• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
MustVisitNullValue(const Expr * E)51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
TestAndClearIgnoreResultAssign()75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
ConvertType(QualType T)81   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E)83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
EmitLoadOfLValue(LValue LV)85   Value *EmitLoadOfLValue(LValue LV) {
86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
EmitLoadOfLValue(const Expr * E)92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E));
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
EmitIntToBoolConversion(Value * V)127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
Visit(Expr * E)150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
VisitStmt(Stmt * S)154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     assert(0 && "Stmt can't have complex result type!");
157     return 0;
158   }
159   Value *VisitExpr(Expr *S);
160 
VisitParenExpr(ParenExpr * PE)161   Value *VisitParenExpr(ParenExpr *PE) {
162     return Visit(PE->getSubExpr());
163   }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)164   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
165     return Visit(E->getReplacement());
166   }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)167   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
168     return Visit(GE->getResultExpr());
169   }
170 
171   // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)172   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
173     return Builder.getInt(E->getValue());
174   }
VisitFloatingLiteral(const FloatingLiteral * E)175   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
176     return llvm::ConstantFP::get(VMContext, E->getValue());
177   }
VisitCharacterLiteral(const CharacterLiteral * E)178   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
179     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
180   }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)181   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
182     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
183   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)184   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
185     return EmitNullValue(E->getType());
186   }
VisitGNUNullExpr(const GNUNullExpr * E)187   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
188     return EmitNullValue(E->getType());
189   }
190   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
191   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)192   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
193     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
194     return Builder.CreateBitCast(V, ConvertType(E->getType()));
195   }
196 
VisitSizeOfPackExpr(SizeOfPackExpr * E)197   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
198     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
199   }
200 
VisitOpaqueValueExpr(OpaqueValueExpr * E)201   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
202     if (E->isGLValue())
203       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
204 
205     // Otherwise, assume the mapping is the scalar directly.
206     return CGF.getOpaqueRValueMapping(E).getScalarVal();
207   }
208 
209   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)210   Value *VisitDeclRefExpr(DeclRefExpr *E) {
211     Expr::EvalResult Result;
212     if (!E->Evaluate(Result, CGF.getContext()))
213       return EmitLoadOfLValue(E);
214 
215     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
216 
217     llvm::Constant *C;
218     if (Result.Val.isInt())
219       C = Builder.getInt(Result.Val.getInt());
220     else if (Result.Val.isFloat())
221       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
222     else
223       return EmitLoadOfLValue(E);
224 
225     // Make sure we emit a debug reference to the global variable.
226     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
227       if (!CGF.getContext().DeclMustBeEmitted(VD))
228         CGF.EmitDeclRefExprDbgValue(E, C);
229     } else if (isa<EnumConstantDecl>(E->getDecl())) {
230       CGF.EmitDeclRefExprDbgValue(E, C);
231     }
232 
233     return C;
234   }
VisitObjCSelectorExpr(ObjCSelectorExpr * E)235   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
236     return CGF.EmitObjCSelectorExpr(E);
237   }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)238   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
239     return CGF.EmitObjCProtocolExpr(E);
240   }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)241   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
242     return EmitLoadOfLValue(E);
243   }
VisitObjCPropertyRefExpr(ObjCPropertyRefExpr * E)244   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
245     assert(E->getObjectKind() == OK_Ordinary &&
246            "reached property reference without lvalue-to-rvalue");
247     return EmitLoadOfLValue(E);
248   }
VisitObjCMessageExpr(ObjCMessageExpr * E)249   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
250     if (E->getMethodDecl() &&
251         E->getMethodDecl()->getResultType()->isReferenceType())
252       return EmitLoadOfLValue(E);
253     return CGF.EmitObjCMessageExpr(E).getScalarVal();
254   }
255 
VisitObjCIsaExpr(ObjCIsaExpr * E)256   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
257     LValue LV = CGF.EmitObjCIsaExpr(E);
258     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
259     return V;
260   }
261 
262   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
263   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
264   Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)265   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)266   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
267     return EmitLoadOfLValue(E);
268   }
269 
270   Value *VisitInitListExpr(InitListExpr *E);
271 
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)272   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
273     return CGF.CGM.EmitNullConstant(E->getType());
274   }
VisitExplicitCastExpr(ExplicitCastExpr * E)275   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
276     if (E->getType()->isVariablyModifiedType())
277       CGF.EmitVariablyModifiedType(E->getType());
278     return VisitCastExpr(E);
279   }
280   Value *VisitCastExpr(CastExpr *E);
281 
VisitCallExpr(const CallExpr * E)282   Value *VisitCallExpr(const CallExpr *E) {
283     if (E->getCallReturnType()->isReferenceType())
284       return EmitLoadOfLValue(E);
285 
286     return CGF.EmitCallExpr(E).getScalarVal();
287   }
288 
289   Value *VisitStmtExpr(const StmtExpr *E);
290 
291   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
292 
293   // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)294   Value *VisitUnaryPostDec(const UnaryOperator *E) {
295     LValue LV = EmitLValue(E->getSubExpr());
296     return EmitScalarPrePostIncDec(E, LV, false, false);
297   }
VisitUnaryPostInc(const UnaryOperator * E)298   Value *VisitUnaryPostInc(const UnaryOperator *E) {
299     LValue LV = EmitLValue(E->getSubExpr());
300     return EmitScalarPrePostIncDec(E, LV, true, false);
301   }
VisitUnaryPreDec(const UnaryOperator * E)302   Value *VisitUnaryPreDec(const UnaryOperator *E) {
303     LValue LV = EmitLValue(E->getSubExpr());
304     return EmitScalarPrePostIncDec(E, LV, false, true);
305   }
VisitUnaryPreInc(const UnaryOperator * E)306   Value *VisitUnaryPreInc(const UnaryOperator *E) {
307     LValue LV = EmitLValue(E->getSubExpr());
308     return EmitScalarPrePostIncDec(E, LV, true, true);
309   }
310 
311   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
312                                                llvm::Value *InVal,
313                                                llvm::Value *NextVal,
314                                                bool IsInc);
315 
316   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
317                                        bool isInc, bool isPre);
318 
319 
VisitUnaryAddrOf(const UnaryOperator * E)320   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
321     if (isa<MemberPointerType>(E->getType())) // never sugared
322       return CGF.CGM.getMemberPointerConstant(E);
323 
324     return EmitLValue(E->getSubExpr()).getAddress();
325   }
VisitUnaryDeref(const UnaryOperator * E)326   Value *VisitUnaryDeref(const UnaryOperator *E) {
327     if (E->getType()->isVoidType())
328       return Visit(E->getSubExpr()); // the actual value should be unused
329     return EmitLoadOfLValue(E);
330   }
VisitUnaryPlus(const UnaryOperator * E)331   Value *VisitUnaryPlus(const UnaryOperator *E) {
332     // This differs from gcc, though, most likely due to a bug in gcc.
333     TestAndClearIgnoreResultAssign();
334     return Visit(E->getSubExpr());
335   }
336   Value *VisitUnaryMinus    (const UnaryOperator *E);
337   Value *VisitUnaryNot      (const UnaryOperator *E);
338   Value *VisitUnaryLNot     (const UnaryOperator *E);
339   Value *VisitUnaryReal     (const UnaryOperator *E);
340   Value *VisitUnaryImag     (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)341   Value *VisitUnaryExtension(const UnaryOperator *E) {
342     return Visit(E->getSubExpr());
343   }
344 
345   // C++
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)346   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
347     return Visit(DAE->getExpr());
348   }
VisitCXXThisExpr(CXXThisExpr * TE)349   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
350     return CGF.LoadCXXThis();
351   }
352 
VisitExprWithCleanups(ExprWithCleanups * E)353   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
354     return CGF.EmitExprWithCleanups(E).getScalarVal();
355   }
VisitCXXNewExpr(const CXXNewExpr * E)356   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
357     return CGF.EmitCXXNewExpr(E);
358   }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)359   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
360     CGF.EmitCXXDeleteExpr(E);
361     return 0;
362   }
VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr * E)363   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
364     return Builder.getInt1(E->getValue());
365   }
366 
VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr * E)367   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
368     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
369   }
370 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)371   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
373   }
374 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)375   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
377   }
378 
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)379   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
380     // C++ [expr.pseudo]p1:
381     //   The result shall only be used as the operand for the function call
382     //   operator (), and the result of such a call has type void. The only
383     //   effect is the evaluation of the postfix-expression before the dot or
384     //   arrow.
385     CGF.EmitScalarExpr(E->getBase());
386     return 0;
387   }
388 
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)389   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
390     return EmitNullValue(E->getType());
391   }
392 
VisitCXXThrowExpr(const CXXThrowExpr * E)393   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
394     CGF.EmitCXXThrowExpr(E);
395     return 0;
396   }
397 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)398   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
399     return Builder.getInt1(E->getValue());
400   }
401 
402   // Binary Operators.
EmitMul(const BinOpInfo & Ops)403   Value *EmitMul(const BinOpInfo &Ops) {
404     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
405       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
406       case LangOptions::SOB_Undefined:
407         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
408       case LangOptions::SOB_Defined:
409         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
410       case LangOptions::SOB_Trapping:
411         return EmitOverflowCheckedBinOp(Ops);
412       }
413     }
414 
415     if (Ops.LHS->getType()->isFPOrFPVectorTy())
416       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
417     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
418   }
isTrapvOverflowBehavior()419   bool isTrapvOverflowBehavior() {
420     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
421                == LangOptions::SOB_Trapping;
422   }
423   /// Create a binary op that checks for overflow.
424   /// Currently only supports +, - and *.
425   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
426   // Emit the overflow BB when -ftrapv option is activated.
EmitOverflowBB(llvm::BasicBlock * overflowBB)427   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
428     Builder.SetInsertPoint(overflowBB);
429     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
430     Builder.CreateCall(Trap);
431     Builder.CreateUnreachable();
432   }
433   // Check for undefined division and modulus behaviors.
