1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46
createCXXABI(CodeGenModule & CGM)47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48 switch (CGM.getContext().Target.getCXXABI()) {
49 case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52 }
53
54 llvm_unreachable("invalid C++ ABI kind");
55 return *CreateItaniumCXXABI(CGM);
56 }
57
58
CodeGenModule(ASTContext & C,const CodeGenOptions & CGO,llvm::Module & M,const llvm::TargetData & TD,Diagnostic & diags)59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60 llvm::Module &M, const llvm::TargetData &TD,
61 Diagnostic &diags)
62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64 ABI(createCXXABI(*this)),
65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
66 TBAA(0),
67 VTables(*this), Runtime(0), DebugInfo(0), ARCData(0), RRData(0),
68 CFConstantStringClassRef(0), ConstantStringClassRef(0),
69 VMContext(M.getContext()),
70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73 BlockObjectAssign(0), BlockObjectDispose(0),
74 BlockDescriptorType(0), GenericBlockLiteralType(0) {
75 if (Features.ObjC1)
76 createObjCRuntime();
77
78 // Enable TBAA unless it's suppressed.
79 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81 ABI.getMangleContext());
82
83 // If debug info or coverage generation is enabled, create the CGDebugInfo
84 // object.
85 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86 CodeGenOpts.EmitGcovNotes)
87 DebugInfo = new CGDebugInfo(*this);
88
89 Block.GlobalUniqueCount = 0;
90
91 if (C.getLangOptions().ObjCAutoRefCount)
92 ARCData = new ARCEntrypoints();
93 RRData = new RREntrypoints();
94
95 // Initialize the type cache.
96 llvm::LLVMContext &LLVMContext = M.getContext();
97 VoidTy = llvm::Type::getVoidTy(LLVMContext);
98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101 PointerWidthInBits = C.Target.getPointerWidth(0);
102 PointerAlignInBytes =
103 C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
104 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
105 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106 Int8PtrTy = Int8Ty->getPointerTo(0);
107 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108 }
109
~CodeGenModule()110 CodeGenModule::~CodeGenModule() {
111 delete Runtime;
112 delete &ABI;
113 delete TBAA;
114 delete DebugInfo;
115 delete ARCData;
116 delete RRData;
117 }
118
createObjCRuntime()119 void CodeGenModule::createObjCRuntime() {
120 if (!Features.NeXTRuntime)
121 Runtime = CreateGNUObjCRuntime(*this);
122 else
123 Runtime = CreateMacObjCRuntime(*this);
124 }
125
Release()126 void CodeGenModule::Release() {
127 EmitDeferred();
128 EmitCXXGlobalInitFunc();
129 EmitCXXGlobalDtorFunc();
130 if (Runtime)
131 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
132 AddGlobalCtor(ObjCInitFunction);
133 EmitCtorList(GlobalCtors, "llvm.global_ctors");
134 EmitCtorList(GlobalDtors, "llvm.global_dtors");
135 EmitAnnotations();
136 EmitLLVMUsed();
137
138 SimplifyPersonality();
139
140 if (getCodeGenOpts().EmitDeclMetadata)
141 EmitDeclMetadata();
142
143 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
144 EmitCoverageFile();
145 }
146
UpdateCompletedType(const TagDecl * TD)147 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
148 // Make sure that this type is translated.
149 Types.UpdateCompletedType(TD);
150 if (DebugInfo)
151 DebugInfo->UpdateCompletedType(TD);
152 }
153
getTBAAInfo(QualType QTy)154 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
155 if (!TBAA)
156 return 0;
157 return TBAA->getTBAAInfo(QTy);
158 }
159
DecorateInstruction(llvm::Instruction * Inst,llvm::MDNode * TBAAInfo)160 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
161 llvm::MDNode *TBAAInfo) {
162 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
163 }
164
isTargetDarwin() const165 bool CodeGenModule::isTargetDarwin() const {
166 return getContext().Target.getTriple().isOSDarwin();
167 }
168
Error(SourceLocation loc,llvm::StringRef error)169 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
170 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
171 getDiags().Report(Context.getFullLoc(loc), diagID);
172 }
173
174 /// ErrorUnsupported - Print out an error that codegen doesn't support the
175 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type,bool OmitOnError)176 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
177 bool OmitOnError) {
178 if (OmitOnError && getDiags().hasErrorOccurred())
179 return;
180 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
181 "cannot compile this %0 yet");
182 std::string Msg = Type;
183 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
184 << Msg << S->getSourceRange();
185 }
186
187 /// ErrorUnsupported - Print out an error that codegen doesn't support the
188 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type,bool OmitOnError)189 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
190 bool OmitOnError) {
191 if (OmitOnError && getDiags().hasErrorOccurred())
192 return;
193 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
194 "cannot compile this %0 yet");
195 std::string Msg = Type;
196 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
197 }
198
getSize(CharUnits size)199 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
200 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
201 }
202
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const203 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
204 const NamedDecl *D) const {
205 // Internal definitions always have default visibility.
206 if (GV->hasLocalLinkage()) {
207 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
208 return;
209 }
210
211 // Set visibility for definitions.
212 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
213 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
214 GV->setVisibility(GetLLVMVisibility(LV.visibility()));
215 }
216
217 /// Set the symbol visibility of type information (vtable and RTTI)
218 /// associated with the given type.
setTypeVisibility(llvm::GlobalValue * GV,const CXXRecordDecl * RD,TypeVisibilityKind TVK) const219 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
220 const CXXRecordDecl *RD,
221 TypeVisibilityKind TVK) const {
222 setGlobalVisibility(GV, RD);
223
224 if (!CodeGenOpts.HiddenWeakVTables)
225 return;
226
227 // We never want to drop the visibility for RTTI names.
228 if (TVK == TVK_ForRTTIName)
229 return;
230
231 // We want to drop the visibility to hidden for weak type symbols.
232 // This isn't possible if there might be unresolved references
233 // elsewhere that rely on this symbol being visible.
234
235 // This should be kept roughly in sync with setThunkVisibility
236 // in CGVTables.cpp.
237
238 // Preconditions.
239 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
240 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
241 return;
242
243 // Don't override an explicit visibility attribute.
244 if (RD->getExplicitVisibility())
245 return;
246
247 switch (RD->getTemplateSpecializationKind()) {
248 // We have to disable the optimization if this is an EI definition
249 // because there might be EI declarations in other shared objects.
250 case TSK_ExplicitInstantiationDefinition:
251 case TSK_ExplicitInstantiationDeclaration:
252 return;
253
254 // Every use of a non-template class's type information has to emit it.
255 case TSK_Undeclared:
256 break;
257
258 // In theory, implicit instantiations can ignore the possibility of
259 // an explicit instantiation declaration because there necessarily
260 // must be an EI definition somewhere with default visibility. In
261 // practice, it's possible to have an explicit instantiation for
262 // an arbitrary template class, and linkers aren't necessarily able
263 // to deal with mixed-visibility symbols.
264 case TSK_ExplicitSpecialization:
265 case TSK_ImplicitInstantiation:
266 if (!CodeGenOpts.HiddenWeakTemplateVTables)
267 return;
268 break;
269 }
270
271 // If there's a key function, there may be translation units
272 // that don't have the key function's definition. But ignore
273 // this if we're emitting RTTI under -fno-rtti.
274 if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
275 if (Context.getKeyFunction(RD))
276 return;
277 }
278
279 // Otherwise, drop the visibility to hidden.
280 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
281 GV->setUnnamedAddr(true);
282 }
283
getMangledName(GlobalDecl GD)284 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
285 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
286
287 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
288 if (!Str.empty())
289 return Str;
290
291 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
292 IdentifierInfo *II = ND->getIdentifier();
293 assert(II && "Attempt to mangle unnamed decl.");
294
295 Str = II->getName();
296 return Str;
297 }
298
299 llvm::SmallString<256> Buffer;
300 llvm::raw_svector_ostream Out(Buffer);
301 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
302 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
303 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
304 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
305 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
306 getCXXABI().getMangleContext().mangleBlock(BD, Out);
307 else
308 getCXXABI().getMangleContext().mangleName(ND, Out);
309
310 // Allocate space for the mangled name.
311 Out.flush();
312 size_t Length = Buffer.size();
313 char *Name = MangledNamesAllocator.Allocate<char>(Length);
314 std::copy(Buffer.begin(), Buffer.end(), Name);
315
316 Str = llvm::StringRef(Name, Length);
317
318 return Str;
319 }
320
getBlockMangledName(GlobalDecl GD,MangleBuffer & Buffer,const BlockDecl * BD)321 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
322 const BlockDecl *BD) {
323 MangleContext &MangleCtx = getCXXABI().getMangleContext();
324 const Decl *D = GD.getDecl();
325 llvm::raw_svector_ostream Out(Buffer.getBuffer());
326 if (D == 0)
327 MangleCtx.mangleGlobalBlock(BD, Out);
328 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
329 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
330 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
331 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
332 else
333 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
334 }
335
GetGlobalValue(llvm::StringRef Name)336 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
337 return getModule().getNamedValue(Name);
338 }
339
340 /// AddGlobalCtor - Add a function to the list that will be called before
341 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority)342 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
343 // FIXME: Type coercion of void()* types.
344 GlobalCtors.push_back(std::make_pair(Ctor, Priority));
345 }
346
347 /// AddGlobalDtor - Add a function to the list that will be called
348 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority)349 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
350 // FIXME: Type coercion of void()* types.
351 GlobalDtors.push_back(std::make_pair(Dtor, Priority));
352 }
353
EmitCtorList(const CtorList & Fns,const char * GlobalName)354 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
355 // Ctor function type is void()*.
356 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
357 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
358
359 // Get the type of a ctor entry, { i32, void ()* }.
