• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <meta http-equiv="content-type" content="text/html; charset=utf-8">
6  <title>The LLVM Target-Independent Code Generator</title>
7  <link rel="stylesheet" href="llvm.css" type="text/css">
8
9  <style type="text/css">
10    .unknown { background-color: #C0C0C0; text-align: center; }
11    .unknown:before { content: "?" }
12    .no { background-color: #C11B17 }
13    .no:before { content: "N" }
14    .partial { background-color: #F88017 }
15    .yes { background-color: #0F0; }
16    .yes:before { content: "Y" }
17  </style>
18
19</head>
20<body>
21
22<h1>
23  The LLVM Target-Independent Code Generator
24</h1>
25
26<ol>
27  <li><a href="#introduction">Introduction</a>
28    <ul>
29      <li><a href="#required">Required components in the code generator</a></li>
30      <li><a href="#high-level-design">The high-level design of the code
31          generator</a></li>
32      <li><a href="#tablegen">Using TableGen for target description</a></li>
33    </ul>
34  </li>
35  <li><a href="#targetdesc">Target description classes</a>
36    <ul>
37      <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
38      <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
39      <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
40      <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
41      <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
42      <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
43      <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
44      <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
45    </ul>
46  </li>
47  <li><a href="#codegendesc">The "Machine" Code Generator classes</a>
48    <ul>
49    <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
50    <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
51                                     class</a></li>
52    <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
53    </ul>
54  </li>
55  <li><a href="#mc">The "MC" Layer</a>
56    <ul>
57    <li><a href="#mcstreamer">The <tt>MCStreamer</tt> API</a></li>
58    <li><a href="#mccontext">The <tt>MCContext</tt> class</a>
59    <li><a href="#mcsymbol">The <tt>MCSymbol</tt> class</a></li>
60    <li><a href="#mcsection">The <tt>MCSection</tt> class</a></li>
61    <li><a href="#mcinst">The <tt>MCInst</tt> class</a></li>
62    </ul>
63  </li>
64  <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
65    <ul>
66    <li><a href="#instselect">Instruction Selection</a>
67      <ul>
68      <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
69      <li><a href="#selectiondag_process">SelectionDAG Code Generation
70                                          Process</a></li>
71      <li><a href="#selectiondag_build">Initial SelectionDAG
72                                        Construction</a></li>
73      <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
74      <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
75      <li><a href="#selectiondag_optimize">SelectionDAG Optimization
76                                           Phase: the DAG Combiner</a></li>
77      <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
78      <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
79                                        Phase</a></li>
80      <li><a href="#selectiondag_future">Future directions for the
81                                         SelectionDAG</a></li>
82      </ul></li>
83     <li><a href="#liveintervals">Live Intervals</a>
84       <ul>
85       <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
86       <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
87       </ul></li>
88    <li><a href="#regalloc">Register Allocation</a>
89      <ul>
90      <li><a href="#regAlloc_represent">How registers are represented in
91                                        LLVM</a></li>
92      <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
93                                    registers</a></li>
94      <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
95      <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
96      <li><a href="#regAlloc_fold">Instruction folding</a></li>
97      <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
98      </ul></li>
99    <li><a href="#codeemit">Code Emission</a></li>
100    </ul>
101  </li>
102  <li><a href="#nativeassembler">Implementing a Native Assembler</a></li>
103
104  <li><a href="#targetimpls">Target-specific Implementation Notes</a>
105    <ul>
106    <li><a href="#targetfeatures">Target Feature Matrix</a></li>
107    <li><a href="#tailcallopt">Tail call optimization</a></li>
108    <li><a href="#sibcallopt">Sibling call optimization</a></li>
109    <li><a href="#x86">The X86 backend</a></li>
110    <li><a href="#ppc">The PowerPC backend</a>
111      <ul>
112      <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
113      <li><a href="#ppc_frame">Frame Layout</a></li>
114      <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
115      <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
116      </ul></li>
117    </ul></li>
118
119</ol>
120
121<div class="doc_author">
122  <p>Written by the LLVM Team.</p>
123</div>
124
125<div class="doc_warning">
126  <p>Warning: This is a work in progress.</p>
127</div>
128
129<!-- *********************************************************************** -->
130<h2>
131  <a name="introduction">Introduction</a>
132</h2>
133<!-- *********************************************************************** -->
134
135<div>
136
137<p>The LLVM target-independent code generator is a framework that provides a
138   suite of reusable components for translating the LLVM internal representation
139   to the machine code for a specified target&mdash;either in assembly form
140   (suitable for a static compiler) or in binary machine code format (usable for
141   a JIT compiler). The LLVM target-independent code generator consists of six
142   main components:</p>
143
144<ol>
145  <li><a href="#targetdesc">Abstract target description</a> interfaces which
146      capture important properties about various aspects of the machine,
147      independently of how they will be used.  These interfaces are defined in
148      <tt>include/llvm/Target/</tt>.</li>
149
150  <li>Classes used to represent the <a href="#codegendesc">code being
151      generated</a> for a target.  These classes are intended to be abstract
152      enough to represent the machine code for <i>any</i> target machine.  These
153      classes are defined in <tt>include/llvm/CodeGen/</tt>. At this level,
154      concepts like "constant pool entries" and "jump tables" are explicitly
155      exposed.</li>
156
157  <li>Classes and algorithms used to represent code as the object file level,
158      the <a href="#mc">MC Layer</a>.  These classes represent assembly level
159      constructs like labels, sections, and instructions.  At this level,
160      concepts like "constant pool entries" and "jump tables" don't exist.</li>
161
162  <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
163      various phases of native code generation (register allocation, scheduling,
164      stack frame representation, etc).  This code lives
165      in <tt>lib/CodeGen/</tt>.</li>
166
167  <li><a href="#targetimpls">Implementations of the abstract target description
168      interfaces</a> for particular targets.  These machine descriptions make
169      use of the components provided by LLVM, and can optionally provide custom
170      target-specific passes, to build complete code generators for a specific
171      target.  Target descriptions live in <tt>lib/Target/</tt>.</li>
172
173  <li><a href="#jit">The target-independent JIT components</a>.  The LLVM JIT is
174      completely target independent (it uses the <tt>TargetJITInfo</tt>
175      structure to interface for target-specific issues.  The code for the
176      target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
177</ol>
178
179<p>Depending on which part of the code generator you are interested in working
180   on, different pieces of this will be useful to you.  In any case, you should
181   be familiar with the <a href="#targetdesc">target description</a>
182   and <a href="#codegendesc">machine code representation</a> classes.  If you
183   want to add a backend for a new target, you will need
184   to <a href="#targetimpls">implement the target description</a> classes for
185   your new target and understand the <a href="LangRef.html">LLVM code
186   representation</a>.  If you are interested in implementing a
187   new <a href="#codegenalgs">code generation algorithm</a>, it should only
188   depend on the target-description and machine code representation classes,
189   ensuring that it is portable.</p>
190
191<!-- ======================================================================= -->
192<h3>
193 <a name="required">Required components in the code generator</a>
194</h3>
195
196<div>
197
198<p>The two pieces of the LLVM code generator are the high-level interface to the
199   code generator and the set of reusable components that can be used to build
200   target-specific backends.  The two most important interfaces
201   (<a href="#targetmachine"><tt>TargetMachine</tt></a>
202   and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
203   required to be defined for a backend to fit into the LLVM system, but the
204   others must be defined if the reusable code generator components are going to
205   be used.</p>
206
207<p>This design has two important implications.  The first is that LLVM can
208   support completely non-traditional code generation targets.  For example, the
209   C backend does not require register allocation, instruction selection, or any
210   of the other standard components provided by the system.  As such, it only
211   implements these two interfaces, and does its own thing.  Another example of
212   a code generator like this is a (purely hypothetical) backend that converts
213   LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>
214
215<p>This design also implies that it is possible to design and implement
216   radically different code generators in the LLVM system that do not make use
217   of any of the built-in components.  Doing so is not recommended at all, but
218   could be required for radically different targets that do not fit into the
219   LLVM machine description model: FPGAs for example.</p>
220
221</div>
222
223<!-- ======================================================================= -->
224<h3>
225 <a name="high-level-design">The high-level design of the code generator</a>
226</h3>
227
228<div>
229
230<p>The LLVM target-independent code generator is designed to support efficient
231   and quality code generation for standard register-based microprocessors.
232   Code generation in this model is divided into the following stages:</p>
233
234<ol>
235  <li><b><a href="#instselect">Instruction Selection</a></b> &mdash; This phase
236      determines an efficient way to express the input LLVM code in the target
237      instruction set.  This stage produces the initial code for the program in
238      the target instruction set, then makes use of virtual registers in SSA
239      form and physical registers that represent any required register
240      assignments due to target constraints or calling conventions.  This step
241      turns the LLVM code into a DAG of target instructions.</li>
242
243  <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> &mdash;
244      This phase takes the DAG of target instructions produced by the
245      instruction selection phase, determines an ordering of the instructions,
246      then emits the instructions
247      as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
248      Note that we describe this in the <a href="#instselect">instruction
249      selection section</a> because it operates on
250      a <a href="#selectiondag_intro">SelectionDAG</a>.</li>
251
252  <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> &mdash;
253      This optional stage consists of a series of machine-code optimizations
254      that operate on the SSA-form produced by the instruction selector.