434   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
435                                                   llvm::Value *Zero,bool isDiv);
436   Value *EmitDiv(const BinOpInfo &Ops);
437   Value *EmitRem(const BinOpInfo &Ops);
438   Value *EmitAdd(const BinOpInfo &Ops);
439   Value *EmitSub(const BinOpInfo &Ops);
440   Value *EmitShl(const BinOpInfo &Ops);
441   Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)442   Value *EmitAnd(const BinOpInfo &Ops) {
443     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
444   }
EmitXor(const BinOpInfo & Ops)445   Value *EmitXor(const BinOpInfo &Ops) {
446     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
447   }
EmitOr(const BinOpInfo & Ops)448   Value *EmitOr (const BinOpInfo &Ops) {
449     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
450   }
451 
452   BinOpInfo EmitBinOps(const BinaryOperator *E);
453   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
454                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
455                                   Value *&Result);
456 
457   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
458                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
459 
460   // Binary operators and binary compound assignment operators.
461 #define HANDLEBINOP(OP) \
462   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
463     return Emit ## OP(EmitBinOps(E));                                      \
464   }                                                                        \
465   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
466     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
467   }
468   HANDLEBINOP(Mul)
469   HANDLEBINOP(Div)
470   HANDLEBINOP(Rem)
471   HANDLEBINOP(Add)
472   HANDLEBINOP(Sub)
473   HANDLEBINOP(Shl)
474   HANDLEBINOP(Shr)
475   HANDLEBINOP(And)
476   HANDLEBINOP(Xor)
477   HANDLEBINOP(Or)
478 #undef HANDLEBINOP
479 
480   // Comparisons.
481   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
482                      unsigned SICmpOpc, unsigned FCmpOpc);
483 #define VISITCOMP(CODE, UI, SI, FP) \
484     Value *VisitBin##CODE(const BinaryOperator *E) { \
485       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
486                          llvm::FCmpInst::FP); }
487   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
488   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
489   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
490   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
491   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
492   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
493 #undef VISITCOMP
494 
495   Value *VisitBinAssign     (const BinaryOperator *E);
496 
497   Value *VisitBinLAnd       (const BinaryOperator *E);
498   Value *VisitBinLOr        (const BinaryOperator *E);
499   Value *VisitBinComma      (const BinaryOperator *E);
500 
VisitBinPtrMemD(const Expr * E)501   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)502   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
503 
504   // Other Operators.
505   Value *VisitBlockExpr(const BlockExpr *BE);
506   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
507   Value *VisitChooseExpr(ChooseExpr *CE);
508   Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)509   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
510     return CGF.EmitObjCStringLiteral(E);
511   }
512   Value *VisitAsTypeExpr(AsTypeExpr *CE);
513 };
514 }  // end anonymous namespace.
515 
516 //===----------------------------------------------------------------------===//
517 //                                Utilities
518 //===----------------------------------------------------------------------===//
519 
520 /// EmitConversionToBool - Convert the specified expression value to a
521 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)522 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
523   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
524 
525   if (SrcType->isRealFloatingType())
526     return EmitFloatToBoolConversion(Src);
527 
528   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
529     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
530 
531   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
532          "Unknown scalar type to convert");
533 
534   if (isa<llvm::IntegerType>(Src->getType()))
535     return EmitIntToBoolConversion(Src);
536 
537   assert(isa<llvm::PointerType>(Src->getType()));
538   return EmitPointerToBoolConversion(Src);
539 }
540 
541 /// EmitScalarConversion - Emit a conversion from the specified type to the
542 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType)543 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
544                                                QualType DstType) {
545   SrcType = CGF.getContext().getCanonicalType(SrcType);
546   DstType = CGF.getContext().getCanonicalType(DstType);
547   if (SrcType == DstType) return Src;
548 
549   if (DstType->isVoidType()) return 0;
550 
551   // Handle conversions to bool first, they are special: comparisons against 0.
552   if (DstType->isBooleanType())
553     return EmitConversionToBool(Src, SrcType);
554 
555   llvm::Type *DstTy = ConvertType(DstType);
556 
557   // Ignore conversions like int -> uint.
558   if (Src->getType() == DstTy)
559     return Src;
560 
561   // Handle pointer conversions next: pointers can only be converted to/from
562   // other pointers and integers. Check for pointer types in terms of LLVM, as
563   // some native types (like Obj-C id) may map to a pointer type.
564   if (isa<llvm::PointerType>(DstTy)) {
565     // The source value may be an integer, or a pointer.
566     if (isa<llvm::PointerType>(Src->getType()))
567       return Builder.CreateBitCast(Src, DstTy, "conv");
568 
569     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
570     // First, convert to the correct width so that we control the kind of
571     // extension.
572     llvm::Type *MiddleTy = CGF.IntPtrTy;
573     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
574     llvm::Value* IntResult =
575         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
576     // Then, cast to pointer.
577     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
578   }
579 
580   if (isa<llvm::PointerType>(Src->getType())) {
581     // Must be an ptr to int cast.
582     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
583     return Builder.CreatePtrToInt(Src, DstTy, "conv");
584   }
585 
586   // A scalar can be splatted to an extended vector of the same element type
587   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
588     // Cast the scalar to element type
589     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
590     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
591 
592     // Insert the element in element zero of an undef vector
593     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
594     llvm::Value *Idx = Builder.getInt32(0);
595     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
596 
597     // Splat the element across to all elements
598     llvm::SmallVector<llvm::Constant*, 16> Args;
599     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
600     for (unsigned i = 0; i != NumElements; ++i)
601       Args.push_back(Builder.getInt32(0));
602 
603     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
604     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
605     return Yay;
606   }
607 
608   // Allow bitcast from vector to integer/fp of the same size.
609   if (isa<llvm::VectorType>(Src->getType()) ||
610       isa<llvm::VectorType>(DstTy))
611     return Builder.CreateBitCast(Src, DstTy, "conv");
612 
613   // Finally, we have the arithmetic types: real int/float.
614   if (isa<llvm::IntegerType>(Src->getType())) {
615     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
616     if (isa<llvm::IntegerType>(DstTy))
617       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
618     else if (InputSigned)
619       return Builder.CreateSIToFP(Src, DstTy, "conv");
620     else
621       return Builder.CreateUIToFP(Src, DstTy, "conv");
622   }
623 
624   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
625   if (isa<llvm::IntegerType>(DstTy)) {
626     if (DstType->isSignedIntegerOrEnumerationType())
627       return Builder.CreateFPToSI(Src, DstTy, "conv");
628     else
629       return Builder.CreateFPToUI(Src, DstTy, "conv");
630   }
631 
632   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
633   if (DstTy->getTypeID() < Src->getType()->getTypeID())
634     return Builder.CreateFPTrunc(Src, DstTy, "conv");
635   else
636     return Builder.CreateFPExt(Src, DstTy, "conv");
637 }
638 
639 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
640 /// type to the specified destination type, where the destination type is an
641 /// LLVM scalar type.
642 Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy)643 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
644                               QualType SrcTy, QualType DstTy) {
645   // Get the source element type.
646   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
647 
648   // Handle conversions to bool first, they are special: comparisons against 0.
649   if (DstTy->isBooleanType()) {
650     //  Complex != 0  -> (Real != 0) | (Imag != 0)
651     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
652     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
653     return Builder.CreateOr(Src.first, Src.second, "tobool");
654   }
655 
656   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
657   // the imaginary part of the complex value is discarded and the value of the
658   // real part is converted according to the conversion rules for the
659   // corresponding real type.
660   return EmitScalarConversion(Src.first, SrcTy, DstTy);
661 }
662 
EmitNullValue(QualType Ty)663 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
664   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
665     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
666 
667   return llvm::Constant::getNullValue(ConvertType(Ty));
668 }
669 
670 //===----------------------------------------------------------------------===//
671 //                            Visitor Methods
672 //===----------------------------------------------------------------------===//
673 
VisitExpr(Expr * E)674 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
675   CGF.ErrorUnsupported(E, "scalar expression");
676   if (E->getType()->isVoidType())
677     return 0;
678   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
679 }
680 
VisitShuffleVectorExpr(ShuffleVectorExpr * E)681 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
682   // Vector Mask Case
683   if (E->getNumSubExprs() == 2 ||
684       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
685     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
686     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
687     Value *Mask;
688 
689     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
690     unsigned LHSElts = LTy->getNumElements();
691 
692     if (E->getNumSubExprs() == 3) {
693       Mask = CGF.EmitScalarExpr(E->getExpr(2));
694 
695       // Shuffle LHS & RHS into one input vector.
696       llvm::SmallVector<llvm::Constant*, 32> concat;
697       for (unsigned i = 0; i != LHSElts; ++i) {
698         concat.push_back(Builder.getInt32(2*i));
699         concat.push_back(Builder.getInt32(2*i+1));
700       }
701 
702       Value* CV = llvm::ConstantVector::get(concat);
703       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
704       LHSElts *= 2;
705     } else {
706       Mask = RHS;
707     }
708 
709     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
710     llvm::Constant* EltMask;
711 
712     // Treat vec3 like vec4.
713     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
714       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
715                                        (1 << llvm::Log2_32(LHSElts+2))-1);
716     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
717       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
718                                        (1 << llvm::Log2_32(LHSElts+1))-1);
719     else
720       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
721                                        (1 << llvm::Log2_32(LHSElts))-1);
722 
723     // Mask off the high bits of each shuffle index.
724     llvm::SmallVector<llvm::Constant *, 32> MaskV;
725     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
726       MaskV.push_back(EltMask);
727 
728     Value* MaskBits = llvm::ConstantVector::get(MaskV);
729     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
730 
731     // newv = undef
732     // mask = mask & maskbits
733     // for each elt
734     //   n = extract mask i
735     //   x = extract val n
736     //   newv = insert newv, x, i
737     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
738                                                         MTy->getNumElements());
739     Value* NewV = llvm::UndefValue::get(RTy);
740     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
741       Value *Indx = Builder.getInt32(i);
742       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
743       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
744 
745       // Handle vec3 special since the index will be off by one for the RHS.
746       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
747         Value *cmpIndx, *newIndx;
748         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
749                                         "cmp_shuf_idx");
750         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
751         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
752       }
753       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
754       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
755     }
756     return NewV;
757   }
758 
759   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
760   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
761 
762   // Handle vec3 special since the index will be off by one for the RHS.