360 llvm::StructType *CtorStructTy =
361 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
362 llvm::PointerType::getUnqual(CtorFTy), NULL);
363
364 // Construct the constructor and destructor arrays.
365 std::vector<llvm::Constant*> Ctors;
366 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
367 std::vector<llvm::Constant*> S;
368 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
369 I->second, false));
370 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
371 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
372 }
373
374 if (!Ctors.empty()) {
375 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
376 new llvm::GlobalVariable(TheModule, AT, false,
377 llvm::GlobalValue::AppendingLinkage,
378 llvm::ConstantArray::get(AT, Ctors),
379 GlobalName);
380 }
381 }
382
EmitAnnotations()383 void CodeGenModule::EmitAnnotations() {
384 if (Annotations.empty())
385 return;
386
387 // Create a new global variable for the ConstantStruct in the Module.
388 llvm::Constant *Array =
389 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
390 Annotations.size()),
391 Annotations);
392 llvm::GlobalValue *gv =
393 new llvm::GlobalVariable(TheModule, Array->getType(), false,
394 llvm::GlobalValue::AppendingLinkage, Array,
395 "llvm.global.annotations");
396 gv->setSection("llvm.metadata");
397 }
398
399 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(const FunctionDecl * D)400 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
401 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
402
403 if (Linkage == GVA_Internal)
404 return llvm::Function::InternalLinkage;
405
406 if (D->hasAttr<DLLExportAttr>())
407 return llvm::Function::DLLExportLinkage;
408
409 if (D->hasAttr<WeakAttr>())
410 return llvm::Function::WeakAnyLinkage;
411
412 // In C99 mode, 'inline' functions are guaranteed to have a strong
413 // definition somewhere else, so we can use available_externally linkage.
414 if (Linkage == GVA_C99Inline)
415 return llvm::Function::AvailableExternallyLinkage;
416
417 // In C++, the compiler has to emit a definition in every translation unit
418 // that references the function. We should use linkonce_odr because
419 // a) if all references in this translation unit are optimized away, we
420 // don't need to codegen it. b) if the function persists, it needs to be
421 // merged with other definitions. c) C++ has the ODR, so we know the
422 // definition is dependable.
423 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
424 return !Context.getLangOptions().AppleKext
425 ? llvm::Function::LinkOnceODRLinkage
426 : llvm::Function::InternalLinkage;
427
428 // An explicit instantiation of a template has weak linkage, since
429 // explicit instantiations can occur in multiple translation units
430 // and must all be equivalent. However, we are not allowed to
431 // throw away these explicit instantiations.
432 if (Linkage == GVA_ExplicitTemplateInstantiation)
433 return !Context.getLangOptions().AppleKext
434 ? llvm::Function::WeakODRLinkage
435 : llvm::Function::InternalLinkage;
436
437 // Otherwise, we have strong external linkage.
438 assert(Linkage == GVA_StrongExternal);
439 return llvm::Function::ExternalLinkage;
440 }
441
442
443 /// SetFunctionDefinitionAttributes - Set attributes for a global.
444 ///
445 /// FIXME: This is currently only done for aliases and functions, but not for
446 /// variables (these details are set in EmitGlobalVarDefinition for variables).
SetFunctionDefinitionAttributes(const FunctionDecl * D,llvm::GlobalValue * GV)447 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
448 llvm::GlobalValue *GV) {
449 SetCommonAttributes(D, GV);
450 }
451
SetLLVMFunctionAttributes(const Decl * D,const CGFunctionInfo & Info,llvm::Function * F)452 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
453 const CGFunctionInfo &Info,
454 llvm::Function *F) {
455 unsigned CallingConv;
456 AttributeListType AttributeList;
457 ConstructAttributeList(Info, D, AttributeList, CallingConv);
458 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
459 AttributeList.size()));
460 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
461 }
462
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)463 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
464 llvm::Function *F) {
465 if (CodeGenOpts.UnwindTables)
466 F->setHasUWTable();
467
468 if (!Features.Exceptions && !Features.ObjCNonFragileABI)
469 F->addFnAttr(llvm::Attribute::NoUnwind);
470
471 if (D->hasAttr<AlwaysInlineAttr>())
472 F->addFnAttr(llvm::Attribute::AlwaysInline);
473
474 if (D->hasAttr<NakedAttr>())
475 F->addFnAttr(llvm::Attribute::Naked);
476
477 if (D->hasAttr<NoInlineAttr>())
478 F->addFnAttr(llvm::Attribute::NoInline);
479
480 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
481 F->setUnnamedAddr(true);
482
483 if (Features.getStackProtectorMode() == LangOptions::SSPOn)
484 F->addFnAttr(llvm::Attribute::StackProtect);
485 else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
486 F->addFnAttr(llvm::Attribute::StackProtectReq);
487
488 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
489 if (alignment)
490 F->setAlignment(alignment);
491
492 // C++ ABI requires 2-byte alignment for member functions.
493 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
494 F->setAlignment(2);
495 }
496
SetCommonAttributes(const Decl * D,llvm::GlobalValue * GV)497 void CodeGenModule::SetCommonAttributes(const Decl *D,
498 llvm::GlobalValue *GV) {
499 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
500 setGlobalVisibility(GV, ND);
501 else
502 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
503
504 if (D->hasAttr<UsedAttr>())
505 AddUsedGlobal(GV);
506
507 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
508 GV->setSection(SA->getName());
509
510 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
511 }
512
SetInternalFunctionAttributes(const Decl * D,llvm::Function * F,const CGFunctionInfo & FI)513 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
514 llvm::Function *F,
515 const CGFunctionInfo &FI) {
516 SetLLVMFunctionAttributes(D, FI, F);
517 SetLLVMFunctionAttributesForDefinition(D, F);
518
519 F->setLinkage(llvm::Function::InternalLinkage);
520
521 SetCommonAttributes(D, F);
522 }
523
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction)524 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
525 llvm::Function *F,
526 bool IsIncompleteFunction) {
527 if (unsigned IID = F->getIntrinsicID()) {
528 // If this is an intrinsic function, set the function's attributes
529 // to the intrinsic's attributes.
530 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
531 return;
532 }
533
534 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
535
536 if (!IsIncompleteFunction)
537 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
538
539 // Only a few attributes are set on declarations; these may later be
540 // overridden by a definition.
541
542 if (FD->hasAttr<DLLImportAttr>()) {
543 F->setLinkage(llvm::Function::DLLImportLinkage);
544 } else if (FD->hasAttr<WeakAttr>() ||
545 FD->isWeakImported()) {
546 // "extern_weak" is overloaded in LLVM; we probably should have
547 // separate linkage types for this.
548 F->setLinkage(llvm::Function::ExternalWeakLinkage);
549 } else {
550 F->setLinkage(llvm::Function::ExternalLinkage);
551
552 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
553 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
554 F->setVisibility(GetLLVMVisibility(LV.visibility()));
555 }
556 }
557
558 if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
559 F->setSection(SA->getName());
560 }
561
AddUsedGlobal(llvm::GlobalValue * GV)562 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
563 assert(!GV->isDeclaration() &&
564 "Only globals with definition can force usage.");
565 LLVMUsed.push_back(GV);
566 }
567
EmitLLVMUsed()568 void CodeGenModule::EmitLLVMUsed() {
569 // Don't create llvm.used if there is no need.
570 if (LLVMUsed.empty())
571 return;
572
573 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
574
575 // Convert LLVMUsed to what ConstantArray needs.
576 std::vector<llvm::Constant*> UsedArray;
577 UsedArray.resize(LLVMUsed.size());
578 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
579 UsedArray[i] =
580 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
581 i8PTy);
582 }
583
584 if (UsedArray.empty())
585 return;
586 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
587
588 llvm::GlobalVariable *GV =
589 new llvm::GlobalVariable(getModule(), ATy, false,
590 llvm::GlobalValue::AppendingLinkage,
591 llvm::ConstantArray::get(ATy, UsedArray),
592 "llvm.used");
593
594 GV->setSection("llvm.metadata");
595 }
596
EmitDeferred()597 void CodeGenModule::EmitDeferred() {
598 // Emit code for any potentially referenced deferred decls. Since a
599 // previously unused static decl may become used during the generation of code
600 // for a static function, iterate until no changes are made.
601
602 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
603 if (!DeferredVTables.empty()) {
604 const CXXRecordDecl *RD = DeferredVTables.back();
605 DeferredVTables.pop_back();
606 getVTables().GenerateClassData(getVTableLinkage(RD), RD);
607 continue;
608 }
609
610 GlobalDecl D = DeferredDeclsToEmit.back();
611 DeferredDeclsToEmit.pop_back();
612
613 // Check to see if we've already emitted this. This is necessary
614 // for a couple of reasons: first, decls can end up in the
615 // deferred-decls queue multiple times, and second, decls can end
616 // up with definitions in unusual ways (e.g. by an extern inline
617 // function acquiring a strong function redefinition). Just
618 // ignore these cases.
619 //
620 // TODO: That said, looking this up multiple times is very wasteful.
621 llvm::StringRef Name = getMangledName(D);
622 llvm::GlobalValue *CGRef = GetGlobalValue(Name);
623 assert(CGRef && "Deferred decl wasn't referenced?");
624
625 if (!CGRef->isDeclaration())
626 continue;
627
628 // GlobalAlias::isDeclaration() defers to the aliasee, but for our
629 // purposes an alias counts as a definition.
630 if (isa<llvm::GlobalAlias>(CGRef))
631 continue;
632
633 // Otherwise, emit the definition and move on to the next one.
634 EmitGlobalDefinition(D);
635 }
636 }
637
638 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
639 /// annotation information for a given GlobalValue. The annotation struct is
640 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the
641 /// GlobalValue being annotated. The second field is the constant string
642 /// created from the AnnotateAttr's annotation. The third field is a constant
643 /// string containing the name of the translation unit. The fourth field is
644 /// the line number in the file of the annotated value declaration.
