1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CGDebugInfo.h"
19 #include "llvm/Intrinsics.h"
20 #include "llvm/Support/CallSite.h"
21
22 using namespace clang;
23 using namespace CodeGen;
24
EmitCXXMemberCall(const CXXMethodDecl * MD,llvm::Value * Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * VTT,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd)25 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
26 llvm::Value *Callee,
27 ReturnValueSlot ReturnValue,
28 llvm::Value *This,
29 llvm::Value *VTT,
30 CallExpr::const_arg_iterator ArgBeg,
31 CallExpr::const_arg_iterator ArgEnd) {
32 assert(MD->isInstance() &&
33 "Trying to emit a member call expr on a static method!");
34
35 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
36
37 CallArgList Args;
38
39 // Push the this ptr.
40 Args.add(RValue::get(This), MD->getThisType(getContext()));
41
42 // If there is a VTT parameter, emit it.
43 if (VTT) {
44 QualType T = getContext().getPointerType(getContext().VoidPtrTy);
45 Args.add(RValue::get(VTT), T);
46 }
47
48 // And the rest of the call args
49 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
50
51 QualType ResultType = FPT->getResultType();
52 return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args,
53 FPT->getExtInfo()),
54 Callee, ReturnValue, Args, MD);
55 }
56
getMostDerivedClassDecl(const Expr * Base)57 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
58 const Expr *E = Base;
59
60 while (true) {
61 E = E->IgnoreParens();
62 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
63 if (CE->getCastKind() == CK_DerivedToBase ||
64 CE->getCastKind() == CK_UncheckedDerivedToBase ||
65 CE->getCastKind() == CK_NoOp) {
66 E = CE->getSubExpr();
67 continue;
68 }
69 }
70
71 break;
72 }
73
74 QualType DerivedType = E->getType();
75 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
76 DerivedType = PTy->getPointeeType();
77
78 return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
79 }
80
81 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
82 // quite what we want.
skipNoOpCastsAndParens(const Expr * E)83 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
84 while (true) {
85 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
86 E = PE->getSubExpr();
87 continue;
88 }
89
90 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
91 if (CE->getCastKind() == CK_NoOp) {
92 E = CE->getSubExpr();
93 continue;
94 }
95 }
96 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
97 if (UO->getOpcode() == UO_Extension) {
98 E = UO->getSubExpr();
99 continue;
100 }
101 }
102 return E;
103 }
104 }
105
106 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
107 /// expr can be devirtualized.
canDevirtualizeMemberFunctionCalls(ASTContext & Context,const Expr * Base,const CXXMethodDecl * MD)108 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
109 const Expr *Base,
110 const CXXMethodDecl *MD) {
111
112 // When building with -fapple-kext, all calls must go through the vtable since
113 // the kernel linker can do runtime patching of vtables.
114 if (Context.getLangOptions().AppleKext)
115 return false;
116
117 // If the most derived class is marked final, we know that no subclass can
118 // override this member function and so we can devirtualize it. For example:
119 //
120 // struct A { virtual void f(); }
121 // struct B final : A { };
122 //
123 // void f(B *b) {
124 // b->f();
125 // }
126 //
127 const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
128 if (MostDerivedClassDecl->hasAttr<FinalAttr>())
129 return true;
130
131 // If the member function is marked 'final', we know that it can't be
132 // overridden and can therefore devirtualize it.
133 if (MD->hasAttr<FinalAttr>())
134 return true;
135
136 // Similarly, if the class itself is marked 'final' it can't be overridden
137 // and we can therefore devirtualize the member function call.
138 if (MD->getParent()->hasAttr<FinalAttr>())
139 return true;
140
141 Base = skipNoOpCastsAndParens(Base);
142 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
143 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
144 // This is a record decl. We know the type and can devirtualize it.
145 return VD->getType()->isRecordType();
146 }
147
148 return false;
149 }
150
151 // We can always devirtualize calls on temporary object expressions.
152 if (isa<CXXConstructExpr>(Base))
153 return true;
154
155 // And calls on bound temporaries.
156 if (isa<CXXBindTemporaryExpr>(Base))
157 return true;
158
159 // Check if this is a call expr that returns a record type.
160 if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
161 return CE->getCallReturnType()->isRecordType();
162
163 // We can't devirtualize the call.
164 return false;
165 }
166
167 // Note: This function also emit constructor calls to support a MSVC
168 // extensions allowing explicit constructor function call.
EmitCXXMemberCallExpr(const CXXMemberCallExpr * CE,ReturnValueSlot ReturnValue)169 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
170 ReturnValueSlot ReturnValue) {
171 const Expr *callee = CE->getCallee()->IgnoreParens();
172
173 if (isa<BinaryOperator>(callee))
174 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
175
176 const MemberExpr *ME = cast<MemberExpr>(callee);
177 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
178
179 CGDebugInfo *DI = getDebugInfo();
180 if (DI && CGM.getCodeGenOpts().LimitDebugInfo
181 && !isa<CallExpr>(ME->getBase())) {
182 QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
183 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
184 DI->getOrCreateRecordType(PTy->getPointeeType(),
185 MD->getParent()->getLocation());
186 }
187 }
188
189 if (MD->isStatic()) {
190 // The method is static, emit it as we would a regular call.
191 llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
192 return EmitCall(getContext().getPointerType(MD->getType()), Callee,
193 ReturnValue, CE->arg_begin(), CE->arg_end());
194 }
195
196 // Compute the object pointer.
197 llvm::Value *This;
198 if (ME->isArrow())
199 This = EmitScalarExpr(ME->getBase());
200 else
201 This = EmitLValue(ME->getBase()).getAddress();
202
203 if (MD->isTrivial()) {
204 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
205 if (isa<CXXConstructorDecl>(MD) &&
206 cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
207 return RValue::get(0);
208
209 if (MD->isCopyAssignmentOperator()) {
210 // We don't like to generate the trivial copy assignment operator when
211 // it isn't necessary; just produce the proper effect here.
212 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
213 EmitAggregateCopy(This, RHS, CE->getType());
214 return RValue::get(This);
215 }
216
217 if (isa<CXXConstructorDecl>(MD) &&
218 cast<CXXConstructorDecl>(MD)->isCopyConstructor()) {
219 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
220 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
221 CE->arg_begin(), CE->arg_end());
222 return RValue::get(This);
223 }
224 llvm_unreachable("unknown trivial member function");
225 }
226
227 // Compute the function type we're calling.
228 const CGFunctionInfo *FInfo = 0;
229 if (isa<CXXDestructorDecl>(MD))
230 FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD),
231 Dtor_Complete);
232 else if (isa<CXXConstructorDecl>(MD))
233 FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXConstructorDecl>(MD),
234 Ctor_Complete);
235 else
236 FInfo = &CGM.getTypes().getFunctionInfo(MD);
237
238 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
239 llvm::Type *Ty
240 = CGM.getTypes().GetFunctionType(*FInfo, FPT->isVariadic());
241
242 // C++ [class.virtual]p12:
243 // Explicit qualification with the scope operator (5.1) suppresses the
244 // virtual call mechanism.
245 //
246 // We also don't emit a virtual call if the base expression has a record type
247 // because then we know what the type is.