763   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
764   llvm::SmallVector<llvm::Constant*, 32> indices;
765   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
766     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
767     if (VTy->getNumElements() == 3 && Idx > 3)
768       Idx -= 1;
769     indices.push_back(Builder.getInt32(Idx));
770   }
771 
772   Value *SV = llvm::ConstantVector::get(indices);
773   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
774 }
VisitMemberExpr(MemberExpr * E)775 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
776   Expr::EvalResult Result;
777   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
778     if (E->isArrow())
779       CGF.EmitScalarExpr(E->getBase());
780     else
781       EmitLValue(E->getBase());
782     return Builder.getInt(Result.Val.getInt());
783   }
784 
785   // Emit debug info for aggregate now, if it was delayed to reduce
786   // debug info size.
787   CGDebugInfo *DI = CGF.getDebugInfo();
788   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
789     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
790     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
791       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
792         DI->getOrCreateRecordType(PTy->getPointeeType(),
793                                   M->getParent()->getLocation());
794   }
795   return EmitLoadOfLValue(E);
796 }
797 
VisitArraySubscriptExpr(ArraySubscriptExpr * E)798 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
799   TestAndClearIgnoreResultAssign();
800 
801   // Emit subscript expressions in rvalue context's.  For most cases, this just
802   // loads the lvalue formed by the subscript expr.  However, we have to be
803   // careful, because the base of a vector subscript is occasionally an rvalue,
804   // so we can't get it as an lvalue.
805   if (!E->getBase()->getType()->isVectorType())
806     return EmitLoadOfLValue(E);
807 
808   // Handle the vector case.  The base must be a vector, the index must be an
809   // integer value.
810   Value *Base = Visit(E->getBase());
811   Value *Idx  = Visit(E->getIdx());
812   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
813   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
814   return Builder.CreateExtractElement(Base, Idx, "vecext");
815 }
816 
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)817 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
818                                   unsigned Off, llvm::Type *I32Ty) {
819   int MV = SVI->getMaskValue(Idx);
820   if (MV == -1)
821     return llvm::UndefValue::get(I32Ty);
822   return llvm::ConstantInt::get(I32Ty, Off+MV);
823 }
824 
VisitInitListExpr(InitListExpr * E)825 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
826   bool Ignore = TestAndClearIgnoreResultAssign();
827   (void)Ignore;
828   assert (Ignore == false && "init list ignored");
829   unsigned NumInitElements = E->getNumInits();
830 
831   if (E->hadArrayRangeDesignator())
832     CGF.ErrorUnsupported(E, "GNU array range designator extension");
833 
834   llvm::VectorType *VType =
835     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
836 
837   // We have a scalar in braces. Just use the first element.
838   if (!VType)
839     return Visit(E->getInit(0));
840 
841   unsigned ResElts = VType->getNumElements();
842 
843   // Loop over initializers collecting the Value for each, and remembering
844   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
845   // us to fold the shuffle for the swizzle into the shuffle for the vector
846   // initializer, since LLVM optimizers generally do not want to touch
847   // shuffles.
848   unsigned CurIdx = 0;
849   bool VIsUndefShuffle = false;
850   llvm::Value *V = llvm::UndefValue::get(VType);
851   for (unsigned i = 0; i != NumInitElements; ++i) {
852     Expr *IE = E->getInit(i);
853     Value *Init = Visit(IE);
854     llvm::SmallVector<llvm::Constant*, 16> Args;
855 
856     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
857 
858     // Handle scalar elements.  If the scalar initializer is actually one
859     // element of a different vector of the same width, use shuffle instead of
860     // extract+insert.
861     if (!VVT) {
862       if (isa<ExtVectorElementExpr>(IE)) {
863         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
864 
865         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
866           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
867           Value *LHS = 0, *RHS = 0;
868           if (CurIdx == 0) {
869             // insert into undef -> shuffle (src, undef)
870             Args.push_back(C);
871             for (unsigned j = 1; j != ResElts; ++j)
872               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
873 
874             LHS = EI->getVectorOperand();
875             RHS = V;
876             VIsUndefShuffle = true;
877           } else if (VIsUndefShuffle) {
878             // insert into undefshuffle && size match -> shuffle (v, src)
879             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
880             for (unsigned j = 0; j != CurIdx; ++j)
881               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
882             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
883             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
884               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
885 
886             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
887             RHS = EI->getVectorOperand();
888             VIsUndefShuffle = false;
889           }
890           if (!Args.empty()) {
891             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
892             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
893             ++CurIdx;
894             continue;
895           }
896         }
897       }
898       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
899                                       "vecinit");
900       VIsUndefShuffle = false;
901       ++CurIdx;
902       continue;
903     }
904 
905     unsigned InitElts = VVT->getNumElements();
906 
907     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
908     // input is the same width as the vector being constructed, generate an
909     // optimized shuffle of the swizzle input into the result.
910     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
911     if (isa<ExtVectorElementExpr>(IE)) {
912       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
913       Value *SVOp = SVI->getOperand(0);
914       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
915 
916       if (OpTy->getNumElements() == ResElts) {
917         for (unsigned j = 0; j != CurIdx; ++j) {
918           // If the current vector initializer is a shuffle with undef, merge
919           // this shuffle directly into it.
920           if (VIsUndefShuffle) {
921             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
922                                       CGF.Int32Ty));
923           } else {
924             Args.push_back(Builder.getInt32(j));
925           }
926         }
927         for (unsigned j = 0, je = InitElts; j != je; ++j)
928           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
929         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
930           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
931 
932         if (VIsUndefShuffle)
933           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
934 
935         Init = SVOp;
936       }
937     }
938 
939     // Extend init to result vector length, and then shuffle its contribution
940     // to the vector initializer into V.
941     if (Args.empty()) {
942       for (unsigned j = 0; j != InitElts; ++j)
943         Args.push_back(Builder.getInt32(j));
944       for (unsigned j = InitElts; j != ResElts; ++j)
945         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
946       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
947       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
948                                          Mask, "vext");
949 
950       Args.clear();
951       for (unsigned j = 0; j != CurIdx; ++j)
952         Args.push_back(Builder.getInt32(j));
953       for (unsigned j = 0; j != InitElts; ++j)
954         Args.push_back(Builder.getInt32(j+Offset));
955       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
956         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
957     }
958 
959     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
960     // merging subsequent shuffles into this one.
961     if (CurIdx == 0)
962       std::swap(V, Init);
963     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
964     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
965     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
966     CurIdx += InitElts;
967   }
968 
969   // FIXME: evaluate codegen vs. shuffling against constant null vector.
970   // Emit remaining default initializers.
971   llvm::Type *EltTy = VType->getElementType();
972 
973   // Emit remaining default initializers
974   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
975     Value *Idx = Builder.getInt32(CurIdx);
976     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
977     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
978   }
979   return V;
980 }
981 
ShouldNullCheckClassCastValue(const CastExpr * CE)982 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
983   const Expr *E = CE->getSubExpr();
984 
985   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
986     return false;
987 
988   if (isa<CXXThisExpr>(E)) {
989     // We always assume that 'this' is never null.
990     return false;
991   }
992 
993   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
994     // And that glvalue casts are never null.
995     if (ICE->getValueKind() != VK_RValue)
996       return false;
997   }
998 
999   return true;
1000 }
1001 
1002 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1003 // have to handle a more broad range of conversions than explicit casts, as they
1004 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1005 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1006   Expr *E = CE->getSubExpr();
1007   QualType DestTy = CE->getType();
1008   CastKind Kind = CE->getCastKind();
1009 
1010   if (!DestTy->isVoidType())
1011     TestAndClearIgnoreResultAssign();
1012 
1013   // Since almost all cast kinds apply to scalars, this switch doesn't have
1014   // a default case, so the compiler will warn on a missing case.  The cases
1015   // are in the same order as in the CastKind enum.
1016   switch (Kind) {
1017   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1018 
1019   case CK_LValueBitCast:
1020   case CK_ObjCObjectLValueCast: {
1021     Value *V = EmitLValue(E).getAddress();
1022     V = Builder.CreateBitCast(V,
1023                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1024     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
1025   }
1026 
1027   case CK_AnyPointerToObjCPointerCast:
1028   case CK_AnyPointerToBlockPointerCast:
1029   case CK_BitCast: {
1030     Value *Src = Visit(const_cast<Expr*>(E));
1031     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1032   }
1033   case CK_NoOp:
1034   case CK_UserDefinedConversion:
1035     return Visit(const_cast<Expr*>(E));
1036 
1037   case CK_BaseToDerived: {
1038     const CXXRecordDecl *DerivedClassDecl =
1039       DestTy->getCXXRecordDeclForPointerType();
1040 
1041     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1042                                         CE->path_begin(), CE->path_end(),
1043                                         ShouldNullCheckClassCastValue(CE));
1044   }
1045   case CK_UncheckedDerivedToBase:
1046   case CK_DerivedToBase: {
1047     const RecordType *DerivedClassTy =
1048       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1049     CXXRecordDecl *DerivedClassDecl =
1050       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1051 
1052     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1053                                      CE->path_begin(), CE->path_end(),
1054                                      ShouldNullCheckClassCastValue(CE));
1055   }
1056   case CK_Dynamic: {
1057     Value *V = Visit(const_cast<Expr*>(E));
1058     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1059     return CGF.EmitDynamicCast(V, DCE);
1060   }
1061 
1062   case CK_ArrayToPointerDecay: {
1063     assert(E->getType()->isArrayType() &&
1064            "Array to pointer decay must have array source type!");
1065 
1066     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1067 
1068     // Note that VLA pointers are always decayed, so we don't need to do
1069     // anything here.
1070     if (!E->getType()->isVariableArrayType()) {
1071       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1072       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1073                                  ->getElementType()) &&
1074              "Expected pointer to array");
1075       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1076     }
1077 
1078     // Make sure the array decay ends up being the right type.  This matters if
1079     // the array type was of an incomplete type.