645 ///
646 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
647 /// appears to.
648 ///
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,unsigned LineNo)649 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
650 const AnnotateAttr *AA,
651 unsigned LineNo) {
652 llvm::Module *M = &getModule();
653
654 // get [N x i8] constants for the annotation string, and the filename string
655 // which are the 2nd and 3rd elements of the global annotation structure.
656 llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
657 llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
658 AA->getAnnotation(), true);
659 llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
660 M->getModuleIdentifier(),
661 true);
662
663 // Get the two global values corresponding to the ConstantArrays we just
664 // created to hold the bytes of the strings.
665 llvm::GlobalValue *annoGV =
666 new llvm::GlobalVariable(*M, anno->getType(), false,
667 llvm::GlobalValue::PrivateLinkage, anno,
668 GV->getName());
669 // translation unit name string, emitted into the llvm.metadata section.
670 llvm::GlobalValue *unitGV =
671 new llvm::GlobalVariable(*M, unit->getType(), false,
672 llvm::GlobalValue::PrivateLinkage, unit,
673 ".str");
674 unitGV->setUnnamedAddr(true);
675
676 // Create the ConstantStruct for the global annotation.
677 llvm::Constant *Fields[4] = {
678 llvm::ConstantExpr::getBitCast(GV, SBP),
679 llvm::ConstantExpr::getBitCast(annoGV, SBP),
680 llvm::ConstantExpr::getBitCast(unitGV, SBP),
681 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
682 };
683 return llvm::ConstantStruct::getAnon(Fields);
684 }
685
MayDeferGeneration(const ValueDecl * Global)686 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
687 // Never defer when EmitAllDecls is specified.
688 if (Features.EmitAllDecls)
689 return false;
690
691 return !getContext().DeclMustBeEmitted(Global);
692 }
693
GetWeakRefReference(const ValueDecl * VD)694 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
695 const AliasAttr *AA = VD->getAttr<AliasAttr>();
696 assert(AA && "No alias?");
697
698 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
699
700 // See if there is already something with the target's name in the module.
701 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
702
703 llvm::Constant *Aliasee;
704 if (isa<llvm::FunctionType>(DeclTy))
705 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
706 /*ForVTable=*/false);
707 else
708 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
709 llvm::PointerType::getUnqual(DeclTy), 0);
710 if (!Entry) {
711 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
712 F->setLinkage(llvm::Function::ExternalWeakLinkage);
713 WeakRefReferences.insert(F);
714 }
715
716 return Aliasee;
717 }
718
EmitGlobal(GlobalDecl GD)719 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
720 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
721
722 // Weak references don't produce any output by themselves.
723 if (Global->hasAttr<WeakRefAttr>())
724 return;
725
726 // If this is an alias definition (which otherwise looks like a declaration)
727 // emit it now.
728 if (Global->hasAttr<AliasAttr>())
729 return EmitAliasDefinition(GD);
730
731 // Ignore declarations, they will be emitted on their first use.
732 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
733 if (FD->getIdentifier()) {
734 llvm::StringRef Name = FD->getName();
735 if (Name == "_Block_object_assign") {
736 BlockObjectAssignDecl = FD;
737 } else if (Name == "_Block_object_dispose") {
738 BlockObjectDisposeDecl = FD;
739 }
740 }
741
742 // Forward declarations are emitted lazily on first use.
743 if (!FD->doesThisDeclarationHaveABody()) {
744 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
745 return;
746
747 const FunctionDecl *InlineDefinition = 0;
748 FD->getBody(InlineDefinition);
749
750 llvm::StringRef MangledName = getMangledName(GD);
751 llvm::StringMap<GlobalDecl>::iterator DDI =
752 DeferredDecls.find(MangledName);
753 if (DDI != DeferredDecls.end())
754 DeferredDecls.erase(DDI);
755 EmitGlobalDefinition(InlineDefinition);
756 return;
757 }
758 } else {
759 const VarDecl *VD = cast<VarDecl>(Global);
760 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
761
762 if (VD->getIdentifier()) {
763 llvm::StringRef Name = VD->getName();
764 if (Name == "_NSConcreteGlobalBlock") {
765 NSConcreteGlobalBlockDecl = VD;
766 } else if (Name == "_NSConcreteStackBlock") {
767 NSConcreteStackBlockDecl = VD;
768 }
769 }
770
771
772 if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
773 return;
774 }
775
776 // Defer code generation when possible if this is a static definition, inline
777 // function etc. These we only want to emit if they are used.
778 if (!MayDeferGeneration(Global)) {
779 // Emit the definition if it can't be deferred.
780 EmitGlobalDefinition(GD);
781 return;
782 }
783
784 // If we're deferring emission of a C++ variable with an
785 // initializer, remember the order in which it appeared in the file.
786 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
787 cast<VarDecl>(Global)->hasInit()) {
788 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
789 CXXGlobalInits.push_back(0);
790 }
791
792 // If the value has already been used, add it directly to the
793 // DeferredDeclsToEmit list.
794 llvm::StringRef MangledName = getMangledName(GD);
795 if (GetGlobalValue(MangledName))
796 DeferredDeclsToEmit.push_back(GD);
797 else {
798 // Otherwise, remember that we saw a deferred decl with this name. The
799 // first use of the mangled name will cause it to move into
800 // DeferredDeclsToEmit.
801 DeferredDecls[MangledName] = GD;
802 }
803 }
804
EmitGlobalDefinition(GlobalDecl GD)805 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
806 const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
807
808 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
809 Context.getSourceManager(),
810 "Generating code for declaration");
811
812 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
813 // At -O0, don't generate IR for functions with available_externally
814 // linkage.
815 if (CodeGenOpts.OptimizationLevel == 0 &&
816 !Function->hasAttr<AlwaysInlineAttr>() &&
817 getFunctionLinkage(Function)
818 == llvm::Function::AvailableExternallyLinkage)
819 return;
820
821 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
822 // Make sure to emit the definition(s) before we emit the thunks.
823 // This is necessary for the generation of certain thunks.
824 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
825 EmitCXXConstructor(CD, GD.getCtorType());
826 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
827 EmitCXXDestructor(DD, GD.getDtorType());
828 else
829 EmitGlobalFunctionDefinition(GD);
830
831 if (Method->isVirtual())
832 getVTables().EmitThunks(GD);
833
834 return;
835 }
836
837 return EmitGlobalFunctionDefinition(GD);
838 }
839
840 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
841 return EmitGlobalVarDefinition(VD);
842
843 assert(0 && "Invalid argument to EmitGlobalDefinition()");
844 }
845
846 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
847 /// module, create and return an llvm Function with the specified type. If there
848 /// is something in the module with the specified name, return it potentially
849 /// bitcasted to the right type.
850 ///
851 /// If D is non-null, it specifies a decl that correspond to this. This is used
852 /// to set the attributes on the function when it is first created.
853 llvm::Constant *
GetOrCreateLLVMFunction(llvm::StringRef MangledName,llvm::Type * Ty,GlobalDecl D,bool ForVTable,llvm::Attributes ExtraAttrs)854 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
855 llvm::Type *Ty,
856 GlobalDecl D, bool ForVTable,
857 llvm::Attributes ExtraAttrs) {
858 // Lookup the entry, lazily creating it if necessary.
859 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
860 if (Entry) {
861 if (WeakRefReferences.count(Entry)) {
862 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
863 if (FD && !FD->hasAttr<WeakAttr>())
864 Entry->setLinkage(llvm::Function::ExternalLinkage);
865
866 WeakRefReferences.erase(Entry);
867 }
868
869 if (Entry->getType()->getElementType() == Ty)
870 return Entry;
871
872 // Make sure the result is of the correct type.
873 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
874 }
875
876 // This function doesn't have a complete type (for example, the return
877 // type is an incomplete struct). Use a fake type instead, and make
878 // sure not to try to set attributes.
879 bool IsIncompleteFunction = false;
880
881 llvm::FunctionType *FTy;
882 if (isa<llvm::FunctionType>(Ty)) {
883 FTy = cast<llvm::FunctionType>(Ty);
884 } else {
885 FTy = llvm::FunctionType::get(VoidTy, false);
886 IsIncompleteFunction = true;
887 }
888
889 llvm::Function *F = llvm::Function::Create(FTy,
890 llvm::Function::ExternalLinkage,
891 MangledName, &getModule());
892 assert(F->getName() == MangledName && "name was uniqued!");
893 if (D.getDecl())
894 SetFunctionAttributes(D, F, IsIncompleteFunction);
895 if (ExtraAttrs != llvm::Attribute::None)
896 F->addFnAttr(ExtraAttrs);
897
898 // This is the first use or definition of a mangled name. If there is a
899 // deferred decl with this name, remember that we need to emit it at the end
900 // of the file.
901 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
902 if (DDI != DeferredDecls.end()) {
903 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
904 // list, and remove it from DeferredDecls (since we don't need it anymore).
905 DeferredDeclsToEmit.push_back(DDI->second);
906 DeferredDecls.erase(DDI);
907
908 // Otherwise, there are cases we have to worry about where we're
909 // using a declaration for which we must emit a definition but where
910 // we might not find a top-level definition:
911 // - member functions defined inline in their classes
912 // - friend functions defined inline in some class
913 // - special member functions with implicit definitions
914 // If we ever change our AST traversal to walk into class methods,
915 // this will be unnecessary.
916 //
917 // We also don't emit a definition for a function if it's going to be an entry
918 // in a vtable, unless it's already marked as used.
919 } else if (getLangOptions().CPlusPlus && D.getDecl()) {
920 // Look for a declaration that's lexically in a record.