248 bool UseVirtualCall;
249 UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
250 && !canDevirtualizeMemberFunctionCalls(getContext(),
251 ME->getBase(), MD);
252 llvm::Value *Callee;
253 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
254 if (UseVirtualCall) {
255 Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
256 } else {
257 if (getContext().getLangOptions().AppleKext &&
258 MD->isVirtual() &&
259 ME->hasQualifier())
260 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
261 else
262 Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
263 }
264 } else if (const CXXConstructorDecl *Ctor =
265 dyn_cast<CXXConstructorDecl>(MD)) {
266 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
267 } else if (UseVirtualCall) {
268 Callee = BuildVirtualCall(MD, This, Ty);
269 } else {
270 if (getContext().getLangOptions().AppleKext &&
271 MD->isVirtual() &&
272 ME->hasQualifier())
273 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
274 else
275 Callee = CGM.GetAddrOfFunction(MD, Ty);
276 }
277
278 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
279 CE->arg_begin(), CE->arg_end());
280 }
281
282 RValue
EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr * E,ReturnValueSlot ReturnValue)283 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
284 ReturnValueSlot ReturnValue) {
285 const BinaryOperator *BO =
286 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
287 const Expr *BaseExpr = BO->getLHS();
288 const Expr *MemFnExpr = BO->getRHS();
289
290 const MemberPointerType *MPT =
291 MemFnExpr->getType()->castAs<MemberPointerType>();
292
293 const FunctionProtoType *FPT =
294 MPT->getPointeeType()->castAs<FunctionProtoType>();
295 const CXXRecordDecl *RD =
296 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
297
298 // Get the member function pointer.
299 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
300
301 // Emit the 'this' pointer.
302 llvm::Value *This;
303
304 if (BO->getOpcode() == BO_PtrMemI)
305 This = EmitScalarExpr(BaseExpr);
306 else
307 This = EmitLValue(BaseExpr).getAddress();
308
309 // Ask the ABI to load the callee. Note that This is modified.
310 llvm::Value *Callee =
311 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
312
313 CallArgList Args;
314
315 QualType ThisType =
316 getContext().getPointerType(getContext().getTagDeclType(RD));
317
318 // Push the this ptr.
319 Args.add(RValue::get(This), ThisType);
320
321 // And the rest of the call args
322 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
323 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FPT), Callee,
324 ReturnValue, Args);
325 }
326
327 RValue
EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue)328 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
329 const CXXMethodDecl *MD,
330 ReturnValueSlot ReturnValue) {
331 assert(MD->isInstance() &&
332 "Trying to emit a member call expr on a static method!");
333 LValue LV = EmitLValue(E->getArg(0));
334 llvm::Value *This = LV.getAddress();
335
336 if (MD->isCopyAssignmentOperator()) {
337 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(MD->getDeclContext());
338 if (ClassDecl->hasTrivialCopyAssignment()) {
339 assert(!ClassDecl->hasUserDeclaredCopyAssignment() &&
340 "EmitCXXOperatorMemberCallExpr - user declared copy assignment");
341 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
342 QualType Ty = E->getType();
343 EmitAggregateCopy(This, Src, Ty);
344 return RValue::get(This);
345 }
346 }
347
348 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
349 return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
350 E->arg_begin() + 1, E->arg_end());
351 }
352
353 void
EmitCXXConstructExpr(const CXXConstructExpr * E,AggValueSlot Dest)354 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
355 AggValueSlot Dest) {
356 assert(!Dest.isIgnored() && "Must have a destination!");
357 const CXXConstructorDecl *CD = E->getConstructor();
358
359 // If we require zero initialization before (or instead of) calling the
360 // constructor, as can be the case with a non-user-provided default
361 // constructor, emit the zero initialization now, unless destination is
362 // already zeroed.
363 if (E->requiresZeroInitialization() && !Dest.isZeroed())
364 EmitNullInitialization(Dest.getAddr(), E->getType());
365
366 // If this is a call to a trivial default constructor, do nothing.
367 if (CD->isTrivial() && CD->isDefaultConstructor())
368 return;
369
370 // Elide the constructor if we're constructing from a temporary.
371 // The temporary check is required because Sema sets this on NRVO
372 // returns.
373 if (getContext().getLangOptions().ElideConstructors && E->isElidable()) {
374 assert(getContext().hasSameUnqualifiedType(E->getType(),
375 E->getArg(0)->getType()));
376 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
377 EmitAggExpr(E->getArg(0), Dest);
378 return;
379 }
380 }
381
382 if (const ConstantArrayType *arrayType
383 = getContext().getAsConstantArrayType(E->getType())) {
384 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
385 E->arg_begin(), E->arg_end());
386 } else {
387 CXXCtorType Type = Ctor_Complete;
388 bool ForVirtualBase = false;
389
390 switch (E->getConstructionKind()) {
391 case CXXConstructExpr::CK_Delegating:
392 // We should be emitting a constructor; GlobalDecl will assert this
393 Type = CurGD.getCtorType();
394 break;
395
396 case CXXConstructExpr::CK_Complete:
397 Type = Ctor_Complete;
398 break;
399
400 case CXXConstructExpr::CK_VirtualBase:
401 ForVirtualBase = true;
402 // fall-through
403
404 case CXXConstructExpr::CK_NonVirtualBase:
405 Type = Ctor_Base;
406 }
407
408 // Call the constructor.
409 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
410 E->arg_begin(), E->arg_end());
411 }
412 }
413
414 void
EmitSynthesizedCXXCopyCtor(llvm::Value * Dest,llvm::Value * Src,const Expr * Exp)415 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
416 llvm::Value *Src,
417 const Expr *Exp) {
418 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
419 Exp = E->getSubExpr();
420 assert(isa<CXXConstructExpr>(Exp) &&
421 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
422 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
423 const CXXConstructorDecl *CD = E->getConstructor();
424 RunCleanupsScope Scope(*this);
425
426 // If we require zero initialization before (or instead of) calling the
427 // constructor, as can be the case with a non-user-provided default
428 // constructor, emit the zero initialization now.
429 // FIXME. Do I still need this for a copy ctor synthesis?
430 if (E->requiresZeroInitialization())
431 EmitNullInitialization(Dest, E->getType());
432
433 assert(!getContext().getAsConstantArrayType(E->getType())
434 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
435 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
436 E->arg_begin(), E->arg_end());
437 }
438
CalculateCookiePadding(CodeGenFunction & CGF,const CXXNewExpr * E)439 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
440 const CXXNewExpr *E) {
441 if (!E->isArray())
442 return CharUnits::Zero();
443
444 // No cookie is required if the operator new[] being used is the
445 // reserved placement operator new[].
446 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
447 return CharUnits::Zero();
448
449 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
450 }
451
EmitCXXNewAllocSize(CodeGenFunction & CGF,const CXXNewExpr * e,llvm::Value * & numElements,llvm::Value * & sizeWithoutCookie)452 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
453 const CXXNewExpr *e,
454 llvm::Value *&numElements,
455 llvm::Value *&sizeWithoutCookie) {
456 QualType type = e->getAllocatedType();
457
458 if (!e->isArray()) {
459 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
460 sizeWithoutCookie
461 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
462 return sizeWithoutCookie;
463 }
464
465 // The width of size_t.