1080     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1081   }
1082   case CK_FunctionToPointerDecay:
1083     return EmitLValue(E).getAddress();
1084 
1085   case CK_NullToPointer:
1086     if (MustVisitNullValue(E))
1087       (void) Visit(E);
1088 
1089     return llvm::ConstantPointerNull::get(
1090                                cast<llvm::PointerType>(ConvertType(DestTy)));
1091 
1092   case CK_NullToMemberPointer: {
1093     if (MustVisitNullValue(E))
1094       (void) Visit(E);
1095 
1096     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1097     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1098   }
1099 
1100   case CK_BaseToDerivedMemberPointer:
1101   case CK_DerivedToBaseMemberPointer: {
1102     Value *Src = Visit(E);
1103 
1104     // Note that the AST doesn't distinguish between checked and
1105     // unchecked member pointer conversions, so we always have to
1106     // implement checked conversions here.  This is inefficient when
1107     // actual control flow may be required in order to perform the
1108     // check, which it is for data member pointers (but not member
1109     // function pointers on Itanium and ARM).
1110     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1111   }
1112 
1113   case CK_ObjCProduceObject:
1114     return CGF.EmitARCRetainScalarExpr(E);
1115   case CK_ObjCConsumeObject:
1116     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1117   case CK_ObjCReclaimReturnedObject: {
1118     llvm::Value *value = Visit(E);
1119     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1120     return CGF.EmitObjCConsumeObject(E->getType(), value);
1121   }
1122 
1123   case CK_FloatingRealToComplex:
1124   case CK_FloatingComplexCast:
1125   case CK_IntegralRealToComplex:
1126   case CK_IntegralComplexCast:
1127   case CK_IntegralComplexToFloatingComplex:
1128   case CK_FloatingComplexToIntegralComplex:
1129   case CK_ConstructorConversion:
1130   case CK_ToUnion:
1131     llvm_unreachable("scalar cast to non-scalar value");
1132     break;
1133 
1134   case CK_GetObjCProperty: {
1135     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1136     assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1137            "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1138     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E));
1139     return RV.getScalarVal();
1140   }
1141 
1142   case CK_LValueToRValue:
1143     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1144     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1145     return Visit(const_cast<Expr*>(E));
1146 
1147   case CK_IntegralToPointer: {
1148     Value *Src = Visit(const_cast<Expr*>(E));
1149 
1150     // First, convert to the correct width so that we control the kind of
1151     // extension.
1152     llvm::Type *MiddleTy = CGF.IntPtrTy;
1153     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1154     llvm::Value* IntResult =
1155       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1156 
1157     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1158   }
1159   case CK_PointerToIntegral:
1160     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1161     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1162 
1163   case CK_ToVoid: {
1164     CGF.EmitIgnoredExpr(E);
1165     return 0;
1166   }
1167   case CK_VectorSplat: {
1168     llvm::Type *DstTy = ConvertType(DestTy);
1169     Value *Elt = Visit(const_cast<Expr*>(E));
1170 
1171     // Insert the element in element zero of an undef vector
1172     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1173     llvm::Value *Idx = Builder.getInt32(0);
1174     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1175 
1176     // Splat the element across to all elements
1177     llvm::SmallVector<llvm::Constant*, 16> Args;
1178     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1179     llvm::Constant *Zero = Builder.getInt32(0);
1180     for (unsigned i = 0; i < NumElements; i++)
1181       Args.push_back(Zero);
1182 
1183     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1184     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1185     return Yay;
1186   }
1187 
1188   case CK_IntegralCast:
1189   case CK_IntegralToFloating:
1190   case CK_FloatingToIntegral:
1191   case CK_FloatingCast:
1192     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1193 
1194   case CK_IntegralToBoolean:
1195     return EmitIntToBoolConversion(Visit(E));
1196   case CK_PointerToBoolean:
1197     return EmitPointerToBoolConversion(Visit(E));
1198   case CK_FloatingToBoolean:
1199     return EmitFloatToBoolConversion(Visit(E));
1200   case CK_MemberPointerToBoolean: {
1201     llvm::Value *MemPtr = Visit(E);
1202     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1203     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1204   }
1205 
1206   case CK_FloatingComplexToReal:
1207   case CK_IntegralComplexToReal:
1208     return CGF.EmitComplexExpr(E, false, true).first;
1209 
1210   case CK_FloatingComplexToBoolean:
1211   case CK_IntegralComplexToBoolean: {
1212     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1213 
1214     // TODO: kill this function off, inline appropriate case here
1215     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1216   }
1217 
1218   }
1219 
1220   llvm_unreachable("unknown scalar cast");
1221   return 0;
1222 }
1223 
VisitStmtExpr(const StmtExpr * E)1224 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1225   CodeGenFunction::StmtExprEvaluation eval(CGF);
1226   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1227     .getScalarVal();
1228 }
1229 
VisitBlockDeclRefExpr(const BlockDeclRefExpr * E)1230 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1231   LValue LV = CGF.EmitBlockDeclRefLValue(E);
1232   return CGF.EmitLoadOfLValue(LV).getScalarVal();
1233 }
1234 
1235 //===----------------------------------------------------------------------===//
1236 //                             Unary Operators
1237 //===----------------------------------------------------------------------===//
1238 
1239 llvm::Value *ScalarExprEmitter::
EmitAddConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,llvm::Value * NextVal,bool IsInc)1240 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1241                                 llvm::Value *InVal,
1242                                 llvm::Value *NextVal, bool IsInc) {
1243   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1244   case LangOptions::SOB_Undefined:
1245     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1246     break;
1247   case LangOptions::SOB_Defined:
1248     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1249     break;
1250   case LangOptions::SOB_Trapping:
1251     BinOpInfo BinOp;
1252     BinOp.LHS = InVal;
1253     BinOp.RHS = NextVal;
1254     BinOp.Ty = E->getType();
1255     BinOp.Opcode = BO_Add;
1256     BinOp.E = E;
1257     return EmitOverflowCheckedBinOp(BinOp);
1258     break;
1259   }
1260   assert(false && "Unknown SignedOverflowBehaviorTy");
1261   return 0;
1262 }
1263 
1264 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1265 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1266                                            bool isInc, bool isPre) {
1267 
1268   QualType type = E->getSubExpr()->getType();
1269   llvm::Value *value = EmitLoadOfLValue(LV);
1270   llvm::Value *input = value;
1271 
1272   int amount = (isInc ? 1 : -1);
1273 
1274   // Special case of integer increment that we have to check first: bool++.
1275   // Due to promotion rules, we get:
1276   //   bool++ -> bool = bool + 1
1277   //          -> bool = (int)bool + 1
1278   //          -> bool = ((int)bool + 1 != 0)
1279   // An interesting aspect of this is that increment is always true.
1280   // Decrement does not have this property.
1281   if (isInc && type->isBooleanType()) {
1282     value = Builder.getTrue();
1283 
1284   // Most common case by far: integer increment.
1285   } else if (type->isIntegerType()) {
1286 
1287     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1288 
1289     // Note that signed integer inc/dec with width less than int can't
1290     // overflow because of promotion rules; we're just eliding a few steps here.
1291     if (type->isSignedIntegerOrEnumerationType() &&
1292         value->getType()->getPrimitiveSizeInBits() >=
1293             CGF.IntTy->getBitWidth())
1294       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1295     else
1296       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1297 
1298   // Next most common: pointer increment.
1299   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1300     QualType type = ptr->getPointeeType();
1301 
1302     // VLA types don't have constant size.
1303     if (const VariableArrayType *vla
1304           = CGF.getContext().getAsVariableArrayType(type)) {
1305       llvm::Value *numElts = CGF.getVLASize(vla).first;
1306       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1307       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1308         value = Builder.CreateGEP(value, numElts, "vla.inc");
1309       else
1310         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1311 
1312     // Arithmetic on function pointers (!) is just +-1.
1313     } else if (type->isFunctionType()) {
1314       llvm::Value *amt = Builder.getInt32(amount);
1315 
1316       value = CGF.EmitCastToVoidPtr(value);
1317       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1318         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1319       else
1320         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1321       value = Builder.CreateBitCast(value, input->getType());
1322 
1323     // For everything else, we can just do a simple increment.
1324     } else {
1325       llvm::Value *amt = Builder.getInt32(amount);
1326       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1327         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1328       else
1329         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1330     }
1331 
1332   // Vector increment/decrement.
1333   } else if (type->isVectorType()) {
1334     if (type->hasIntegerRepresentation()) {
1335       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1336 
1337       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1338     } else {
1339       value = Builder.CreateFAdd(
1340                   value,
1341                   llvm::ConstantFP::get(value->getType(), amount),
1342                   isInc ? "inc" : "dec");
1343     }
1344 
1345   // Floating point.
1346   } else if (type->isRealFloatingType()) {
1347     // Add the inc/dec to the real part.
1348     llvm::Value *amt;
1349     if (value->getType()->isFloatTy())
1350       amt = llvm::ConstantFP::get(VMContext,
1351                                   llvm::APFloat(static_cast<float>(amount)));
1352     else if (value->getType()->isDoubleTy())
1353       amt = llvm::ConstantFP::get(VMContext,
1354                                   llvm::APFloat(static_cast<double>(amount)));
1355     else {
1356       llvm::APFloat F(static_cast<float>(amount));
1357       bool ignored;
1358       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1359                 &ignored);
1360       amt = llvm::ConstantFP::get(VMContext, F);
1361     }
1362     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1363 
1364   // Objective-C pointer types.
1365   } else {
1366     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1367     value = CGF.EmitCastToVoidPtr(value);
1368 
1369     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1370     if (!isInc) size = -size;
1371     llvm::Value *sizeValue =
1372       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1373 
1374     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1375       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1376     else
1377       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1378     value = Builder.CreateBitCast(value, input->getType());
1379   }
1380 
1381   // Store the updated result through the lvalue.
1382   if (LV.isBitField())
1383     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1384   else
1385     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1386 
1387   // If this is a postinc, return the value read from memory, otherwise use the
1388   // updated value.
1389   return isPre ? value : input;
1390 }
1391 
1392 
1393 
VisitUnaryMinus(const UnaryOperator * E)1394 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1395   TestAndClearIgnoreResultAssign();
1396   // Emit unary minus with EmitSub so we handle overflow cases etc.
1397   BinOpInfo BinOp;
1398   BinOp.RHS = Visit(E->getSubExpr());
1399 
1400   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1401     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1402   else
1403     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1404   BinOp.Ty = E->getType();
1405   BinOp.Opcode = BO_Sub;
1406   BinOp.E = E;
1407   return EmitSub(BinOp);
1408 }
1409 
VisitUnaryNot(const UnaryOperator * E)1410 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1411   TestAndClearIgnoreResultAssign();
1412   Value *Op = Visit(E->getSubExpr());
1413   return Builder.CreateNot(Op, "neg");
1414 }
1415 
VisitUnaryLNot(const UnaryOperator * E)1416 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1417   // Compare operand to zero.