921 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
922 do {
923 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
924 if (FD->isImplicit() && !ForVTable) {
925 assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
926 DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
927 break;
928 } else if (FD->doesThisDeclarationHaveABody()) {
929 DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
930 break;
931 }
932 }
933 FD = FD->getPreviousDeclaration();
934 } while (FD);
935 }
936
937 // Make sure the result is of the requested type.
938 if (!IsIncompleteFunction) {
939 assert(F->getType()->getElementType() == Ty);
940 return F;
941 }
942
943 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
944 return llvm::ConstantExpr::getBitCast(F, PTy);
945 }
946
947 /// GetAddrOfFunction - Return the address of the given function. If Ty is
948 /// non-null, then this function will use the specified type if it has to
949 /// create it (this occurs when we see a definition of the function).
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable)950 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
951 llvm::Type *Ty,
952 bool ForVTable) {
953 // If there was no specific requested type, just convert it now.
954 if (!Ty)
955 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
956
957 llvm::StringRef MangledName = getMangledName(GD);
958 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
959 }
960
961 /// CreateRuntimeFunction - Create a new runtime function with the specified
962 /// type and name.
963 llvm::Constant *
CreateRuntimeFunction(llvm::FunctionType * FTy,llvm::StringRef Name,llvm::Attributes ExtraAttrs)964 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
965 llvm::StringRef Name,
966 llvm::Attributes ExtraAttrs) {
967 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
968 ExtraAttrs);
969 }
970
DeclIsConstantGlobal(ASTContext & Context,const VarDecl * D,bool ConstantInit)971 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
972 bool ConstantInit) {
973 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
974 return false;
975
976 if (Context.getLangOptions().CPlusPlus) {
977 if (const RecordType *Record
978 = Context.getBaseElementType(D->getType())->getAs<RecordType>())
979 return ConstantInit &&
980 cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
981 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
982 }
983
984 return true;
985 }
986
987 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
988 /// create and return an llvm GlobalVariable with the specified type. If there
989 /// is something in the module with the specified name, return it potentially
990 /// bitcasted to the right type.
991 ///
992 /// If D is non-null, it specifies a decl that correspond to this. This is used
993 /// to set the attributes on the global when it is first created.
994 llvm::Constant *
GetOrCreateLLVMGlobal(llvm::StringRef MangledName,llvm::PointerType * Ty,const VarDecl * D,bool UnnamedAddr)995 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
996 llvm::PointerType *Ty,
997 const VarDecl *D,
998 bool UnnamedAddr) {
999 // Lookup the entry, lazily creating it if necessary.
1000 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1001 if (Entry) {
1002 if (WeakRefReferences.count(Entry)) {
1003 if (D && !D->hasAttr<WeakAttr>())
1004 Entry->setLinkage(llvm::Function::ExternalLinkage);
1005
1006 WeakRefReferences.erase(Entry);
1007 }
1008
1009 if (UnnamedAddr)
1010 Entry->setUnnamedAddr(true);
1011
1012 if (Entry->getType() == Ty)
1013 return Entry;
1014
1015 // Make sure the result is of the correct type.
1016 return llvm::ConstantExpr::getBitCast(Entry, Ty);
1017 }
1018
1019 // This is the first use or definition of a mangled name. If there is a
1020 // deferred decl with this name, remember that we need to emit it at the end
1021 // of the file.
1022 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1023 if (DDI != DeferredDecls.end()) {
1024 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1025 // list, and remove it from DeferredDecls (since we don't need it anymore).
1026 DeferredDeclsToEmit.push_back(DDI->second);
1027 DeferredDecls.erase(DDI);
1028 }
1029
1030 llvm::GlobalVariable *GV =
1031 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1032 llvm::GlobalValue::ExternalLinkage,
1033 0, MangledName, 0,
1034 false, Ty->getAddressSpace());
1035
1036 // Handle things which are present even on external declarations.
1037 if (D) {
1038 // FIXME: This code is overly simple and should be merged with other global
1039 // handling.
1040 GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1041
1042 // Set linkage and visibility in case we never see a definition.
1043 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1044 if (LV.linkage() != ExternalLinkage) {
1045 // Don't set internal linkage on declarations.
1046 } else {
1047 if (D->hasAttr<DLLImportAttr>())
1048 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1049 else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1050 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1051
1052 // Set visibility on a declaration only if it's explicit.
1053 if (LV.visibilityExplicit())
1054 GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1055 }
1056
1057 GV->setThreadLocal(D->isThreadSpecified());
1058 }
1059
1060 return GV;
1061 }
1062
1063
1064 llvm::GlobalVariable *
CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage)1065 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1066 llvm::Type *Ty,
1067 llvm::GlobalValue::LinkageTypes Linkage) {
1068 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1069 llvm::GlobalVariable *OldGV = 0;
1070
1071
1072 if (GV) {
1073 // Check if the variable has the right type.
1074 if (GV->getType()->getElementType() == Ty)
1075 return GV;
1076
1077 // Because C++ name mangling, the only way we can end up with an already
1078 // existing global with the same name is if it has been declared extern "C".
1079 assert(GV->isDeclaration() && "Declaration has wrong type!");
1080 OldGV = GV;
1081 }
1082
1083 // Create a new variable.
1084 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1085 Linkage, 0, Name);
1086
1087 if (OldGV) {
1088 // Replace occurrences of the old variable if needed.
1089 GV->takeName(OldGV);
1090
1091 if (!OldGV->use_empty()) {
1092 llvm::Constant *NewPtrForOldDecl =
1093 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1094 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1095 }
1096
1097 OldGV->eraseFromParent();
1098 }
1099
1100 return GV;
1101 }
1102
1103 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1104 /// given global variable. If Ty is non-null and if the global doesn't exist,
1105 /// then it will be greated with the specified type instead of whatever the
1106 /// normal requested type would be.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty)1107 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1108 llvm::Type *Ty) {
1109 assert(D->hasGlobalStorage() && "Not a global variable");
1110 QualType ASTTy = D->getType();
1111 if (Ty == 0)
1112 Ty = getTypes().ConvertTypeForMem(ASTTy);
1113
1114 llvm::PointerType *PTy =
1115 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1116
1117 llvm::StringRef MangledName = getMangledName(D);
1118 return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1119 }
1120
1121 /// CreateRuntimeVariable - Create a new runtime global variable with the
1122 /// specified type and name.
1123 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,llvm::StringRef Name)1124 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1125 llvm::StringRef Name) {
1126 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1127 true);
1128 }
1129
EmitTentativeDefinition(const VarDecl * D)1130 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1131 assert(!D->getInit() && "Cannot emit definite definitions here!");
1132
1133 if (MayDeferGeneration(D)) {
1134 // If we have not seen a reference to this variable yet, place it
1135 // into the deferred declarations table to be emitted if needed
1136 // later.
1137 llvm::StringRef MangledName = getMangledName(D);
1138 if (!GetGlobalValue(MangledName)) {
1139 DeferredDecls[MangledName] = D;
1140 return;
1141 }
1142 }
1143
1144 // The tentative definition is the only definition.
1145 EmitGlobalVarDefinition(D);
1146 }
1147
EmitVTable(CXXRecordDecl * Class,bool DefinitionRequired)1148 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1149 if (DefinitionRequired)
1150 getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1151 }
1152
1153 llvm::GlobalVariable::LinkageTypes
getVTableLinkage(const CXXRecordDecl * RD)1154 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1155 if (RD->getLinkage() != ExternalLinkage)
1156 return llvm::GlobalVariable::InternalLinkage;
1157
1158 if (const CXXMethodDecl *KeyFunction
1159 = RD->getASTContext().getKeyFunction(RD)) {
1160 // If this class has a key function, use that to determine the linkage of
1161 // the vtable.
1162 const FunctionDecl *Def = 0;
1163 if (KeyFunction->hasBody(Def))
1164 KeyFunction = cast<CXXMethodDecl>(Def);
1165
1166 switch (KeyFunction->getTemplateSpecializationKind()) {
1167 case TSK_Undeclared:
1168 case TSK_ExplicitSpecialization:
1169 // When compiling with optimizations turned on, we emit all vtables,
1170 // even if the key function is not defined in the current translation
1171 // unit. If this is the case, use available_externally linkage.
1172 if (!Def && CodeGenOpts.OptimizationLevel)
1173 return llvm::GlobalVariable::AvailableExternallyLinkage;
1174
1175 if (KeyFunction->isInlined())
1176 return !Context.getLangOptions().AppleKext ?
1177 llvm::GlobalVariable::LinkOnceODRLinkage :
1178 llvm::Function::InternalLinkage;
1179
1180 return llvm::GlobalVariable::ExternalLinkage;
1181
1182 case TSK_ImplicitInstantiation:
1183 return !Context.getLangOptions().AppleKext ?
1184 llvm::GlobalVariable::LinkOnceODRLinkage :
1185 llvm::Function::InternalLinkage;
1186
1187 case TSK_ExplicitInstantiationDefinition:
1188 return !Context.getLangOptions().AppleKext ?
1189 llvm::GlobalVariable::WeakODRLinkage :
1190 llvm::Function::InternalLinkage;
1191
1192 case TSK_ExplicitInstantiationDeclaration:
1193 // FIXME: Use available_externally linkage. However, this currently
1194 // breaks LLVM's build due to undefined symbols.
1195 // return llvm::GlobalVariable::AvailableExternallyLinkage;
1196 return !Context.getLangOptions().AppleKext ?
1197 llvm::GlobalVariable::LinkOnceODRLinkage :
1198 llvm::Function::InternalLinkage;
1199 }
1200 }
1201
1202 if (Context.getLangOptions().AppleKext)
1203 return llvm::Function::InternalLinkage;
1204
1205 switch (RD->getTemplateSpecializationKind()) {
1206 case TSK_Undeclared:
1207 case TSK_ExplicitSpecialization:
1208 case TSK_ImplicitInstantiation:
1209 // FIXME: Use available_externally linkage. However, this currently
1210 // breaks LLVM's build due to undefined symbols.