466 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
467
468 // Figure out the cookie size.
469 llvm::APInt cookieSize(sizeWidth,
470 CalculateCookiePadding(CGF, e).getQuantity());
471
472 // Emit the array size expression.
473 // We multiply the size of all dimensions for NumElements.
474 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
475 numElements = CGF.EmitScalarExpr(e->getArraySize());
476 assert(isa<llvm::IntegerType>(numElements->getType()));
477
478 // The number of elements can be have an arbitrary integer type;
479 // essentially, we need to multiply it by a constant factor, add a
480 // cookie size, and verify that the result is representable as a
481 // size_t. That's just a gloss, though, and it's wrong in one
482 // important way: if the count is negative, it's an error even if
483 // the cookie size would bring the total size >= 0.
484 bool isSigned
485 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
486 llvm::IntegerType *numElementsType
487 = cast<llvm::IntegerType>(numElements->getType());
488 unsigned numElementsWidth = numElementsType->getBitWidth();
489
490 // Compute the constant factor.
491 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
492 while (const ConstantArrayType *CAT
493 = CGF.getContext().getAsConstantArrayType(type)) {
494 type = CAT->getElementType();
495 arraySizeMultiplier *= CAT->getSize();
496 }
497
498 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
499 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
500 typeSizeMultiplier *= arraySizeMultiplier;
501
502 // This will be a size_t.
503 llvm::Value *size;
504
505 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
506 // Don't bloat the -O0 code.
507 if (llvm::ConstantInt *numElementsC =
508 dyn_cast<llvm::ConstantInt>(numElements)) {
509 const llvm::APInt &count = numElementsC->getValue();
510
511 bool hasAnyOverflow = false;
512
513 // If 'count' was a negative number, it's an overflow.
514 if (isSigned && count.isNegative())
515 hasAnyOverflow = true;
516
517 // We want to do all this arithmetic in size_t. If numElements is
518 // wider than that, check whether it's already too big, and if so,
519 // overflow.
520 else if (numElementsWidth > sizeWidth &&
521 numElementsWidth - sizeWidth > count.countLeadingZeros())
522 hasAnyOverflow = true;
523
524 // Okay, compute a count at the right width.
525 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
526
527 // Scale numElements by that. This might overflow, but we don't
528 // care because it only overflows if allocationSize does, too, and
529 // if that overflows then we shouldn't use this.
530 numElements = llvm::ConstantInt::get(CGF.SizeTy,
531 adjustedCount * arraySizeMultiplier);
532
533 // Compute the size before cookie, and track whether it overflowed.
534 bool overflow;
535 llvm::APInt allocationSize
536 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
537 hasAnyOverflow |= overflow;
538
539 // Add in the cookie, and check whether it's overflowed.
540 if (cookieSize != 0) {
541 // Save the current size without a cookie. This shouldn't be
542 // used if there was overflow.
543 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
544
545 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
546 hasAnyOverflow |= overflow;
547 }
548
549 // On overflow, produce a -1 so operator new will fail.
550 if (hasAnyOverflow) {
551 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
552 } else {
553 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
554 }
555
556 // Otherwise, we might need to use the overflow intrinsics.
557 } else {
558 // There are up to four conditions we need to test for:
559 // 1) if isSigned, we need to check whether numElements is negative;
560 // 2) if numElementsWidth > sizeWidth, we need to check whether
561 // numElements is larger than something representable in size_t;
562 // 3) we need to compute
563 // sizeWithoutCookie := numElements * typeSizeMultiplier
564 // and check whether it overflows; and
565 // 4) if we need a cookie, we need to compute
566 // size := sizeWithoutCookie + cookieSize
567 // and check whether it overflows.
568
569 llvm::Value *hasOverflow = 0;
570
571 // If numElementsWidth > sizeWidth, then one way or another, we're
572 // going to have to do a comparison for (2), and this happens to
573 // take care of (1), too.
574 if (numElementsWidth > sizeWidth) {
575 llvm::APInt threshold(numElementsWidth, 1);
576 threshold <<= sizeWidth;
577
578 llvm::Value *thresholdV
579 = llvm::ConstantInt::get(numElementsType, threshold);
580
581 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
582 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
583
584 // Otherwise, if we're signed, we want to sext up to size_t.
585 } else if (isSigned) {
586 if (numElementsWidth < sizeWidth)
587 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
588
589 // If there's a non-1 type size multiplier, then we can do the
590 // signedness check at the same time as we do the multiply
591 // because a negative number times anything will cause an
592 // unsigned overflow. Otherwise, we have to do it here.
593 if (typeSizeMultiplier == 1)
594 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
595 llvm::ConstantInt::get(CGF.SizeTy, 0));
596
597 // Otherwise, zext up to size_t if necessary.
598 } else if (numElementsWidth < sizeWidth) {
599 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
600 }
601
602 assert(numElements->getType() == CGF.SizeTy);
603
604 size = numElements;
605
606 // Multiply by the type size if necessary. This multiplier
607 // includes all the factors for nested arrays.
608 //
609 // This step also causes numElements to be scaled up by the
610 // nested-array factor if necessary. Overflow on this computation
611 // can be ignored because the result shouldn't be used if
612 // allocation fails.
613 if (typeSizeMultiplier != 1) {
614 llvm::Value *umul_with_overflow
615 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
616
617 llvm::Value *tsmV =
618 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
619 llvm::Value *result =
620 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
621
622 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
623 if (hasOverflow)
624 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
625 else
626 hasOverflow = overflowed;
627
628 size = CGF.Builder.CreateExtractValue(result, 0);
629
630 // Also scale up numElements by the array size multiplier.
631 if (arraySizeMultiplier != 1) {
632 // If the base element type size is 1, then we can re-use the
633 // multiply we just did.
634 if (typeSize.isOne()) {
635 assert(arraySizeMultiplier == typeSizeMultiplier);
636 numElements = size;
637
638 // Otherwise we need a separate multiply.
639 } else {
640 llvm::Value *asmV =
641 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
642 numElements = CGF.Builder.CreateMul(numElements, asmV);
643 }
644 }
645 } else {
646 // numElements doesn't need to be scaled.
647 assert(arraySizeMultiplier == 1);
648 }
649
650 // Add in the cookie size if necessary.
651 if (cookieSize != 0) {
652 sizeWithoutCookie = size;
653
654 llvm::Value *uadd_with_overflow
655 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
656
657 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
658 llvm::Value *result =
659 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
660
661 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
662 if (hasOverflow)
663 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
664 else
665 hasOverflow = overflowed;
666
667 size = CGF.Builder.CreateExtractValue(result, 0);
668 }
669
670 // If we had any possibility of dynamic overflow, make a select to
671 // overwrite 'size' with an all-ones value, which should cause
672 // operator new to throw.