1418   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1419 
1420   // Invert value.
1421   // TODO: Could dynamically modify easy computations here.  For example, if
1422   // the operand is an icmp ne, turn into icmp eq.
1423   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1424 
1425   // ZExt result to the expr type.
1426   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1427 }
1428 
VisitOffsetOfExpr(OffsetOfExpr * E)1429 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1430   // Try folding the offsetof to a constant.
1431   Expr::EvalResult EvalResult;
1432   if (E->Evaluate(EvalResult, CGF.getContext()))
1433     return Builder.getInt(EvalResult.Val.getInt());
1434 
1435   // Loop over the components of the offsetof to compute the value.
1436   unsigned n = E->getNumComponents();
1437   llvm::Type* ResultType = ConvertType(E->getType());
1438   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1439   QualType CurrentType = E->getTypeSourceInfo()->getType();
1440   for (unsigned i = 0; i != n; ++i) {
1441     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1442     llvm::Value *Offset = 0;
1443     switch (ON.getKind()) {
1444     case OffsetOfExpr::OffsetOfNode::Array: {
1445       // Compute the index
1446       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1447       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1448       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1449       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1450 
1451       // Save the element type
1452       CurrentType =
1453           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1454 
1455       // Compute the element size
1456       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1457           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1458 
1459       // Multiply out to compute the result
1460       Offset = Builder.CreateMul(Idx, ElemSize);
1461       break;
1462     }
1463 
1464     case OffsetOfExpr::OffsetOfNode::Field: {
1465       FieldDecl *MemberDecl = ON.getField();
1466       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1467       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1468 
1469       // Compute the index of the field in its parent.
1470       unsigned i = 0;
1471       // FIXME: It would be nice if we didn't have to loop here!
1472       for (RecordDecl::field_iterator Field = RD->field_begin(),
1473                                       FieldEnd = RD->field_end();
1474            Field != FieldEnd; (void)++Field, ++i) {
1475         if (*Field == MemberDecl)
1476           break;
1477       }
1478       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1479 
1480       // Compute the offset to the field
1481       int64_t OffsetInt = RL.getFieldOffset(i) /
1482                           CGF.getContext().getCharWidth();
1483       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1484 
1485       // Save the element type.
1486       CurrentType = MemberDecl->getType();
1487       break;
1488     }
1489 
1490     case OffsetOfExpr::OffsetOfNode::Identifier:
1491       llvm_unreachable("dependent __builtin_offsetof");
1492 
1493     case OffsetOfExpr::OffsetOfNode::Base: {
1494       if (ON.getBase()->isVirtual()) {
1495         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1496         continue;
1497       }
1498 
1499       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1500       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1501 
1502       // Save the element type.
1503       CurrentType = ON.getBase()->getType();
1504 
1505       // Compute the offset to the base.
1506       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1507       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1508       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1509                           CGF.getContext().getCharWidth();
1510       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1511       break;
1512     }
1513     }
1514     Result = Builder.CreateAdd(Result, Offset);
1515   }
1516   return Result;
1517 }
1518 
1519 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1520 /// argument of the sizeof expression as an integer.
1521 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)1522 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1523                               const UnaryExprOrTypeTraitExpr *E) {
1524   QualType TypeToSize = E->getTypeOfArgument();
1525   if (E->getKind() == UETT_SizeOf) {
1526     if (const VariableArrayType *VAT =
1527           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1528       if (E->isArgumentType()) {
1529         // sizeof(type) - make sure to emit the VLA size.
1530         CGF.EmitVariablyModifiedType(TypeToSize);
1531       } else {
1532         // C99 6.5.3.4p2: If the argument is an expression of type
1533         // VLA, it is evaluated.
1534         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1535       }
1536 
1537       QualType eltType;
1538       llvm::Value *numElts;
1539       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1540 
1541       llvm::Value *size = numElts;
1542 
1543       // Scale the number of non-VLA elements by the non-VLA element size.
1544       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1545       if (!eltSize.isOne())
1546         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1547 
1548       return size;
1549     }
1550   }
1551 
1552   // If this isn't sizeof(vla), the result must be constant; use the constant
1553   // folding logic so we don't have to duplicate it here.
1554   Expr::EvalResult Result;
1555   E->Evaluate(Result, CGF.getContext());
1556   return Builder.getInt(Result.Val.getInt());
1557 }
1558 
VisitUnaryReal(const UnaryOperator * E)1559 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1560   Expr *Op = E->getSubExpr();
1561   if (Op->getType()->isAnyComplexType()) {
1562     // If it's an l-value, load through the appropriate subobject l-value.
1563     // Note that we have to ask E because Op might be an l-value that
1564     // this won't work for, e.g. an Obj-C property.
1565     if (E->isGLValue())
1566       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1567 
1568     // Otherwise, calculate and project.
1569     return CGF.EmitComplexExpr(Op, false, true).first;
1570   }
1571 
1572   return Visit(Op);
1573 }
1574 
VisitUnaryImag(const UnaryOperator * E)1575 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1576   Expr *Op = E->getSubExpr();
1577   if (Op->getType()->isAnyComplexType()) {
1578     // If it's an l-value, load through the appropriate subobject l-value.
1579     // Note that we have to ask E because Op might be an l-value that
1580     // this won't work for, e.g. an Obj-C property.
1581     if (Op->isGLValue())
1582       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1583 
1584     // Otherwise, calculate and project.
1585     return CGF.EmitComplexExpr(Op, true, false).second;
1586   }
1587 
1588   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1589   // effects are evaluated, but not the actual value.
1590   CGF.EmitScalarExpr(Op, true);
1591   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1592 }
1593 
1594 //===----------------------------------------------------------------------===//
1595 //                           Binary Operators
1596 //===----------------------------------------------------------------------===//
1597 
EmitBinOps(const BinaryOperator * E)1598 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1599   TestAndClearIgnoreResultAssign();
1600   BinOpInfo Result;
1601   Result.LHS = Visit(E->getLHS());
1602   Result.RHS = Visit(E->getRHS());
1603   Result.Ty  = E->getType();
1604   Result.Opcode = E->getOpcode();
1605   Result.E = E;
1606   return Result;
1607 }
1608 
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)1609 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1610                                               const CompoundAssignOperator *E,
1611                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1612                                                    Value *&Result) {
1613   QualType LHSTy = E->getLHS()->getType();
1614   BinOpInfo OpInfo;
1615 
1616   if (E->getComputationResultType()->isAnyComplexType()) {
1617     // This needs to go through the complex expression emitter, but it's a tad
1618     // complicated to do that... I'm leaving it out for now.  (Note that we do
1619     // actually need the imaginary part of the RHS for multiplication and
1620     // division.)
1621     CGF.ErrorUnsupported(E, "complex compound assignment");
1622     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1623     return LValue();
1624   }
1625 
1626   // Emit the RHS first.  __block variables need to have the rhs evaluated
1627   // first, plus this should improve codegen a little.
1628   OpInfo.RHS = Visit(E->getRHS());
1629   OpInfo.Ty = E->getComputationResultType();
1630   OpInfo.Opcode = E->getOpcode();
1631   OpInfo.E = E;
1632   // Load/convert the LHS.
1633   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1634   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1635   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1636                                     E->getComputationLHSType());
1637 
1638   // Expand the binary operator.
1639   Result = (this->*Func)(OpInfo);
1640 
1641   // Convert the result back to the LHS type.
1642   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1643 
1644   // Store the result value into the LHS lvalue. Bit-fields are handled
1645   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1646   // 'An assignment expression has the value of the left operand after the
1647   // assignment...'.
1648   if (LHSLV.isBitField())
1649     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1650   else
1651     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1652 
1653   return LHSLV;
1654 }
1655 
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))1656 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1657                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1658   bool Ignore = TestAndClearIgnoreResultAssign();
1659   Value *RHS;
1660   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1661 
1662   // If the result is clearly ignored, return now.
1663   if (Ignore)
1664     return 0;
1665 
1666   // The result of an assignment in C is the assigned r-value.
1667   if (!CGF.getContext().getLangOptions().CPlusPlus)
1668     return RHS;
1669 
1670   // Objective-C property assignment never reloads the value following a store.
1671   if (LHS.isPropertyRef())
1672     return RHS;
1673 
1674   // If the lvalue is non-volatile, return the computed value of the assignment.
1675   if (!LHS.isVolatileQualified())
1676     return RHS;
1677 
1678   // Otherwise, reload the value.
1679   return EmitLoadOfLValue(LHS);
1680 }
1681 
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)1682 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1683      					    const BinOpInfo &Ops,
1684 				     	    llvm::Value *Zero, bool isDiv) {
1685   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1686   llvm::BasicBlock *contBB =
1687     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1688                          llvm::next(insertPt));
1689   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1690 
1691   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1692 
1693   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1694     llvm::Value *IntMin =
1695       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1696     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1697 
1698     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1699     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1700     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1701     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1702     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1703                          overflowBB, contBB);
1704   } else {
1705     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1706                              overflowBB, contBB);
1707   }
1708   EmitOverflowBB(overflowBB);
1709   Builder.SetInsertPoint(contBB);
1710 }
1711 
EmitDiv(const BinOpInfo & Ops)1712 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1713   if (isTrapvOverflowBehavior()) {
1714     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1715 
1716     if (Ops.Ty->isIntegerType())
1717       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1718     else if (Ops.Ty->isRealFloatingType()) {
1719       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1720       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1721                                                        llvm::next(insertPt));
1722       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1723                                                           CGF.CurFn);
1724       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1725                                overflowBB, DivCont);
1726       EmitOverflowBB(overflowBB);
1727       Builder.SetInsertPoint(DivCont);
1728     }
1729   }
1730   if (Ops.LHS->getType()->isFPOrFPVectorTy())
1731     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1732   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1733     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1734   else
1735     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1736 }
1737 
EmitRem(const BinOpInfo & Ops)1738 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1739   // Rem in C can't be a floating point type: C99 6.5.5p2.