1211 // return llvm::GlobalVariable::AvailableExternallyLinkage;
1212 case TSK_ExplicitInstantiationDeclaration:
1213 return llvm::GlobalVariable::LinkOnceODRLinkage;
1214
1215 case TSK_ExplicitInstantiationDefinition:
1216 return llvm::GlobalVariable::WeakODRLinkage;
1217 }
1218
1219 // Silence GCC warning.
1220 return llvm::GlobalVariable::LinkOnceODRLinkage;
1221 }
1222
GetTargetTypeStoreSize(llvm::Type * Ty) const1223 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1224 return Context.toCharUnitsFromBits(
1225 TheTargetData.getTypeStoreSizeInBits(Ty));
1226 }
1227
EmitGlobalVarDefinition(const VarDecl * D)1228 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1229 llvm::Constant *Init = 0;
1230 QualType ASTTy = D->getType();
1231 bool NonConstInit = false;
1232
1233 const Expr *InitExpr = D->getAnyInitializer();
1234
1235 if (!InitExpr) {
1236 // This is a tentative definition; tentative definitions are
1237 // implicitly initialized with { 0 }.
1238 //
1239 // Note that tentative definitions are only emitted at the end of
1240 // a translation unit, so they should never have incomplete
1241 // type. In addition, EmitTentativeDefinition makes sure that we
1242 // never attempt to emit a tentative definition if a real one
1243 // exists. A use may still exists, however, so we still may need
1244 // to do a RAUW.
1245 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1246 Init = EmitNullConstant(D->getType());
1247 } else {
1248 Init = EmitConstantExpr(InitExpr, D->getType());
1249 if (!Init) {
1250 QualType T = InitExpr->getType();
1251 if (D->getType()->isReferenceType())
1252 T = D->getType();
1253
1254 if (getLangOptions().CPlusPlus) {
1255 Init = EmitNullConstant(T);
1256 NonConstInit = true;
1257 } else {
1258 ErrorUnsupported(D, "static initializer");
1259 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1260 }
1261 } else {
1262 // We don't need an initializer, so remove the entry for the delayed
1263 // initializer position (just in case this entry was delayed).
1264 if (getLangOptions().CPlusPlus)
1265 DelayedCXXInitPosition.erase(D);
1266 }
1267 }
1268
1269 llvm::Type* InitType = Init->getType();
1270 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1271
1272 // Strip off a bitcast if we got one back.
1273 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1274 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1275 // all zero index gep.
1276 CE->getOpcode() == llvm::Instruction::GetElementPtr);
1277 Entry = CE->getOperand(0);
1278 }
1279
1280 // Entry is now either a Function or GlobalVariable.
1281 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1282
1283 // We have a definition after a declaration with the wrong type.
1284 // We must make a new GlobalVariable* and update everything that used OldGV
1285 // (a declaration or tentative definition) with the new GlobalVariable*
1286 // (which will be a definition).
1287 //
1288 // This happens if there is a prototype for a global (e.g.
1289 // "extern int x[];") and then a definition of a different type (e.g.
1290 // "int x[10];"). This also happens when an initializer has a different type
1291 // from the type of the global (this happens with unions).
1292 if (GV == 0 ||
1293 GV->getType()->getElementType() != InitType ||
1294 GV->getType()->getAddressSpace() !=
1295 getContext().getTargetAddressSpace(ASTTy)) {
1296
1297 // Move the old entry aside so that we'll create a new one.
1298 Entry->setName(llvm::StringRef());
1299
1300 // Make a new global with the correct type, this is now guaranteed to work.
1301 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1302
1303 // Replace all uses of the old global with the new global
1304 llvm::Constant *NewPtrForOldDecl =
1305 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1306 Entry->replaceAllUsesWith(NewPtrForOldDecl);
1307
1308 // Erase the old global, since it is no longer used.
1309 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1310 }
1311
1312 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1313 SourceManager &SM = Context.getSourceManager();
1314 AddAnnotation(EmitAnnotateAttr(GV, AA,
1315 SM.getInstantiationLineNumber(D->getLocation())));
1316 }
1317
1318 GV->setInitializer(Init);
1319
1320 // If it is safe to mark the global 'constant', do so now.
1321 GV->setConstant(false);
1322 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1323 GV->setConstant(true);
1324
1325 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1326
1327 // Set the llvm linkage type as appropriate.
1328 llvm::GlobalValue::LinkageTypes Linkage =
1329 GetLLVMLinkageVarDefinition(D, GV);
1330 GV->setLinkage(Linkage);
1331 if (Linkage == llvm::GlobalVariable::CommonLinkage)
1332 // common vars aren't constant even if declared const.
1333 GV->setConstant(false);
1334
1335 SetCommonAttributes(D, GV);
1336
1337 // Emit the initializer function if necessary.
1338 if (NonConstInit)
1339 EmitCXXGlobalVarDeclInitFunc(D, GV);
1340
1341 // Emit global variable debug information.
1342 if (CGDebugInfo *DI = getModuleDebugInfo()) {
1343 DI->setLocation(D->getLocation());
1344 DI->EmitGlobalVariable(GV, D);
1345 }
1346 }
1347
1348 llvm::GlobalValue::LinkageTypes
GetLLVMLinkageVarDefinition(const VarDecl * D,llvm::GlobalVariable * GV)1349 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1350 llvm::GlobalVariable *GV) {
1351 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1352 if (Linkage == GVA_Internal)
1353 return llvm::Function::InternalLinkage;
1354 else if (D->hasAttr<DLLImportAttr>())
1355 return llvm::Function::DLLImportLinkage;
1356 else if (D->hasAttr<DLLExportAttr>())
1357 return llvm::Function::DLLExportLinkage;
1358 else if (D->hasAttr<WeakAttr>()) {
1359 if (GV->isConstant())
1360 return llvm::GlobalVariable::WeakODRLinkage;
1361 else
1362 return llvm::GlobalVariable::WeakAnyLinkage;
1363 } else if (Linkage == GVA_TemplateInstantiation ||
1364 Linkage == GVA_ExplicitTemplateInstantiation)
1365 return llvm::GlobalVariable::WeakODRLinkage;
1366 else if (!getLangOptions().CPlusPlus &&
1367 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1368 D->getAttr<CommonAttr>()) &&
1369 !D->hasExternalStorage() && !D->getInit() &&
1370 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1371 !D->getAttr<WeakImportAttr>()) {
1372 // Thread local vars aren't considered common linkage.
1373 return llvm::GlobalVariable::CommonLinkage;
1374 }
1375 return llvm::GlobalVariable::ExternalLinkage;
1376 }
1377
1378 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1379 /// implement a function with no prototype, e.g. "int foo() {}". If there are
1380 /// existing call uses of the old function in the module, this adjusts them to
1381 /// call the new function directly.
1382 ///
1383 /// This is not just a cleanup: the always_inline pass requires direct calls to
1384 /// functions to be able to inline them. If there is a bitcast in the way, it
1385 /// won't inline them. Instcombine normally deletes these calls, but it isn't
1386 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)1387 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1388 llvm::Function *NewFn) {
1389 // If we're redefining a global as a function, don't transform it.
1390 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1391 if (OldFn == 0) return;
1392
1393 llvm::Type *NewRetTy = NewFn->getReturnType();
1394 llvm::SmallVector<llvm::Value*, 4> ArgList;
1395
1396 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1397 UI != E; ) {
1398 // TODO: Do invokes ever occur in C code? If so, we should handle them too.
1399 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1400 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1401 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1402 llvm::CallSite CS(CI);
1403 if (!CI || !CS.isCallee(I)) continue;
1404
1405 // If the return types don't match exactly, and if the call isn't dead, then
1406 // we can't transform this call.
1407 if (CI->getType() != NewRetTy && !CI->use_empty())
1408 continue;
1409
1410 // If the function was passed too few arguments, don't transform. If extra
1411 // arguments were passed, we silently drop them. If any of the types
1412 // mismatch, we don't transform.
1413 unsigned ArgNo = 0;
1414 bool DontTransform = false;
1415 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1416 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1417 if (CS.arg_size() == ArgNo ||
1418 CS.getArgument(ArgNo)->getType() != AI->getType()) {
1419 DontTransform = true;
1420 break;
1421 }
1422 }
1423 if (DontTransform)
1424 continue;
1425
1426 // Okay, we can transform this. Create the new call instruction and copy
1427 // over the required information.
1428 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1429 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1430 ArgList.clear();
1431 if (!NewCall->getType()->isVoidTy())
1432 NewCall->takeName(CI);
1433 NewCall->setAttributes(CI->getAttributes());
1434 NewCall->setCallingConv(CI->getCallingConv());
1435
1436 // Finally, remove the old call, replacing any uses with the new one.
1437 if (!CI->use_empty())
1438 CI->replaceAllUsesWith(NewCall);
1439
1440 // Copy debug location attached to CI.
1441 if (!CI->getDebugLoc().isUnknown())
1442 NewCall->setDebugLoc(CI->getDebugLoc());
1443 CI->eraseFromParent();
1444 }
1445 }
1446
1447
EmitGlobalFunctionDefinition(GlobalDecl GD)1448 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1449 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1450
1451 // Compute the function info and LLVM type.
1452 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1453 bool variadic = false;
1454 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1455 variadic = fpt->isVariadic();
1456 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
1457
1458 // Get or create the prototype for the function.
1459 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1460
1461 // Strip off a bitcast if we got one back.
1462 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1463 assert(CE->getOpcode() == llvm::Instruction::BitCast);
1464 Entry = CE->getOperand(0);
1465 }
1466
1467
1468 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1469 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1470
1471 // If the types mismatch then we have to rewrite the definition.
