.
1727 if (CS.doesNotReturn()) {
1728 Builder.CreateUnreachable();
1729 Builder.ClearInsertionPoint();
1730
1731 // FIXME: For now, emit a dummy basic block because expr emitters in
1732 // generally are not ready to handle emitting expressions at unreachable
1733 // points.
1734 EnsureInsertPoint();
1735
1736 // Return a reasonable RValue.
1737 return GetUndefRValue(RetTy);
1738 }
1739
1740 llvm::Instruction *CI = CS.getInstruction();
1741 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
1742 CI->setName("call");
1743
1744 // Emit any writebacks immediately. Arguably this should happen
1745 // after any return-value munging.
1746 if (CallArgs.hasWritebacks())
1747 emitWritebacks(*this, CallArgs);
1748
1749 switch (RetAI.getKind()) {
1750 case ABIArgInfo::Indirect: {
1751 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1752 if (RetTy->isAnyComplexType())
1753 return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
1754 if (CodeGenFunction::hasAggregateLLVMType(RetTy))
1755 return RValue::getAggregate(Args[0]);
1756 return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
1757 }
1758
1759 case ABIArgInfo::Ignore:
1760 // If we are ignoring an argument that had a result, make sure to
1761 // construct the appropriate return value for our caller.
1762 return GetUndefRValue(RetTy);
1763
1764 case ABIArgInfo::Extend:
1765 case ABIArgInfo::Direct: {
1766 llvm::Type *RetIRTy = ConvertType(RetTy);
1767 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
1768 if (RetTy->isAnyComplexType()) {
1769 llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
1770 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
1771 return RValue::getComplex(std::make_pair(Real, Imag));
1772 }
1773 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1774 llvm::Value *DestPtr = ReturnValue.getValue();
1775 bool DestIsVolatile = ReturnValue.isVolatile();
1776
1777 if (!DestPtr) {
1778 DestPtr = CreateMemTemp(RetTy, "agg.tmp");
1779 DestIsVolatile = false;
1780 }
1781 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
1782 return RValue::getAggregate(DestPtr);
1783 }
1784
1785 // If the argument doesn't match, perform a bitcast to coerce it. This
1786 // can happen due to trivial type mismatches.
1787 llvm::Value *V = CI;
1788 if (V->getType() != RetIRTy)
1789 V = Builder.CreateBitCast(V, RetIRTy);
1790 return RValue::get(V);
1791 }
1792
1793 llvm::Value *DestPtr = ReturnValue.getValue();
1794 bool DestIsVolatile = ReturnValue.isVolatile();
1795
1796 if (!DestPtr) {
1797 DestPtr = CreateMemTemp(RetTy, "coerce");
1798 DestIsVolatile = false;
1799 }
1800
1801 // If the value is offset in memory, apply the offset now.
1802 llvm::Value *StorePtr = DestPtr;
1803 if (unsigned Offs = RetAI.getDirectOffset()) {
1804 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
1805 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
1806 StorePtr = Builder.CreateBitCast(StorePtr,
1807 llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1808 }
1809 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
1810
1811 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1812 if (RetTy->isAnyComplexType())
1813 return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
1814 if (CodeGenFunction::hasAggregateLLVMType(RetTy))
1815 return RValue::getAggregate(DestPtr);
1816 return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
1817 }
1818
1819 case ABIArgInfo::Expand:
1820 assert(0 && "Invalid ABI kind for return argument");
1821 }
1822
1823 assert(0 && "Unhandled ABIArgInfo::Kind");
1824 return RValue::get(0);
1825 }
1826
1827 /* VarArg handling */
1828
EmitVAArg(llvm::Value * VAListAddr,QualType Ty)1829 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
1830 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
1831 }
1832