1740   if (isTrapvOverflowBehavior()) {
1741     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1742 
1743     if (Ops.Ty->isIntegerType())
1744       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1745   }
1746 
1747   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1748     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1749   else
1750     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1751 }
1752 
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)1753 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1754   unsigned IID;
1755   unsigned OpID = 0;
1756 
1757   switch (Ops.Opcode) {
1758   case BO_Add:
1759   case BO_AddAssign:
1760     OpID = 1;
1761     IID = llvm::Intrinsic::sadd_with_overflow;
1762     break;
1763   case BO_Sub:
1764   case BO_SubAssign:
1765     OpID = 2;
1766     IID = llvm::Intrinsic::ssub_with_overflow;
1767     break;
1768   case BO_Mul:
1769   case BO_MulAssign:
1770     OpID = 3;
1771     IID = llvm::Intrinsic::smul_with_overflow;
1772     break;
1773   default:
1774     assert(false && "Unsupported operation for overflow detection");
1775     IID = 0;
1776   }
1777   OpID <<= 1;
1778   OpID |= 1;
1779 
1780   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1781 
1782   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1783 
1784   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1785   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1786   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1787 
1788   // Branch in case of overflow.
1789   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1790   llvm::Function::iterator insertPt = initialBB;
1791   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1792                                                       llvm::next(insertPt));
1793   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1794 
1795   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1796 
1797   // Handle overflow with llvm.trap.
1798   const std::string *handlerName =
1799     &CGF.getContext().getLangOptions().OverflowHandler;
1800   if (handlerName->empty()) {
1801     EmitOverflowBB(overflowBB);
1802     Builder.SetInsertPoint(continueBB);
1803     return result;
1804   }
1805 
1806   // If an overflow handler is set, then we want to call it and then use its
1807   // result, if it returns.
1808   Builder.SetInsertPoint(overflowBB);
1809 
1810   // Get the overflow handler.
1811   llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1812   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1813   llvm::FunctionType *handlerTy =
1814       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1815   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1816 
1817   // Sign extend the args to 64-bit, so that we can use the same handler for
1818   // all types of overflow.
1819   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1820   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1821 
1822   // Call the handler with the two arguments, the operation, and the size of
1823   // the result.
1824   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1825       Builder.getInt8(OpID),
1826       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1827 
1828   // Truncate the result back to the desired size.
1829   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1830   Builder.CreateBr(continueBB);
1831 
1832   Builder.SetInsertPoint(continueBB);
1833   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1834   phi->addIncoming(result, initialBB);
1835   phi->addIncoming(handlerResult, overflowBB);
1836 
1837   return phi;
1838 }
1839 
1840 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)1841 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1842                                     const BinOpInfo &op,
1843                                     bool isSubtraction) {
1844   // Must have binary (not unary) expr here.  Unary pointer
1845   // increment/decrement doesn't use this path.
1846   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1847 
1848   Value *pointer = op.LHS;
1849   Expr *pointerOperand = expr->getLHS();
1850   Value *index = op.RHS;
1851   Expr *indexOperand = expr->getRHS();
1852 
1853   // In a subtraction, the LHS is always the pointer.
1854   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1855     std::swap(pointer, index);
1856     std::swap(pointerOperand, indexOperand);
1857   }
1858 
1859   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1860   if (width != CGF.PointerWidthInBits) {
1861     // Zero-extend or sign-extend the pointer value according to
1862     // whether the index is signed or not.
1863     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1864     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1865                                       "idx.ext");
1866   }
1867 
1868   // If this is subtraction, negate the index.
1869   if (isSubtraction)
1870     index = CGF.Builder.CreateNeg(index, "idx.neg");
1871 
1872   const PointerType *pointerType
1873     = pointerOperand->getType()->getAs<PointerType>();
1874   if (!pointerType) {
1875     QualType objectType = pointerOperand->getType()
1876                                         ->castAs<ObjCObjectPointerType>()
1877                                         ->getPointeeType();
1878     llvm::Value *objectSize
1879       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1880 
1881     index = CGF.Builder.CreateMul(index, objectSize);
1882 
1883     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1884     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1885     return CGF.Builder.CreateBitCast(result, pointer->getType());
1886   }
1887 
1888   QualType elementType = pointerType->getPointeeType();
1889   if (const VariableArrayType *vla
1890         = CGF.getContext().getAsVariableArrayType(elementType)) {
1891     // The element count here is the total number of non-VLA elements.
1892     llvm::Value *numElements = CGF.getVLASize(vla).first;
1893 
1894     // Effectively, the multiply by the VLA size is part of the GEP.
1895     // GEP indexes are signed, and scaling an index isn't permitted to
1896     // signed-overflow, so we use the same semantics for our explicit
1897     // multiply.  We suppress this if overflow is not undefined behavior.
1898     if (CGF.getLangOptions().isSignedOverflowDefined()) {
1899       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1900       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1901     } else {
1902       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1903       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1904     }
1905     return pointer;
1906   }
1907 
1908   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1909   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1910   // future proof.
1911   if (elementType->isVoidType() || elementType->isFunctionType()) {
1912     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1913     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1914     return CGF.Builder.CreateBitCast(result, pointer->getType());
1915   }
1916 
1917   if (CGF.getLangOptions().isSignedOverflowDefined())
1918     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1919 
1920   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1921 }
1922 
EmitAdd(const BinOpInfo & op)1923 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
1924   if (op.LHS->getType()->isPointerTy() ||
1925       op.RHS->getType()->isPointerTy())
1926     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
1927 
1928   if (op.Ty->isSignedIntegerOrEnumerationType()) {
1929     switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1930     case LangOptions::SOB_Undefined:
1931       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
1932     case LangOptions::SOB_Defined:
1933       return Builder.CreateAdd(op.LHS, op.RHS, "add");
1934     case LangOptions::SOB_Trapping:
1935       return EmitOverflowCheckedBinOp(op);
1936     }
1937   }
1938 
1939   if (op.LHS->getType()->isFPOrFPVectorTy())
1940     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
1941 
1942   return Builder.CreateAdd(op.LHS, op.RHS, "add");
1943 }
1944 
EmitSub(const BinOpInfo & op)1945 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
1946   // The LHS is always a pointer if either side is.
1947   if (!op.LHS->getType()->isPointerTy()) {
1948     if (op.Ty->isSignedIntegerOrEnumerationType()) {
1949       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1950       case LangOptions::SOB_Undefined:
1951         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
1952       case LangOptions::SOB_Defined:
1953         return Builder.CreateSub(op.LHS, op.RHS, "sub");
1954       case LangOptions::SOB_Trapping:
1955         return EmitOverflowCheckedBinOp(op);
1956       }
1957     }
1958 
1959     if (op.LHS->getType()->isFPOrFPVectorTy())
1960       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
1961 
1962     return Builder.CreateSub(op.LHS, op.RHS, "sub");
1963   }
1964 
1965   // If the RHS is not a pointer, then we have normal pointer
1966   // arithmetic.
1967   if (!op.RHS->getType()->isPointerTy())
1968     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
1969 
1970   // Otherwise, this is a pointer subtraction.
1971 
1972   // Do the raw subtraction part.
1973   llvm::Value *LHS
1974     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
1975   llvm::Value *RHS
1976     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
1977   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1978 
1979   // Okay, figure out the element size.
1980   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1981   QualType elementType = expr->getLHS()->getType()->getPointeeType();
1982 
1983   llvm::Value *divisor = 0;
1984 
1985   // For a variable-length array, this is going to be non-constant.
1986   if (const VariableArrayType *vla
1987         = CGF.getContext().getAsVariableArrayType(elementType)) {
1988     llvm::Value *numElements;
1989     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
1990 
1991     divisor = numElements;
1992 
1993     // Scale the number of non-VLA elements by the non-VLA element size.
1994     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
1995     if (!eltSize.isOne())
1996       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
1997 
1998   // For everything elese, we can just compute it, safe in the
1999   // assumption that Sema won't let anything through that we can't
2000   // safely compute the size of.
2001   } else {
2002     CharUnits elementSize;
2003     // Handle GCC extension for pointer arithmetic on void* and
2004     // function pointer types.
2005     if (elementType->isVoidType() || elementType->isFunctionType())
2006       elementSize = CharUnits::One();
2007     else
2008       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2009 
2010     // Don't even emit the divide for element size of 1.
2011     if (elementSize.isOne())
2012       return diffInChars;
2013 
2014     divisor = CGF.CGM.getSize(elementSize);
2015   }
2016 
2017   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2018   // pointer difference in C is only defined in the case where both operands
2019   // are pointing to elements of an array.
2020   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2021 }
2022 
EmitShl(const BinOpInfo & Ops)2023 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2024   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2025   // RHS to the same size as the LHS.
2026   Value *RHS = Ops.RHS;
2027   if (Ops.LHS->getType() != RHS->getType())
2028     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2029 
2030   if (CGF.CatchUndefined
2031       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2032     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2033     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2034     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2035                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2036                              Cont, CGF.getTrapBB());
2037     CGF.EmitBlock(Cont);
2038   }
2039 
2040   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2041 }
2042 
EmitShr(const BinOpInfo & Ops)2043 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2044   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2045   // RHS to the same size as the LHS.