1472 assert(OldFn->isDeclaration() &&
1473 "Shouldn't replace non-declaration");
1474
1475 // F is the Function* for the one with the wrong type, we must make a new
1476 // Function* and update everything that used F (a declaration) with the new
1477 // Function* (which will be a definition).
1478 //
1479 // This happens if there is a prototype for a function
1480 // (e.g. "int f()") and then a definition of a different type
1481 // (e.g. "int f(int x)"). Move the old function aside so that it
1482 // doesn't interfere with GetAddrOfFunction.
1483 OldFn->setName(llvm::StringRef());
1484 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1485
1486 // If this is an implementation of a function without a prototype, try to
1487 // replace any existing uses of the function (which may be calls) with uses
1488 // of the new function
1489 if (D->getType()->isFunctionNoProtoType()) {
1490 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1491 OldFn->removeDeadConstantUsers();
1492 }
1493
1494 // Replace uses of F with the Function we will endow with a body.
1495 if (!Entry->use_empty()) {
1496 llvm::Constant *NewPtrForOldDecl =
1497 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1498 Entry->replaceAllUsesWith(NewPtrForOldDecl);
1499 }
1500
1501 // Ok, delete the old function now, which is dead.
1502 OldFn->eraseFromParent();
1503
1504 Entry = NewFn;
1505 }
1506
1507 // We need to set linkage and visibility on the function before
1508 // generating code for it because various parts of IR generation
1509 // want to propagate this information down (e.g. to local static
1510 // declarations).
1511 llvm::Function *Fn = cast<llvm::Function>(Entry);
1512 setFunctionLinkage(D, Fn);
1513
1514 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1515 setGlobalVisibility(Fn, D);
1516
1517 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1518
1519 SetFunctionDefinitionAttributes(D, Fn);
1520 SetLLVMFunctionAttributesForDefinition(D, Fn);
1521
1522 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1523 AddGlobalCtor(Fn, CA->getPriority());
1524 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1525 AddGlobalDtor(Fn, DA->getPriority());
1526 }
1527
EmitAliasDefinition(GlobalDecl GD)1528 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1529 const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1530 const AliasAttr *AA = D->getAttr<AliasAttr>();
1531 assert(AA && "Not an alias?");
1532
1533 llvm::StringRef MangledName = getMangledName(GD);
1534
1535 // If there is a definition in the module, then it wins over the alias.
1536 // This is dubious, but allow it to be safe. Just ignore the alias.
1537 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1538 if (Entry && !Entry->isDeclaration())
1539 return;
1540
1541 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1542
1543 // Create a reference to the named value. This ensures that it is emitted
1544 // if a deferred decl.
1545 llvm::Constant *Aliasee;
1546 if (isa<llvm::FunctionType>(DeclTy))
1547 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1548 /*ForVTable=*/false);
1549 else
1550 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1551 llvm::PointerType::getUnqual(DeclTy), 0);
1552
1553 // Create the new alias itself, but don't set a name yet.
1554 llvm::GlobalValue *GA =
1555 new llvm::GlobalAlias(Aliasee->getType(),
1556 llvm::Function::ExternalLinkage,
1557 "", Aliasee, &getModule());
1558
1559 if (Entry) {
1560 assert(Entry->isDeclaration());
1561
1562 // If there is a declaration in the module, then we had an extern followed
1563 // by the alias, as in:
1564 // extern int test6();
1565 // ...
1566 // int test6() __attribute__((alias("test7")));
1567 //
1568 // Remove it and replace uses of it with the alias.
1569 GA->takeName(Entry);
1570
1571 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1572 Entry->getType()));
1573 Entry->eraseFromParent();
1574 } else {
1575 GA->setName(MangledName);
1576 }
1577
1578 // Set attributes which are particular to an alias; this is a
1579 // specialization of the attributes which may be set on a global
1580 // variable/function.
1581 if (D->hasAttr<DLLExportAttr>()) {
1582 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1583 // The dllexport attribute is ignored for undefined symbols.
1584 if (FD->hasBody())
1585 GA->setLinkage(llvm::Function::DLLExportLinkage);
1586 } else {
1587 GA->setLinkage(llvm::Function::DLLExportLinkage);
1588 }
1589 } else if (D->hasAttr<WeakAttr>() ||
1590 D->hasAttr<WeakRefAttr>() ||
1591 D->isWeakImported()) {
1592 GA->setLinkage(llvm::Function::WeakAnyLinkage);
1593 }
1594
1595 SetCommonAttributes(D, GA);
1596 }
1597
1598 /// getBuiltinLibFunction - Given a builtin id for a function like
1599 /// "__builtin_fabsf", return a Function* for "fabsf".
getBuiltinLibFunction(const FunctionDecl * FD,unsigned BuiltinID)1600 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1601 unsigned BuiltinID) {
1602 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1603 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1604 "isn't a lib fn");
1605
1606 // Get the name, skip over the __builtin_ prefix (if necessary).
1607 llvm::StringRef Name;
1608 GlobalDecl D(FD);
1609
1610 // If the builtin has been declared explicitly with an assembler label,
1611 // use the mangled name. This differs from the plain label on platforms
1612 // that prefix labels.
1613 if (FD->hasAttr<AsmLabelAttr>())
1614 Name = getMangledName(D);
1615 else if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1616 Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
1617 else
1618 Name = Context.BuiltinInfo.GetName(BuiltinID);
1619
1620
1621 llvm::FunctionType *Ty =
1622 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1623
1624 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
1625 }
1626
getIntrinsic(unsigned IID,llvm::ArrayRef<llvm::Type * > Tys)1627 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1628 llvm::ArrayRef<llvm::Type*> Tys) {
1629 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1630 Tys);
1631 }
1632
1633 static llvm::StringMapEntry<llvm::Constant*> &
GetConstantCFStringEntry(llvm::StringMap<llvm::Constant * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)1634 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1635 const StringLiteral *Literal,
1636 bool TargetIsLSB,
1637 bool &IsUTF16,
1638 unsigned &StringLength) {
1639 llvm::StringRef String = Literal->getString();
1640 unsigned NumBytes = String.size();
1641
1642 // Check for simple case.
1643 if (!Literal->containsNonAsciiOrNull()) {
1644 StringLength = NumBytes;
1645 return Map.GetOrCreateValue(String);
1646 }
1647
1648 // Otherwise, convert the UTF8 literals into a byte string.
1649 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1650 const UTF8 *FromPtr = (UTF8 *)String.data();
1651 UTF16 *ToPtr = &ToBuf[0];
1652
1653 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1654 &ToPtr, ToPtr + NumBytes,
1655 strictConversion);
1656
1657 // ConvertUTF8toUTF16 returns the length in ToPtr.
1658 StringLength = ToPtr - &ToBuf[0];
1659
1660 // Render the UTF-16 string into a byte array and convert to the target byte
1661 // order.
1662 //
1663 // FIXME: This isn't something we should need to do here.
1664 llvm::SmallString<128> AsBytes;
1665 AsBytes.reserve(StringLength * 2);
1666 for (unsigned i = 0; i != StringLength; ++i) {
1667 unsigned short Val = ToBuf[i];
1668 if (TargetIsLSB) {
1669 AsBytes.push_back(Val & 0xFF);
1670 AsBytes.push_back(Val >> 8);
1671 } else {
1672 AsBytes.push_back(Val >> 8);
1673 AsBytes.push_back(Val & 0xFF);
1674 }
1675 }
1676 // Append one extra null character, the second is automatically added by our
1677 // caller.
1678 AsBytes.push_back(0);
1679
1680 IsUTF16 = true;
1681 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1682 }
1683
1684 static llvm::StringMapEntry<llvm::Constant*> &
GetConstantStringEntry(llvm::StringMap<llvm::Constant * > & Map,const StringLiteral * Literal,unsigned & StringLength)1685 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1686 const StringLiteral *Literal,
1687 unsigned &StringLength)
1688 {
1689 llvm::StringRef String = Literal->getString();
1690 StringLength = String.size();
1691 return Map.GetOrCreateValue(String);
1692 }
1693
1694 llvm::Constant *
GetAddrOfConstantCFString(const StringLiteral * Literal)1695 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1696 unsigned StringLength = 0;
1697 bool isUTF16 = false;
1698 llvm::StringMapEntry<llvm::Constant*> &Entry =
1699 GetConstantCFStringEntry(CFConstantStringMap, Literal,
1700 getTargetData().isLittleEndian(),
1701 isUTF16, StringLength);
1702
1703 if (llvm::Constant *C = Entry.getValue())
1704 return C;
1705
1706 llvm::Constant *Zero =
1707 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1708 llvm::Constant *Zeros[] = { Zero, Zero };
1709
1710 // If we don't already have it, get __CFConstantStringClassReference.
1711 if (!CFConstantStringClassRef) {
1712 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1713 Ty = llvm::ArrayType::get(Ty, 0);
1714 llvm::Constant *GV = CreateRuntimeVariable(Ty,
1715 "__CFConstantStringClassReference");
1716 // Decay array -> ptr
1717 CFConstantStringClassRef =
1718 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1719 }
1720
1721 QualType CFTy = getContext().getCFConstantStringType();
1722
1723 llvm::StructType *STy =
1724 cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1725
1726 std::vector<llvm::Constant*> Fields(4);
1727
1728 // Class pointer.
1729 Fields[0] = CFConstantStringClassRef;
1730
1731 // Flags.
1732 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1733 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1734 llvm::ConstantInt::get(Ty, 0x07C8);
1735
1736 // String pointer.
1737 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1738
1739 llvm::GlobalValue::LinkageTypes Linkage;
1740 bool isConstant;
1741 if (isUTF16) {
1742 // FIXME: why do utf strings get "_" labels instead of "L" labels?
1743 Linkage = llvm::GlobalValue::InternalLinkage;
1744 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1745 // does make plain ascii ones writable.