673 if (hasOverflow)
674 size = CGF.Builder.CreateSelect(hasOverflow,
675 llvm::Constant::getAllOnesValue(CGF.SizeTy),
676 size);
677 }
678
679 if (cookieSize == 0)
680 sizeWithoutCookie = size;
681 else
682 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
683
684 return size;
685 }
686
StoreAnyExprIntoOneUnit(CodeGenFunction & CGF,const CXXNewExpr * E,llvm::Value * NewPtr)687 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E,
688 llvm::Value *NewPtr) {
689
690 assert(E->getNumConstructorArgs() == 1 &&
691 "Can only have one argument to initializer of POD type.");
692
693 const Expr *Init = E->getConstructorArg(0);
694 QualType AllocType = E->getAllocatedType();
695
696 unsigned Alignment =
697 CGF.getContext().getTypeAlignInChars(AllocType).getQuantity();
698 if (!CGF.hasAggregateLLVMType(AllocType))
699 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, Alignment),
700 false);
701 else if (AllocType->isAnyComplexType())
702 CGF.EmitComplexExprIntoAddr(Init, NewPtr,
703 AllocType.isVolatileQualified());
704 else {
705 AggValueSlot Slot
706 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), true);
707 CGF.EmitAggExpr(Init, Slot);
708 }
709 }
710
711 void
EmitNewArrayInitializer(const CXXNewExpr * E,llvm::Value * NewPtr,llvm::Value * NumElements)712 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
713 llvm::Value *NewPtr,
714 llvm::Value *NumElements) {
715 // We have a POD type.
716 if (E->getNumConstructorArgs() == 0)
717 return;
718
719 llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
720
721 // Create a temporary for the loop index and initialize it with 0.
722 llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index");
723 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
724 Builder.CreateStore(Zero, IndexPtr);
725
726 // Start the loop with a block that tests the condition.
727 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
728 llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
729
730 EmitBlock(CondBlock);
731
732 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
733
734 // Generate: if (loop-index < number-of-elements fall to the loop body,
735 // otherwise, go to the block after the for-loop.
736 llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
737 llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless");
738 // If the condition is true, execute the body.
739 Builder.CreateCondBr(IsLess, ForBody, AfterFor);
740
741 EmitBlock(ForBody);
742
743 llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
744 // Inside the loop body, emit the constructor call on the array element.
745 Counter = Builder.CreateLoad(IndexPtr);
746 llvm::Value *Address = Builder.CreateInBoundsGEP(NewPtr, Counter,
747 "arrayidx");
748 StoreAnyExprIntoOneUnit(*this, E, Address);
749
750 EmitBlock(ContinueBlock);
751
752 // Emit the increment of the loop counter.
753 llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1);
754 Counter = Builder.CreateLoad(IndexPtr);
755 NextVal = Builder.CreateAdd(Counter, NextVal, "inc");
756 Builder.CreateStore(NextVal, IndexPtr);
757
758 // Finally, branch back up to the condition for the next iteration.
759 EmitBranch(CondBlock);
760
761 // Emit the fall-through block.
762 EmitBlock(AfterFor, true);
763 }
764
EmitZeroMemSet(CodeGenFunction & CGF,QualType T,llvm::Value * NewPtr,llvm::Value * Size)765 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
766 llvm::Value *NewPtr, llvm::Value *Size) {
767 CGF.EmitCastToVoidPtr(NewPtr);
768 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
769 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
770 Alignment.getQuantity(), false);
771 }
772
EmitNewInitializer(CodeGenFunction & CGF,const CXXNewExpr * E,llvm::Value * NewPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)773 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
774 llvm::Value *NewPtr,
775 llvm::Value *NumElements,
776 llvm::Value *AllocSizeWithoutCookie) {
777 if (E->isArray()) {
778 if (CXXConstructorDecl *Ctor = E->getConstructor()) {
779 bool RequiresZeroInitialization = false;
780 if (Ctor->getParent()->hasTrivialDefaultConstructor()) {
781 // If new expression did not specify value-initialization, then there
782 // is no initialization.
783 if (!E->hasInitializer() || Ctor->getParent()->isEmpty())
784 return;
785
786 if (CGF.CGM.getTypes().isZeroInitializable(E->getAllocatedType())) {
787 // Optimization: since zero initialization will just set the memory
788 // to all zeroes, generate a single memset to do it in one shot.
789 EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
790 AllocSizeWithoutCookie);
791 return;
792 }
793
794 RequiresZeroInitialization = true;
795 }
796
797 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
798 E->constructor_arg_begin(),
799 E->constructor_arg_end(),
800 RequiresZeroInitialization);
801 return;
802 } else if (E->getNumConstructorArgs() == 1 &&
803 isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) {
804 // Optimization: since zero initialization will just set the memory
805 // to all zeroes, generate a single memset to do it in one shot.
806 EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
807 AllocSizeWithoutCookie);
808 return;
809 } else {
810 CGF.EmitNewArrayInitializer(E, NewPtr, NumElements);
811 return;
812 }
813 }
814
815 if (CXXConstructorDecl *Ctor = E->getConstructor()) {
816 // Per C++ [expr.new]p15, if we have an initializer, then we're performing
817 // direct initialization. C++ [dcl.init]p5 requires that we
818 // zero-initialize storage if there are no user-declared constructors.
819 if (E->hasInitializer() &&
820 !Ctor->getParent()->hasUserDeclaredConstructor() &&
821 !Ctor->getParent()->isEmpty())
822 CGF.EmitNullInitialization(NewPtr, E->getAllocatedType());
823
824 CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
825 NewPtr, E->constructor_arg_begin(),
826 E->constructor_arg_end());
827
828 return;
829 }
830 // We have a POD type.
831 if (E->getNumConstructorArgs() == 0)
832 return;
833
834 StoreAnyExprIntoOneUnit(CGF, E, NewPtr);
835 }
836
837 namespace {
838 /// A cleanup to call the given 'operator delete' function upon
839 /// abnormal exit from a new expression.
840 class CallDeleteDuringNew : public EHScopeStack::Cleanup {
841 size_t NumPlacementArgs;
842 const FunctionDecl *OperatorDelete;
843 llvm::Value *Ptr;
844 llvm::Value *AllocSize;
845
getPlacementArgs()846 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
847
848 public:
getExtraSize(size_t NumPlacementArgs)849 static size_t getExtraSize(size_t NumPlacementArgs) {
850 return NumPlacementArgs * sizeof(RValue);
851 }
852
CallDeleteDuringNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,llvm::Value * Ptr,llvm::Value * AllocSize)853 CallDeleteDuringNew(size_t NumPlacementArgs,
854 const FunctionDecl *OperatorDelete,
855 llvm::Value *Ptr,
856 llvm::Value *AllocSize)
857 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
858 Ptr(Ptr), AllocSize(AllocSize) {}
859
setPlacementArg(unsigned I,RValue Arg)860 void setPlacementArg(unsigned I, RValue Arg) {
861 assert(I < NumPlacementArgs && "index out of range");
862 getPlacementArgs()[I] = Arg;
863 }
864
Emit(CodeGenFunction & CGF,Flags flags)865 void Emit(CodeGenFunction &CGF, Flags flags) {
866 const FunctionProtoType *FPT
867 = OperatorDelete->getType()->getAs<FunctionProtoType>();
868 assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
869 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
870
871 CallArgList DeleteArgs;
872
873 // The first argument is always a void*.