2046   Value *RHS = Ops.RHS;
2047   if (Ops.LHS->getType() != RHS->getType())
2048     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2049 
2050   if (CGF.CatchUndefined
2051       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2052     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2053     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2054     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2055                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2056                              Cont, CGF.getTrapBB());
2057     CGF.EmitBlock(Cont);
2058   }
2059 
2060   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2061     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2062   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2063 }
2064 
2065 enum IntrinsicType { VCMPEQ, VCMPGT };
2066 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2067 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2068                                         BuiltinType::Kind ElemKind) {
2069   switch (ElemKind) {
2070   default: assert(0 && "unexpected element type");
2071   case BuiltinType::Char_U:
2072   case BuiltinType::UChar:
2073     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2074                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2075     break;
2076   case BuiltinType::Char_S:
2077   case BuiltinType::SChar:
2078     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2079                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2080     break;
2081   case BuiltinType::UShort:
2082     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2083                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2084     break;
2085   case BuiltinType::Short:
2086     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2087                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2088     break;
2089   case BuiltinType::UInt:
2090   case BuiltinType::ULong:
2091     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2092                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2093     break;
2094   case BuiltinType::Int:
2095   case BuiltinType::Long:
2096     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2097                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2098     break;
2099   case BuiltinType::Float:
2100     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2101                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2102     break;
2103   }
2104   return llvm::Intrinsic::not_intrinsic;
2105 }
2106 
EmitCompare(const BinaryOperator * E,unsigned UICmpOpc,unsigned SICmpOpc,unsigned FCmpOpc)2107 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2108                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2109   TestAndClearIgnoreResultAssign();
2110   Value *Result;
2111   QualType LHSTy = E->getLHS()->getType();
2112   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2113     assert(E->getOpcode() == BO_EQ ||
2114            E->getOpcode() == BO_NE);
2115     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2116     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2117     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2118                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2119   } else if (!LHSTy->isAnyComplexType()) {
2120     Value *LHS = Visit(E->getLHS());
2121     Value *RHS = Visit(E->getRHS());
2122 
2123     // If AltiVec, the comparison results in a numeric type, so we use
2124     // intrinsics comparing vectors and giving 0 or 1 as a result
2125     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2126       // constants for mapping CR6 register bits to predicate result
2127       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2128 
2129       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2130 
2131       // in several cases vector arguments order will be reversed
2132       Value *FirstVecArg = LHS,
2133             *SecondVecArg = RHS;
2134 
2135       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2136       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2137       BuiltinType::Kind ElementKind = BTy->getKind();
2138 
2139       switch(E->getOpcode()) {
2140       default: assert(0 && "is not a comparison operation");
2141       case BO_EQ:
2142         CR6 = CR6_LT;
2143         ID = GetIntrinsic(VCMPEQ, ElementKind);
2144         break;
2145       case BO_NE:
2146         CR6 = CR6_EQ;
2147         ID = GetIntrinsic(VCMPEQ, ElementKind);
2148         break;
2149       case BO_LT:
2150         CR6 = CR6_LT;
2151         ID = GetIntrinsic(VCMPGT, ElementKind);
2152         std::swap(FirstVecArg, SecondVecArg);
2153         break;
2154       case BO_GT:
2155         CR6 = CR6_LT;
2156         ID = GetIntrinsic(VCMPGT, ElementKind);
2157         break;
2158       case BO_LE:
2159         if (ElementKind == BuiltinType::Float) {
2160           CR6 = CR6_LT;
2161           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2162           std::swap(FirstVecArg, SecondVecArg);
2163         }
2164         else {
2165           CR6 = CR6_EQ;
2166           ID = GetIntrinsic(VCMPGT, ElementKind);
2167         }
2168         break;
2169       case BO_GE:
2170         if (ElementKind == BuiltinType::Float) {
2171           CR6 = CR6_LT;
2172           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2173         }
2174         else {
2175           CR6 = CR6_EQ;
2176           ID = GetIntrinsic(VCMPGT, ElementKind);
2177           std::swap(FirstVecArg, SecondVecArg);
2178         }
2179         break;
2180       }
2181 
2182       Value *CR6Param = Builder.getInt32(CR6);
2183       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2184       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2185       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2186     }
2187 
2188     if (LHS->getType()->isFPOrFPVectorTy()) {
2189       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2190                                   LHS, RHS, "cmp");
2191     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2192       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2193                                   LHS, RHS, "cmp");
2194     } else {
2195       // Unsigned integers and pointers.
2196       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2197                                   LHS, RHS, "cmp");
2198     }
2199 
2200     // If this is a vector comparison, sign extend the result to the appropriate
2201     // vector integer type and return it (don't convert to bool).
2202     if (LHSTy->isVectorType())
2203       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2204 
2205   } else {
2206     // Complex Comparison: can only be an equality comparison.
2207     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2208     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2209 
2210     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2211 
2212     Value *ResultR, *ResultI;
2213     if (CETy->isRealFloatingType()) {
2214       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2215                                    LHS.first, RHS.first, "cmp.r");
2216       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2217                                    LHS.second, RHS.second, "cmp.i");
2218     } else {
2219       // Complex comparisons can only be equality comparisons.  As such, signed
2220       // and unsigned opcodes are the same.
2221       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2222                                    LHS.first, RHS.first, "cmp.r");
2223       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2224                                    LHS.second, RHS.second, "cmp.i");
2225     }
2226 
2227     if (E->getOpcode() == BO_EQ) {
2228       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2229     } else {
2230       assert(E->getOpcode() == BO_NE &&
2231              "Complex comparison other than == or != ?");
2232       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2233     }
2234   }
2235 
2236   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2237 }
2238 
VisitBinAssign(const BinaryOperator * E)2239 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2240   bool Ignore = TestAndClearIgnoreResultAssign();
2241 
2242   Value *RHS;
2243   LValue LHS;
2244 
2245   switch (E->getLHS()->getType().getObjCLifetime()) {
2246   case Qualifiers::OCL_Strong:
2247     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2248     break;
2249 
2250   case Qualifiers::OCL_Autoreleasing:
2251     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2252     break;
2253 
2254   case Qualifiers::OCL_Weak:
2255     RHS = Visit(E->getRHS());
2256     LHS = EmitCheckedLValue(E->getLHS());
2257     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2258     break;
2259 
2260   // No reason to do any of these differently.
2261   case Qualifiers::OCL_None:
2262   case Qualifiers::OCL_ExplicitNone:
2263     // __block variables need to have the rhs evaluated first, plus
2264     // this should improve codegen just a little.
2265     RHS = Visit(E->getRHS());
2266     LHS = EmitCheckedLValue(E->getLHS());
2267 
2268     // Store the value into the LHS.  Bit-fields are handled specially
2269     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2270     // 'An assignment expression has the value of the left operand after
2271     // the assignment...'.
2272     if (LHS.isBitField())
2273       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2274     else
2275       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2276   }
2277 
2278   // If the result is clearly ignored, return now.
2279   if (Ignore)
2280     return 0;
2281 
2282   // The result of an assignment in C is the assigned r-value.
2283   if (!CGF.getContext().getLangOptions().CPlusPlus)
2284     return RHS;
2285 
2286   // Objective-C property assignment never reloads the value following a store.
2287   if (LHS.isPropertyRef())
2288     return RHS;
2289 
2290   // If the lvalue is non-volatile, return the computed value of the assignment.
2291   if (!LHS.isVolatileQualified())
2292     return RHS;
2293 
2294   // Otherwise, reload the value.
2295   return EmitLoadOfLValue(LHS);
2296 }
2297 
VisitBinLAnd(const BinaryOperator * E)2298 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2299   llvm::Type *ResTy = ConvertType(E->getType());
2300 
2301   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2302   // If we have 1 && X, just emit X without inserting the control flow.
2303   bool LHSCondVal;
2304   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2305     if (LHSCondVal) { // If we have 1 && X, just emit X.
2306       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2307       // ZExt result to int or bool.
2308       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2309     }
2310 
2311     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2312     if (!CGF.ContainsLabel(E->getRHS()))
2313       return llvm::Constant::getNullValue(ResTy);
2314   }
2315 
2316   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2317   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2318 
2319   CodeGenFunction::ConditionalEvaluation eval(CGF);
2320 
2321   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2322   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2323 
2324   // Any edges into the ContBlock are now from an (indeterminate number of)
2325   // edges from this first condition.  All of these values will be false.  Start
2326   // setting up the PHI node in the Cont Block for this.
2327   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2328                                             "", ContBlock);
2329   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2330        PI != PE; ++PI)
2331     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2332 
2333   eval.begin(CGF);
2334   CGF.EmitBlock(RHSBlock);
2335   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2336   eval.end(CGF);
2337 
2338   // Reaquire the RHS block, as there may be subblocks inserted.
2339   RHSBlock = Builder.GetInsertBlock();
2340 
2341   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2342   // into the phi node for the edge with the value of RHSCond.
2343   if (CGF.getDebugInfo())
2344     // There is no need to emit line number for unconditional branch.
2345     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2346   CGF.EmitBlock(ContBlock);
2347   PN->addIncoming(RHSCond, RHSBlock);
2348 
2349   // ZExt result to int.
2350   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2351 }
2352 
VisitBinLOr(const BinaryOperator * E)2353 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2354   llvm::Type *ResTy = ConvertType(E->getType());
2355 
2356   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2357   // If we have 0 || X, just emit X without inserting the control flow.
2358   bool LHSCondVal;
2359   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2360     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2361       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2362       // ZExt result to int or bool.
2363       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2364     }
2365 
2366     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2367     if (!CGF.ContainsLabel(E->getRHS()))
2368       return llvm::ConstantInt::get(ResTy, 1);
2369   }
2370 
2371   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2372   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2373 
2374   CodeGenFunction::ConditionalEvaluation eval(CGF);
2375 
2376   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2377   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2378 
2379   // Any edges into the ContBlock are now from an (indeterminate number of)
2380   // edges from this first condition.  All of these values will be true.  Start
2381   // setting up the PHI node in the Cont Block for this.
2382   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2383                                             "", ContBlock);
2384   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2385        PI != PE; ++PI)
2386     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2387 
2388   eval.begin(CGF);
2389 
2390   // Emit the RHS condition as a bool value.
2391   CGF.EmitBlock(RHSBlock);
2392   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2393 
2394   eval.end(CGF);
2395 
2396   // Reaquire the RHS block, as there may be subblocks inserted.
2397   RHSBlock = Builder.GetInsertBlock();
2398 
2399   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2400   // into the phi node for the edge with the value of RHSCond.
2401   CGF.EmitBlock(ContBlock);
2402   PN->addIncoming(RHSCond, RHSBlock);
2403 
2404   // ZExt result to int.
2405   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2406 }
2407 
VisitBinComma(const BinaryOperator * E)2408 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2409   CGF.EmitIgnoredExpr(E->getLHS());
2410   CGF.EnsureInsertPoint();
2411   return Visit(E->getRHS());
2412 }
2413 
2414 //===----------------------------------------------------------------------===//
2415 //                             Other Operators
2416 //===----------------------------------------------------------------------===//
2417 
2418 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2419 /// expression is cheap enough and side-effect-free enough to evaluate
2420 /// unconditionally instead of conditionally.  This is used to convert control
2421 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)2422 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2423                                                    CodeGenFunction &CGF) {
2424   E = E->IgnoreParens();
2425 
2426   // Anything that is an integer or floating point constant is fine.
