1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37
38 //===----------------------------------------------------------------------===//
39 // Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41
42 namespace {
43 struct BinOpInfo {
44 Value *LHS;
45 Value *RHS;
46 QualType Ty; // Computation Type.
47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48 const Expr *E; // Entire expr, for error unsupported. May not be binop.
49 };
50
MustVisitNullValue(const Expr * E)51 static bool MustVisitNullValue(const Expr *E) {
52 // If a null pointer expression's type is the C++0x nullptr_t, then
53 // it's not necessarily a simple constant and it must be evaluated
54 // for its potential side effects.
55 return E->getType()->isNullPtrType();
56 }
57
58 class ScalarExprEmitter
59 : public StmtVisitor<ScalarExprEmitter, Value*> {
60 CodeGenFunction &CGF;
61 CGBuilderTy &Builder;
62 bool IgnoreResultAssign;
63 llvm::LLVMContext &VMContext;
64 public:
65
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)66 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68 VMContext(cgf.getLLVMContext()) {
69 }
70
71 //===--------------------------------------------------------------------===//
72 // Utilities
73 //===--------------------------------------------------------------------===//
74
TestAndClearIgnoreResultAssign()75 bool TestAndClearIgnoreResultAssign() {
76 bool I = IgnoreResultAssign;
77 IgnoreResultAssign = false;
78 return I;
79 }
80
ConvertType(QualType T)81 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)82 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E)83 LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
EmitLoadOfLValue(LValue LV)85 Value *EmitLoadOfLValue(LValue LV) {
86 return CGF.EmitLoadOfLValue(LV).getScalarVal();
87 }
88
89 /// EmitLoadOfLValue - Given an expression with complex type that represents a
90 /// value l-value, this method emits the address of the l-value, then loads
91 /// and returns the result.
EmitLoadOfLValue(const Expr * E)92 Value *EmitLoadOfLValue(const Expr *E) {
93 return EmitLoadOfLValue(EmitCheckedLValue(E));
94 }
95
96 /// EmitConversionToBool - Convert the specified expression value to a
97 /// boolean (i1) truth value. This is equivalent to "Val != 0".
98 Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100 /// EmitScalarConversion - Emit a conversion from the specified type to the
101 /// specified destination type, both of which are LLVM scalar types.
102 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104 /// EmitComplexToScalarConversion - Emit a conversion from the specified
105 /// complex type to the specified destination type, where the destination type
106 /// is an LLVM scalar type.
107 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108 QualType SrcTy, QualType DstTy);
109
110 /// EmitNullValue - Emit a value that corresponds to null for the given type.
111 Value *EmitNullValue(QualType Ty);
112
113 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)114 Value *EmitFloatToBoolConversion(Value *V) {
115 // Compare against 0.0 for fp scalars.
116 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117 return Builder.CreateFCmpUNE(V, Zero, "tobool");
118 }
119
120 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)121 Value *EmitPointerToBoolConversion(Value *V) {
122 Value *Zero = llvm::ConstantPointerNull::get(
123 cast<llvm::PointerType>(V->getType()));
124 return Builder.CreateICmpNE(V, Zero, "tobool");
125 }
126
EmitIntToBoolConversion(Value * V)127 Value *EmitIntToBoolConversion(Value *V) {
128 // Because of the type rules of C, we often end up computing a
129 // logical value, then zero extending it to int, then wanting it
130 // as a logical value again. Optimize this common case.
131 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133 Value *Result = ZI->getOperand(0);
134 // If there aren't any more uses, zap the instruction to save space.
135 // Note that there can be more uses, for example if this
136 // is the result of an assignment.
137 if (ZI->use_empty())
138 ZI->eraseFromParent();
139 return Result;
140 }
141 }
142
143 return Builder.CreateIsNotNull(V, "tobool");
144 }
145
146 //===--------------------------------------------------------------------===//
147 // Visitor Methods
148 //===--------------------------------------------------------------------===//
149
Visit(Expr * E)150 Value *Visit(Expr *E) {
151 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152 }
153
VisitStmt(Stmt * S)154 Value *VisitStmt(Stmt *S) {
155 S->dump(CGF.getContext().getSourceManager());
156 assert(0 && "Stmt can't have complex result type!");
157 return 0;
158 }
159 Value *VisitExpr(Expr *S);
160
VisitParenExpr(ParenExpr * PE)161 Value *VisitParenExpr(ParenExpr *PE) {
162 return Visit(PE->getSubExpr());
163 }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)164 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
165 return Visit(E->getReplacement());
166 }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)167 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
168 return Visit(GE->getResultExpr());
169 }
170
171 // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)172 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
173 return Builder.getInt(E->getValue());
174 }
VisitFloatingLiteral(const FloatingLiteral * E)175 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
176 return llvm::ConstantFP::get(VMContext, E->getValue());
177 }
VisitCharacterLiteral(const CharacterLiteral * E)178 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
179 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
180 }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)181 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
182 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
183 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)184 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
185 return EmitNullValue(E->getType());
186 }
VisitGNUNullExpr(const GNUNullExpr * E)187 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
188 return EmitNullValue(E->getType());
189 }
190 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
191 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)192 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
193 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
194 return Builder.CreateBitCast(V, ConvertType(E->getType()));
195 }
196
VisitSizeOfPackExpr(SizeOfPackExpr * E)197 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
198 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
199 }
200
VisitOpaqueValueExpr(OpaqueValueExpr * E)201 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
202 if (E->isGLValue())
203 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
204
205 // Otherwise, assume the mapping is the scalar directly.
206 return CGF.getOpaqueRValueMapping(E).getScalarVal();
207 }
208
209 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)210 Value *VisitDeclRefExpr(DeclRefExpr *E) {
211 Expr::EvalResult Result;
212 if (!E->Evaluate(Result, CGF.getContext()))
213 return EmitLoadOfLValue(E);
214
215 assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
216
217 llvm::Constant *C;
218 if (Result.Val.isInt())
219 C = Builder.getInt(Result.Val.getInt());
220 else if (Result.Val.isFloat())
221 C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
222 else
223 return EmitLoadOfLValue(E);
224
225 // Make sure we emit a debug reference to the global variable.
226 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
227 if (!CGF.getContext().DeclMustBeEmitted(VD))
228 CGF.EmitDeclRefExprDbgValue(E, C);
229 } else if (isa<EnumConstantDecl>(E->getDecl())) {
230 CGF.EmitDeclRefExprDbgValue(E, C);
231 }
232
233 return C;
234 }
VisitObjCSelectorExpr(ObjCSelectorExpr * E)235 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
236 return CGF.EmitObjCSelectorExpr(E);
237 }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)238 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
239 return CGF.EmitObjCProtocolExpr(E);
240 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)241 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
242 return EmitLoadOfLValue(E);
243 }
VisitObjCPropertyRefExpr(ObjCPropertyRefExpr * E)244 Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
245 assert(E->getObjectKind() == OK_Ordinary &&
246 "reached property reference without lvalue-to-rvalue");
247 return EmitLoadOfLValue(E);
248 }
VisitObjCMessageExpr(ObjCMessageExpr * E)249 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
250 if (E->getMethodDecl() &&
251 E->getMethodDecl()->getResultType()->isReferenceType())
252 return EmitLoadOfLValue(E);
253 return CGF.EmitObjCMessageExpr(E).getScalarVal();
254 }
255
VisitObjCIsaExpr(ObjCIsaExpr * E)256 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
257 LValue LV = CGF.EmitObjCIsaExpr(E);
258 Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
259 return V;
260 }
261
262 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
263 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
264 Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)265 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)266 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
267 return EmitLoadOfLValue(E);
268 }
269
270 Value *VisitInitListExpr(InitListExpr *E);
271
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)272 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
273 return CGF.CGM.EmitNullConstant(E->getType());
274 }
VisitExplicitCastExpr(ExplicitCastExpr * E)275 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
276 if (E->getType()->isVariablyModifiedType())
277 CGF.EmitVariablyModifiedType(E->getType());
278 return VisitCastExpr(E);
279 }
280 Value *VisitCastExpr(CastExpr *E);
281
VisitCallExpr(const CallExpr * E)282 Value *VisitCallExpr(const CallExpr *E) {
283 if (E->getCallReturnType()->isReferenceType())
284 return EmitLoadOfLValue(E);
285
286 return CGF.EmitCallExpr(E).getScalarVal();
287 }
288
289 Value *VisitStmtExpr(const StmtExpr *E);
290
291 Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
292
293 // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)294 Value *VisitUnaryPostDec(const UnaryOperator *E) {
295 LValue LV = EmitLValue(E->getSubExpr());
296 return EmitScalarPrePostIncDec(E, LV, false, false);
297 }
VisitUnaryPostInc(const UnaryOperator * E)298 Value *VisitUnaryPostInc(const UnaryOperator *E) {
299 LValue LV = EmitLValue(E->getSubExpr());
300 return EmitScalarPrePostIncDec(E, LV, true, false);
301 }
VisitUnaryPreDec(const UnaryOperator * E)302 Value *VisitUnaryPreDec(const UnaryOperator *E) {
303 LValue LV = EmitLValue(E->getSubExpr());
304 return EmitScalarPrePostIncDec(E, LV, false, true);
305 }
VisitUnaryPreInc(const UnaryOperator * E)306 Value *VisitUnaryPreInc(const UnaryOperator *E) {
307 LValue LV = EmitLValue(E->getSubExpr());
308 return EmitScalarPrePostIncDec(E, LV, true, true);
309 }
310
311 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
312 llvm::Value *InVal,
313 llvm::Value *NextVal,
314 bool IsInc);
315
316 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
317 bool isInc, bool isPre);
318
319
VisitUnaryAddrOf(const UnaryOperator * E)320 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
321 if (isa<MemberPointerType>(E->getType())) // never sugared
322 return CGF.CGM.getMemberPointerConstant(E);
323
324 return EmitLValue(E->getSubExpr()).getAddress();
325 }
VisitUnaryDeref(const UnaryOperator * E)326 Value *VisitUnaryDeref(const UnaryOperator *E) {
327 if (E->getType()->isVoidType())
328 return Visit(E->getSubExpr()); // the actual value should be unused
329 return EmitLoadOfLValue(E);
330 }
VisitUnaryPlus(const UnaryOperator * E)331 Value *VisitUnaryPlus(const UnaryOperator *E) {
332 // This differs from gcc, though, most likely due to a bug in gcc.