255      Optimizations like modulo-scheduling or peephole optimization work
256      here.</li>
257
258  <li><b><a href="#regalloc">Register Allocation</a></b> &mdash; The target code
259      is transformed from an infinite virtual register file in SSA form to the
260      concrete register file used by the target.  This phase introduces spill
261      code and eliminates all virtual register references from the program.</li>
262
263  <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> &mdash; Once
264      the machine code has been generated for the function and the amount of
265      stack space required is known (used for LLVM alloca's and spill slots),
266      the prolog and epilog code for the function can be inserted and "abstract
267      stack location references" can be eliminated.  This stage is responsible
268      for implementing optimizations like frame-pointer elimination and stack
269      packing.</li>
270
271  <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> &mdash;
272      Optimizations that operate on "final" machine code can go here, such as
273      spill code scheduling and peephole optimizations.</li>
274
275  <li><b><a href="#codeemit">Code Emission</a></b> &mdash; The final stage
276      actually puts out the code for the current function, either in the target
277      assembler format or in machine code.</li>
278</ol>
279
280<p>The code generator is based on the assumption that the instruction selector
281   will use an optimal pattern matching selector to create high-quality
282   sequences of native instructions.  Alternative code generator designs based
283   on pattern expansion and aggressive iterative peephole optimization are much
284   slower.  This design permits efficient compilation (important for JIT
285   environments) and aggressive optimization (used when generating code offline)
286   by allowing components of varying levels of sophistication to be used for any
287   step of compilation.</p>
288
289<p>In addition to these stages, target implementations can insert arbitrary
290   target-specific passes into the flow.  For example, the X86 target uses a
291   special pass to handle the 80x87 floating point stack architecture.  Other
292   targets with unusual requirements can be supported with custom passes as
293   needed.</p>
294
295</div>
296
297<!-- ======================================================================= -->
298<h3>
299 <a name="tablegen">Using TableGen for target description</a>
300</h3>
301
302<div>
303
304<p>The target description classes require a detailed description of the target
305   architecture.  These target descriptions often have a large amount of common
306   information (e.g., an <tt>add</tt> instruction is almost identical to a
307   <tt>sub</tt> instruction).  In order to allow the maximum amount of
308   commonality to be factored out, the LLVM code generator uses
309   the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
310   chunks of the target machine, which allows the use of domain-specific and
311   target-specific abstractions to reduce the amount of repetition.</p>
312
313<p>As LLVM continues to be developed and refined, we plan to move more and more
314   of the target description to the <tt>.td</tt> form.  Doing so gives us a
315   number of advantages.  The most important is that it makes it easier to port
316   LLVM because it reduces the amount of C++ code that has to be written, and
317   the surface area of the code generator that needs to be understood before
318   someone can get something working.  Second, it makes it easier to change
319   things. In particular, if tables and other things are all emitted
320   by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
321   update all of the targets to a new interface.</p>
322
323</div>
324
325</div>
326
327<!-- *********************************************************************** -->
328<h2>
329  <a name="targetdesc">Target description classes</a>
330</h2>
331<!-- *********************************************************************** -->
332
333<div>
334
335<p>The LLVM target description classes (located in the
336   <tt>include/llvm/Target</tt> directory) provide an abstract description of
337   the target machine independent of any particular client.  These classes are
338   designed to capture the <i>abstract</i> properties of the target (such as the
339   instructions and registers it has), and do not incorporate any particular
340   pieces of code generation algorithms.</p>
341
342<p>All of the target description classes (except the
343   <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
344   subclassed by the concrete target implementation, and have virtual methods
345   implemented.  To get to these implementations, the
346   <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
347   that should be implemented by the target.</p>
348
349<!-- ======================================================================= -->
350<h3>
351  <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
352</h3>
353
354<div>
355
356<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
357   access the target-specific implementations of the various target description
358   classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
359   <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.).  This class is
360   designed to be specialized by a concrete target implementation
361   (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
362   methods.  The only required target description class is
363   the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
364   generator components are to be used, the other interfaces should be
365   implemented as well.</p>
366
367</div>
368
369<!-- ======================================================================= -->
370<h3>
371  <a name="targetdata">The <tt>TargetData</tt> class</a>
372</h3>
373
374<div>
375
376<p>The <tt>TargetData</tt> class is the only required target description class,
377   and it is the only class that is not extensible (you cannot derived a new
378   class from it).  <tt>TargetData</tt> specifies information about how the
379   target lays out memory for structures, the alignment requirements for various
380   data types, the size of pointers in the target, and whether the target is
381   little-endian or big-endian.</p>
382
383</div>
384
385<!-- ======================================================================= -->
386<h3>
387  <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
388</h3>
389
390<div>
391
392<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
393   selectors primarily to describe how LLVM code should be lowered to
394   SelectionDAG operations.  Among other things, this class indicates:</p>
395
396<ul>
397  <li>an initial register class to use for various <tt>ValueType</tt>s,</li>
398
399  <li>which operations are natively supported by the target machine,</li>
400
401  <li>the return type of <tt>setcc</tt> operations,</li>
402
403  <li>the type to use for shift amounts, and</li>
404
405  <li>various high-level characteristics, like whether it is profitable to turn
406      division by a constant into a multiplication sequence</li>
407</ul>
408
409</div>
410
411<!-- ======================================================================= -->
412<h3>
413  <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
414</h3>
415
416<div>
417
418<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
419   of the target and any interactions between the registers.</p>
420
421<p>Registers in the code generator are represented in the code generator by
422   unsigned integers.  Physical registers (those that actually exist in the
423   target description) are unique small numbers, and virtual registers are
424   generally large.  Note that register #0 is reserved as a flag value.</p>
425
426<p>Each register in the processor description has an associated
427   <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
428   register (used for assembly output and debugging dumps) and a set of aliases
429   (used to indicate whether one register overlaps with another).</p>
430
431<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
432   class exposes a set of processor specific register classes (instances of the
433   <tt>TargetRegisterClass</tt> class).  Each register class contains sets of
434   registers that have the same properties (for example, they are all 32-bit
435   integer registers).  Each SSA virtual register created by the instruction
436   selector has an associated register class.  When the register allocator runs,
437   it replaces virtual registers with a physical register in the set.</p>
438
439<p>The target-specific implementations of these classes is auto-generated from
440   a <a href="TableGenFundamentals.html">TableGen</a> description of the
441   register file.</p>
442
443</div>
444
445<!-- ======================================================================= -->
446<h3>
447  <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
448</h3>
449
450<div>
451
452<p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
453   instructions supported by the target. It is essentially an array of
454   <tt>TargetInstrDescriptor</tt> objects, each of which describes one
455   instruction the target supports. Descriptors define things like the mnemonic
456   for the opcode, the number of operands, the list of implicit register uses
457   and defs, whether the instruction has certain target-independent properties
458   (accesses memory, is commutable, etc), and holds any target-specific
459   flags.</p>
460
461</div>
462
463<!-- ======================================================================= -->
464<h3>
465  <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
466</h3>
467
468<div>
469
470<p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
471   stack frame layout of the target. It holds the direction of stack growth, the
472   known stack alignment on entry to each function, and the offset to the local
473   area.  The offset to the local area is the offset from the stack pointer on
474   function entry to the first location where function data (local variables,
475   spill locations) can be stored.</p>
476
477</div>
478
479<!-- ======================================================================= -->
480<h3>
481  <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
482</h3>
483
484<div>
485
486<p>The <tt>TargetSubtarget</tt> class is used to provide information about the
487   specific chip set being targeted.  A sub-target informs code generation of
488   which instructions are supported, instruction latencies and instruction
489   execution itinerary; i.e., which processing units are used, in what order,
490   and for how long.</p>
491
492</div>
493
494
495<!-- ======================================================================= -->
496<h3>
497  <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
498</h3>
499
500<div>
501
502<p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
503   Just-In-Time code generator to perform target-specific activities, such as
504   emitting stubs.  If a <tt>TargetMachine</tt> supports JIT code generation, it
505   should provide one of these objects through the <tt>getJITInfo</tt>
506   method.</p>
507
508</div>
509
510</div>
511
512<!-- *********************************************************************** -->
513<h2>
514  <a name="codegendesc">Machine code description classes</a>
515</h2>
516<!-- *********************************************************************** -->
517
518<div>
519
520<p>At the high-level, LLVM code is translated to a machine specific
521   representation formed out of
522   <a href="#machinefunction"><tt>MachineFunction</tt></a>,
523   <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
524   and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
525   in <tt>include/llvm/CodeGen</tt>).  This representation is completely target
526   agnostic, representing instructions in their most abstract form: an opcode
527   and a series of operands.  This representation is designed to support both an
528   SSA representation for machine code, as well as a register allocated, non-SSA
529   form.</p>
530
531<!-- ======================================================================= -->
532<h3>
533  <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
534</h3>
535
536<div>
537
538<p>Target machine instructions are represented as instances of the
539   <tt>MachineInstr</tt> class.  This class is an extremely abstract way of
540   representing machine instructions.  In particular, it only keeps track of an
541   opcode number and a set of operands.</p>
542
543<p>The opcode number is a simple unsigned integer that only has meaning to a
544   specific backend.  All of the instructions for a target should be defined in
545   the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
546   auto-generated from this description.  The <tt>MachineInstr</tt> class does
547   not have any information about how to interpret the instruction (i.e., what
548   the semantics of the instruction are); for that you must refer to the
549   <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p>
550
551<p>The operands of a machine instruction can be of several different types: a
552   register reference, a constant integer, a basic block reference, etc.  In
553   addition, a machine operand should be marked as a def or a use of the value
554   (though only registers are allowed to be defs).</p>
555
556<p>By convention, the LLVM code generator orders instruction operands so that
557   all register definitions come before the register uses, even on architectures
558   that are normally printed in other orders.  For example, the SPARC add
559   instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
560   and stores the result into the "%i3" register.  In the LLVM code generator,
561   the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
562   destination first.</p>
563
564<p>Keeping destination (definition) operands at the beginning of the operand
565   list has several advantages.  In particular, the debugging printer will print
566   the instruction like this:</p>
567
568<div class="doc_code">
569<pre>
570%r3 = add %i1, %i2
571</pre>
572</div>
573
574<p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
575   instructions</a> whose only def is the first operand.</p>
576
577<!-- _______________________________________________________________________ -->
578<h4>
579  <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
580</h4>
581
582<div>
583
584<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
585   located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file.  The
586   <tt>BuildMI</tt> functions make it easy to build arbitrary machine
587   instructions.  Usage of the <tt>BuildMI</tt> functions look like this:</p>
588
589<div class="doc_code">
590<pre>
591// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
592// instruction.  The '1' specifies how many operands will be added.
593MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
594
595// Create the same instr, but insert it at the end of a basic block.
596MachineBasicBlock &amp;MBB = ...
597BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
598
599// Create the same instr, but insert it before a specified iterator point.
600MachineBasicBlock::iterator MBBI = ...
601BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
602
603// Create a 'cmp Reg, 0' instruction, no destination reg.
604MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
605// Create an 'sahf' instruction which takes no operands and stores nothing.
606MI = BuildMI(X86::SAHF, 0);
607
608// Create a self looping branch instruction.
609BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
610</pre>
611</div>
612
613<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
614   have to specify the number of operands that the machine instruction will
615   take.  This allows for efficient memory allocation.  You also need to specify
616   if operands default to be uses of values, not definitions.  If you need to
617   add a definition operand (other than the optional destination register), you
618   must explicitly mark it as such:</p>
619
620<div class="doc_code">
621<pre>
622MI.addReg(Reg, RegState::Define);
623</pre>
624</div>
625
626</div>
627
628<!-- _______________________________________________________________________ -->
629<h4>
630  <a name="fixedregs">Fixed (preassigned) registers</a>
631</h4>
632
633<div>
634
635<p>One important issue that the code generator needs to be aware of is the
636   presence of fixed registers.  In particular, there are often places in the
637   instruction stream where the register allocator <em>must</em> arrange for a
638   particular value to be in a particular register.  This can occur due to
639   limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
640   with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
641   calling conventions.  In any case, the instruction selector should emit code
642   that copies a virtual register into or out of a physical register when
643   needed.</p>
644
645<p>For example, consider this simple LLVM example:</p>
646
647<div class="doc_code">
648<pre>
649define i32 @test(i32 %X, i32 %Y) {
650  %Z = udiv i32 %X, %Y
651  ret i32 %Z
652}
653</pre>
654</div>
655
656<p>The X86 instruction selector produces this machine code for the <tt>div</tt>
657   and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
658   get this):</p>
659
660<div class="doc_code">
661<pre>
662;; Start of div
663%EAX = mov %reg1024           ;; Copy X (in reg1024) into EAX
664%reg1027 = sar %reg1024, 31
665%EDX = mov %reg1027           ;; Sign extend X into EDX
666idiv %reg1025                 ;; Divide by Y (in reg1025)
667%reg1026 = mov %EAX           ;; Read the result (Z) out of EAX
668
669;; Start of ret
670%EAX = mov %reg1026           ;; 32-bit return value goes in EAX
671ret
672</pre>
673</div>
674
675<p>By the end of code generation, the register allocator has coalesced the
676   registers and deleted the resultant identity moves producing the following
677   code:</p>
678
679<div class="doc_code">
680<pre>
681;; X is in EAX, Y is in ECX
682mov %EAX, %EDX
683sar %EDX, 31
684idiv %ECX
685ret
686</pre>
687</div>
688
689<p>This approach is extremely general (if it can handle the X86 architecture, it
690   can handle anything!) and allows all of the target specific knowledge about
691   the instruction stream to be isolated in the instruction selector.  Note that
692   physical registers should have a short lifetime for good code generation, and
693   all physical registers are assumed dead on entry to and exit from basic
694   blocks (before register allocation).  Thus, if you need a value to be live
695   across basic block boundaries, it <em>must</em> live in a virtual
696   register.</p>
697
698</div>
699
700<!-- _______________________________________________________________________ -->
701<h4>
702  <a name="ssa">Machine code in SSA form</a>
703</h4>
704
705<div>
706
707<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
708   maintained in SSA-form until register allocation happens.  For the most part,
709   this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
710   become machine code PHI nodes, and virtual registers are only allowed to have
711   a single definition.</p>
712
713<p>After register allocation, machine code is no longer in SSA-form because
714   there are no virtual registers left in the code.</p>
715
716</div>
717
718</div>
719
720<!-- ======================================================================= -->
721<h3>
722  <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
723</h3>
724
725<div>
726
727<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
728   (<tt><a href="#machineinstr">MachineInstr</a></tt> instances).  It roughly
729   corresponds to the LLVM code input to the instruction selector, but there can
730   be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
731   machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
732   "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
733   comes from.</p>
734
735</div>
736
737<!-- ======================================================================= -->
738<h3>
739  <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
740</h3>
741
742<div>
743
744<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
745   (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances).  It
746   corresponds one-to-one with the LLVM function input to the instruction
747   selector.  In addition to a list of basic blocks,
748   the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
749   a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
750   <tt>MachineRegisterInfo</tt>.  See
751   <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
752
753</div>
754
755</div>
756
757<!-- *********************************************************************** -->
758<h2>
759  <a name="mc">The "MC" Layer</a>
760</h2>
761<!-- *********************************************************************** -->
762
763<div>
764
765<p>
766The MC Layer is used to represent and process code at the raw machine code
767level, devoid of "high level" information like "constant pools", "jump tables",
768"global variables" or anything like that.  At this level, LLVM handles things
769like label names, machine instructions, and sections in the object file.  The
770code in this layer is used for a number of important purposes: the tail end of
771the code generator uses it to write a .s or .o file, and it is also used by the
772llvm-mc tool to implement standalone machine code assemblers and disassemblers.
773</p>
774
775<p>
776This section describes some of the important classes.  There are also a number
777of important subsystems that interact at this layer, they are described later
778in this manual.
779</p>
780
781<!-- ======================================================================= -->
782<h3>
783  <a name="mcstreamer">The <tt>MCStreamer</tt> API</a>
784</h3>
785
786<div>
787
788<p>
789MCStreamer is best thought of as an assembler API.  It is an abstract API which
790is <em>implemented</em> in different ways (e.g. to output a .s file, output an
791ELF .o file, etc) but whose API correspond directly to what you see in a .s
792file.  MCStreamer has one method per directive, such as EmitLabel,
793EmitSymbolAttribute, SwitchSection, EmitValue (for .byte, .word), etc, which
794directly correspond to assembly level directives.  It also has an
795EmitInstruction method, which is used to output an MCInst to the streamer.
796</p>
797
798<p>
799This API is most important for two clients: the llvm-mc stand-alone assembler is
800effectively a parser that parses a line, then invokes a method on MCStreamer. In
801the code generator, the <a href="#codeemit">Code Emission</a> phase of the code
802generator lowers higher level LLVM IR and Machine* constructs down to the MC
803layer, emitting directives through MCStreamer.</p>
804
805<p>
806On the implementation side of MCStreamer, there are two major implementations:
807one for writing out a .s file (MCAsmStreamer), and one for writing out a .o
808file (MCObjectStreamer).  MCAsmStreamer is a straight-forward implementation
809that prints out a directive for each method (e.g. EmitValue -&gt; .byte), but
810MCObjectStreamer implements a full assembler.
811</p>
812
813</div>
814
815<!-- ======================================================================= -->
816<h3>
817  <a name="mccontext">The <tt>MCContext</tt> class</a>
818</h3>
819
820<div>
821
822<p>
823The MCContext class is the owner of a variety of uniqued data structures at the
824MC layer, including symbols, sections, etc.  As such, this is the class that you
825interact with to create symbols and sections.  This class can not be subclassed.
826</p>
827
828</div>
829
830<!-- ======================================================================= -->
831<h3>
832  <a name="mcsymbol">The <tt>MCSymbol</tt> class</a>
833</h3>
834
835<div>
836
837<p>
838The MCSymbol class represents a symbol (aka label) in the assembly file.  There
839are two interesting kinds of symbols: assembler temporary symbols, and normal
840symbols.  Assembler temporary symbols are used and processed by the assembler
841but are discarded when the object file is produced.  The distinction is usually
842represented by adding a prefix to the label, for example "L" labels are
843assembler temporary labels in MachO.
844</p>
845
846<p>MCSymbols are created by MCContext and uniqued there.  This means that
847MCSymbols can be compared for pointer equivalence to find out if they are the
848same symbol.  Note that pointer inequality does not guarantee the labels will
849end up at different addresses though.  It's perfectly legal to output something
850like this to the .s file:<p>
851
852<pre>
853  foo:
854  bar:
855    .byte 4
856</pre>
857
858<p>In this case, both the foo and bar symbols will have the same address.</p>
859
860</div>
861
862<!-- ======================================================================= -->
863<h3>
864  <a name="mcsection">The <tt>MCSection</tt> class</a>
865</h3>
866
867<div>
868
869<p>
870The MCSection class represents an object-file specific section. It is subclassed
871by object file specific implementations (e.g. <tt>MCSectionMachO</tt>,
872<tt>MCSectionCOFF</tt>, <tt>MCSectionELF</tt>) and these are created and uniqued
873by MCContext.  The MCStreamer has a notion of the current section, which can be
874changed with the SwitchToSection method (which corresponds to a ".section"
875directive in a .s file).