874 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
875 DeleteArgs.add(RValue::get(Ptr), *AI++);
876
877 // A member 'operator delete' can take an extra 'size_t' argument.
878 if (FPT->getNumArgs() == NumPlacementArgs + 2)
879 DeleteArgs.add(RValue::get(AllocSize), *AI++);
880
881 // Pass the rest of the arguments, which must match exactly.
882 for (unsigned I = 0; I != NumPlacementArgs; ++I)
883 DeleteArgs.add(getPlacementArgs()[I], *AI++);
884
885 // Call 'operator delete'.
886 CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
887 CGF.CGM.GetAddrOfFunction(OperatorDelete),
888 ReturnValueSlot(), DeleteArgs, OperatorDelete);
889 }
890 };
891
892 /// A cleanup to call the given 'operator delete' function upon
893 /// abnormal exit from a new expression when the new expression is
894 /// conditional.
895 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
896 size_t NumPlacementArgs;
897 const FunctionDecl *OperatorDelete;
898 DominatingValue<RValue>::saved_type Ptr;
899 DominatingValue<RValue>::saved_type AllocSize;
900
getPlacementArgs()901 DominatingValue<RValue>::saved_type *getPlacementArgs() {
902 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
903 }
904
905 public:
getExtraSize(size_t NumPlacementArgs)906 static size_t getExtraSize(size_t NumPlacementArgs) {
907 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
908 }
909
CallDeleteDuringConditionalNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,DominatingValue<RValue>::saved_type Ptr,DominatingValue<RValue>::saved_type AllocSize)910 CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
911 const FunctionDecl *OperatorDelete,
912 DominatingValue<RValue>::saved_type Ptr,
913 DominatingValue<RValue>::saved_type AllocSize)
914 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
915 Ptr(Ptr), AllocSize(AllocSize) {}
916
setPlacementArg(unsigned I,DominatingValue<RValue>::saved_type Arg)917 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
918 assert(I < NumPlacementArgs && "index out of range");
919 getPlacementArgs()[I] = Arg;
920 }
921
Emit(CodeGenFunction & CGF,Flags flags)922 void Emit(CodeGenFunction &CGF, Flags flags) {
923 const FunctionProtoType *FPT
924 = OperatorDelete->getType()->getAs<FunctionProtoType>();
925 assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
926 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
927
928 CallArgList DeleteArgs;
929
930 // The first argument is always a void*.
931 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
932 DeleteArgs.add(Ptr.restore(CGF), *AI++);
933
934 // A member 'operator delete' can take an extra 'size_t' argument.
935 if (FPT->getNumArgs() == NumPlacementArgs + 2) {
936 RValue RV = AllocSize.restore(CGF);
937 DeleteArgs.add(RV, *AI++);
938 }
939
940 // Pass the rest of the arguments, which must match exactly.
941 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
942 RValue RV = getPlacementArgs()[I].restore(CGF);
943 DeleteArgs.add(RV, *AI++);
944 }
945
946 // Call 'operator delete'.
947 CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
948 CGF.CGM.GetAddrOfFunction(OperatorDelete),
949 ReturnValueSlot(), DeleteArgs, OperatorDelete);
950 }
951 };
952 }
953
954 /// Enter a cleanup to call 'operator delete' if the initializer in a
955 /// new-expression throws.
EnterNewDeleteCleanup(CodeGenFunction & CGF,const CXXNewExpr * E,llvm::Value * NewPtr,llvm::Value * AllocSize,const CallArgList & NewArgs)956 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
957 const CXXNewExpr *E,
958 llvm::Value *NewPtr,
959 llvm::Value *AllocSize,
960 const CallArgList &NewArgs) {
961 // If we're not inside a conditional branch, then the cleanup will
962 // dominate and we can do the easier (and more efficient) thing.
963 if (!CGF.isInConditionalBranch()) {
964 CallDeleteDuringNew *Cleanup = CGF.EHStack
965 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
966 E->getNumPlacementArgs(),
967 E->getOperatorDelete(),
968 NewPtr, AllocSize);
969 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
970 Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
971
972 return;
973 }
974
975 // Otherwise, we need to save all this stuff.
976 DominatingValue<RValue>::saved_type SavedNewPtr =
977 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
978 DominatingValue<RValue>::saved_type SavedAllocSize =
979 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
980
981 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
982 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(InactiveEHCleanup,
983 E->getNumPlacementArgs(),
984 E->getOperatorDelete(),
985 SavedNewPtr,
986 SavedAllocSize);
987 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
988 Cleanup->setPlacementArg(I,
989 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
990
991 CGF.ActivateCleanupBlock(CGF.EHStack.stable_begin());
992 }
993
EmitCXXNewExpr(const CXXNewExpr * E)994 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
995 // The element type being allocated.
996 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
997
998 // 1. Build a call to the allocation function.
999 FunctionDecl *allocator = E->getOperatorNew();
1000 const FunctionProtoType *allocatorType =
1001 allocator->getType()->castAs<FunctionProtoType>();
1002
1003 CallArgList allocatorArgs;
1004
1005 // The allocation size is the first argument.
1006 QualType sizeType = getContext().getSizeType();
1007
1008 llvm::Value *numElements = 0;
1009 llvm::Value *allocSizeWithoutCookie = 0;
1010 llvm::Value *allocSize =
1011 EmitCXXNewAllocSize(*this, E, numElements, allocSizeWithoutCookie);
1012
1013 allocatorArgs.add(RValue::get(allocSize), sizeType);
1014
1015 // Emit the rest of the arguments.
1016 // FIXME: Ideally, this should just use EmitCallArgs.
1017 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
1018
1019 // First, use the types from the function type.
1020 // We start at 1 here because the first argument (the allocation size)
1021 // has already been emitted.
1022 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
1023 ++i, ++placementArg) {
1024 QualType argType = allocatorType->getArgType(i);
1025
1026 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
1027 placementArg->getType()) &&
1028 "type mismatch in call argument!");
1029
1030 EmitCallArg(allocatorArgs, *placementArg, argType);
1031 }
1032
1033 // Either we've emitted all the call args, or we have a call to a
1034 // variadic function.
1035 assert((placementArg == E->placement_arg_end() ||
1036 allocatorType->isVariadic()) &&
1037 "Extra arguments to non-variadic function!");
1038
1039 // If we still have any arguments, emit them using the type of the argument.
1040 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
1041 placementArg != placementArgsEnd; ++placementArg) {
1042 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
1043 }
1044
1045 // Emit the allocation call. If the allocator is a global placement
1046 // operator, just "inline" it directly.
1047 RValue RV;
1048 if (allocator->isReservedGlobalPlacementOperator()) {
1049 assert(allocatorArgs.size() == 2);
1050 RV = allocatorArgs[1].RV;
1051 // TODO: kill any unnecessary computations done for the size
1052 // argument.
1053 } else {
1054 RV = EmitCall(CGM.getTypes().getFunctionInfo(allocatorArgs, allocatorType),
1055 CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
1056 allocatorArgs, allocator);
1057 }
1058
1059 // Emit a null check on the allocation result if the allocation
1060 // function is allowed to return null (because it has a non-throwing
1061 // exception spec; for this part, we inline
1062 // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1063 // interesting initializer.