1746 isConstant = true;
1747 } else {
1748 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1749 // when using private linkage. It is not clear if this is a bug in ld
1750 // or a reasonable new restriction.
1751 Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1752 isConstant = !Features.WritableStrings;
1753 }
1754
1755 llvm::GlobalVariable *GV =
1756 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1757 ".str");
1758 GV->setUnnamedAddr(true);
1759 if (isUTF16) {
1760 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1761 GV->setAlignment(Align.getQuantity());
1762 } else {
1763 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1764 GV->setAlignment(Align.getQuantity());
1765 }
1766 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1767
1768 // String length.
1769 Ty = getTypes().ConvertType(getContext().LongTy);
1770 Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1771
1772 // The struct.
1773 C = llvm::ConstantStruct::get(STy, Fields);
1774 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1775 llvm::GlobalVariable::PrivateLinkage, C,
1776 "_unnamed_cfstring_");
1777 if (const char *Sect = getContext().Target.getCFStringSection())
1778 GV->setSection(Sect);
1779 Entry.setValue(GV);
1780
1781 return GV;
1782 }
1783
1784 llvm::Constant *
GetAddrOfConstantString(const StringLiteral * Literal)1785 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1786 unsigned StringLength = 0;
1787 llvm::StringMapEntry<llvm::Constant*> &Entry =
1788 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1789
1790 if (llvm::Constant *C = Entry.getValue())
1791 return C;
1792
1793 llvm::Constant *Zero =
1794 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1795 llvm::Constant *Zeros[] = { Zero, Zero };
1796
1797 // If we don't already have it, get _NSConstantStringClassReference.
1798 if (!ConstantStringClassRef) {
1799 std::string StringClass(getLangOptions().ObjCConstantStringClass);
1800 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1801 llvm::Constant *GV;
1802 if (Features.ObjCNonFragileABI) {
1803 std::string str =
1804 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1805 : "OBJC_CLASS_$_" + StringClass;
1806 GV = getObjCRuntime().GetClassGlobal(str);
1807 // Make sure the result is of the correct type.
1808 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1809 ConstantStringClassRef =
1810 llvm::ConstantExpr::getBitCast(GV, PTy);
1811 } else {
1812 std::string str =
1813 StringClass.empty() ? "_NSConstantStringClassReference"
1814 : "_" + StringClass + "ClassReference";
1815 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1816 GV = CreateRuntimeVariable(PTy, str);
1817 // Decay array -> ptr
1818 ConstantStringClassRef =
1819 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1820 }
1821 }
1822
1823 QualType NSTy = getContext().getNSConstantStringType();
1824
1825 llvm::StructType *STy =
1826 cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1827
1828 std::vector<llvm::Constant*> Fields(3);
1829
1830 // Class pointer.
1831 Fields[0] = ConstantStringClassRef;
1832
1833 // String pointer.
1834 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1835
1836 llvm::GlobalValue::LinkageTypes Linkage;
1837 bool isConstant;
1838 Linkage = llvm::GlobalValue::PrivateLinkage;
1839 isConstant = !Features.WritableStrings;
1840
1841 llvm::GlobalVariable *GV =
1842 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1843 ".str");
1844 GV->setUnnamedAddr(true);
1845 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1846 GV->setAlignment(Align.getQuantity());
1847 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1848
1849 // String length.
1850 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1851 Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1852
1853 // The struct.
1854 C = llvm::ConstantStruct::get(STy, Fields);
1855 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1856 llvm::GlobalVariable::PrivateLinkage, C,
1857 "_unnamed_nsstring_");
1858 // FIXME. Fix section.
1859 if (const char *Sect =
1860 Features.ObjCNonFragileABI
1861 ? getContext().Target.getNSStringNonFragileABISection()
1862 : getContext().Target.getNSStringSection())
1863 GV->setSection(Sect);
1864 Entry.setValue(GV);
1865
1866 return GV;
1867 }
1868
1869 /// GetStringForStringLiteral - Return the appropriate bytes for a
1870 /// string literal, properly padded to match the literal type.
GetStringForStringLiteral(const StringLiteral * E)1871 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1872 const ASTContext &Context = getContext();
1873 const ConstantArrayType *CAT =
1874 Context.getAsConstantArrayType(E->getType());
1875 assert(CAT && "String isn't pointer or array!");
1876
1877 // Resize the string to the right size.
1878 uint64_t RealLen = CAT->getSize().getZExtValue();
1879
1880 if (E->isWide())
1881 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1882
1883 std::string Str = E->getString().str();
1884 Str.resize(RealLen, '\0');
1885
1886 return Str;
1887 }
1888
1889 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1890 /// constant array for the given string literal.
1891 llvm::Constant *
GetAddrOfConstantStringFromLiteral(const StringLiteral * S)1892 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1893 // FIXME: This can be more efficient.
1894 // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1895 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1896 if (S->isWide()) {
1897 llvm::Type *DestTy =
1898 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1899 C = llvm::ConstantExpr::getBitCast(C, DestTy);
1900 }
1901 return C;
1902 }
1903
1904 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1905 /// array for the given ObjCEncodeExpr node.
1906 llvm::Constant *
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)1907 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1908 std::string Str;
1909 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1910
1911 return GetAddrOfConstantCString(Str);
1912 }
1913
1914
1915 /// GenerateWritableString -- Creates storage for a string literal.
GenerateStringLiteral(llvm::StringRef str,bool constant,CodeGenModule & CGM,const char * GlobalName)1916 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1917 bool constant,
1918 CodeGenModule &CGM,
1919 const char *GlobalName) {
1920 // Create Constant for this string literal. Don't add a '\0'.
1921 llvm::Constant *C =
1922 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1923
1924 // Create a global variable for this string
1925 llvm::GlobalVariable *GV =
1926 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1927 llvm::GlobalValue::PrivateLinkage,
1928 C, GlobalName);
1929 GV->setAlignment(1);
1930 GV->setUnnamedAddr(true);
1931 return GV;
1932 }
1933
1934 /// GetAddrOfConstantString - Returns a pointer to a character array
1935 /// containing the literal. This contents are exactly that of the
1936 /// given string, i.e. it will not be null terminated automatically;
1937 /// see GetAddrOfConstantCString. Note that whether the result is
1938 /// actually a pointer to an LLVM constant depends on
1939 /// Feature.WriteableStrings.
1940 ///
1941 /// The result has pointer to array type.
GetAddrOfConstantString(llvm::StringRef Str,const char * GlobalName)1942 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1943 const char *GlobalName) {
1944 bool IsConstant = !Features.WritableStrings;
1945
1946 // Get the default prefix if a name wasn't specified.
1947 if (!GlobalName)
1948 GlobalName = ".str";
1949
1950 // Don't share any string literals if strings aren't constant.
1951 if (!IsConstant)
1952 return GenerateStringLiteral(Str, false, *this, GlobalName);
1953
1954 llvm::StringMapEntry<llvm::Constant *> &Entry =
1955 ConstantStringMap.GetOrCreateValue(Str);
1956
1957 if (Entry.getValue())
1958 return Entry.getValue();
1959
1960 // Create a global variable for this.
1961 llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1962 Entry.setValue(C);
1963 return C;
1964 }
1965
1966 /// GetAddrOfConstantCString - Returns a pointer to a character
1967 /// array containing the literal and a terminating '\0'
1968 /// character. The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName)1969 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1970 const char *GlobalName){
1971 llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1972 return GetAddrOfConstantString(StrWithNull, GlobalName);
1973 }
1974
1975 /// EmitObjCPropertyImplementations - Emit information for synthesized
1976 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)1977 void CodeGenModule::EmitObjCPropertyImplementations(const
1978 ObjCImplementationDecl *D) {
1979 for (ObjCImplementationDecl::propimpl_iterator
1980 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1981 ObjCPropertyImplDecl *PID = *i;
1982
1983 // Dynamic is just for type-checking.
1984 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1985 ObjCPropertyDecl *PD = PID->getPropertyDecl();
1986
1987 // Determine which methods need to be implemented, some may have
1988 // been overridden. Note that ::isSynthesized is not the method
1989 // we want, that just indicates if the decl came from a
1990 // property. What we want to know is if the method is defined in
1991 // this implementation.
1992 if (!D->getInstanceMethod(PD->getGetterName()))
1993 CodeGenFunction(*this).GenerateObjCGetter(
1994 const_cast<ObjCImplementationDecl *>(D), PID);
1995 if (!PD->isReadOnly() &&
1996 !D->getInstanceMethod(PD->getSetterName()))
1997 CodeGenFunction(*this).GenerateObjCSetter(
1998 const_cast<ObjCImplementationDecl *>(D), PID);
1999 }
2000 }
2001 }
2002
needsDestructMethod(ObjCImplementationDecl * impl)2003 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2004 ObjCInterfaceDecl *iface
2005 = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
2006 for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2007 ivar; ivar = ivar->getNextIvar())
2008 if (ivar->getType().isDestructedType())
2009 return true;
2010
2011 return false;
2012 }
2013
2014 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2015 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)2016 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2017 // We might need a .cxx_destruct even if we don't have any ivar initializers.
2018 if (needsDestructMethod(D)) {
2019 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2020 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2021 ObjCMethodDecl *DTORMethod =
2022 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2023 cxxSelector, getContext().VoidTy, 0, D, true,
2024 false, true, false, ObjCMethodDecl::Required);
2025 D->addInstanceMethod(DTORMethod);
2026 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2027 D->setHasCXXStructors(true);
2028 }
2029
2030 // If the implementation doesn't have any ivar initializers, we don't need
2031 // a .cxx_construct.
2032 if (D->getNumIvarInitializers() == 0)
2033 return;
2034
2035 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2036 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2037 // The constructor returns 'self'.