333 TestAndClearIgnoreResultAssign();
334 return Visit(E->getSubExpr());
335 }
336 Value *VisitUnaryMinus (const UnaryOperator *E);
337 Value *VisitUnaryNot (const UnaryOperator *E);
338 Value *VisitUnaryLNot (const UnaryOperator *E);
339 Value *VisitUnaryReal (const UnaryOperator *E);
340 Value *VisitUnaryImag (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)341 Value *VisitUnaryExtension(const UnaryOperator *E) {
342 return Visit(E->getSubExpr());
343 }
344
345 // C++
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)346 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
347 return Visit(DAE->getExpr());
348 }
VisitCXXThisExpr(CXXThisExpr * TE)349 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
350 return CGF.LoadCXXThis();
351 }
352
VisitExprWithCleanups(ExprWithCleanups * E)353 Value *VisitExprWithCleanups(ExprWithCleanups *E) {
354 return CGF.EmitExprWithCleanups(E).getScalarVal();
355 }
VisitCXXNewExpr(const CXXNewExpr * E)356 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
357 return CGF.EmitCXXNewExpr(E);
358 }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)359 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
360 CGF.EmitCXXDeleteExpr(E);
361 return 0;
362 }
VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr * E)363 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
364 return Builder.getInt1(E->getValue());
365 }
366
VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr * E)367 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
368 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
369 }
370
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)371 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
372 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
373 }
374
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)375 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
376 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
377 }
378
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)379 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
380 // C++ [expr.pseudo]p1:
381 // The result shall only be used as the operand for the function call
382 // operator (), and the result of such a call has type void. The only
383 // effect is the evaluation of the postfix-expression before the dot or
384 // arrow.
385 CGF.EmitScalarExpr(E->getBase());
386 return 0;
387 }
388
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)389 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
390 return EmitNullValue(E->getType());
391 }
392
VisitCXXThrowExpr(const CXXThrowExpr * E)393 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
394 CGF.EmitCXXThrowExpr(E);
395 return 0;
396 }
397
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)398 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
399 return Builder.getInt1(E->getValue());
400 }
401
402 // Binary Operators.
EmitMul(const BinOpInfo & Ops)403 Value *EmitMul(const BinOpInfo &Ops) {
404 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
405 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
406 case LangOptions::SOB_Undefined:
407 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
408 case LangOptions::SOB_Defined:
409 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
410 case LangOptions::SOB_Trapping:
411 return EmitOverflowCheckedBinOp(Ops);
412 }
413 }
414
415 if (Ops.LHS->getType()->isFPOrFPVectorTy())
416 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
417 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
418 }
isTrapvOverflowBehavior()419 bool isTrapvOverflowBehavior() {
420 return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
421 == LangOptions::SOB_Trapping;
422 }
423 /// Create a binary op that checks for overflow.
424 /// Currently only supports +, - and *.
425 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
426 // Emit the overflow BB when -ftrapv option is activated.
EmitOverflowBB(llvm::BasicBlock * overflowBB)427 void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
428 Builder.SetInsertPoint(overflowBB);
429 llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
430 Builder.CreateCall(Trap);
431 Builder.CreateUnreachable();
432 }
433 // Check for undefined division and modulus behaviors.
434 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
435 llvm::Value *Zero,bool isDiv);
436 Value *EmitDiv(const BinOpInfo &Ops);
437 Value *EmitRem(const BinOpInfo &Ops);
438 Value *EmitAdd(const BinOpInfo &Ops);
439 Value *EmitSub(const BinOpInfo &Ops);
440 Value *EmitShl(const BinOpInfo &Ops);
441 Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)442 Value *EmitAnd(const BinOpInfo &Ops) {
443 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
444 }
EmitXor(const BinOpInfo & Ops)445 Value *EmitXor(const BinOpInfo &Ops) {
446 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
447 }
EmitOr(const BinOpInfo & Ops)448 Value *EmitOr (const BinOpInfo &Ops) {
449 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
450 }
451
452 BinOpInfo EmitBinOps(const BinaryOperator *E);
453 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
454 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
455 Value *&Result);
456
457 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
458 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
459
460 // Binary operators and binary compound assignment operators.
461 #define HANDLEBINOP(OP) \
462 Value *VisitBin ## OP(const BinaryOperator *E) { \
463 return Emit ## OP(EmitBinOps(E)); \
464 } \
465 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
466 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
467 }
468 HANDLEBINOP(Mul)
469 HANDLEBINOP(Div)
470 HANDLEBINOP(Rem)
471 HANDLEBINOP(Add)
472 HANDLEBINOP(Sub)
473 HANDLEBINOP(Shl)
474 HANDLEBINOP(Shr)
475 HANDLEBINOP(And)
476 HANDLEBINOP(Xor)
477 HANDLEBINOP(Or)
478 #undef HANDLEBINOP
479
480 // Comparisons.
481 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
482 unsigned SICmpOpc, unsigned FCmpOpc);
483 #define VISITCOMP(CODE, UI, SI, FP) \
484 Value *VisitBin##CODE(const BinaryOperator *E) { \
485 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
486 llvm::FCmpInst::FP); }
487 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
488 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
489 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
490 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
491 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
492 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
493 #undef VISITCOMP
494
495 Value *VisitBinAssign (const BinaryOperator *E);
496
497 Value *VisitBinLAnd (const BinaryOperator *E);
498 Value *VisitBinLOr (const BinaryOperator *E);
499 Value *VisitBinComma (const BinaryOperator *E);
500
VisitBinPtrMemD(const Expr * E)501 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)502 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
503
504 // Other Operators.
505 Value *VisitBlockExpr(const BlockExpr *BE);
506 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
507 Value *VisitChooseExpr(ChooseExpr *CE);
508 Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)509 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
510 return CGF.EmitObjCStringLiteral(E);
511 }
512 Value *VisitAsTypeExpr(AsTypeExpr *CE);
513 };
514 } // end anonymous namespace.
515
516 //===----------------------------------------------------------------------===//
517 // Utilities
518 //===----------------------------------------------------------------------===//
519
520 /// EmitConversionToBool - Convert the specified expression value to a
521 /// boolean (i1) truth value. This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)522 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
523 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
524
525 if (SrcType->isRealFloatingType())
526 return EmitFloatToBoolConversion(Src);
527
528 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
529 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
530
531 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
532 "Unknown scalar type to convert");
533
534 if (isa<llvm::IntegerType>(Src->getType()))
535 return EmitIntToBoolConversion(Src);
536
537 assert(isa<llvm::PointerType>(Src->getType()));
538 return EmitPointerToBoolConversion(Src);
539 }
540
541 /// EmitScalarConversion - Emit a conversion from the specified type to the
542 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType)543 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
544 QualType DstType) {
545 SrcType = CGF.getContext().getCanonicalType(SrcType);
546 DstType = CGF.getContext().getCanonicalType(DstType);
547 if (SrcType == DstType) return Src;
548
549 if (DstType->isVoidType()) return 0;
550
551 // Handle conversions to bool first, they are special: comparisons against 0.
552 if (DstType->isBooleanType())
553 return EmitConversionToBool(Src, SrcType);
554
555 llvm::Type *DstTy = ConvertType(DstType);
556
557 // Ignore conversions like int -> uint.
558 if (Src->getType() == DstTy)
559 return Src;
560
561 // Handle pointer conversions next: pointers can only be converted to/from
562 // other pointers and integers. Check for pointer types in terms of LLVM, as
563 // some native types (like Obj-C id) may map to a pointer type.
564 if (isa<llvm::PointerType>(DstTy)) {
565 // The source value may be an integer, or a pointer.
566 if (isa<llvm::PointerType>(Src->getType()))
567 return Builder.CreateBitCast(Src, DstTy, "conv");
568
569 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
570 // First, convert to the correct width so that we control the kind of
571 // extension.
572 llvm::Type *MiddleTy = CGF.IntPtrTy;
573 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
574 llvm::Value* IntResult =
575 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
576 // Then, cast to pointer.
577 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
578 }
579
580 if (isa<llvm::PointerType>(Src->getType())) {
581 // Must be an ptr to int cast.
582 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
583 return Builder.CreatePtrToInt(Src, DstTy, "conv");
584 }
585
586 // A scalar can be splatted to an extended vector of the same element type
587 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
588 // Cast the scalar to element type
589 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
590 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
591
592 // Insert the element in element zero of an undef vector
593 llvm::Value *UnV = llvm::UndefValue::get(DstTy);
594 llvm::Value *Idx = Builder.getInt32(0);
595 UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
596
597 // Splat the element across to all elements
598 llvm::SmallVector<llvm::Constant*, 16> Args;
599 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
600 for (unsigned i = 0; i != NumElements; ++i)
601 Args.push_back(Builder.getInt32(0));
602
603 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
604 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
605 return Yay;
606 }
607
608 // Allow bitcast from vector to integer/fp of the same size.
609 if (isa<llvm::VectorType>(Src->getType()) ||
610 isa<llvm::VectorType>(DstTy))
611 return Builder.CreateBitCast(Src, DstTy, "conv");
612
613 // Finally, we have the arithmetic types: real int/float.
614 if (isa<llvm::IntegerType>(Src->getType())) {
615 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
616 if (isa<llvm::IntegerType>(DstTy))
617 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
618 else if (InputSigned)
619 return Builder.CreateSIToFP(Src, DstTy, "conv");
620 else
621 return Builder.CreateUIToFP(Src, DstTy, "conv");
622 }
623
624 assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
625 if (isa<llvm::IntegerType>(DstTy)) {
626 if (DstType->isSignedIntegerOrEnumerationType())
627 return Builder.CreateFPToSI(Src, DstTy, "conv");
628 else
629 return Builder.CreateFPToUI(Src, DstTy, "conv");
630 }
631
632 assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
633 if (DstTy->getTypeID() < Src->getType()->getTypeID())
634 return Builder.CreateFPTrunc(Src, DstTy, "conv");
635 else
636 return Builder.CreateFPExt(Src, DstTy, "conv");
637 }
638
639 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
640 /// type to the specified destination type, where the destination type is an
641 /// LLVM scalar type.
642 Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy)643 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
644 QualType SrcTy, QualType DstTy) {
645 // Get the source element type.
646 SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
647
648 // Handle conversions to bool first, they are special: comparisons against 0.
649 if (DstTy->isBooleanType()) {
650 // Complex != 0 -> (Real != 0) | (Imag != 0)
651 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
652 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
653 return Builder.CreateOr(Src.first, Src.second, "tobool");
654 }
655
656 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
657 // the imaginary part of the complex value is discarded and the value of the
658 // real part is converted according to the conversion rules for the
659 // corresponding real type.
660 return EmitScalarConversion(Src.first, SrcTy, DstTy);
661 }
662
EmitNullValue(QualType Ty)663 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
664 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
665 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
666
667 return llvm::Constant::getNullValue(ConvertType(Ty));
668 }
669
670 //===----------------------------------------------------------------------===//
671 // Visitor Methods
672 //===----------------------------------------------------------------------===//
673
VisitExpr(Expr * E)674 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
675 CGF.ErrorUnsupported(E, "scalar expression");
676 if (E->getType()->isVoidType())
677 return 0;
678 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
679 }
680
VisitShuffleVectorExpr(ShuffleVectorExpr * E)681 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
682 // Vector Mask Case
683 if (E->getNumSubExprs() == 2 ||
684 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
685 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
686 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
687 Value *Mask;
688
689 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
690 unsigned LHSElts = LTy->getNumElements();
691
692 if (E->getNumSubExprs() == 3) {
693 Mask = CGF.EmitScalarExpr(E->getExpr(2));
694
695 // Shuffle LHS & RHS into one input vector.