1064 bool nullCheck = allocatorType->isNothrow(getContext()) &&
1065 !(allocType.isPODType(getContext()) && !E->hasInitializer());
1066
1067 llvm::BasicBlock *nullCheckBB = 0;
1068 llvm::BasicBlock *contBB = 0;
1069
1070 llvm::Value *allocation = RV.getScalarVal();
1071 unsigned AS =
1072 cast<llvm::PointerType>(allocation->getType())->getAddressSpace();
1073
1074 // The null-check means that the initializer is conditionally
1075 // evaluated.
1076 ConditionalEvaluation conditional(*this);
1077
1078 if (nullCheck) {
1079 conditional.begin(*this);
1080
1081 nullCheckBB = Builder.GetInsertBlock();
1082 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1083 contBB = createBasicBlock("new.cont");
1084
1085 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1086 Builder.CreateCondBr(isNull, contBB, notNullBB);
1087 EmitBlock(notNullBB);
1088 }
1089
1090 assert((allocSize == allocSizeWithoutCookie) ==
1091 CalculateCookiePadding(*this, E).isZero());
1092 if (allocSize != allocSizeWithoutCookie) {
1093 assert(E->isArray());
1094 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1095 numElements,
1096 E, allocType);
1097 }
1098
1099 // If there's an operator delete, enter a cleanup to call it if an
1100 // exception is thrown.
1101 EHScopeStack::stable_iterator operatorDeleteCleanup;
1102 if (E->getOperatorDelete() &&
1103 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1104 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1105 operatorDeleteCleanup = EHStack.stable_begin();
1106 }
1107
1108 llvm::Type *elementPtrTy
1109 = ConvertTypeForMem(allocType)->getPointerTo(AS);
1110 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1111
1112 if (E->isArray()) {
1113 EmitNewInitializer(*this, E, result, numElements, allocSizeWithoutCookie);
1114
1115 // NewPtr is a pointer to the base element type. If we're
1116 // allocating an array of arrays, we'll need to cast back to the
1117 // array pointer type.
1118 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1119 if (result->getType() != resultType)
1120 result = Builder.CreateBitCast(result, resultType);
1121 } else {
1122 EmitNewInitializer(*this, E, result, numElements, allocSizeWithoutCookie);
1123 }
1124
1125 // Deactivate the 'operator delete' cleanup if we finished
1126 // initialization.
1127 if (operatorDeleteCleanup.isValid())
1128 DeactivateCleanupBlock(operatorDeleteCleanup);
1129
1130 if (nullCheck) {
1131 conditional.end(*this);
1132
1133 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1134 EmitBlock(contBB);
1135
1136 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1137 PHI->addIncoming(result, notNullBB);
1138 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1139 nullCheckBB);
1140
1141 result = PHI;
1142 }
1143
1144 return result;
1145 }
1146
EmitDeleteCall(const FunctionDecl * DeleteFD,llvm::Value * Ptr,QualType DeleteTy)1147 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1148 llvm::Value *Ptr,
1149 QualType DeleteTy) {
1150 assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1151
1152 const FunctionProtoType *DeleteFTy =
1153 DeleteFD->getType()->getAs<FunctionProtoType>();
1154
1155 CallArgList DeleteArgs;
1156
1157 // Check if we need to pass the size to the delete operator.
1158 llvm::Value *Size = 0;
1159 QualType SizeTy;
1160 if (DeleteFTy->getNumArgs() == 2) {
1161 SizeTy = DeleteFTy->getArgType(1);
1162 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1163 Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1164 DeleteTypeSize.getQuantity());
1165 }
1166
1167 QualType ArgTy = DeleteFTy->getArgType(0);
1168 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1169 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1170
1171 if (Size)
1172 DeleteArgs.add(RValue::get(Size), SizeTy);
1173
1174 // Emit the call to delete.
1175 EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy),
1176 CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
1177 DeleteArgs, DeleteFD);
1178 }
1179
1180 namespace {
1181 /// Calls the given 'operator delete' on a single object.
1182 struct CallObjectDelete : EHScopeStack::Cleanup {
1183 llvm::Value *Ptr;
1184 const FunctionDecl *OperatorDelete;
1185 QualType ElementType;
1186
CallObjectDelete__anonc68eb69f0211::CallObjectDelete1187 CallObjectDelete(llvm::Value *Ptr,
1188 const FunctionDecl *OperatorDelete,
1189 QualType ElementType)
1190 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1191
Emit__anonc68eb69f0211::CallObjectDelete1192 void Emit(CodeGenFunction &CGF, Flags flags) {
1193 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1194 }
1195 };
1196 }
1197
1198 /// Emit the code for deleting a single object.
EmitObjectDelete(CodeGenFunction & CGF,const FunctionDecl * OperatorDelete,llvm::Value * Ptr,QualType ElementType,bool UseGlobalDelete)1199 static void EmitObjectDelete(CodeGenFunction &CGF,
1200 const FunctionDecl *OperatorDelete,
1201 llvm::Value *Ptr,
1202 QualType ElementType,
1203 bool UseGlobalDelete) {
1204 // Find the destructor for the type, if applicable. If the
1205 // destructor is virtual, we'll just emit the vcall and return.
1206 const CXXDestructorDecl *Dtor = 0;
1207 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1208 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1209 if (!RD->hasTrivialDestructor()) {
1210 Dtor = RD->getDestructor();
1211
1212 if (Dtor->isVirtual()) {
1213 if (UseGlobalDelete) {
1214 // If we're supposed to call the global delete, make sure we do so
1215 // even if the destructor throws.
1216 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1217 Ptr, OperatorDelete,
1218 ElementType);
1219 }
1220
1221 llvm::Type *Ty =
1222 CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor,
1223 Dtor_Complete),
1224 /*isVariadic=*/false);
1225
1226 llvm::Value *Callee
1227 = CGF.BuildVirtualCall(Dtor,
1228 UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
1229 Ptr, Ty);
1230 CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
1231 0, 0);
1232
1233 if (UseGlobalDelete) {
1234 CGF.PopCleanupBlock();
1235 }
1236
1237 return;
1238 }
1239 }
1240 }
1241
1242 // Make sure that we call delete even if the dtor throws.
1243 // This doesn't have to a conditional cleanup because we're going
1244 // to pop it off in a second.
1245 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1246 Ptr, OperatorDelete, ElementType);
1247
1248 if (Dtor)
1249 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1250 /*ForVirtualBase=*/false, Ptr);
1251 else if (CGF.getLangOptions().ObjCAutoRefCount &&
1252 ElementType->isObjCLifetimeType()) {
1253 switch (ElementType.getObjCLifetime()) {
1254 case Qualifiers::OCL_None:
1255 case Qualifiers::OCL_ExplicitNone:
1256 case Qualifiers::OCL_Autoreleasing:
1257 break;
1258
1259 case Qualifiers::OCL_Strong: {
1260 // Load the pointer value.