876</p>
877
878</div>
879
880<!-- ======================================================================= -->
881<h3>
882  <a name="mcinst">The <tt>MCInst</tt> class</a>
883</h3>
884
885<div>
886
887<p>
888The MCInst class is a target-independent representation of an instruction.  It
889is a simple class (much more so than <a href="#machineinstr">MachineInstr</a>)
890that holds a target-specific opcode and a vector of MCOperands.  MCOperand, in
891turn, is a simple discriminated union of three cases: 1) a simple immediate,
8922) a target register ID, 3) a symbolic expression (e.g. "Lfoo-Lbar+42") as an
893MCExpr.
894</p>
895
896<p>MCInst is the common currency used to represent machine instructions at the
897MC layer.  It is the type used by the instruction encoder, the instruction
898printer, and the type generated by the assembly parser and disassembler.
899</p>
900
901</div>
902
903</div>
904
905<!-- *********************************************************************** -->
906<h2>
907  <a name="codegenalgs">Target-independent code generation algorithms</a>
908</h2>
909<!-- *********************************************************************** -->
910
911<div>
912
913<p>This section documents the phases described in the
914   <a href="#high-level-design">high-level design of the code generator</a>.
915   It explains how they work and some of the rationale behind their design.</p>
916
917<!-- ======================================================================= -->
918<h3>
919  <a name="instselect">Instruction Selection</a>
920</h3>
921
922<div>
923
924<p>Instruction Selection is the process of translating LLVM code presented to
925   the code generator into target-specific machine instructions.  There are
926   several well-known ways to do this in the literature.  LLVM uses a
927   SelectionDAG based instruction selector.</p>
928
929<p>Portions of the DAG instruction selector are generated from the target
930   description (<tt>*.td</tt>) files.  Our goal is for the entire instruction
931   selector to be generated from these <tt>.td</tt> files, though currently
932   there are still things that require custom C++ code.</p>
933
934<!-- _______________________________________________________________________ -->
935<h4>
936  <a name="selectiondag_intro">Introduction to SelectionDAGs</a>
937</h4>
938
939<div>
940
941<p>The SelectionDAG provides an abstraction for code representation in a way
942   that is amenable to instruction selection using automatic techniques
943   (e.g. dynamic-programming based optimal pattern matching selectors). It is
944   also well-suited to other phases of code generation; in particular,
945   instruction scheduling (SelectionDAG's are very close to scheduling DAGs
946   post-selection).  Additionally, the SelectionDAG provides a host
947   representation where a large variety of very-low-level (but
948   target-independent) <a href="#selectiondag_optimize">optimizations</a> may be
949   performed; ones which require extensive information about the instructions
950   efficiently supported by the target.</p>
951
952<p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
953   <tt>SDNode</tt> class.  The primary payload of the <tt>SDNode</tt> is its
954   operation code (Opcode) that indicates what operation the node performs and
955   the operands to the operation.  The various operation node types are
956   described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
957   file.</p>
958
959<p>Although most operations define a single value, each node in the graph may
960   define multiple values.  For example, a combined div/rem operation will
961   define both the dividend and the remainder. Many other situations require
962   multiple values as well.  Each node also has some number of operands, which
963   are edges to the node defining the used value.  Because nodes may define
964   multiple values, edges are represented by instances of the <tt>SDValue</tt>
965   class, which is a <tt>&lt;SDNode, unsigned&gt;</tt> pair, indicating the node
966   and result value being used, respectively.  Each value produced by
967   an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type)
968   indicating what the type of the value is.</p>
969
970<p>SelectionDAGs contain two different kinds of values: those that represent
971   data flow and those that represent control flow dependencies.  Data values
972   are simple edges with an integer or floating point value type.  Control edges
973   are represented as "chain" edges which are of type <tt>MVT::Other</tt>.
974   These edges provide an ordering between nodes that have side effects (such as
975   loads, stores, calls, returns, etc).  All nodes that have side effects should
976   take a token chain as input and produce a new one as output.  By convention,
977   token chain inputs are always operand #0, and chain results are always the
978   last value produced by an operation.</p>
979
980<p>A SelectionDAG has designated "Entry" and "Root" nodes.  The Entry node is
981   always a marker node with an Opcode of <tt>ISD::EntryToken</tt>.  The Root
982   node is the final side-effecting node in the token chain. For example, in a
983   single basic block function it would be the return node.</p>
984
985<p>One important concept for SelectionDAGs is the notion of a "legal" vs.
986   "illegal" DAG.  A legal DAG for a target is one that only uses supported
987   operations and supported types.  On a 32-bit PowerPC, for example, a DAG with
988   a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that
989   uses a SREM or UREM operation.  The
990   <a href="#selectinodag_legalize_types">legalize types</a> and
991   <a href="#selectiondag_legalize">legalize operations</a> phases are
992   responsible for turning an illegal DAG into a legal DAG.</p>
993
994</div>
995
996<!-- _______________________________________________________________________ -->
997<h4>
998  <a name="selectiondag_process">SelectionDAG Instruction Selection Process</a>
999</h4>
1000
1001<div>
1002
1003<p>SelectionDAG-based instruction selection consists of the following steps:</p>
1004
1005<ol>
1006  <li><a href="#selectiondag_build">Build initial DAG</a> &mdash; This stage
1007      performs a simple translation from the input LLVM code to an illegal
1008      SelectionDAG.</li>
1009
1010  <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; This
1011      stage performs simple optimizations on the SelectionDAG to simplify it,
1012      and recognize meta instructions (like rotates
1013      and <tt>div</tt>/<tt>rem</tt> pairs) for targets that support these meta
1014      operations.  This makes the resultant code more efficient and
1015      the <a href="#selectiondag_select">select instructions from DAG</a> phase
1016      (below) simpler.</li>
1017
1018  <li><a href="#selectiondag_legalize_types">Legalize SelectionDAG Types</a>
1019      &mdash; This stage transforms SelectionDAG nodes to eliminate any types
1020      that are unsupported on the target.</li>
1021
1022  <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
1023      SelectionDAG optimizer is run to clean up redundancies exposed by type
1024      legalization.</li>
1025
1026  <li><a href="#selectiondag_legalize">Legalize SelectionDAG Ops</a> &mdash;
1027      This stage transforms SelectionDAG nodes to eliminate any operations
1028      that are unsupported on the target.</li>
1029
1030  <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
1031      SelectionDAG optimizer is run to eliminate inefficiencies introduced by
1032      operation legalization.</li>
1033
1034  <li><a href="#selectiondag_select">Select instructions from DAG</a> &mdash;
1035      Finally, the target instruction selector matches the DAG operations to
1036      target instructions.  This process translates the target-independent input
1037      DAG into another DAG of target instructions.</li>
1038
1039  <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a>
1040      &mdash; The last phase assigns a linear order to the instructions in the
1041      target-instruction DAG and emits them into the MachineFunction being
1042      compiled.  This step uses traditional prepass scheduling techniques.</li>
1043</ol>
1044
1045<p>After all of these steps are complete, the SelectionDAG is destroyed and the
1046   rest of the code generation passes are run.</p>
1047
1048<p>One great way to visualize what is going on here is to take advantage of a
1049   few LLC command line options.  The following options pop up a window
1050   displaying the SelectionDAG at specific times (if you only get errors printed
1051   to the console while using this, you probably
1052   <a href="ProgrammersManual.html#ViewGraph">need to configure your system</a>
1053   to add support for it).</p>
1054
1055<ul>
1056  <li><tt>-view-dag-combine1-dags</tt> displays the DAG after being built,
1057      before the first optimization pass.</li>
1058
1059  <li><tt>-view-legalize-dags</tt> displays the DAG before Legalization.</li>
1060
1061  <li><tt>-view-dag-combine2-dags</tt> displays the DAG before the second
1062      optimization pass.</li>
1063
1064  <li><tt>-view-isel-dags</tt> displays the DAG before the Select phase.</li>
1065
1066  <li><tt>-view-sched-dags</tt> displays the DAG before Scheduling.</li>
1067</ul>
1068
1069<p>The <tt>-view-sunit-dags</tt> displays the Scheduler's dependency graph.