696 llvm::SmallVector<llvm::Constant*, 32> concat;
697 for (unsigned i = 0; i != LHSElts; ++i) {
698 concat.push_back(Builder.getInt32(2*i));
699 concat.push_back(Builder.getInt32(2*i+1));
700 }
701
702 Value* CV = llvm::ConstantVector::get(concat);
703 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
704 LHSElts *= 2;
705 } else {
706 Mask = RHS;
707 }
708
709 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
710 llvm::Constant* EltMask;
711
712 // Treat vec3 like vec4.
713 if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
714 EltMask = llvm::ConstantInt::get(MTy->getElementType(),
715 (1 << llvm::Log2_32(LHSElts+2))-1);
716 else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
717 EltMask = llvm::ConstantInt::get(MTy->getElementType(),
718 (1 << llvm::Log2_32(LHSElts+1))-1);
719 else
720 EltMask = llvm::ConstantInt::get(MTy->getElementType(),
721 (1 << llvm::Log2_32(LHSElts))-1);
722
723 // Mask off the high bits of each shuffle index.
724 llvm::SmallVector<llvm::Constant *, 32> MaskV;
725 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
726 MaskV.push_back(EltMask);
727
728 Value* MaskBits = llvm::ConstantVector::get(MaskV);
729 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
730
731 // newv = undef
732 // mask = mask & maskbits
733 // for each elt
734 // n = extract mask i
735 // x = extract val n
736 // newv = insert newv, x, i
737 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
738 MTy->getNumElements());
739 Value* NewV = llvm::UndefValue::get(RTy);
740 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
741 Value *Indx = Builder.getInt32(i);
742 Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
743 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
744
745 // Handle vec3 special since the index will be off by one for the RHS.
746 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
747 Value *cmpIndx, *newIndx;
748 cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
749 "cmp_shuf_idx");
750 newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
751 Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
752 }
753 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
754 NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
755 }
756 return NewV;
757 }
758
759 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
760 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
761
762 // Handle vec3 special since the index will be off by one for the RHS.
763 llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
764 llvm::SmallVector<llvm::Constant*, 32> indices;
765 for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
766 unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
767 if (VTy->getNumElements() == 3 && Idx > 3)
768 Idx -= 1;
769 indices.push_back(Builder.getInt32(Idx));
770 }
771
772 Value *SV = llvm::ConstantVector::get(indices);
773 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
774 }
VisitMemberExpr(MemberExpr * E)775 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
776 Expr::EvalResult Result;
777 if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
778 if (E->isArrow())
779 CGF.EmitScalarExpr(E->getBase());
780 else
781 EmitLValue(E->getBase());
782 return Builder.getInt(Result.Val.getInt());
783 }
784
785 // Emit debug info for aggregate now, if it was delayed to reduce
786 // debug info size.
787 CGDebugInfo *DI = CGF.getDebugInfo();
788 if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
789 QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
790 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
791 if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
792 DI->getOrCreateRecordType(PTy->getPointeeType(),
793 M->getParent()->getLocation());
794 }
795 return EmitLoadOfLValue(E);
796 }
797
VisitArraySubscriptExpr(ArraySubscriptExpr * E)798 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
799 TestAndClearIgnoreResultAssign();
800
801 // Emit subscript expressions in rvalue context's. For most cases, this just
802 // loads the lvalue formed by the subscript expr. However, we have to be
803 // careful, because the base of a vector subscript is occasionally an rvalue,
804 // so we can't get it as an lvalue.
805 if (!E->getBase()->getType()->isVectorType())
806 return EmitLoadOfLValue(E);
807
808 // Handle the vector case. The base must be a vector, the index must be an
809 // integer value.
810 Value *Base = Visit(E->getBase());
811 Value *Idx = Visit(E->getIdx());
812 bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
813 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
814 return Builder.CreateExtractElement(Base, Idx, "vecext");
815 }
816
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)817 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
818 unsigned Off, llvm::Type *I32Ty) {
819 int MV = SVI->getMaskValue(Idx);
820 if (MV == -1)
821 return llvm::UndefValue::get(I32Ty);
822 return llvm::ConstantInt::get(I32Ty, Off+MV);
823 }
824
VisitInitListExpr(InitListExpr * E)825 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
826 bool Ignore = TestAndClearIgnoreResultAssign();
827 (void)Ignore;
828 assert (Ignore == false && "init list ignored");
829 unsigned NumInitElements = E->getNumInits();
830
831 if (E->hadArrayRangeDesignator())
832 CGF.ErrorUnsupported(E, "GNU array range designator extension");
833
834 llvm::VectorType *VType =
835 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
836
837 // We have a scalar in braces. Just use the first element.
838 if (!VType)
839 return Visit(E->getInit(0));
840
841 unsigned ResElts = VType->getNumElements();
842
843 // Loop over initializers collecting the Value for each, and remembering
844 // whether the source was swizzle (ExtVectorElementExpr). This will allow
845 // us to fold the shuffle for the swizzle into the shuffle for the vector
846 // initializer, since LLVM optimizers generally do not want to touch
847 // shuffles.
848 unsigned CurIdx = 0;
849 bool VIsUndefShuffle = false;
850 llvm::Value *V = llvm::UndefValue::get(VType);
851 for (unsigned i = 0; i != NumInitElements; ++i) {
852 Expr *IE = E->getInit(i);
853 Value *Init = Visit(IE);
854 llvm::SmallVector<llvm::Constant*, 16> Args;
855
856 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
857
858 // Handle scalar elements. If the scalar initializer is actually one
859 // element of a different vector of the same width, use shuffle instead of
860 // extract+insert.
861 if (!VVT) {
862 if (isa<ExtVectorElementExpr>(IE)) {
863 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
864
865 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
866 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
867 Value *LHS = 0, *RHS = 0;
868 if (CurIdx == 0) {
869 // insert into undef -> shuffle (src, undef)
870 Args.push_back(C);
871 for (unsigned j = 1; j != ResElts; ++j)
872 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
873
874 LHS = EI->getVectorOperand();
875 RHS = V;
876 VIsUndefShuffle = true;
877 } else if (VIsUndefShuffle) {
878 // insert into undefshuffle && size match -> shuffle (v, src)
879 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
880 for (unsigned j = 0; j != CurIdx; ++j)
881 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
882 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
883 for (unsigned j = CurIdx + 1; j != ResElts; ++j)
884 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
885
886 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
887 RHS = EI->getVectorOperand();
888 VIsUndefShuffle = false;
889 }
890 if (!Args.empty()) {
891 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
892 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
893 ++CurIdx;
894 continue;
895 }
896 }
897 }
898 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
899 "vecinit");
900 VIsUndefShuffle = false;
901 ++CurIdx;
902 continue;
903 }
904
905 unsigned InitElts = VVT->getNumElements();
906
907 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
908 // input is the same width as the vector being constructed, generate an
909 // optimized shuffle of the swizzle input into the result.
910 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
911 if (isa<ExtVectorElementExpr>(IE)) {
912 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
913 Value *SVOp = SVI->getOperand(0);
914 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
915
916 if (OpTy->getNumElements() == ResElts) {
917 for (unsigned j = 0; j != CurIdx; ++j) {
918 // If the current vector initializer is a shuffle with undef, merge
919 // this shuffle directly into it.
920 if (VIsUndefShuffle) {
921 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
922 CGF.Int32Ty));
923 } else {
924 Args.push_back(Builder.getInt32(j));
925 }
926 }
927 for (unsigned j = 0, je = InitElts; j != je; ++j)
928 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
929 for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
930 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
931
932 if (VIsUndefShuffle)
933 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
934
935 Init = SVOp;
936 }
937 }
938
939 // Extend init to result vector length, and then shuffle its contribution
940 // to the vector initializer into V.
941 if (Args.empty()) {
942 for (unsigned j = 0; j != InitElts; ++j)
943 Args.push_back(Builder.getInt32(j));
944 for (unsigned j = InitElts; j != ResElts; ++j)
945 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
946 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
947 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
948 Mask, "vext");
949
950 Args.clear();
951 for (unsigned j = 0; j != CurIdx; ++j)
952 Args.push_back(Builder.getInt32(j));
953 for (unsigned j = 0; j != InitElts; ++j)
954 Args.push_back(Builder.getInt32(j+Offset));
955 for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
956 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
957 }
958
959 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
960 // merging subsequent shuffles into this one.
961 if (CurIdx == 0)
962 std::swap(V, Init);
963 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
964 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
965 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
966 CurIdx += InitElts;
967 }
968
969 // FIXME: evaluate codegen vs. shuffling against constant null vector.
970 // Emit remaining default initializers.
971 llvm::Type *EltTy = VType->getElementType();
972
973 // Emit remaining default initializers
974 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
975 Value *Idx = Builder.getInt32(CurIdx);
976 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
977 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
978 }
979 return V;
980 }
981
ShouldNullCheckClassCastValue(const CastExpr * CE)982 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
983 const Expr *E = CE->getSubExpr();
984
985 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
986 return false;
987
988 if (isa<CXXThisExpr>(E)) {
989 // We always assume that 'this' is never null.
990 return false;
991 }
992
993 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
994 // And that glvalue casts are never null.
995 if (ICE->getValueKind() != VK_RValue)
996 return false;
997 }
998
999 return true;
1000 }
1001
1002 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1003 // have to handle a more broad range of conversions than explicit casts, as they
1004 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1005 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1006 Expr *E = CE->getSubExpr();
1007 QualType DestTy = CE->getType();
1008 CastKind Kind = CE->getCastKind();
1009
1010 if (!DestTy->isVoidType())
1011 TestAndClearIgnoreResultAssign();
1012
1013 // Since almost all cast kinds apply to scalars, this switch doesn't have
1014 // a default case, so the compiler will warn on a missing case. The cases
1015 // are in the same order as in the CastKind enum.