1261 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1262 ElementType.isVolatileQualified());
1263
1264 CGF.EmitARCRelease(PtrValue, /*precise*/ true);
1265 break;
1266 }
1267
1268 case Qualifiers::OCL_Weak:
1269 CGF.EmitARCDestroyWeak(Ptr);
1270 break;
1271 }
1272 }
1273
1274 CGF.PopCleanupBlock();
1275 }
1276
1277 namespace {
1278 /// Calls the given 'operator delete' on an array of objects.
1279 struct CallArrayDelete : EHScopeStack::Cleanup {
1280 llvm::Value *Ptr;
1281 const FunctionDecl *OperatorDelete;
1282 llvm::Value *NumElements;
1283 QualType ElementType;
1284 CharUnits CookieSize;
1285
CallArrayDelete__anonc68eb69f0311::CallArrayDelete1286 CallArrayDelete(llvm::Value *Ptr,
1287 const FunctionDecl *OperatorDelete,
1288 llvm::Value *NumElements,
1289 QualType ElementType,
1290 CharUnits CookieSize)
1291 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1292 ElementType(ElementType), CookieSize(CookieSize) {}
1293
Emit__anonc68eb69f0311::CallArrayDelete1294 void Emit(CodeGenFunction &CGF, Flags flags) {
1295 const FunctionProtoType *DeleteFTy =
1296 OperatorDelete->getType()->getAs<FunctionProtoType>();
1297 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1298
1299 CallArgList Args;
1300
1301 // Pass the pointer as the first argument.
1302 QualType VoidPtrTy = DeleteFTy->getArgType(0);
1303 llvm::Value *DeletePtr
1304 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1305 Args.add(RValue::get(DeletePtr), VoidPtrTy);
1306
1307 // Pass the original requested size as the second argument.
1308 if (DeleteFTy->getNumArgs() == 2) {
1309 QualType size_t = DeleteFTy->getArgType(1);
1310 llvm::IntegerType *SizeTy
1311 = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1312
1313 CharUnits ElementTypeSize =
1314 CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1315
1316 // The size of an element, multiplied by the number of elements.
1317 llvm::Value *Size
1318 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1319 Size = CGF.Builder.CreateMul(Size, NumElements);
1320
1321 // Plus the size of the cookie if applicable.
1322 if (!CookieSize.isZero()) {
1323 llvm::Value *CookieSizeV
1324 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1325 Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1326 }
1327
1328 Args.add(RValue::get(Size), size_t);
1329 }
1330
1331 // Emit the call to delete.
1332 CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy),
1333 CGF.CGM.GetAddrOfFunction(OperatorDelete),
1334 ReturnValueSlot(), Args, OperatorDelete);
1335 }
1336 };
1337 }
1338
1339 /// Emit the code for deleting an array of objects.
EmitArrayDelete(CodeGenFunction & CGF,const CXXDeleteExpr * E,llvm::Value * deletedPtr,QualType elementType)1340 static void EmitArrayDelete(CodeGenFunction &CGF,
1341 const CXXDeleteExpr *E,
1342 llvm::Value *deletedPtr,
1343 QualType elementType) {
1344 llvm::Value *numElements = 0;
1345 llvm::Value *allocatedPtr = 0;
1346 CharUnits cookieSize;
1347 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1348 numElements, allocatedPtr, cookieSize);
1349
1350 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1351
1352 // Make sure that we call delete even if one of the dtors throws.
1353 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1354 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1355 allocatedPtr, operatorDelete,
1356 numElements, elementType,
1357 cookieSize);
1358
1359 // Destroy the elements.
1360 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1361 assert(numElements && "no element count for a type with a destructor!");
1362
1363 llvm::Value *arrayEnd =
1364 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1365
1366 // Note that it is legal to allocate a zero-length array, and we
1367 // can never fold the check away because the length should always
1368 // come from a cookie.
1369 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1370 CGF.getDestroyer(dtorKind),
1371 /*checkZeroLength*/ true,
1372 CGF.needsEHCleanup(dtorKind));
1373 }
1374
1375 // Pop the cleanup block.
1376 CGF.PopCleanupBlock();
1377 }
1378
EmitCXXDeleteExpr(const CXXDeleteExpr * E)1379 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1380
1381 // Get at the argument before we performed the implicit conversion
1382 // to void*.
1383 const Expr *Arg = E->getArgument();
1384 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
1385 if (ICE->getCastKind() != CK_UserDefinedConversion &&
1386 ICE->getType()->isVoidPointerType())
1387 Arg = ICE->getSubExpr();
1388 else
1389 break;
1390 }
1391
1392 llvm::Value *Ptr = EmitScalarExpr(Arg);
1393
1394 // Null check the pointer.
1395 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1396 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1397
1398 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1399
1400 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1401 EmitBlock(DeleteNotNull);
1402
1403 // We might be deleting a pointer to array. If so, GEP down to the
1404 // first non-array element.
1405 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1406 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1407 if (DeleteTy->isConstantArrayType()) {
1408 llvm::Value *Zero = Builder.getInt32(0);
1409 llvm::SmallVector<llvm::Value*,8> GEP;
1410
1411 GEP.push_back(Zero); // point at the outermost array
1412
1413 // For each layer of array type we're pointing at:
1414 while (const ConstantArrayType *Arr
1415 = getContext().getAsConstantArrayType(DeleteTy)) {
1416 // 1. Unpeel the array type.
1417 DeleteTy = Arr->getElementType();
1418
1419 // 2. GEP to the first element of the array.
1420 GEP.push_back(Zero);
1421 }
1422
1423 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP.begin(), GEP.end(), "del.first");
1424 }
1425
1426 assert(ConvertTypeForMem(DeleteTy) ==
1427 cast<llvm::PointerType>(Ptr->getType())->getElementType());
1428
1429 if (E->isArrayForm()) {
1430 EmitArrayDelete(*this, E, Ptr, DeleteTy);
1431 } else {
1432 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1433 E->isGlobalDelete());
1434 }
1435
1436 EmitBlock(DeleteEnd);
1437 }
1438
getBadTypeidFn(CodeGenFunction & CGF)1439 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1440 // void __cxa_bad_typeid();
1441
1442 llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext());
1443 llvm::FunctionType *FTy =
1444 llvm::FunctionType::get(VoidTy, false);
1445
1446 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1447 }
1448
EmitBadTypeidCall(CodeGenFunction & CGF)1449 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1450 llvm::Value *Fn = getBadTypeidFn(CGF);
1451 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1452 CGF.Builder.CreateUnreachable();
1453 }
1454
EmitTypeidFromVTable(CodeGenFunction & CGF,const Expr * E,llvm::Type * StdTypeInfoPtrTy)1455 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1456 const Expr *E,
1457 llvm::Type *StdTypeInfoPtrTy) {
1458 // Get the vtable pointer.
1459 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1460
1461 // C++ [expr.typeid]p2:
1462 // If the glvalue expression is obtained by applying the unary * operator to
1463 // a pointer and the pointer is a null pointer value, the typeid expression
1464 // throws the std::bad_typeid exception.