1070   This graph is based on the final SelectionDAG, with nodes that must be
1071   scheduled together bundled into a single scheduling-unit node, and with
1072   immediate operands and other nodes that aren't relevant for scheduling
1073   omitted.</p>
1074
1075</div>
1076
1077<!-- _______________________________________________________________________ -->
1078<h4>
1079  <a name="selectiondag_build">Initial SelectionDAG Construction</a>
1080</h4>
1081
1082<div>
1083
1084<p>The initial SelectionDAG is na&iuml;vely peephole expanded from the LLVM
1085   input by the <tt>SelectionDAGLowering</tt> class in the
1086   <tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file.  The intent of
1087   this pass is to expose as much low-level, target-specific details to the
1088   SelectionDAG as possible.  This pass is mostly hard-coded (e.g. an
1089   LLVM <tt>add</tt> turns into an <tt>SDNode add</tt> while a
1090   <tt>getelementptr</tt> is expanded into the obvious arithmetic). This pass
1091   requires target-specific hooks to lower calls, returns, varargs, etc.  For
1092   these features, the <tt><a href="#targetlowering">TargetLowering</a></tt>
1093   interface is used.</p>
1094
1095</div>
1096
1097<!-- _______________________________________________________________________ -->
1098<h4>
1099  <a name="selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a>
1100</h4>
1101
1102<div>
1103
1104<p>The Legalize phase is in charge of converting a DAG to only use the types
1105   that are natively supported by the target.</p>
1106
1107<p>There are two main ways of converting values of unsupported scalar types to
1108   values of supported types: converting small types to larger types
1109   ("promoting"), and breaking up large integer types into smaller ones
1110   ("expanding").  For example, a target might require that all f32 values are
1111   promoted to f64 and that all i1/i8/i16 values are promoted to i32.  The same
1112   target might require that all i64 values be expanded into pairs of i32
1113   values.  These changes can insert sign and zero extensions as needed to make
1114   sure that the final code has the same behavior as the input.</p>
1115
1116<p>There are two main ways of converting values of unsupported vector types to
1117   value of supported types: splitting vector types, multiple times if
1118   necessary, until a legal type is found, and extending vector types by adding
1119   elements to the end to round them out to legal types ("widening").  If a
1120   vector gets split all the way down to single-element parts with no supported
1121   vector type being found, the elements are converted to scalars
1122   ("scalarizing").</p>
1123
1124<p>A target implementation tells the legalizer which types are supported (and
1125   which register class to use for them) by calling the
1126   <tt>addRegisterClass</tt> method in its TargetLowering constructor.</p>
1127
1128</div>
1129
1130<!-- _______________________________________________________________________ -->
1131<h4>
1132  <a name="selectiondag_legalize">SelectionDAG Legalize Phase</a>
1133</h4>
1134
1135<div>
1136
1137<p>The Legalize phase is in charge of converting a DAG to only use the
1138   operations that are natively supported by the target.</p>
1139
1140<p>Targets often have weird constraints, such as not supporting every operation
1141   on every supported datatype (e.g. X86 does not support byte conditional moves
1142   and PowerPC does not support sign-extending loads from a 16-bit memory
1143   location).  Legalize takes care of this by open-coding another sequence of
1144   operations to emulate the operation ("expansion"), by promoting one type to a
1145   larger type that supports the operation ("promotion"), or by using a
1146   target-specific hook to implement the legalization ("custom").</p>
1147
1148<p>A target implementation tells the legalizer which operations are not
1149   supported (and which of the above three actions to take) by calling the
1150   <tt>setOperationAction</tt> method in its <tt>TargetLowering</tt>
1151   constructor.</p>
1152
1153<p>Prior to the existence of the Legalize passes, we required that every target
1154   <a href="#selectiondag_optimize">selector</a> supported and handled every
1155   operator and type even if they are not natively supported.  The introduction
1156   of the Legalize phases allows all of the canonicalization patterns to be
1157   shared across targets, and makes it very easy to optimize the canonicalized
1158   code because it is still in the form of a DAG.</p>
1159
1160</div>
1161
1162<!-- _______________________________________________________________________ -->
1163<h4>
1164  <a name="selectiondag_optimize">
1165    SelectionDAG Optimization Phase: the DAG Combiner
1166  </a>
1167</h4>
1168
1169<div>
1170
1171<p>The SelectionDAG optimization phase is run multiple times for code
1172   generation, immediately after the DAG is built and once after each
1173   legalization.  The first run of the pass allows the initial code to be
1174   cleaned up (e.g. performing optimizations that depend on knowing that the
1175   operators have restricted type inputs).  Subsequent runs of the pass clean up
1176   the messy code generated by the Legalize passes, which allows Legalize to be
1177   very simple (it can focus on making code legal instead of focusing on
1178   generating <em>good</em> and legal code).</p>
1179
1180<p>One important class of optimizations performed is optimizing inserted sign
1181   and zero extension instructions.  We currently use ad-hoc techniques, but
1182   could move to more rigorous techniques in the future.  Here are some good
1183   papers on the subject:</p>
1184
1185<p>"<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening
1186   integer arithmetic</a>"<br>
1187   Kevin Redwine and Norman Ramsey<br>
1188   International Conference on Compiler Construction (CC) 2004</p>
1189
1190<p>"<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective
1191   sign extension elimination</a>"<br>
1192   Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br>
1193   Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
1194   and Implementation.</p>
1195
1196</div>
1197
1198<!-- _______________________________________________________________________ -->
1199<h4>
1200  <a name="selectiondag_select">SelectionDAG Select Phase</a>
1201</h4>
1202
1203<div>
1204
1205<p>The Select phase is the bulk of the target-specific code for instruction
1206   selection.  This phase takes a legal SelectionDAG as input, pattern matches
1207   the instructions supported by the target to this DAG, and produces a new DAG
1208   of target code.  For example, consider the following LLVM fragment:</p>
1209
1210<div class="doc_code">
1211<pre>
1212%t1 = fadd float %W, %X
1213%t2 = fmul float %t1, %Y
1214%t3 = fadd float %t2, %Z
1215</pre>
1216</div>
1217
1218<p>This LLVM code corresponds to a SelectionDAG that looks basically like
1219   this:</p>
1220
1221<div class="doc_code">
1222<pre>
1223(fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
1224</pre>
1225</div>
1226
1227<p>If a target supports floating point multiply-and-add (FMA) operations, one of
1228   the adds can be merged with the multiply.  On the PowerPC, for example, the
1229   output of the instruction selector might look like this DAG:</p>
1230
1231<div class="doc_code">
1232<pre>
1233(FMADDS (FADDS W, X), Y, Z)
1234</pre>
1235</div>
1236
1237<p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its
1238first two operands and adds the third (as single-precision floating-point
1239numbers).  The <tt>FADDS</tt> instruction is a simple binary single-precision
1240add instruction.  To perform this pattern match, the PowerPC backend includes
1241the following instruction definitions:</p>
1242
1243<div class="doc_code">
1244<pre>
1245def FMADDS : AForm_1&lt;59, 29,
1246                    (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
1247                    "fmadds $FRT, $FRA, $FRC, $FRB",
1248                    [<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
1249                                           F4RC:$FRB))</b>]&gt;;
1250def FADDS : AForm_2&lt;59, 21,
1251                    (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
1252                    "fadds $FRT, $FRA, $FRB",
1253                    [<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]&gt;;
1254</pre>
1255</div>
1256
1257<p>The portion of the instruction definition in bold indicates the pattern used
1258   to match the instruction.  The DAG operators
1259   (like <tt>fmul</tt>/<tt>fadd</tt>) are defined in
1260   the <tt>include/llvm/Target/TargetSelectionDAG.td</tt> file.  "
1261   <tt>F4RC</tt>" is the register class of the input and result values.</p>
1262
1263<p>The TableGen DAG instruction selector generator reads the instruction
1264   patterns in the <tt>.td</tt> file and automatically builds parts of the
1265   pattern matching code for your target.  It has the following strengths:</p>
1266
1267<ul>
1268  <li>At compiler-compiler time, it analyzes your instruction patterns and tells
1269      you if your patterns make sense or not.</li>
1270
1271  <li>It can handle arbitrary constraints on operands for the pattern match.  In
1272      particular, it is straight-forward to say things like "match any immediate
1273      that is a 13-bit sign-extended value".  For examples, see the
1274      <tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC
1275      backend.</li>
1276
1277  <li>It knows several important identities for the patterns defined.  For
1278      example, it knows that addition is commutative, so it allows the
1279      <tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as
1280      well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having
1281      to specially handle this case.</li>
1282
1283  <li>It has a full-featured type-inferencing system.  In particular, you should
1284      rarely have to explicitly tell the system what type parts of your patterns
1285      are.  In the <tt>FMADDS</tt> case above, we didn't have to tell
1286      <tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'.
1287      It was able to infer and propagate this knowledge from the fact that
1288      <tt>F4RC</tt> has type 'f32'.</li>
1289
1290  <li>Targets can define their own (and rely on built-in) "pattern fragments".
1291      Pattern fragments are chunks of reusable patterns that get inlined into
1292      your patterns during compiler-compiler time.  For example, the integer
1293      "<tt>(not x)</tt>" operation is actually defined as a pattern fragment
1294      that expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not
1295      have a native '<tt>not</tt>' operation.  Targets can define their own
1296      short-hand fragments as they see fit.  See the definition of
1297      '<tt>not</tt>' and '<tt>ineg</tt>' for examples.</li>
1298
1299  <li>In addition to instructions, targets can specify arbitrary patterns that
1300      map to one or more instructions using the 'Pat' class.  For example, the
1301      PowerPC has no way to load an arbitrary integer immediate into a register
1302      in one instruction. To tell tblgen how to do this, it defines:
1303      <br>
1304      <br>
1305<div class="doc_code">
1306<pre>
1307// Arbitrary immediate support.  Implement in terms of LIS/ORI.
1308def : Pat&lt;(i32 imm:$imm),
1309          (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))&gt;;
1310</pre>
1311</div>
1312      <br>
1313      If none of the single-instruction patterns for loading an immediate into a
1314      register match, this will be used.  This rule says "match an arbitrary i32
1315      immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and
1316      an <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to
1317      the left 16 bits') instruction".  To make this work, the
1318      <tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate
1319      the input immediate (in this case, take the high or low 16-bits of the
1320      immediate).</li>
1321
1322  <li>While the system does automate a lot, it still allows you to write custom
1323      C++ code to match special cases if there is something that is hard to
1324      express.</li>
1325</ul>
1326
1327<p>While it has many strengths, the system currently has some limitations,
1328   primarily because it is a work in progress and is not yet finished:</p>
1329
1330<ul>
1331  <li>Overall, there is no way to define or match SelectionDAG nodes that define
1332      multiple values (e.g. <tt>SMUL_LOHI</tt>, <tt>LOAD</tt>, <tt>CALL</tt>,
1333      etc).  This is the biggest reason that you currently still <em>have
1334      to</em> write custom C++ code for your instruction selector.</li>
1335
1336  <li>There is no great way to support matching complex addressing modes yet.
1337      In the future, we will extend pattern fragments to allow them to define
1338      multiple values (e.g. the four operands of the <a href="#x86_memory">X86
1339      addressing mode</a>, which are currently matched with custom C++ code).