1016 switch (Kind) {
1017 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1018
1019 case CK_LValueBitCast:
1020 case CK_ObjCObjectLValueCast: {
1021 Value *V = EmitLValue(E).getAddress();
1022 V = Builder.CreateBitCast(V,
1023 ConvertType(CGF.getContext().getPointerType(DestTy)));
1024 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
1025 }
1026
1027 case CK_AnyPointerToObjCPointerCast:
1028 case CK_AnyPointerToBlockPointerCast:
1029 case CK_BitCast: {
1030 Value *Src = Visit(const_cast<Expr*>(E));
1031 return Builder.CreateBitCast(Src, ConvertType(DestTy));
1032 }
1033 case CK_NoOp:
1034 case CK_UserDefinedConversion:
1035 return Visit(const_cast<Expr*>(E));
1036
1037 case CK_BaseToDerived: {
1038 const CXXRecordDecl *DerivedClassDecl =
1039 DestTy->getCXXRecordDeclForPointerType();
1040
1041 return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1042 CE->path_begin(), CE->path_end(),
1043 ShouldNullCheckClassCastValue(CE));
1044 }
1045 case CK_UncheckedDerivedToBase:
1046 case CK_DerivedToBase: {
1047 const RecordType *DerivedClassTy =
1048 E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1049 CXXRecordDecl *DerivedClassDecl =
1050 cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1051
1052 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1053 CE->path_begin(), CE->path_end(),
1054 ShouldNullCheckClassCastValue(CE));
1055 }
1056 case CK_Dynamic: {
1057 Value *V = Visit(const_cast<Expr*>(E));
1058 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1059 return CGF.EmitDynamicCast(V, DCE);
1060 }
1061
1062 case CK_ArrayToPointerDecay: {
1063 assert(E->getType()->isArrayType() &&
1064 "Array to pointer decay must have array source type!");
1065
1066 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
1067
1068 // Note that VLA pointers are always decayed, so we don't need to do
1069 // anything here.
1070 if (!E->getType()->isVariableArrayType()) {
1071 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1072 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1073 ->getElementType()) &&
1074 "Expected pointer to array");
1075 V = Builder.CreateStructGEP(V, 0, "arraydecay");
1076 }
1077
1078 // Make sure the array decay ends up being the right type. This matters if
1079 // the array type was of an incomplete type.
1080 return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1081 }
1082 case CK_FunctionToPointerDecay:
1083 return EmitLValue(E).getAddress();
1084
1085 case CK_NullToPointer:
1086 if (MustVisitNullValue(E))
1087 (void) Visit(E);
1088
1089 return llvm::ConstantPointerNull::get(
1090 cast<llvm::PointerType>(ConvertType(DestTy)));
1091
1092 case CK_NullToMemberPointer: {
1093 if (MustVisitNullValue(E))
1094 (void) Visit(E);
1095
1096 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1097 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1098 }
1099
1100 case CK_BaseToDerivedMemberPointer:
1101 case CK_DerivedToBaseMemberPointer: {
1102 Value *Src = Visit(E);
1103
1104 // Note that the AST doesn't distinguish between checked and
1105 // unchecked member pointer conversions, so we always have to
1106 // implement checked conversions here. This is inefficient when
1107 // actual control flow may be required in order to perform the
1108 // check, which it is for data member pointers (but not member
1109 // function pointers on Itanium and ARM).
1110 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1111 }
1112
1113 case CK_ObjCProduceObject:
1114 return CGF.EmitARCRetainScalarExpr(E);
1115 case CK_ObjCConsumeObject:
1116 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1117 case CK_ObjCReclaimReturnedObject: {
1118 llvm::Value *value = Visit(E);
1119 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1120 return CGF.EmitObjCConsumeObject(E->getType(), value);
1121 }
1122
1123 case CK_FloatingRealToComplex:
1124 case CK_FloatingComplexCast:
1125 case CK_IntegralRealToComplex:
1126 case CK_IntegralComplexCast:
1127 case CK_IntegralComplexToFloatingComplex:
1128 case CK_FloatingComplexToIntegralComplex:
1129 case CK_ConstructorConversion:
1130 case CK_ToUnion:
1131 llvm_unreachable("scalar cast to non-scalar value");
1132 break;
1133
1134 case CK_GetObjCProperty: {
1135 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1136 assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1137 "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1138 RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E));
1139 return RV.getScalarVal();
1140 }
1141
1142 case CK_LValueToRValue:
1143 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1144 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1145 return Visit(const_cast<Expr*>(E));
1146
1147 case CK_IntegralToPointer: {
1148 Value *Src = Visit(const_cast<Expr*>(E));
1149
1150 // First, convert to the correct width so that we control the kind of
1151 // extension.
1152 llvm::Type *MiddleTy = CGF.IntPtrTy;
1153 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1154 llvm::Value* IntResult =
1155 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1156
1157 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1158 }
1159 case CK_PointerToIntegral:
1160 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1161 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1162
1163 case CK_ToVoid: {
1164 CGF.EmitIgnoredExpr(E);
1165 return 0;
1166 }
1167 case CK_VectorSplat: {
1168 llvm::Type *DstTy = ConvertType(DestTy);
1169 Value *Elt = Visit(const_cast<Expr*>(E));
1170
1171 // Insert the element in element zero of an undef vector
1172 llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1173 llvm::Value *Idx = Builder.getInt32(0);
1174 UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1175
1176 // Splat the element across to all elements
1177 llvm::SmallVector<llvm::Constant*, 16> Args;
1178 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1179 llvm::Constant *Zero = Builder.getInt32(0);
1180 for (unsigned i = 0; i < NumElements; i++)
1181 Args.push_back(Zero);
1182
1183 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1184 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1185 return Yay;
1186 }
1187
1188 case CK_IntegralCast:
1189 case CK_IntegralToFloating:
1190 case CK_FloatingToIntegral:
1191 case CK_FloatingCast:
1192 return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1193
1194 case CK_IntegralToBoolean:
1195 return EmitIntToBoolConversion(Visit(E));
1196 case CK_PointerToBoolean:
1197 return EmitPointerToBoolConversion(Visit(E));
1198 case CK_FloatingToBoolean:
1199 return EmitFloatToBoolConversion(Visit(E));
1200 case CK_MemberPointerToBoolean: {
1201 llvm::Value *MemPtr = Visit(E);
1202 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1203 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1204 }
1205
1206 case CK_FloatingComplexToReal:
1207 case CK_IntegralComplexToReal:
1208 return CGF.EmitComplexExpr(E, false, true).first;
1209
1210 case CK_FloatingComplexToBoolean:
1211 case CK_IntegralComplexToBoolean: {
1212 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1213
1214 // TODO: kill this function off, inline appropriate case here
1215 return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1216 }
1217
1218 }
1219
1220 llvm_unreachable("unknown scalar cast");
1221 return 0;
1222 }
1223
VisitStmtExpr(const StmtExpr * E)1224 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1225 CodeGenFunction::StmtExprEvaluation eval(CGF);
1226 return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1227 .getScalarVal();
1228 }
1229
VisitBlockDeclRefExpr(const BlockDeclRefExpr * E)1230 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1231 LValue LV = CGF.EmitBlockDeclRefLValue(E);
1232 return CGF.EmitLoadOfLValue(LV).getScalarVal();
1233 }
1234
1235 //===----------------------------------------------------------------------===//
1236 // Unary Operators
1237 //===----------------------------------------------------------------------===//
1238
1239 llvm::Value *ScalarExprEmitter::
EmitAddConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,llvm::Value * NextVal,bool IsInc)1240 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1241 llvm::Value *InVal,
1242 llvm::Value *NextVal, bool IsInc) {
1243 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1244 case LangOptions::SOB_Undefined:
1245 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1246 break;
1247 case LangOptions::SOB_Defined:
1248 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1249 break;
1250 case LangOptions::SOB_Trapping:
1251 BinOpInfo BinOp;
1252 BinOp.LHS = InVal;
1253 BinOp.RHS = NextVal;
1254 BinOp.Ty = E->getType();
1255 BinOp.Opcode = BO_Add;
1256 BinOp.E = E;
1257 return EmitOverflowCheckedBinOp(BinOp);
1258 break;
1259 }
1260 assert(false && "Unknown SignedOverflowBehaviorTy");
1261 return 0;
1262 }
1263
1264 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1265 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1266 bool isInc, bool isPre) {
1267
1268 QualType type = E->getSubExpr()->getType();
1269 llvm::Value *value = EmitLoadOfLValue(LV);
1270 llvm::Value *input = value;
1271
1272 int amount = (isInc ? 1 : -1);
1273
1274 // Special case of integer increment that we have to check first: bool++.
1275 // Due to promotion rules, we get:
1276 // bool++ -> bool = bool + 1
1277 // -> bool = (int)bool + 1
1278 // -> bool = ((int)bool + 1 != 0)
1279 // An interesting aspect of this is that increment is always true.
1280 // Decrement does not have this property.
1281 if (isInc && type->isBooleanType()) {
1282 value = Builder.getTrue();
1283
1284 // Most common case by far: integer increment.
1285 } else if (type->isIntegerType()) {
1286
1287 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1288
1289 // Note that signed integer inc/dec with width less than int can't
1290 // overflow because of promotion rules; we're just eliding a few steps here.
1291 if (type->isSignedIntegerOrEnumerationType() &&
1292 value->getType()->getPrimitiveSizeInBits() >=
1293 CGF.IntTy->getBitWidth())
1294 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1295 else
1296 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1297
1298 // Next most common: pointer increment.
1299 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1300 QualType type = ptr->getPointeeType();
1301
1302 // VLA types don't have constant size.
1303 if (const VariableArrayType *vla
1304 = CGF.getContext().getAsVariableArrayType(type)) {
1305 llvm::Value *numElts = CGF.getVLASize(vla).first;
1306 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1307 if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1308 value = Builder.CreateGEP(value, numElts, "vla.inc");
1309 else
1310 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1311
1312 // Arithmetic on function pointers (!) is just +-1.
1313 } else if (type->isFunctionType()) {
1314 llvm::Value *amt = Builder.getInt32(amount);
1315
1316 value = CGF.EmitCastToVoidPtr(value);
1317 if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1318 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1319 else
1320 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1321 value = Builder.CreateBitCast(value, input->getType());
1322
1323 // For everything else, we can just do a simple increment.
1324 } else {
1325 llvm::Value *amt = Builder.getInt32(amount);
1326 if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1327 value = Builder.CreateGEP(value, amt, "incdec.ptr");
1328 else
1329 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1330 }
1331
1332 // Vector increment/decrement.
1333 } else if (type->isVectorType()) {
1334 if (type->hasIntegerRepresentation()) {
1335 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1336
1337 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1338 } else {
1339 value = Builder.CreateFAdd(
1340 value,
1341 llvm::ConstantFP::get(value->getType(), amount),
1342 isInc ? "inc" : "dec");
1343 }
1344
1345 // Floating point.
1346 } else if (type->isRealFloatingType()) {
1347 // Add the inc/dec to the real part.
1348 llvm::Value *amt;
1349 if (value->getType()->isFloatTy())
1350 amt = llvm::ConstantFP::get(VMContext,
1351 llvm::APFloat(static_cast<float>(amount)));
1352 else if (value->getType()->isDoubleTy())
1353 amt = llvm::ConstantFP::get(VMContext,
1354 llvm::APFloat(static_cast<double>(amount)));
1355 else {
1356 llvm::APFloat F(static_cast<float>(amount));
1357 bool ignored;
1358 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1359 &ignored);
1360 amt = llvm::ConstantFP::get(VMContext, F);
1361 }
1362 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1363
1364 // Objective-C pointer types.