1465 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1466 if (UO->getOpcode() == UO_Deref) {
1467 llvm::BasicBlock *BadTypeidBlock =
1468 CGF.createBasicBlock("typeid.bad_typeid");
1469 llvm::BasicBlock *EndBlock =
1470 CGF.createBasicBlock("typeid.end");
1471
1472 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1473 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1474
1475 CGF.EmitBlock(BadTypeidBlock);
1476 EmitBadTypeidCall(CGF);
1477 CGF.EmitBlock(EndBlock);
1478 }
1479 }
1480
1481 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1482 StdTypeInfoPtrTy->getPointerTo());
1483
1484 // Load the type info.
1485 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1486 return CGF.Builder.CreateLoad(Value);
1487 }
1488
EmitCXXTypeidExpr(const CXXTypeidExpr * E)1489 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1490 llvm::Type *StdTypeInfoPtrTy =
1491 ConvertType(E->getType())->getPointerTo();
1492
1493 if (E->isTypeOperand()) {
1494 llvm::Constant *TypeInfo =
1495 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
1496 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1497 }
1498
1499 // C++ [expr.typeid]p2:
1500 // When typeid is applied to a glvalue expression whose type is a
1501 // polymorphic class type, the result refers to a std::type_info object
1502 // representing the type of the most derived object (that is, the dynamic
1503 // type) to which the glvalue refers.
1504 if (E->getExprOperand()->isGLValue()) {
1505 if (const RecordType *RT =
1506 E->getExprOperand()->getType()->getAs<RecordType>()) {
1507 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1508 if (RD->isPolymorphic())
1509 return EmitTypeidFromVTable(*this, E->getExprOperand(),
1510 StdTypeInfoPtrTy);
1511 }
1512 }
1513
1514 QualType OperandTy = E->getExprOperand()->getType();
1515 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1516 StdTypeInfoPtrTy);
1517 }
1518
getDynamicCastFn(CodeGenFunction & CGF)1519 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1520 // void *__dynamic_cast(const void *sub,
1521 // const abi::__class_type_info *src,
1522 // const abi::__class_type_info *dst,
1523 // std::ptrdiff_t src2dst_offset);
1524
1525 llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1526 llvm::Type *PtrDiffTy =
1527 CGF.ConvertType(CGF.getContext().getPointerDiffType());
1528
1529 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1530
1531 llvm::FunctionType *FTy =
1532 llvm::FunctionType::get(Int8PtrTy, Args, false);
1533
1534 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
1535 }
1536
getBadCastFn(CodeGenFunction & CGF)1537 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1538 // void __cxa_bad_cast();
1539
1540 llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext());
1541 llvm::FunctionType *FTy =
1542 llvm::FunctionType::get(VoidTy, false);
1543
1544 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1545 }
1546
EmitBadCastCall(CodeGenFunction & CGF)1547 static void EmitBadCastCall(CodeGenFunction &CGF) {
1548 llvm::Value *Fn = getBadCastFn(CGF);
1549 CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
1550 CGF.Builder.CreateUnreachable();
1551 }
1552
1553 static llvm::Value *
EmitDynamicCastCall(CodeGenFunction & CGF,llvm::Value * Value,QualType SrcTy,QualType DestTy,llvm::BasicBlock * CastEnd)1554 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1555 QualType SrcTy, QualType DestTy,
1556 llvm::BasicBlock *CastEnd) {
1557 llvm::Type *PtrDiffLTy =
1558 CGF.ConvertType(CGF.getContext().getPointerDiffType());
1559 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1560
1561 if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1562 if (PTy->getPointeeType()->isVoidType()) {
1563 // C++ [expr.dynamic.cast]p7:
1564 // If T is "pointer to cv void," then the result is a pointer to the
1565 // most derived object pointed to by v.
1566
1567 // Get the vtable pointer.
1568 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1569
1570 // Get the offset-to-top from the vtable.
1571 llvm::Value *OffsetToTop =
1572 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1573 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1574
1575 // Finally, add the offset to the pointer.
1576 Value = CGF.EmitCastToVoidPtr(Value);
1577 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1578
1579 return CGF.Builder.CreateBitCast(Value, DestLTy);
1580 }
1581 }
1582
1583 QualType SrcRecordTy;
1584 QualType DestRecordTy;
1585
1586 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1587 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1588 DestRecordTy = DestPTy->getPointeeType();
1589 } else {
1590 SrcRecordTy = SrcTy;
1591 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1592 }
1593
1594 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1595 assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1596
1597 llvm::Value *SrcRTTI =
1598 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1599 llvm::Value *DestRTTI =
1600 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1601
1602 // FIXME: Actually compute a hint here.
1603 llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);
1604
1605 // Emit the call to __dynamic_cast.
1606 Value = CGF.EmitCastToVoidPtr(Value);
1607 Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
1608 SrcRTTI, DestRTTI, OffsetHint);
1609 Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1610
1611 /// C++ [expr.dynamic.cast]p9:
1612 /// A failed cast to reference type throws std::bad_cast
1613 if (DestTy->isReferenceType()) {
1614 llvm::BasicBlock *BadCastBlock =
1615 CGF.createBasicBlock("dynamic_cast.bad_cast");
1616
1617 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1618 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1619
1620 CGF.EmitBlock(BadCastBlock);
1621 EmitBadCastCall(CGF);
1622 }
1623
1624 return Value;
1625 }
1626
EmitDynamicCastToNull(CodeGenFunction & CGF,QualType DestTy)1627 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1628 QualType DestTy) {
1629 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1630 if (DestTy->isPointerType())
1631 return llvm::Constant::getNullValue(DestLTy);
1632
1633 /// C++ [expr.dynamic.cast]p9:
1634 /// A failed cast to reference type throws std::bad_cast
1635 EmitBadCastCall(CGF);
1636
1637 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1638 return llvm::UndefValue::get(DestLTy);
1639 }
1640
EmitDynamicCast(llvm::Value * Value,const CXXDynamicCastExpr * DCE)1641 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1642 const CXXDynamicCastExpr *DCE) {
1643 QualType DestTy = DCE->getTypeAsWritten();
1644
1645 if (DCE->isAlwaysNull())
1646 return EmitDynamicCastToNull(*this, DestTy);
1647
1648 QualType SrcTy = DCE->getSubExpr()->getType();
1649
1650 // C++ [expr.dynamic.cast]p4:
1651 // If the value of v is a null pointer value in the pointer case, the result
1652 // is the null pointer value of type T.
1653 bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1654
1655 llvm::BasicBlock *CastNull = 0;
1656 llvm::BasicBlock *CastNotNull = 0;
1657 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1658
1659 if (ShouldNullCheckSrcValue) {
1660 CastNull = createBasicBlock("dynamic_cast.null");
1661 CastNotNull = createBasicBlock("dynamic_cast.notnull");
1662
1663 llvm::Value *IsNull = Builder.CreateIsNull(Value);
1664 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1665 EmitBlock(CastNotNull);
1666 }
1667
1668 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1669
1670 if (ShouldNullCheckSrcValue) {
1671 EmitBranch(CastEnd);
1672
1673 EmitBlock(CastNull);
1674 EmitBranch(CastEnd);
1675 }
1676
1677 EmitBlock(CastEnd);
1678
1679 if (ShouldNullCheckSrcValue) {
1680 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1681 PHI->addIncoming(Value, CastNotNull);
1682 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1683
1684 Value = PHI;
1685 }
1686
1687 return Value;
1688 }
1689