2427   if (E->isConstantInitializer(CGF.getContext(), false))
2428     return true;
2429 
2430   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2431   // X and Y are local variables.
2432   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2433     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2434       if (VD->hasLocalStorage() && !(CGF.getContext()
2435                                      .getCanonicalType(VD->getType())
2436                                      .isVolatileQualified()))
2437         return true;
2438 
2439   return false;
2440 }
2441 
2442 
2443 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)2444 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2445   TestAndClearIgnoreResultAssign();
2446 
2447   // Bind the common expression if necessary.
2448   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2449 
2450   Expr *condExpr = E->getCond();
2451   Expr *lhsExpr = E->getTrueExpr();
2452   Expr *rhsExpr = E->getFalseExpr();
2453 
2454   // If the condition constant folds and can be elided, try to avoid emitting
2455   // the condition and the dead arm.
2456   bool CondExprBool;
2457   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2458     Expr *live = lhsExpr, *dead = rhsExpr;
2459     if (!CondExprBool) std::swap(live, dead);
2460 
2461     // If the dead side doesn't have labels we need, and if the Live side isn't
2462     // the gnu missing ?: extension (which we could handle, but don't bother
2463     // to), just emit the Live part.
2464     if (!CGF.ContainsLabel(dead))
2465       return Visit(live);
2466   }
2467 
2468   // OpenCL: If the condition is a vector, we can treat this condition like
2469   // the select function.
2470   if (CGF.getContext().getLangOptions().OpenCL
2471       && condExpr->getType()->isVectorType()) {
2472     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2473     llvm::Value *LHS = Visit(lhsExpr);
2474     llvm::Value *RHS = Visit(rhsExpr);
2475 
2476     llvm::Type *condType = ConvertType(condExpr->getType());
2477     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2478 
2479     unsigned numElem = vecTy->getNumElements();
2480     llvm::Type *elemType = vecTy->getElementType();
2481 
2482     std::vector<llvm::Constant*> Zvals;
2483     for (unsigned i = 0; i < numElem; ++i)
2484       Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2485 
2486     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2487     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2488     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2489                                           llvm::VectorType::get(elemType,
2490                                                                 numElem),
2491                                           "sext");
2492     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2493 
2494     // Cast float to int to perform ANDs if necessary.
2495     llvm::Value *RHSTmp = RHS;
2496     llvm::Value *LHSTmp = LHS;
2497     bool wasCast = false;
2498     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2499     if (rhsVTy->getElementType()->isFloatTy()) {
2500       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2501       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2502       wasCast = true;
2503     }
2504 
2505     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2506     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2507     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2508     if (wasCast)
2509       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2510 
2511     return tmp5;
2512   }
2513 
2514   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2515   // select instead of as control flow.  We can only do this if it is cheap and
2516   // safe to evaluate the LHS and RHS unconditionally.
2517   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2518       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2519     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2520     llvm::Value *LHS = Visit(lhsExpr);
2521     llvm::Value *RHS = Visit(rhsExpr);
2522     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2523   }
2524 
2525   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2526   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2527   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2528 
2529   CodeGenFunction::ConditionalEvaluation eval(CGF);
2530   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2531 
2532   CGF.EmitBlock(LHSBlock);
2533   eval.begin(CGF);
2534   Value *LHS = Visit(lhsExpr);
2535   eval.end(CGF);
2536 
2537   LHSBlock = Builder.GetInsertBlock();
2538   Builder.CreateBr(ContBlock);
2539 
2540   CGF.EmitBlock(RHSBlock);
2541   eval.begin(CGF);
2542   Value *RHS = Visit(rhsExpr);
2543   eval.end(CGF);
2544 
2545   RHSBlock = Builder.GetInsertBlock();
2546   CGF.EmitBlock(ContBlock);
2547 
2548   // If the LHS or RHS is a throw expression, it will be legitimately null.
2549   if (!LHS)
2550     return RHS;
2551   if (!RHS)
2552     return LHS;
2553 
2554   // Create a PHI node for the real part.
2555   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2556   PN->addIncoming(LHS, LHSBlock);
2557   PN->addIncoming(RHS, RHSBlock);
2558   return PN;
2559 }
2560 
VisitChooseExpr(ChooseExpr * E)2561 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2562   return Visit(E->getChosenSubExpr(CGF.getContext()));
2563 }
2564 
VisitVAArgExpr(VAArgExpr * VE)2565 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2566   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2567   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2568 
2569   // If EmitVAArg fails, we fall back to the LLVM instruction.
2570   if (!ArgPtr)
2571     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2572 
2573   // FIXME Volatility.
2574   return Builder.CreateLoad(ArgPtr);
2575 }
2576 
VisitBlockExpr(const BlockExpr * block)2577 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2578   return CGF.EmitBlockLiteral(block);
2579 }
2580 
VisitAsTypeExpr(AsTypeExpr * E)2581 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2582   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2583   llvm::Type *DstTy = ConvertType(E->getType());
2584 
2585   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2586   // a shuffle vector instead of a bitcast.
2587   llvm::Type *SrcTy = Src->getType();
2588   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2589     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2590     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2591     if ((numElementsDst == 3 && numElementsSrc == 4)
2592         || (numElementsDst == 4 && numElementsSrc == 3)) {
2593 
2594 
2595       // In the case of going from int4->float3, a bitcast is needed before
2596       // doing a shuffle.
2597       llvm::Type *srcElemTy =
2598       cast<llvm::VectorType>(SrcTy)->getElementType();
2599       llvm::Type *dstElemTy =
2600       cast<llvm::VectorType>(DstTy)->getElementType();
2601 
2602       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2603           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2604         // Create a float type of the same size as the source or destination.
2605         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2606                                                                  numElementsSrc);
2607 
2608         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2609       }
2610 
2611       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2612 
2613       llvm::SmallVector<llvm::Constant*, 3> Args;
2614       Args.push_back(Builder.getInt32(0));
2615       Args.push_back(Builder.getInt32(1));
2616       Args.push_back(Builder.getInt32(2));
2617 
2618       if (numElementsDst == 4)
2619         Args.push_back(llvm::UndefValue::get(
2620                                              llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2621 
2622       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2623 
2624       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2625     }
2626   }
2627 
2628   return Builder.CreateBitCast(Src, DstTy, "astype");
2629 }
2630 
2631 //===----------------------------------------------------------------------===//
2632 //                         Entry Point into this File
2633 //===----------------------------------------------------------------------===//
2634 
2635 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2636 /// type, ignoring the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)2637 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2638   assert(E && !hasAggregateLLVMType(E->getType()) &&
2639          "Invalid scalar expression to emit");
2640 
2641   if (isa<CXXDefaultArgExpr>(E))
2642     disableDebugInfo();
2643   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2644     .Visit(const_cast<Expr*>(E));
2645   if (isa<CXXDefaultArgExpr>(E))
2646     enableDebugInfo();
2647   return V;
2648 }
2649 
2650 /// EmitScalarConversion - Emit a conversion from the specified type to the
2651 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy)2652 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2653                                              QualType DstTy) {
2654   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2655          "Invalid scalar expression to emit");
2656   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2657 }
2658 
2659 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2660 /// type to the specified destination type, where the destination type is an
2661 /// LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy)2662 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2663                                                       QualType SrcTy,
2664                                                       QualType DstTy) {
2665   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2666          "Invalid complex -> scalar conversion");
2667   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2668                                                                 DstTy);
2669 }
2670 
2671 
2672 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)2673 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2674                         bool isInc, bool isPre) {
2675   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2676 }
2677 
EmitObjCIsaExpr(const ObjCIsaExpr * E)2678 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2679   llvm::Value *V;
2680   // object->isa or (*object).isa
2681   // Generate code as for: *(Class*)object
2682   // build Class* type
2683   llvm::Type *ClassPtrTy = ConvertType(E->getType());
2684 
2685   Expr *BaseExpr = E->getBase();
2686   if (BaseExpr->isRValue()) {
2687     V = CreateTempAlloca(ClassPtrTy, "resval");
2688     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2689     Builder.CreateStore(Src, V);
2690     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2691       MakeAddrLValue(V, E->getType()));
2692   } else {
2693     if (E->isArrow())
2694       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2695     else
2696       V = EmitLValue(BaseExpr).getAddress();
2697   }
2698 
2699   // build Class* type
2700   ClassPtrTy = ClassPtrTy->getPointerTo();
2701   V = Builder.CreateBitCast(V, ClassPtrTy);
2702   return MakeAddrLValue(V, E->getType());
2703 }
2704 
2705 
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)2706 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2707                                             const CompoundAssignOperator *E) {
2708   ScalarExprEmitter Scalar(*this);
2709   Value *Result = 0;
2710   switch (E->getOpcode()) {
2711 #define COMPOUND_OP(Op)                                                       \
2712     case BO_##Op##Assign:                                                     \
2713       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2714                                              Result)
2715   COMPOUND_OP(Mul);
2716   COMPOUND_OP(Div);
2717   COMPOUND_OP(Rem);
2718   COMPOUND_OP(Add);
2719   COMPOUND_OP(Sub);
2720   COMPOUND_OP(Shl);
2721   COMPOUND_OP(Shr);
2722   COMPOUND_OP(And);
2723   COMPOUND_OP(Xor);
2724   COMPOUND_OP(Or);
2725 #undef COMPOUND_OP
2726 
2727   case BO_PtrMemD:
2728   case BO_PtrMemI:
2729   case BO_Mul:
2730   case BO_Div:
2731   case BO_Rem:
2732   case BO_Add:
2733   case BO_Sub:
2734   case BO_Shl:
2735   case BO_Shr:
2736   case BO_LT:
2737   case BO_GT:
2738   case BO_LE:
2739   case BO_GE:
2740   case BO_EQ:
2741   case BO_NE:
2742   case BO_And:
2743   case BO_Xor:
2744   case BO_Or:
2745   case BO_LAnd:
2746   case BO_LOr:
2747   case BO_Assign:
2748   case BO_Comma:
2749     assert(false && "Not valid compound assignment operators");
2750     break;
2751   }
2752 
2753   llvm_unreachable("Unhandled compound assignment operator");
2754 }
2755