1365 } else {
1366 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1367 value = CGF.EmitCastToVoidPtr(value);
1368
1369 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1370 if (!isInc) size = -size;
1371 llvm::Value *sizeValue =
1372 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1373
1374 if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1375 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1376 else
1377 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1378 value = Builder.CreateBitCast(value, input->getType());
1379 }
1380
1381 // Store the updated result through the lvalue.
1382 if (LV.isBitField())
1383 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1384 else
1385 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1386
1387 // If this is a postinc, return the value read from memory, otherwise use the
1388 // updated value.
1389 return isPre ? value : input;
1390 }
1391
1392
1393
VisitUnaryMinus(const UnaryOperator * E)1394 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1395 TestAndClearIgnoreResultAssign();
1396 // Emit unary minus with EmitSub so we handle overflow cases etc.
1397 BinOpInfo BinOp;
1398 BinOp.RHS = Visit(E->getSubExpr());
1399
1400 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1401 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1402 else
1403 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1404 BinOp.Ty = E->getType();
1405 BinOp.Opcode = BO_Sub;
1406 BinOp.E = E;
1407 return EmitSub(BinOp);
1408 }
1409
VisitUnaryNot(const UnaryOperator * E)1410 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1411 TestAndClearIgnoreResultAssign();
1412 Value *Op = Visit(E->getSubExpr());
1413 return Builder.CreateNot(Op, "neg");
1414 }
1415
VisitUnaryLNot(const UnaryOperator * E)1416 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1417 // Compare operand to zero.
1418 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1419
1420 // Invert value.
1421 // TODO: Could dynamically modify easy computations here. For example, if
1422 // the operand is an icmp ne, turn into icmp eq.
1423 BoolVal = Builder.CreateNot(BoolVal, "lnot");
1424
1425 // ZExt result to the expr type.
1426 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1427 }
1428
VisitOffsetOfExpr(OffsetOfExpr * E)1429 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1430 // Try folding the offsetof to a constant.
1431 Expr::EvalResult EvalResult;
1432 if (E->Evaluate(EvalResult, CGF.getContext()))
1433 return Builder.getInt(EvalResult.Val.getInt());
1434
1435 // Loop over the components of the offsetof to compute the value.
1436 unsigned n = E->getNumComponents();
1437 llvm::Type* ResultType = ConvertType(E->getType());
1438 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1439 QualType CurrentType = E->getTypeSourceInfo()->getType();
1440 for (unsigned i = 0; i != n; ++i) {
1441 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1442 llvm::Value *Offset = 0;
1443 switch (ON.getKind()) {
1444 case OffsetOfExpr::OffsetOfNode::Array: {
1445 // Compute the index
1446 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1447 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1448 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1449 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1450
1451 // Save the element type
1452 CurrentType =
1453 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1454
1455 // Compute the element size
1456 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1457 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1458
1459 // Multiply out to compute the result
1460 Offset = Builder.CreateMul(Idx, ElemSize);
1461 break;
1462 }
1463
1464 case OffsetOfExpr::OffsetOfNode::Field: {
1465 FieldDecl *MemberDecl = ON.getField();
1466 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1467 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1468
1469 // Compute the index of the field in its parent.
1470 unsigned i = 0;
1471 // FIXME: It would be nice if we didn't have to loop here!
1472 for (RecordDecl::field_iterator Field = RD->field_begin(),
1473 FieldEnd = RD->field_end();
1474 Field != FieldEnd; (void)++Field, ++i) {
1475 if (*Field == MemberDecl)
1476 break;
1477 }
1478 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1479
1480 // Compute the offset to the field
1481 int64_t OffsetInt = RL.getFieldOffset(i) /
1482 CGF.getContext().getCharWidth();
1483 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1484
1485 // Save the element type.
1486 CurrentType = MemberDecl->getType();
1487 break;
1488 }
1489
1490 case OffsetOfExpr::OffsetOfNode::Identifier:
1491 llvm_unreachable("dependent __builtin_offsetof");
1492
1493 case OffsetOfExpr::OffsetOfNode::Base: {
1494 if (ON.getBase()->isVirtual()) {
1495 CGF.ErrorUnsupported(E, "virtual base in offsetof");
1496 continue;
1497 }
1498
1499 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1500 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1501
1502 // Save the element type.
1503 CurrentType = ON.getBase()->getType();
1504
1505 // Compute the offset to the base.
1506 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1507 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1508 int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1509 CGF.getContext().getCharWidth();
1510 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1511 break;
1512 }
1513 }
1514 Result = Builder.CreateAdd(Result, Offset);
1515 }
1516 return Result;
1517 }
1518
1519 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1520 /// argument of the sizeof expression as an integer.
1521 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)1522 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1523 const UnaryExprOrTypeTraitExpr *E) {
1524 QualType TypeToSize = E->getTypeOfArgument();
1525 if (E->getKind() == UETT_SizeOf) {
1526 if (const VariableArrayType *VAT =
1527 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1528 if (E->isArgumentType()) {
1529 // sizeof(type) - make sure to emit the VLA size.
1530 CGF.EmitVariablyModifiedType(TypeToSize);
1531 } else {
1532 // C99 6.5.3.4p2: If the argument is an expression of type
1533 // VLA, it is evaluated.
1534 CGF.EmitIgnoredExpr(E->getArgumentExpr());
1535 }
1536
1537 QualType eltType;
1538 llvm::Value *numElts;
1539 llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1540
1541 llvm::Value *size = numElts;
1542
1543 // Scale the number of non-VLA elements by the non-VLA element size.
1544 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1545 if (!eltSize.isOne())
1546 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1547
1548 return size;
1549 }
1550 }
1551
1552 // If this isn't sizeof(vla), the result must be constant; use the constant
1553 // folding logic so we don't have to duplicate it here.
1554 Expr::EvalResult Result;
1555 E->Evaluate(Result, CGF.getContext());
1556 return Builder.getInt(Result.Val.getInt());
1557 }
1558
VisitUnaryReal(const UnaryOperator * E)1559 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1560 Expr *Op = E->getSubExpr();
1561 if (Op->getType()->isAnyComplexType()) {
1562 // If it's an l-value, load through the appropriate subobject l-value.
1563 // Note that we have to ask E because Op might be an l-value that
1564 // this won't work for, e.g. an Obj-C property.
1565 if (E->isGLValue())
1566 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1567
1568 // Otherwise, calculate and project.
1569 return CGF.EmitComplexExpr(Op, false, true).first;
1570 }
1571
1572 return Visit(Op);
1573 }
1574
VisitUnaryImag(const UnaryOperator * E)1575 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1576 Expr *Op = E->getSubExpr();
1577 if (Op->getType()->isAnyComplexType()) {
1578 // If it's an l-value, load through the appropriate subobject l-value.
1579 // Note that we have to ask E because Op might be an l-value that
1580 // this won't work for, e.g. an Obj-C property.
1581 if (Op->isGLValue())
1582 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1583
1584 // Otherwise, calculate and project.
1585 return CGF.EmitComplexExpr(Op, true, false).second;
1586 }
1587
1588 // __imag on a scalar returns zero. Emit the subexpr to ensure side
1589 // effects are evaluated, but not the actual value.
1590 CGF.EmitScalarExpr(Op, true);
1591 return llvm::Constant::getNullValue(ConvertType(E->getType()));
1592 }
1593
1594 //===----------------------------------------------------------------------===//
1595 // Binary Operators
1596 //===----------------------------------------------------------------------===//
1597
EmitBinOps(const BinaryOperator * E)1598 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1599 TestAndClearIgnoreResultAssign();
1600 BinOpInfo Result;
1601 Result.LHS = Visit(E->getLHS());
1602 Result.RHS = Visit(E->getRHS());
1603 Result.Ty = E->getType();
1604 Result.Opcode = E->getOpcode();
1605 Result.E = E;
1606 return Result;
1607 }
1608
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)1609 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1610 const CompoundAssignOperator *E,
1611 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1612 Value *&Result) {
1613 QualType LHSTy = E->getLHS()->getType();
1614 BinOpInfo OpInfo;
1615
1616 if (E->getComputationResultType()->isAnyComplexType()) {
1617 // This needs to go through the complex expression emitter, but it's a tad
1618 // complicated to do that... I'm leaving it out for now. (Note that we do
1619 // actually need the imaginary part of the RHS for multiplication and
1620 // division.)
1621 CGF.ErrorUnsupported(E, "complex compound assignment");
1622 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1623 return LValue();
1624 }
1625
1626 // Emit the RHS first. __block variables need to have the rhs evaluated
1627 // first, plus this should improve codegen a little.
1628 OpInfo.RHS = Visit(E->getRHS());
1629 OpInfo.Ty = E->getComputationResultType();
1630 OpInfo.Opcode = E->getOpcode();
1631 OpInfo.E = E;
1632 // Load/convert the LHS.
1633 LValue LHSLV = EmitCheckedLValue(E->getLHS());
1634 OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1635 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1636 E->getComputationLHSType());
1637
1638 // Expand the binary operator.
1639 Result = (this->*Func)(OpInfo);
1640
1641 // Convert the result back to the LHS type.
1642 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1643
1644 // Store the result value into the LHS lvalue. Bit-fields are handled
1645 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1646 // 'An assignment expression has the value of the left operand after the
1647 // assignment...'.
1648 if (LHSLV.isBitField())
1649 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1650 else
1651 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1652
1653 return LHSLV;
1654 }
1655
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))1656 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1657 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1658 bool Ignore = TestAndClearIgnoreResultAssign();
1659 Value *RHS;
1660 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1661
1662 // If the result is clearly ignored, return now.
1663 if (Ignore)
1664 return 0;
1665
1666 // The result of an assignment in C is the assigned r-value.
1667 if (!CGF.getContext().getLangOptions().CPlusPlus)
1668 return RHS;
1669
1670 // Objective-C property assignment never reloads the value following a store.
1671 if (LHS.isPropertyRef())
1672 return RHS;
1673
1674 // If the lvalue is non-volatile, return the computed value of the assignment.
1675 if (!LHS.isVolatileQualified())
1676 return RHS;
1677
1678 // Otherwise, reload the value.