1340      In addition, we'll extend fragments so that a fragment can match multiple
1341      different patterns.</li>
1342
1343  <li>We don't automatically infer flags like isStore/isLoad yet.</li>
1344
1345  <li>We don't automatically generate the set of supported registers and
1346      operations for the <a href="#selectiondag_legalize">Legalizer</a>
1347      yet.</li>
1348
1349  <li>We don't have a way of tying in custom legalized nodes yet.</li>
1350</ul>
1351
1352<p>Despite these limitations, the instruction selector generator is still quite
1353   useful for most of the binary and logical operations in typical instruction
1354   sets.  If you run into any problems or can't figure out how to do something,
1355   please let Chris know!</p>
1356
1357</div>
1358
1359<!-- _______________________________________________________________________ -->
1360<h4>
1361  <a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a>
1362</h4>
1363
1364<div>
1365
1366<p>The scheduling phase takes the DAG of target instructions from the selection
1367   phase and assigns an order.  The scheduler can pick an order depending on
1368   various constraints of the machines (i.e. order for minimal register pressure
1369   or try to cover instruction latencies).  Once an order is established, the
1370   DAG is converted to a list
1371   of <tt><a href="#machineinstr">MachineInstr</a></tt>s and the SelectionDAG is
1372   destroyed.</p>
1373
1374<p>Note that this phase is logically separate from the instruction selection
1375   phase, but is tied to it closely in the code because it operates on
1376   SelectionDAGs.</p>
1377
1378</div>
1379
1380<!-- _______________________________________________________________________ -->
1381<h4>
1382  <a name="selectiondag_future">Future directions for the SelectionDAG</a>
1383</h4>
1384
1385<div>
1386
1387<ol>
1388  <li>Optional function-at-a-time selection.</li>
1389
1390  <li>Auto-generate entire selector from <tt>.td</tt> file.</li>
1391</ol>
1392
1393</div>
1394
1395</div>
1396
1397<!-- ======================================================================= -->
1398<h3>
1399  <a name="ssamco">SSA-based Machine Code Optimizations</a>
1400</h3>
1401<div><p>To Be Written</p></div>
1402
1403<!-- ======================================================================= -->
1404<h3>
1405  <a name="liveintervals">Live Intervals</a>
1406</h3>
1407
1408<div>
1409
1410<p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
1411   They are used by some <a href="#regalloc">register allocator</a> passes to
1412   determine if two or more virtual registers which require the same physical
1413   register are live at the same point in the program (i.e., they conflict).
1414   When this situation occurs, one virtual register must be <i>spilled</i>.</p>
1415
1416<!-- _______________________________________________________________________ -->
1417<h4>
1418  <a name="livevariable_analysis">Live Variable Analysis</a>
1419</h4>
1420
1421<div>
1422
1423<p>The first step in determining the live intervals of variables is to calculate
1424   the set of registers that are immediately dead after the instruction (i.e.,
1425   the instruction calculates the value, but it is never used) and the set of
1426   registers that are used by the instruction, but are never used after the
1427   instruction (i.e., they are killed). Live variable information is computed
1428   for each <i>virtual</i> register and <i>register allocatable</i> physical
1429   register in the function.  This is done in a very efficient manner because it
1430   uses SSA to sparsely compute lifetime information for virtual registers
1431   (which are in SSA form) and only has to track physical registers within a
1432   block.  Before register allocation, LLVM can assume that physical registers
1433   are only live within a single basic block.  This allows it to do a single,
1434   local analysis to resolve physical register lifetimes within each basic
1435   block. If a physical register is not register allocatable (e.g., a stack
1436   pointer or condition codes), it is not tracked.</p>
1437
1438<p>Physical registers may be live in to or out of a function. Live in values are
1439   typically arguments in registers. Live out values are typically return values
1440   in registers. Live in values are marked as such, and are given a dummy
1441   "defining" instruction during live intervals analysis. If the last basic
1442   block of a function is a <tt>return</tt>, then it's marked as using all live
1443   out values in the function.</p>
1444
1445<p><tt>PHI</tt> nodes need to be handled specially, because the calculation of
1446   the live variable information from a depth first traversal of the CFG of the
1447   function won't guarantee that a virtual register used by the <tt>PHI</tt>
1448   node is defined before it's used. When a <tt>PHI</tt> node is encountered,
1449   only the definition is handled, because the uses will be handled in other
1450   basic blocks.</p>
1451
1452<p>For each <tt>PHI</tt> node of the current basic block, we simulate an
1453   assignment at the end of the current basic block and traverse the successor
1454   basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
1455   the <tt>PHI</tt> node's operands is coming from the current basic block, then
1456   the variable is marked as <i>alive</i> within the current basic block and all
1457   of its predecessor basic blocks, until the basic block with the defining
1458   instruction is encountered.</p>
1459
1460</div>
1461
1462<!-- _______________________________________________________________________ -->
1463<h4>
1464  <a name="liveintervals_analysis">Live Intervals Analysis</a>
1465</h4>
1466
1467<div>
1468
1469<p>We now have the information available to perform the live intervals analysis
1470   and build the live intervals themselves.  We start off by numbering the basic
1471   blocks and machine instructions.  We then handle the "live-in" values.  These
1472   are in physical registers, so the physical register is assumed to be killed
1473   by the end of the basic block.  Live intervals for virtual registers are
1474   computed for some ordering of the machine instructions <tt>[1, N]</tt>.  A
1475   live interval is an interval <tt>[i, j)</tt>, where <tt>1 &lt;= i &lt;= j
1476   &lt; N</tt>, for which a variable is live.</p>
1477
1478<p><i><b>More to come...</b></i></p>
1479
1480</div>
1481
1482</div>
1483
1484<!-- ======================================================================= -->
1485<h3>
1486  <a name="regalloc">Register Allocation</a>
1487</h3>
1488
1489<div>
1490
1491<p>The <i>Register Allocation problem</i> consists in mapping a program
1492   <i>P<sub>v</sub></i>, that can use an unbounded number of virtual registers,
1493   to a program <i>P<sub>p</sub></i> that contains a finite (possibly small)
1494   number of physical registers. Each target architecture has a different number
1495   of physical registers. If the number of physical registers is not enough to
1496   accommodate all the virtual registers, some of them will have to be mapped
1497   into memory. These virtuals are called <i>spilled virtuals</i>.</p>
1498
1499<!-- _______________________________________________________________________ -->
1500
1501<h4>
1502  <a name="regAlloc_represent">How registers are represented in LLVM</a>
1503</h4>
1504
1505<div>
1506
1507<p>In LLVM, physical registers are denoted by integer numbers that normally
1508   range from 1 to 1023. To see how this numbering is defined for a particular
1509   architecture, you can read the <tt>GenRegisterNames.inc</tt> file for that
1510   architecture. For instance, by
1511   inspecting <tt>lib/Target/X86/X86GenRegisterNames.inc</tt> we see that the
1512   32-bit register <tt>EAX</tt> is denoted by 15, and the MMX register
1513   <tt>MM0</tt> is mapped to 48.</p>
1514
1515<p>Some architectures contain registers that share the same physical location. A
1516   notable example is the X86 platform. For instance, in the X86 architecture,
1517   the registers <tt>EAX</tt>, <tt>AX</tt> and <tt>AL</tt> share the first eight
1518   bits. These physical registers are marked as <i>aliased</i> in LLVM. Given a
1519   particular architecture, you can check which registers are aliased by
1520   inspecting its <tt>RegisterInfo.td</tt> file. Moreover, the method
1521   <tt>TargetRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
1522   all the physical registers aliased to the register <tt>p_reg</tt>.</p>
1523
1524<p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
1525   Elements in the same register class are functionally equivalent, and can be
1526   interchangeably used. Each virtual register can only be mapped to physical
1527   registers of a particular class. For instance, in the X86 architecture, some
1528   virtuals can only be allocated to 8 bit registers.  A register class is
1529   described by <tt>TargetRegisterClass</tt> objects.  To discover if a virtual
1530   register is compatible with a given physical, this code can be used:</p>
1531
1532<div class="doc_code">
1533<pre>
1534bool RegMapping_Fer::compatible_class(MachineFunction &amp;mf,
1535                                      unsigned v_reg,
1536                                      unsigned p_reg) {
1537  assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &amp;&amp;
1538         "Target register must be physical");
1539  const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
1540  return trc-&gt;contains(p_reg);
1541}
1542</pre>
1543</div>
1544
1545<p>Sometimes, mostly for debugging purposes, it is useful to change the number
1546   of physical registers available in the target architecture. This must be done
1547   statically, inside the <tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt>
1548   for <tt>RegisterClass</tt>, the last parameter of which is a list of
1549   registers. Just commenting some out is one simple way to avoid them being
1550   used. A more polite way is to explicitly exclude some registers from
1551   the <i>allocation order</i>. See the definition of the <tt>GR8</tt> register
1552   class in <tt>lib/Target/X86/X86RegisterInfo.td</tt> for an example of this.