2038 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2039 D->getLocation(),
2040 D->getLocation(), cxxSelector,
2041 getContext().getObjCIdType(), 0,
2042 D, true, false, true, false,
2043 ObjCMethodDecl::Required);
2044 D->addInstanceMethod(CTORMethod);
2045 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2046 D->setHasCXXStructors(true);
2047 }
2048
2049 /// EmitNamespace - Emit all declarations in a namespace.
EmitNamespace(const NamespaceDecl * ND)2050 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2051 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2052 I != E; ++I)
2053 EmitTopLevelDecl(*I);
2054 }
2055
2056 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)2057 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2058 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2059 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2060 ErrorUnsupported(LSD, "linkage spec");
2061 return;
2062 }
2063
2064 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2065 I != E; ++I)
2066 EmitTopLevelDecl(*I);
2067 }
2068
2069 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)2070 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2071 // If an error has occurred, stop code generation, but continue
2072 // parsing and semantic analysis (to ensure all warnings and errors
2073 // are emitted).
2074 if (Diags.hasErrorOccurred())
2075 return;
2076
2077 // Ignore dependent declarations.
2078 if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2079 return;
2080
2081 switch (D->getKind()) {
2082 case Decl::CXXConversion:
2083 case Decl::CXXMethod:
2084 case Decl::Function:
2085 // Skip function templates
2086 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2087 cast<FunctionDecl>(D)->isLateTemplateParsed())
2088 return;
2089
2090 EmitGlobal(cast<FunctionDecl>(D));
2091 break;
2092
2093 case Decl::Var:
2094 EmitGlobal(cast<VarDecl>(D));
2095 break;
2096
2097 // Indirect fields from global anonymous structs and unions can be
2098 // ignored; only the actual variable requires IR gen support.
2099 case Decl::IndirectField:
2100 break;
2101
2102 // C++ Decls
2103 case Decl::Namespace:
2104 EmitNamespace(cast<NamespaceDecl>(D));
2105 break;
2106 // No code generation needed.
2107 case Decl::UsingShadow:
2108 case Decl::Using:
2109 case Decl::UsingDirective:
2110 case Decl::ClassTemplate:
2111 case Decl::FunctionTemplate:
2112 case Decl::TypeAliasTemplate:
2113 case Decl::NamespaceAlias:
2114 case Decl::Block:
2115 break;
2116 case Decl::CXXConstructor:
2117 // Skip function templates
2118 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2119 cast<FunctionDecl>(D)->isLateTemplateParsed())
2120 return;
2121
2122 EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2123 break;
2124 case Decl::CXXDestructor:
2125 if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2126 return;
2127 EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2128 break;
2129
2130 case Decl::StaticAssert:
2131 // Nothing to do.
2132 break;
2133
2134 // Objective-C Decls
2135
2136 // Forward declarations, no (immediate) code generation.
2137 case Decl::ObjCClass:
2138 case Decl::ObjCForwardProtocol:
2139 case Decl::ObjCInterface:
2140 break;
2141
2142 case Decl::ObjCCategory: {
2143 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2144 if (CD->IsClassExtension() && CD->hasSynthBitfield())
2145 Context.ResetObjCLayout(CD->getClassInterface());
2146 break;
2147 }
2148
2149 case Decl::ObjCProtocol:
2150 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2151 break;
2152
2153 case Decl::ObjCCategoryImpl:
2154 // Categories have properties but don't support synthesize so we
2155 // can ignore them here.
2156 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2157 break;
2158
2159 case Decl::ObjCImplementation: {
2160 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2161 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2162 Context.ResetObjCLayout(OMD->getClassInterface());
2163 EmitObjCPropertyImplementations(OMD);
2164 EmitObjCIvarInitializations(OMD);
2165 Runtime->GenerateClass(OMD);
2166 break;
2167 }
2168 case Decl::ObjCMethod: {
2169 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2170 // If this is not a prototype, emit the body.
2171 if (OMD->getBody())
2172 CodeGenFunction(*this).GenerateObjCMethod(OMD);
2173 break;
2174 }
2175 case Decl::ObjCCompatibleAlias:
2176 // compatibility-alias is a directive and has no code gen.
2177 break;
2178
2179 case Decl::LinkageSpec:
2180 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2181 break;
2182
2183 case Decl::FileScopeAsm: {
2184 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2185 llvm::StringRef AsmString = AD->getAsmString()->getString();
2186
2187 const std::string &S = getModule().getModuleInlineAsm();
2188 if (S.empty())
2189 getModule().setModuleInlineAsm(AsmString);
2190 else
2191 getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2192 break;
2193 }
2194
2195 default:
2196 // Make sure we handled everything we should, every other kind is a
2197 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
2198 // function. Need to recode Decl::Kind to do that easily.
2199 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2200 }
2201 }
2202
2203 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)2204 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2205 const void *Ptr) {
2206 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2207 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2208 return llvm::ConstantInt::get(i64, PtrInt);
2209 }
2210
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)2211 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2212 llvm::NamedMDNode *&GlobalMetadata,
2213 GlobalDecl D,
2214 llvm::GlobalValue *Addr) {
2215 if (!GlobalMetadata)
2216 GlobalMetadata =
2217 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2218
2219 // TODO: should we report variant information for ctors/dtors?
2220 llvm::Value *Ops[] = {
2221 Addr,
2222 GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2223 };
2224 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2225 }
2226
2227 /// Emits metadata nodes associating all the global values in the
2228 /// current module with the Decls they came from. This is useful for
2229 /// projects using IR gen as a subroutine.
2230 ///
2231 /// Since there's currently no way to associate an MDNode directly
2232 /// with an llvm::GlobalValue, we create a global named metadata
2233 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()2234 void CodeGenModule::EmitDeclMetadata() {
2235 llvm::NamedMDNode *GlobalMetadata = 0;
2236
2237 // StaticLocalDeclMap
2238 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2239 I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2240 I != E; ++I) {
2241 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2242 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2243 }
2244 }
2245
2246 /// Emits metadata nodes for all the local variables in the current
2247 /// function.
EmitDeclMetadata()2248 void CodeGenFunction::EmitDeclMetadata() {
2249 if (LocalDeclMap.empty()) return;
2250
2251 llvm::LLVMContext &Context = getLLVMContext();
2252
2253 // Find the unique metadata ID for this name.
2254 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2255
2256 llvm::NamedMDNode *GlobalMetadata = 0;
2257
2258 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2259 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2260 const Decl *D = I->first;
2261 llvm::Value *Addr = I->second;
2262
2263 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2264 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2265 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2266 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2267 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2268 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2269 }
2270 }
2271 }
2272
EmitCoverageFile()2273 void CodeGenModule::EmitCoverageFile() {
2274 if (!getCodeGenOpts().CoverageFile.empty()) {
2275 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2276 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2277 llvm::LLVMContext &Ctx = TheModule.getContext();
2278 llvm::MDString *CoverageFile =
2279 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2280 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2281 llvm::MDNode *CU = CUNode->getOperand(i);
2282 llvm::Value *node[] = { CoverageFile, CU };
2283 llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2284 GCov->addOperand(N);
2285 }
2286 }
2287 }
2288 }
2289
2290 ///@name Custom Runtime Function Interfaces
2291 ///@{
2292 //
2293 // FIXME: These can be eliminated once we can have clients just get the required
2294 // AST nodes from the builtin tables.
2295
getBlockObjectDispose()2296 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2297 if (BlockObjectDispose)
2298 return BlockObjectDispose;
2299
2300 // If we saw an explicit decl, use that.
2301 if (BlockObjectDisposeDecl) {
2302 return BlockObjectDispose = GetAddrOfFunction(
2303 BlockObjectDisposeDecl,
2304 getTypes().GetFunctionType(BlockObjectDisposeDecl));
2305 }
2306
2307 // Otherwise construct the function by hand.
2308 llvm::Type *args[] = { Int8PtrTy, Int32Ty };
2309 llvm::FunctionType *fty
2310 = llvm::FunctionType::get(VoidTy, args, false);
2311 return BlockObjectDispose =
2312 CreateRuntimeFunction(fty, "_Block_object_dispose");
2313 }
2314
getBlockObjectAssign()2315 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2316 if (BlockObjectAssign)
2317 return BlockObjectAssign;
2318
2319 // If we saw an explicit decl, use that.
2320 if (BlockObjectAssignDecl) {
2321 return BlockObjectAssign = GetAddrOfFunction(
2322 BlockObjectAssignDecl,
2323 getTypes().GetFunctionType(BlockObjectAssignDecl));
2324 }
2325
2326 // Otherwise construct the function by hand.
2327 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
2328 llvm::FunctionType *fty
2329 = llvm::FunctionType::get(VoidTy, args, false);
2330 return BlockObjectAssign =
2331 CreateRuntimeFunction(fty, "_Block_object_assign");
2332 }
2333
getNSConcreteGlobalBlock()2334 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2335 if (NSConcreteGlobalBlock)
2336 return NSConcreteGlobalBlock;
2337
2338 // If we saw an explicit decl, use that.
2339 if (NSConcreteGlobalBlockDecl) {
2340 return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2341 NSConcreteGlobalBlockDecl,
2342 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2343 }
2344
2345 // Otherwise construct the variable by hand.
2346 return NSConcreteGlobalBlock =
2347 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2348 }
2349
getNSConcreteStackBlock()2350 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2351 if (NSConcreteStackBlock)
2352 return NSConcreteStackBlock;
2353
2354 // If we saw an explicit decl, use that.
2355 if (NSConcreteStackBlockDecl) {
2356 return NSConcreteStackBlock = GetAddrOfGlobalVar(
2357 NSConcreteStackBlockDecl,
2358 getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2359 }
2360
2361 // Otherwise construct the variable by hand.
2362 return NSConcreteStackBlock =
2363 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2364 }
2365
2366 ///@}
2367