1679 return EmitLoadOfLValue(LHS);
1680 }
1681
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)1682 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1683 const BinOpInfo &Ops,
1684 llvm::Value *Zero, bool isDiv) {
1685 llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1686 llvm::BasicBlock *contBB =
1687 CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1688 llvm::next(insertPt));
1689 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1690
1691 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1692
1693 if (Ops.Ty->hasSignedIntegerRepresentation()) {
1694 llvm::Value *IntMin =
1695 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1696 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1697
1698 llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1699 llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1700 llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1701 llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1702 Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1703 overflowBB, contBB);
1704 } else {
1705 CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1706 overflowBB, contBB);
1707 }
1708 EmitOverflowBB(overflowBB);
1709 Builder.SetInsertPoint(contBB);
1710 }
1711
EmitDiv(const BinOpInfo & Ops)1712 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1713 if (isTrapvOverflowBehavior()) {
1714 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1715
1716 if (Ops.Ty->isIntegerType())
1717 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1718 else if (Ops.Ty->isRealFloatingType()) {
1719 llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1720 llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1721 llvm::next(insertPt));
1722 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1723 CGF.CurFn);
1724 CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1725 overflowBB, DivCont);
1726 EmitOverflowBB(overflowBB);
1727 Builder.SetInsertPoint(DivCont);
1728 }
1729 }
1730 if (Ops.LHS->getType()->isFPOrFPVectorTy())
1731 return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1732 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1733 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1734 else
1735 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1736 }
1737
EmitRem(const BinOpInfo & Ops)1738 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1739 // Rem in C can't be a floating point type: C99 6.5.5p2.
1740 if (isTrapvOverflowBehavior()) {
1741 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1742
1743 if (Ops.Ty->isIntegerType())
1744 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1745 }
1746
1747 if (Ops.Ty->hasUnsignedIntegerRepresentation())
1748 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1749 else
1750 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1751 }
1752
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)1753 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1754 unsigned IID;
1755 unsigned OpID = 0;
1756
1757 switch (Ops.Opcode) {
1758 case BO_Add:
1759 case BO_AddAssign:
1760 OpID = 1;
1761 IID = llvm::Intrinsic::sadd_with_overflow;
1762 break;
1763 case BO_Sub:
1764 case BO_SubAssign:
1765 OpID = 2;
1766 IID = llvm::Intrinsic::ssub_with_overflow;
1767 break;
1768 case BO_Mul:
1769 case BO_MulAssign:
1770 OpID = 3;
1771 IID = llvm::Intrinsic::smul_with_overflow;
1772 break;
1773 default:
1774 assert(false && "Unsupported operation for overflow detection");
1775 IID = 0;
1776 }
1777 OpID <<= 1;
1778 OpID |= 1;
1779
1780 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1781
1782 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1783
1784 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1785 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1786 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1787
1788 // Branch in case of overflow.
1789 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1790 llvm::Function::iterator insertPt = initialBB;
1791 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1792 llvm::next(insertPt));
1793 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1794
1795 Builder.CreateCondBr(overflow, overflowBB, continueBB);
1796
1797 // Handle overflow with llvm.trap.
1798 const std::string *handlerName =
1799 &CGF.getContext().getLangOptions().OverflowHandler;
1800 if (handlerName->empty()) {
1801 EmitOverflowBB(overflowBB);
1802 Builder.SetInsertPoint(continueBB);
1803 return result;
1804 }
1805
1806 // If an overflow handler is set, then we want to call it and then use its
1807 // result, if it returns.
1808 Builder.SetInsertPoint(overflowBB);
1809
1810 // Get the overflow handler.
1811 llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1812 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1813 llvm::FunctionType *handlerTy =
1814 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1815 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1816
1817 // Sign extend the args to 64-bit, so that we can use the same handler for
1818 // all types of overflow.
1819 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1820 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1821
1822 // Call the handler with the two arguments, the operation, and the size of
1823 // the result.
1824 llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1825 Builder.getInt8(OpID),
1826 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1827
1828 // Truncate the result back to the desired size.
1829 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1830 Builder.CreateBr(continueBB);
1831
1832 Builder.SetInsertPoint(continueBB);
1833 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1834 phi->addIncoming(result, initialBB);
1835 phi->addIncoming(handlerResult, overflowBB);
1836
1837 return phi;
1838 }
1839
1840 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)1841 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1842 const BinOpInfo &op,
1843 bool isSubtraction) {
1844 // Must have binary (not unary) expr here. Unary pointer
1845 // increment/decrement doesn't use this path.
1846 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1847
1848 Value *pointer = op.LHS;
1849 Expr *pointerOperand = expr->getLHS();
1850 Value *index = op.RHS;
1851 Expr *indexOperand = expr->getRHS();
1852
1853 // In a subtraction, the LHS is always the pointer.
1854 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1855 std::swap(pointer, index);
1856 std::swap(pointerOperand, indexOperand);
1857 }
1858
1859 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1860 if (width != CGF.PointerWidthInBits) {
1861 // Zero-extend or sign-extend the pointer value according to
1862 // whether the index is signed or not.
1863 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1864 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1865 "idx.ext");
1866 }
1867
1868 // If this is subtraction, negate the index.
1869 if (isSubtraction)
1870 index = CGF.Builder.CreateNeg(index, "idx.neg");
1871
1872 const PointerType *pointerType
1873 = pointerOperand->getType()->getAs<PointerType>();
1874 if (!pointerType) {
1875 QualType objectType = pointerOperand->getType()
1876 ->castAs<ObjCObjectPointerType>()
1877 ->getPointeeType();
1878 llvm::Value *objectSize
1879 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1880
1881 index = CGF.Builder.CreateMul(index, objectSize);
1882
1883 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1884 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1885 return CGF.Builder.CreateBitCast(result, pointer->getType());
1886 }
1887
1888 QualType elementType = pointerType->getPointeeType();
1889 if (const VariableArrayType *vla
1890 = CGF.getContext().getAsVariableArrayType(elementType)) {
1891 // The element count here is the total number of non-VLA elements.
1892 llvm::Value *numElements = CGF.getVLASize(vla).first;
1893
1894 // Effectively, the multiply by the VLA size is part of the GEP.
1895 // GEP indexes are signed, and scaling an index isn't permitted to
1896 // signed-overflow, so we use the same semantics for our explicit
1897 // multiply. We suppress this if overflow is not undefined behavior.
1898 if (CGF.getLangOptions().isSignedOverflowDefined()) {
1899 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1900 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1901 } else {
1902 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1903 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1904 }
1905 return pointer;
1906 }
1907
1908 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1909 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1910 // future proof.
1911 if (elementType->isVoidType() || elementType->isFunctionType()) {
1912 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1913 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1914 return CGF.Builder.CreateBitCast(result, pointer->getType());
1915 }
1916
1917 if (CGF.getLangOptions().isSignedOverflowDefined())
1918 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1919
1920 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1921 }
1922
EmitAdd(const BinOpInfo & op)1923 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
1924 if (op.LHS->getType()->isPointerTy() ||
1925 op.RHS->getType()->isPointerTy())
1926 return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
1927
1928 if (op.Ty->isSignedIntegerOrEnumerationType()) {
1929 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1930 case LangOptions::SOB_Undefined:
1931 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
1932 case LangOptions::SOB_Defined:
1933 return Builder.CreateAdd(op.LHS, op.RHS, "add");
1934 case LangOptions::SOB_Trapping:
1935 return EmitOverflowCheckedBinOp(op);
1936 }
1937 }
1938
1939 if (op.LHS->getType()->isFPOrFPVectorTy())
1940 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
1941
1942 return Builder.CreateAdd(op.LHS, op.RHS, "add");
1943 }
1944
EmitSub(const BinOpInfo & op)1945 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
1946 // The LHS is always a pointer if either side is.
1947 if (!op.LHS->getType()->isPointerTy()) {
1948 if (op.Ty->isSignedIntegerOrEnumerationType()) {
1949 switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1950 case LangOptions::SOB_Undefined:
1951 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
1952 case LangOptions::SOB_Defined:
1953 return Builder.CreateSub(op.LHS, op.RHS, "sub");
1954 case LangOptions::SOB_Trapping:
1955 return EmitOverflowCheckedBinOp(op);
1956 }
1957 }
1958
1959 if (op.LHS->getType()->isFPOrFPVectorTy())
1960 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
1961
1962 return Builder.CreateSub(op.LHS, op.RHS, "sub");
1963 }
1964
1965 // If the RHS is not a pointer, then we have normal pointer
1966 // arithmetic.
1967 if (!op.RHS->getType()->isPointerTy())
1968 return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
1969
1970 // Otherwise, this is a pointer subtraction.
1971
1972 // Do the raw subtraction part.
1973 llvm::Value *LHS
1974 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
1975 llvm::Value *RHS
1976 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
1977 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1978
1979 // Okay, figure out the element size.
1980 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1981 QualType elementType = expr->getLHS()->getType()->getPointeeType();
1982
1983 llvm::Value *divisor = 0;
1984
1985 // For a variable-length array, this is going to be non-constant.
1986 if (const VariableArrayType *vla
1987 = CGF.getContext().getAsVariableArrayType(elementType)) {
1988 llvm::Value *numElements;
1989 llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
1990
1991 divisor = numElements;
1992
1993 // Scale the number of non-VLA elements by the non-VLA element size.
1994 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
1995 if (!eltSize.isOne())
1996 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
1997
1998 // For everything elese, we can just compute it, safe in the
1999 // assumption that Sema won't let anything through that we can't
2000 // safely compute the size of.
2001 } else {
2002 CharUnits elementSize;
2003 // Handle GCC extension for pointer arithmetic on void* and
2004 // function pointer types.
2005 if (elementType->isVoidType() || elementType->isFunctionType())
2006 elementSize = CharUnits::One();
2007 else
2008 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2009
2010 // Don't even emit the divide for element size of 1.
2011 if (elementSize.isOne())
2012 return diffInChars;
2013
2014 divisor = CGF.CGM.getSize(elementSize);
2015 }
2016
2017 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2018 // pointer difference in C is only defined in the case where both operands
2019 // are pointing to elements of an array.
2020 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2021 }
2022
EmitShl(const BinOpInfo & Ops)2023 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2024 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2025 // RHS to the same size as the LHS.
2026 Value *RHS = Ops.RHS;
2027 if (Ops.LHS->getType() != RHS->getType())
2028 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2029
2030 if (CGF.CatchUndefined
2031 && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2032 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2033 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2034 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2035 llvm::ConstantInt::get(RHS->getType(), Width)),
2036 Cont, CGF.getTrapBB());
2037 CGF.EmitBlock(Cont);
2038 }
2039
2040 return Builder.CreateShl(Ops.LHS, RHS, "shl");
2041 }
2042
EmitShr(const BinOpInfo & Ops)2043 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2044 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2045 // RHS to the same size as the LHS.