1553   </p>
1554
1555<p>Virtual registers are also denoted by integer numbers. Contrary to physical
1556   registers, different virtual registers never share the same number. Whereas
1557   physical registers are statically defined in a <tt>TargetRegisterInfo.td</tt>
1558   file and cannot be created by the application developer, that is not the case
1559   with virtual registers. In order to create new virtual registers, use the
1560   method <tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method
1561   will return a new virtual register. Use an <tt>IndexedMap&lt;Foo,
1562   VirtReg2IndexFunctor&gt;</tt> to hold information per virtual register. If you
1563   need to enumerate all virtual registers, use the function
1564   <tt>TargetRegisterInfo::index2VirtReg()</tt> to find the virtual register
1565   numbers:</p>
1566
1567<div class="doc_code">
1568<pre>
1569  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1570    unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i);
1571    stuff(VirtReg);
1572  }
1573</pre>
1574</div>
1575
1576<p>Before register allocation, the operands of an instruction are mostly virtual
1577   registers, although physical registers may also be used. In order to check if
1578   a given machine operand is a register, use the boolean
1579   function <tt>MachineOperand::isRegister()</tt>. To obtain the integer code of
1580   a register, use <tt>MachineOperand::getReg()</tt>. An instruction may define
1581   or use a register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
1582   defines the registers 1024, and uses registers 1025 and 1026. Given a
1583   register operand, the method <tt>MachineOperand::isUse()</tt> informs if that
1584   register is being used by the instruction. The
1585   method <tt>MachineOperand::isDef()</tt> informs if that registers is being
1586   defined.</p>
1587
1588<p>We will call physical registers present in the LLVM bitcode before register
1589   allocation <i>pre-colored registers</i>. Pre-colored registers are used in
1590   many different situations, for instance, to pass parameters of functions
1591   calls, and to store results of particular instructions. There are two types
1592   of pre-colored registers: the ones <i>implicitly</i> defined, and
1593   those <i>explicitly</i> defined. Explicitly defined registers are normal
1594   operands, and can be accessed
1595   with <tt>MachineInstr::getOperand(int)::getReg()</tt>.  In order to check
1596   which registers are implicitly defined by an instruction, use
1597   the <tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>,
1598   where <tt>opcode</tt> is the opcode of the target instruction. One important
1599   difference between explicit and implicit physical registers is that the
1600   latter are defined statically for each instruction, whereas the former may
1601   vary depending on the program being compiled. For example, an instruction
1602   that represents a function call will always implicitly define or use the same
1603   set of physical registers. To read the registers implicitly used by an
1604   instruction,
1605   use <tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
1606   registers impose constraints on any register allocation algorithm. The
1607   register allocator must make sure that none of them are overwritten by
1608   the values of virtual registers while still alive.</p>
1609
1610</div>
1611
1612<!-- _______________________________________________________________________ -->
1613
1614<h4>
1615  <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
1616</h4>
1617
1618<div>
1619
1620<p>There are two ways to map virtual registers to physical registers (or to
1621   memory slots). The first way, that we will call <i>direct mapping</i>, is
1622   based on the use of methods of the classes <tt>TargetRegisterInfo</tt>,
1623   and <tt>MachineOperand</tt>. The second way, that we will call <i>indirect
1624   mapping</i>, relies on the <tt>VirtRegMap</tt> class in order to insert loads
1625   and stores sending and getting values to and from memory.</p>
1626
1627<p>The direct mapping provides more flexibility to the developer of the register
1628   allocator; however, it is more error prone, and demands more implementation
1629   work.  Basically, the programmer will have to specify where load and store
1630   instructions should be inserted in the target function being compiled in
1631   order to get and store values in memory. To assign a physical register to a
1632   virtual register present in a given operand,
1633   use <tt>MachineOperand::setReg(p_reg)</tt>. To insert a store instruction,
1634   use <tt>TargetInstrInfo::storeRegToStackSlot(...)</tt>, and to insert a
1635   load instruction, use <tt>TargetInstrInfo::loadRegFromStackSlot</tt>.</p>
1636
1637<p>The indirect mapping shields the application developer from the complexities
1638   of inserting load and store instructions. In order to map a virtual register
1639   to a physical one, use <tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>.  In
1640   order to map a certain virtual register to memory,
1641   use <tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will return
1642   the stack slot where <tt>vreg</tt>'s value will be located.  If it is
1643   necessary to map another virtual register to the same stack slot,
1644   use <tt>VirtRegMap::assignVirt2StackSlot(vreg, stack_location)</tt>. One
1645   important point to consider when using the indirect mapping, is that even if
1646   a virtual register is mapped to memory, it still needs to be mapped to a
1647   physical register. This physical register is the location where the virtual
1648   register is supposed to be found before being stored or after being
1649   reloaded.</p>
1650
1651<p>If the indirect strategy is used, after all the virtual registers have been
1652   mapped to physical registers or stack slots, it is necessary to use a spiller
1653   object to place load and store instructions in the code. Every virtual that
1654   has been mapped to a stack slot will be stored to memory after been defined
1655   and will be loaded before being used. The implementation of the spiller tries
1656   to recycle load/store instructions, avoiding unnecessary instructions. For an
1657   example of how to invoke the spiller,
1658   see <tt>RegAllocLinearScan::runOnMachineFunction</tt>
1659   in <tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>
1660
1661</div>
1662
1663<!-- _______________________________________________________________________ -->
1664<h4>
1665  <a name="regAlloc_twoAddr">Handling two address instructions</a>
1666</h4>
1667
1668<div>
1669
1670<p>With very rare exceptions (e.g., function calls), the LLVM machine code
1671   instructions are three address instructions. That is, each instruction is
1672   expected to define at most one register, and to use at most two registers.
1673   However, some architectures use two address instructions. In this case, the
1674   defined register is also one of the used register. For instance, an
1675   instruction such as <tt>ADD %EAX, %EBX</tt>, in X86 is actually equivalent
1676   to <tt>%EAX = %EAX + %EBX</tt>.</p>
1677
1678<p>In order to produce correct code, LLVM must convert three address
1679   instructions that represent two address instructions into true two address
1680   instructions. LLVM provides the pass <tt>TwoAddressInstructionPass</tt> for
1681   this specific purpose. It must be run before register allocation takes
1682   place. After its execution, the resulting code may no longer be in SSA
1683   form. This happens, for instance, in situations where an instruction such
1684   as <tt>%a = ADD %b %c</tt> is converted to two instructions such as:</p>
1685
1686<div class="doc_code">
1687<pre>
1688%a = MOVE %b
1689%a = ADD %a %c
1690</pre>
1691</div>
1692
1693<p>Notice that, internally, the second instruction is represented as
1694   <tt>ADD %a[def/use] %c</tt>. I.e., the register operand <tt>%a</tt> is both
1695   used and defined by the instruction.</p>
1696
1697</div>
1698
1699<!-- _______________________________________________________________________ -->
1700<h4>
1701  <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
1702</h4>
1703
1704<div>
1705
1706<p>An important transformation that happens during register allocation is called
1707   the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many analyses
1708   that are performed on the control flow graph of programs. However,
1709   traditional instruction sets do not implement PHI instructions. Thus, in
1710   order to generate executable code, compilers must replace PHI instructions
1711   with other instructions that preserve their semantics.</p>
1712
1713<p>There are many ways in which PHI instructions can safely be removed from the
1714   target code. The most traditional PHI deconstruction algorithm replaces PHI
1715   instructions with copy instructions. That is the strategy adopted by
1716   LLVM. The SSA deconstruction algorithm is implemented
1717   in <tt>lib/CodeGen/PHIElimination.cpp</tt>. In order to invoke this pass, the
1718   identifier <tt>PHIEliminationID</tt> must be marked as required in the code
1719   of the register allocator.</p>
1720
1721</div>
1722
1723<!-- _______________________________________________________________________ -->
1724<h4>
1725  <a name="regAlloc_fold">Instruction folding</a>
1726</h4>
1727
1728<div>
1729
1730<p><i>Instruction folding</i> is an optimization performed during register
1731   allocation that removes unnecessary copy instructions. For instance, a
1732   sequence of instructions such as:</p>
1733
1734<div class="doc_code">
1735<pre>
1736%EBX = LOAD %mem_address
1737%EAX = COPY %EBX
1738</pre>
1739</div>
1740
1741<p>can be safely substituted by the single instruction:</p>
1742
1743<div class="doc_code">
1744<pre>
1745%EAX = LOAD %mem_address
1746</pre>
1747</div>
1748
1749<p>Instructions can be folded with
1750   the <tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
1751   taken when folding instructions; a folded instruction can be quite different
1752   from the original
1753   instruction. See <tt>LiveIntervals::addIntervalsForSpills</tt>
1754   in <tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its
1755   use.</p>
1756
1757</div>
1758
1759<!-- _______________________________________________________________________ -->
1760
1761<h4>
1762  <a name="regAlloc_builtIn">Built in register allocators</a>
1763</h4>
1764
1765<div>
1766
1767<p>The LLVM infrastructure provides the application developer with three
1768   different register allocators:</p>
1769
1770<ul>
1771  <li><i>Linear Scan</i> &mdash; <i>The default allocator</i>. This is the
1772      well-know linear scan register allocator. Whereas the
1773      <i>Simple</i> and <i>Local</i> algorithms use a direct mapping
1774      implementation technique, the <i>Linear Scan</i> implementation
1775      uses a spiller in order to place load and stores.</li>
1776
1777  <li><i>Fast</i> &mdash; This register allocator is the default for debug
1778      builds. It allocates registers on a basic block level, attempting to keep
1779      values in registers and reusing registers as appropriate.</li>
1780
1781  <li><i>PBQP</i> &mdash; A Partitioned Boolean Quadratic Programming (PBQP)
1782      based register allocator. This allocator works by constructing a PBQP
1783      problem representing the register allocation problem under consideration,
1784      solving this using a PBQP solver, and mapping the solution back to a
1785      register assignment.</li>
1786
1787</ul>
1788
1789<p>The type of register allocator used in <tt>llc</tt> can be chosen with the
1790   command line option <tt>-regalloc=...</tt>:</p>
1791
1792<div class="doc_code">
1793<pre>
1794$ llc -regalloc=linearscan file.bc -o ln.s;
1795$ llc -regalloc=fast file.bc -o fa.s;
1796$ llc -regalloc=pbqp file.bc -o pbqp.s;
1797</pre>
1798</div>
1799
1800</div>
1801
1802</div>
1803
1804<!-- ======================================================================= -->
1805<h3>
1806  <a name="proepicode">Prolog/Epilog Code Insertion</a>
1807</h3>
1808<div><p>To Be Written</p></div>
1809<!-- ======================================================================= -->
1810<h3>
1811  <a name="latemco">Late Machine Code Optimizations</a>
1812</h3>
1813<div><p>To Be Written</p></div>
1814
1815<!-- ======================================================================= -->
1816<h3>
1817  <a name="codeemit">Code Emission</a>
1818</h3>
1819
1820<div>
1821
1822<p>The code emission step of code generation is responsible for lowering from
1823the code generator abstractions (like <a
1824href="#machinefunction">MachineFunction</a>, <a
1825href="#machineinstr">MachineInstr</a>, etc) down
1826to the abstractions used by the MC layer (<a href="#mcinst">MCInst</a>,
1827<a href="#mcstreamer">MCStreamer</a>, etc).  This is
1828done with a combination of several different classes: the (misnamed)
1829target-independent AsmPrinter class, target-specific subclasses of AsmPrinter
1830(such as SparcAsmPrinter), and the TargetLoweringObjectFile class.</p>
1831
1832<p>Since the MC layer works at the level of abstraction of object files, it
1833doesn't have a notion of functions, global variables etc.  Instead, it thinks
1834about labels, directives, and instructions.  A key class used at this time is
1835the MCStreamer class.  This is an abstract API that is implemented in different
1836ways (e.g. to output a .s file, output an ELF .o file, etc) that is effectively
1837an "assembler API".  MCStreamer has one method per directive, such as EmitLabel,
1838EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly
1839level directives.