2046 Value *RHS = Ops.RHS;
2047 if (Ops.LHS->getType() != RHS->getType())
2048 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2049
2050 if (CGF.CatchUndefined
2051 && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2052 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2053 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2054 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2055 llvm::ConstantInt::get(RHS->getType(), Width)),
2056 Cont, CGF.getTrapBB());
2057 CGF.EmitBlock(Cont);
2058 }
2059
2060 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2061 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2062 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2063 }
2064
2065 enum IntrinsicType { VCMPEQ, VCMPGT };
2066 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2067 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2068 BuiltinType::Kind ElemKind) {
2069 switch (ElemKind) {
2070 default: assert(0 && "unexpected element type");
2071 case BuiltinType::Char_U:
2072 case BuiltinType::UChar:
2073 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2074 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2075 break;
2076 case BuiltinType::Char_S:
2077 case BuiltinType::SChar:
2078 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2079 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2080 break;
2081 case BuiltinType::UShort:
2082 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2083 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2084 break;
2085 case BuiltinType::Short:
2086 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2087 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2088 break;
2089 case BuiltinType::UInt:
2090 case BuiltinType::ULong:
2091 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2092 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2093 break;
2094 case BuiltinType::Int:
2095 case BuiltinType::Long:
2096 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2097 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2098 break;
2099 case BuiltinType::Float:
2100 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2101 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2102 break;
2103 }
2104 return llvm::Intrinsic::not_intrinsic;
2105 }
2106
EmitCompare(const BinaryOperator * E,unsigned UICmpOpc,unsigned SICmpOpc,unsigned FCmpOpc)2107 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2108 unsigned SICmpOpc, unsigned FCmpOpc) {
2109 TestAndClearIgnoreResultAssign();
2110 Value *Result;
2111 QualType LHSTy = E->getLHS()->getType();
2112 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2113 assert(E->getOpcode() == BO_EQ ||
2114 E->getOpcode() == BO_NE);
2115 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2116 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2117 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2118 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2119 } else if (!LHSTy->isAnyComplexType()) {
2120 Value *LHS = Visit(E->getLHS());
2121 Value *RHS = Visit(E->getRHS());
2122
2123 // If AltiVec, the comparison results in a numeric type, so we use
2124 // intrinsics comparing vectors and giving 0 or 1 as a result
2125 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2126 // constants for mapping CR6 register bits to predicate result
2127 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2128
2129 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2130
2131 // in several cases vector arguments order will be reversed
2132 Value *FirstVecArg = LHS,
2133 *SecondVecArg = RHS;
2134
2135 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2136 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2137 BuiltinType::Kind ElementKind = BTy->getKind();
2138
2139 switch(E->getOpcode()) {
2140 default: assert(0 && "is not a comparison operation");
2141 case BO_EQ:
2142 CR6 = CR6_LT;
2143 ID = GetIntrinsic(VCMPEQ, ElementKind);
2144 break;
2145 case BO_NE:
2146 CR6 = CR6_EQ;
2147 ID = GetIntrinsic(VCMPEQ, ElementKind);
2148 break;
2149 case BO_LT:
2150 CR6 = CR6_LT;
2151 ID = GetIntrinsic(VCMPGT, ElementKind);
2152 std::swap(FirstVecArg, SecondVecArg);
2153 break;
2154 case BO_GT:
2155 CR6 = CR6_LT;
2156 ID = GetIntrinsic(VCMPGT, ElementKind);
2157 break;
2158 case BO_LE:
2159 if (ElementKind == BuiltinType::Float) {
2160 CR6 = CR6_LT;
2161 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2162 std::swap(FirstVecArg, SecondVecArg);
2163 }
2164 else {
2165 CR6 = CR6_EQ;
2166 ID = GetIntrinsic(VCMPGT, ElementKind);
2167 }
2168 break;
2169 case BO_GE:
2170 if (ElementKind == BuiltinType::Float) {
2171 CR6 = CR6_LT;
2172 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2173 }
2174 else {
2175 CR6 = CR6_EQ;
2176 ID = GetIntrinsic(VCMPGT, ElementKind);
2177 std::swap(FirstVecArg, SecondVecArg);
2178 }
2179 break;
2180 }
2181
2182 Value *CR6Param = Builder.getInt32(CR6);
2183 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2184 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2185 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2186 }
2187
2188 if (LHS->getType()->isFPOrFPVectorTy()) {
2189 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2190 LHS, RHS, "cmp");
2191 } else if (LHSTy->hasSignedIntegerRepresentation()) {
2192 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2193 LHS, RHS, "cmp");
2194 } else {
2195 // Unsigned integers and pointers.
2196 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2197 LHS, RHS, "cmp");
2198 }
2199
2200 // If this is a vector comparison, sign extend the result to the appropriate
2201 // vector integer type and return it (don't convert to bool).
2202 if (LHSTy->isVectorType())
2203 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2204
2205 } else {
2206 // Complex Comparison: can only be an equality comparison.
2207 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2208 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2209
2210 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2211
2212 Value *ResultR, *ResultI;
2213 if (CETy->isRealFloatingType()) {
2214 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2215 LHS.first, RHS.first, "cmp.r");
2216 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2217 LHS.second, RHS.second, "cmp.i");
2218 } else {
2219 // Complex comparisons can only be equality comparisons. As such, signed
2220 // and unsigned opcodes are the same.
2221 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2222 LHS.first, RHS.first, "cmp.r");
2223 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2224 LHS.second, RHS.second, "cmp.i");
2225 }
2226
2227 if (E->getOpcode() == BO_EQ) {
2228 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2229 } else {
2230 assert(E->getOpcode() == BO_NE &&
2231 "Complex comparison other than == or != ?");
2232 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2233 }
2234 }
2235
2236 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2237 }
2238
VisitBinAssign(const BinaryOperator * E)2239 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2240 bool Ignore = TestAndClearIgnoreResultAssign();
2241
2242 Value *RHS;
2243 LValue LHS;
2244
2245 switch (E->getLHS()->getType().getObjCLifetime()) {
2246 case Qualifiers::OCL_Strong:
2247 llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2248 break;
2249
2250 case Qualifiers::OCL_Autoreleasing:
2251 llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2252 break;
2253
2254 case Qualifiers::OCL_Weak:
2255 RHS = Visit(E->getRHS());
2256 LHS = EmitCheckedLValue(E->getLHS());
2257 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2258 break;
2259
2260 // No reason to do any of these differently.
2261 case Qualifiers::OCL_None:
2262 case Qualifiers::OCL_ExplicitNone:
2263 // __block variables need to have the rhs evaluated first, plus
2264 // this should improve codegen just a little.
2265 RHS = Visit(E->getRHS());
2266 LHS = EmitCheckedLValue(E->getLHS());
2267
2268 // Store the value into the LHS. Bit-fields are handled specially
2269 // because the result is altered by the store, i.e., [C99 6.5.16p1]
2270 // 'An assignment expression has the value of the left operand after
2271 // the assignment...'.
2272 if (LHS.isBitField())
2273 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2274 else
2275 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2276 }
2277
2278 // If the result is clearly ignored, return now.
2279 if (Ignore)
2280 return 0;
2281
2282 // The result of an assignment in C is the assigned r-value.
2283 if (!CGF.getContext().getLangOptions().CPlusPlus)
2284 return RHS;
2285
2286 // Objective-C property assignment never reloads the value following a store.
2287 if (LHS.isPropertyRef())
2288 return RHS;
2289
2290 // If the lvalue is non-volatile, return the computed value of the assignment.
2291 if (!LHS.isVolatileQualified())
2292 return RHS;
2293
2294 // Otherwise, reload the value.
2295 return EmitLoadOfLValue(LHS);
2296 }
2297
VisitBinLAnd(const BinaryOperator * E)2298 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2299 llvm::Type *ResTy = ConvertType(E->getType());
2300
2301 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2302 // If we have 1 && X, just emit X without inserting the control flow.
2303 bool LHSCondVal;
2304 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2305 if (LHSCondVal) { // If we have 1 && X, just emit X.
2306 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2307 // ZExt result to int or bool.
2308 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2309 }
2310
2311 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2312 if (!CGF.ContainsLabel(E->getRHS()))
2313 return llvm::Constant::getNullValue(ResTy);
2314 }
2315
2316 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2317 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
2318
2319 CodeGenFunction::ConditionalEvaluation eval(CGF);
2320
2321 // Branch on the LHS first. If it is false, go to the failure (cont) block.
2322 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2323
2324 // Any edges into the ContBlock are now from an (indeterminate number of)
2325 // edges from this first condition. All of these values will be false. Start
2326 // setting up the PHI node in the Cont Block for this.
2327 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2328 "", ContBlock);
2329 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2330 PI != PE; ++PI)
2331 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2332
2333 eval.begin(CGF);
2334 CGF.EmitBlock(RHSBlock);
2335 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2336 eval.end(CGF);
2337
2338 // Reaquire the RHS block, as there may be subblocks inserted.
2339 RHSBlock = Builder.GetInsertBlock();
2340
2341 // Emit an unconditional branch from this block to ContBlock. Insert an entry
2342 // into the phi node for the edge with the value of RHSCond.
2343 if (CGF.getDebugInfo())
2344 // There is no need to emit line number for unconditional branch.
2345 Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2346 CGF.EmitBlock(ContBlock);
2347 PN->addIncoming(RHSCond, RHSBlock);
2348
2349 // ZExt result to int.
2350 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2351 }
2352
VisitBinLOr(const BinaryOperator * E)2353 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2354 llvm::Type *ResTy = ConvertType(E->getType());
2355
2356 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2357 // If we have 0 || X, just emit X without inserting the control flow.
2358 bool LHSCondVal;
2359 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2360 if (!LHSCondVal) { // If we have 0 || X, just emit X.
2361 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2362 // ZExt result to int or bool.
2363 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2364 }
2365
2366 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2367 if (!CGF.ContainsLabel(E->getRHS()))
2368 return llvm::ConstantInt::get(ResTy, 1);
2369 }
2370
2371 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2372 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2373
2374 CodeGenFunction::ConditionalEvaluation eval(CGF);
2375
2376 // Branch on the LHS first. If it is true, go to the success (cont) block.
2377 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2378
2379 // Any edges into the ContBlock are now from an (indeterminate number of)
2380 // edges from this first condition. All of these values will be true. Start
2381 // setting up the PHI node in the Cont Block for this.
2382 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2383 "", ContBlock);
2384 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2385 PI != PE; ++PI)
2386 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2387
2388 eval.begin(CGF);
2389
2390 // Emit the RHS condition as a bool value.
2391 CGF.EmitBlock(RHSBlock);
2392 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2393
2394 eval.end(CGF);
2395
2396 // Reaquire the RHS block, as there may be subblocks inserted.
2397 RHSBlock = Builder.GetInsertBlock();
2398
2399 // Emit an unconditional branch from this block to ContBlock. Insert an entry
2400 // into the phi node for the edge with the value of RHSCond.
2401 CGF.EmitBlock(ContBlock);
2402 PN->addIncoming(RHSCond, RHSBlock);
2403
2404 // ZExt result to int.
2405 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2406 }
2407
VisitBinComma(const BinaryOperator * E)2408 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2409 CGF.EmitIgnoredExpr(E->getLHS());
2410 CGF.EnsureInsertPoint();
2411 return Visit(E->getRHS());
2412 }
2413
2414 //===----------------------------------------------------------------------===//
2415 // Other Operators
2416 //===----------------------------------------------------------------------===//
2417
2418 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2419 /// expression is cheap enough and side-effect-free enough to evaluate
2420 /// unconditionally instead of conditionally. This is used to convert control
2421 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)2422 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2423 CodeGenFunction &CGF) {
2424 E = E->IgnoreParens();
2425
2426 // Anything that is an integer or floating point constant is fine.
2427 if (E->isConstantInitializer(CGF.getContext(), false))
2428 return true;
2429
2430 // Non-volatile automatic variables too, to get "cond ? X : Y" where
2431 // X and Y are local variables.
2432 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2433 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2434 if (VD->hasLocalStorage() && !(CGF.getContext()
2435 .getCanonicalType(VD->getType())
2436 .isVolatileQualified()))
2437 return true;
2438
2439 return false;
2440 }
2441
2442
2443 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)2444 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2445 TestAndClearIgnoreResultAssign();
2446
2447 // Bind the common expression if necessary.
2448 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2449
2450 Expr *condExpr = E->getCond();
2451 Expr *lhsExpr = E->getTrueExpr();
2452 Expr *rhsExpr = E->getFalseExpr();
2453
2454 // If the condition constant folds and can be elided, try to avoid emitting
2455 // the condition and the dead arm.
2456 bool CondExprBool;
2457 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2458 Expr *live = lhsExpr, *dead = rhsExpr;
2459 if (!CondExprBool) std::swap(live, dead);
2460
2461 // If the dead side doesn't have labels we need, and if the Live side isn't
2462 // the gnu missing ?: extension (which we could handle, but don't bother
2463 // to), just emit the Live part.
2464 if (!CGF.ContainsLabel(dead))
2465 return Visit(live);
2466 }
2467
2468 // OpenCL: If the condition is a vector, we can treat this condition like
2469 // the select function.
2470 if (CGF.getContext().getLangOptions().OpenCL
2471 && condExpr->getType()->isVectorType()) {
2472 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2473 llvm::Value *LHS = Visit(lhsExpr);
2474 llvm::Value *RHS = Visit(rhsExpr);
2475
2476 llvm::Type *condType = ConvertType(condExpr->getType());
2477 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2478
2479 unsigned numElem = vecTy->getNumElements();
2480 llvm::Type *elemType = vecTy->getElementType();
2481
2482 std::vector<llvm::Constant*> Zvals;
2483 for (unsigned i = 0; i < numElem; ++i)
2484 Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2485
2486 llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2487 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2488 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2489 llvm::VectorType::get(elemType,
2490 numElem),
2491 "sext");
2492 llvm::Value *tmp2 = Builder.CreateNot(tmp);
2493
2494 // Cast float to int to perform ANDs if necessary.
2495 llvm::Value *RHSTmp = RHS;
2496 llvm::Value *LHSTmp = LHS;
2497 bool wasCast = false;
2498 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2499 if (rhsVTy->getElementType()->isFloatTy()) {
2500 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2501 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2502 wasCast = true;
2503 }
2504
2505 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2506 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2507 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2508 if (wasCast)
2509 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2510
2511 return tmp5;
2512 }
2513
2514 // If this is a really simple expression (like x ? 4 : 5), emit this as a
2515 // select instead of as control flow. We can only do this if it is cheap and
2516 // safe to evaluate the LHS and RHS unconditionally.
2517 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2518 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2519 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2520 llvm::Value *LHS = Visit(lhsExpr);
2521 llvm::Value *RHS = Visit(rhsExpr);
2522 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2523 }
2524
2525 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2526 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2527 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2528
2529 CodeGenFunction::ConditionalEvaluation eval(CGF);
2530 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2531
2532 CGF.EmitBlock(LHSBlock);
2533 eval.begin(CGF);
2534 Value *LHS = Visit(lhsExpr);
2535 eval.end(CGF);
2536
2537 LHSBlock = Builder.GetInsertBlock();
2538 Builder.CreateBr(ContBlock);
2539
2540 CGF.EmitBlock(RHSBlock);
2541 eval.begin(CGF);
2542 Value *RHS = Visit(rhsExpr);
2543 eval.end(CGF);
2544
2545 RHSBlock = Builder.GetInsertBlock();
2546 CGF.EmitBlock(ContBlock);
2547
2548 // If the LHS or RHS is a throw expression, it will be legitimately null.
2549 if (!LHS)
2550 return RHS;
2551 if (!RHS)
2552 return LHS;
2553
2554 // Create a PHI node for the real part.
2555 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2556 PN->addIncoming(LHS, LHSBlock);
2557 PN->addIncoming(RHS, RHSBlock);
2558 return PN;
2559 }
2560
VisitChooseExpr(ChooseExpr * E)2561 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2562 return Visit(E->getChosenSubExpr(CGF.getContext()));
2563 }
2564
VisitVAArgExpr(VAArgExpr * VE)2565 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2566 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2567 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2568
2569 // If EmitVAArg fails, we fall back to the LLVM instruction.
2570 if (!ArgPtr)
2571 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2572
2573 // FIXME Volatility.
2574 return Builder.CreateLoad(ArgPtr);
2575 }
2576
VisitBlockExpr(const BlockExpr * block)2577 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2578 return CGF.EmitBlockLiteral(block);
2579 }
2580
VisitAsTypeExpr(AsTypeExpr * E)2581 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2582 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
2583 llvm::Type *DstTy = ConvertType(E->getType());
2584
2585 // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2586 // a shuffle vector instead of a bitcast.
2587 llvm::Type *SrcTy = Src->getType();
2588 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2589 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2590 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2591 if ((numElementsDst == 3 && numElementsSrc == 4)
2592 || (numElementsDst == 4 && numElementsSrc == 3)) {
2593
2594
2595 // In the case of going from int4->float3, a bitcast is needed before
2596 // doing a shuffle.
2597 llvm::Type *srcElemTy =
2598 cast<llvm::VectorType>(SrcTy)->getElementType();
2599 llvm::Type *dstElemTy =
2600 cast<llvm::VectorType>(DstTy)->getElementType();
2601
2602 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2603 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2604 // Create a float type of the same size as the source or destination.
2605 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2606 numElementsSrc);
2607
2608 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2609 }
2610
2611 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2612
2613 llvm::SmallVector<llvm::Constant*, 3> Args;
2614 Args.push_back(Builder.getInt32(0));
2615 Args.push_back(Builder.getInt32(1));
2616 Args.push_back(Builder.getInt32(2));
2617
2618 if (numElementsDst == 4)
2619 Args.push_back(llvm::UndefValue::get(
2620 llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2621
2622 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2623
2624 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2625 }
2626 }
2627
2628 return Builder.CreateBitCast(Src, DstTy, "astype");
2629 }
2630
2631 //===----------------------------------------------------------------------===//
2632 // Entry Point into this File
2633 //===----------------------------------------------------------------------===//
2634
2635 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2636 /// type, ignoring the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)2637 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2638 assert(E && !hasAggregateLLVMType(E->getType()) &&
2639 "Invalid scalar expression to emit");
2640
2641 if (isa<CXXDefaultArgExpr>(E))
2642 disableDebugInfo();
2643 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2644 .Visit(const_cast<Expr*>(E));
2645 if (isa<CXXDefaultArgExpr>(E))
2646 enableDebugInfo();
2647 return V;
2648 }
2649
2650 /// EmitScalarConversion - Emit a conversion from the specified type to the
2651 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy)2652 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2653 QualType DstTy) {
2654 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2655 "Invalid scalar expression to emit");
2656 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2657 }
2658
2659 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2660 /// type to the specified destination type, where the destination type is an
2661 /// LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy)2662 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2663 QualType SrcTy,
2664 QualType DstTy) {
2665 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2666 "Invalid complex -> scalar conversion");
2667 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2668 DstTy);
2669 }
2670
2671
2672 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)2673 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2674 bool isInc, bool isPre) {
2675 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2676 }
2677
EmitObjCIsaExpr(const ObjCIsaExpr * E)2678 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2679 llvm::Value *V;
2680 // object->isa or (*object).isa
2681 // Generate code as for: *(Class*)object
2682 // build Class* type
2683 llvm::Type *ClassPtrTy = ConvertType(E->getType());
2684
2685 Expr *BaseExpr = E->getBase();
2686 if (BaseExpr->isRValue()) {
2687 V = CreateTempAlloca(ClassPtrTy, "resval");
2688 llvm::Value *Src = EmitScalarExpr(BaseExpr);
2689 Builder.CreateStore(Src, V);
2690 V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2691 MakeAddrLValue(V, E->getType()));
2692 } else {
2693 if (E->isArrow())
2694 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2695 else
2696 V = EmitLValue(BaseExpr).getAddress();
2697 }
2698
2699 // build Class* type
2700 ClassPtrTy = ClassPtrTy->getPointerTo();
2701 V = Builder.CreateBitCast(V, ClassPtrTy);
2702 return MakeAddrLValue(V, E->getType());
2703 }
2704
2705
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)2706 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2707 const CompoundAssignOperator *E) {
2708 ScalarExprEmitter Scalar(*this);
2709 Value *Result = 0;
2710 switch (E->getOpcode()) {
2711 #define COMPOUND_OP(Op) \
2712 case BO_##Op##Assign: \
2713 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2714 Result)
2715 COMPOUND_OP(Mul);
2716 COMPOUND_OP(Div);
2717 COMPOUND_OP(Rem);
2718 COMPOUND_OP(Add);
2719 COMPOUND_OP(Sub);
2720 COMPOUND_OP(Shl);
2721 COMPOUND_OP(Shr);
2722 COMPOUND_OP(And);
2723 COMPOUND_OP(Xor);
2724 COMPOUND_OP(Or);
2725 #undef COMPOUND_OP
2726
2727 case BO_PtrMemD:
2728 case BO_PtrMemI:
2729 case BO_Mul:
2730 case BO_Div:
2731 case BO_Rem:
2732 case BO_Add:
2733 case BO_Sub:
2734 case BO_Shl:
2735 case BO_Shr:
2736 case BO_LT:
2737 case BO_GT:
2738 case BO_LE:
2739 case BO_GE:
2740 case BO_EQ:
2741 case BO_NE:
2742 case BO_And:
2743 case BO_Xor:
2744 case BO_Or:
2745 case BO_LAnd:
2746 case BO_LOr:
2747 case BO_Assign:
2748 case BO_Comma:
2749 assert(false && "Not valid compound assignment operators");
2750 break;
2751 }
2752
2753 llvm_unreachable("Unhandled compound assignment operator");
2754 }
2755