1840</p>
1841
1842<p>If you are interested in implementing a code generator for a target, there
1843are three important things that you have to implement for your target:</p>
1844
1845<ol>
1846<li>First, you need a subclass of AsmPrinter for your target.  This class
1847implements the general lowering process converting MachineFunction's into MC
1848label constructs.  The AsmPrinter base class provides a number of useful methods
1849and routines, and also allows you to override the lowering process in some
1850important ways.  You should get much of the lowering for free if you are
1851implementing an ELF, COFF, or MachO target, because the TargetLoweringObjectFile
1852class implements much of the common logic.</li>
1853
1854<li>Second, you need to implement an instruction printer for your target.  The
1855instruction printer takes an <a href="#mcinst">MCInst</a> and renders it to a
1856raw_ostream as text.  Most of this is automatically generated from the .td file
1857(when you specify something like "<tt>add $dst, $src1, $src2</tt>" in the
1858instructions), but you need to implement routines to print operands.</li>
1859
1860<li>Third, you need to implement code that lowers a <a
1861href="#machineinstr">MachineInstr</a> to an MCInst, usually implemented in
1862"&lt;target&gt;MCInstLower.cpp".  This lowering process is often target
1863specific, and is responsible for turning jump table entries, constant pool
1864indices, global variable addresses, etc into MCLabels as appropriate.  This
1865translation layer is also responsible for expanding pseudo ops used by the code
1866generator into the actual machine instructions they correspond to. The MCInsts
1867that are generated by this are fed into the instruction printer or the encoder.
1868</li>
1869
1870</ol>
1871
1872<p>Finally, at your choosing, you can also implement an subclass of
1873MCCodeEmitter which lowers MCInst's into machine code bytes and relocations.
1874This is important if you want to support direct .o file emission, or would like
1875to implement an assembler for your target.</p>
1876
1877</div>
1878
1879</div>
1880
1881<!-- *********************************************************************** -->
1882<h2>
1883  <a name="nativeassembler">Implementing a Native Assembler</a>
1884</h2>
1885<!-- *********************************************************************** -->
1886
1887<div>
1888
1889<p>Though you're probably reading this because you want to write or maintain a
1890compiler backend, LLVM also fully supports building a native assemblers too.
1891We've tried hard to automate the generation of the assembler from the .td files
1892(in particular the instruction syntax and encodings), which means that a large
1893part of the manual and repetitive data entry can be factored and shared with the
1894compiler.</p>
1895
1896<!-- ======================================================================= -->
1897<h3 id="na_instparsing">Instruction Parsing</h3>
1898
1899<div><p>To Be Written</p></div>
1900
1901
1902<!-- ======================================================================= -->
1903<h3 id="na_instaliases">
1904  Instruction Alias Processing
1905</h3>
1906
1907<div>
1908<p>Once the instruction is parsed, it enters the MatchInstructionImpl function.
1909The MatchInstructionImpl function performs alias processing and then does
1910actual matching.</p>
1911
1912<p>Alias processing is the phase that canonicalizes different lexical forms of
1913the same instructions down to one representation.  There are several different
1914kinds of alias that are possible to implement and they are listed below in the
1915order that they are processed (which is in order from simplest/weakest to most
1916complex/powerful).  Generally you want to use the first alias mechanism that
1917meets the needs of your instruction, because it will allow a more concise
1918description.</p>
1919
1920<!-- _______________________________________________________________________ -->
1921<h4>Mnemonic Aliases</h4>
1922
1923<div>
1924
1925<p>The first phase of alias processing is simple instruction mnemonic
1926remapping for classes of instructions which are allowed with two different
1927mnemonics.  This phase is a simple and unconditionally remapping from one input
1928mnemonic to one output mnemonic.  It isn't possible for this form of alias to
1929look at the operands at all, so the remapping must apply for all forms of a
1930given mnemonic.  Mnemonic aliases are defined simply, for example X86 has:
1931</p>
1932
1933<div class="doc_code">
1934<pre>
1935def : MnemonicAlias&lt;"cbw",     "cbtw"&gt;;
1936def : MnemonicAlias&lt;"smovq",   "movsq"&gt;;
1937def : MnemonicAlias&lt;"fldcww",  "fldcw"&gt;;
1938def : MnemonicAlias&lt;"fucompi", "fucomip"&gt;;
1939def : MnemonicAlias&lt;"ud2a",    "ud2"&gt;;
1940</pre>
1941</div>
1942
1943<p>... and many others.  With a MnemonicAlias definition, the mnemonic is
1944remapped simply and directly.  Though MnemonicAlias's can't look at any aspect
1945of the instruction (such as the operands) they can depend on global modes (the
1946same ones supported by the matcher), through a Requires clause:</p>
1947
1948<div class="doc_code">
1949<pre>
1950def : MnemonicAlias&lt;"pushf", "pushfq"&gt;, Requires&lt;[In64BitMode]&gt;;
1951def : MnemonicAlias&lt;"pushf", "pushfl"&gt;, Requires&lt;[In32BitMode]&gt;;
1952</pre>
1953</div>
1954
1955<p>In this example, the mnemonic gets mapped into different a new one depending
1956on the current instruction set.</p>
1957
1958</div>
1959
1960<!-- _______________________________________________________________________ -->
1961<h4>Instruction Aliases</h4>
1962
1963<div>
1964
1965<p>The most general phase of alias processing occurs while matching is
1966happening: it provides new forms for the matcher to match along with a specific
1967instruction to generate.  An instruction alias has two parts: the string to
1968match and the instruction to generate.  For example:
1969</p>
1970
1971<div class="doc_code">
1972<pre>
1973def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8  :$src)&gt;;
1974def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)&gt;;
1975def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr8  GR32:$dst, GR8  :$src)&gt;;
1976def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)&gt;;
1977def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr8  GR64:$dst, GR8  :$src)&gt;;
1978def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)&gt;;
1979def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)&gt;;
1980</pre>
1981</div>
1982
1983<p>This shows a powerful example of the instruction aliases, matching the
1984same mnemonic in multiple different ways depending on what operands are present
1985in the assembly.  The result of instruction aliases can include operands in a
1986different order than the destination instruction, and can use an input
1987multiple times, for example:</p>
1988
1989<div class="doc_code">
1990<pre>
1991def : InstAlias&lt;"clrb $reg", (XOR8rr  GR8 :$reg, GR8 :$reg)&gt;;
1992def : InstAlias&lt;"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)&gt;;
1993def : InstAlias&lt;"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)&gt;;
1994def : InstAlias&lt;"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)&gt;;
1995</pre>
1996</div>
1997
1998<p>This example also shows that tied operands are only listed once.  In the X86
1999backend, XOR8rr has two input GR8's and one output GR8 (where an input is tied
2000to the output).  InstAliases take a flattened operand list without duplicates
2001for tied operands.  The result of an instruction alias can also use immediates
2002and fixed physical registers which are added as simple immediate operands in the
2003result, for example:</p>
2004
2005<div class="doc_code">
2006<pre>
2007// Fixed Immediate operand.
2008def : InstAlias&lt;"aad", (AAD8i8 10)&gt;;
2009
2010// Fixed register operand.
2011def : InstAlias&lt;"fcomi", (COM_FIr ST1)&gt;;
2012
2013// Simple alias.
2014def : InstAlias&lt;"fcomi $reg", (COM_FIr RST:$reg)&gt;;
2015</pre>
2016</div>
2017
2018
2019<p>Instruction aliases can also have a Requires clause to make them
2020subtarget specific.</p>
2021
2022<p>If the back-end supports it, the instruction printer can automatically emit
2023   the alias rather than what's being aliased. It typically leads to better,
2024   more readable code. If it's better to print out what's being aliased, then
2025   pass a '0' as the third parameter to the InstAlias definition.</p>
2026
2027</div>
2028
2029</div>
2030
2031<!-- ======================================================================= -->
2032<h3 id="na_matching">Instruction Matching</h3>
2033
2034<div><p>To Be Written</p></div>
2035
2036</div>
2037
2038<!-- *********************************************************************** -->
2039<h2>
2040  <a name="targetimpls">Target-specific Implementation Notes</a>
2041</h2>
2042<!-- *********************************************************************** -->
2043
2044<div>
2045
2046<p>This section of the document explains features or design decisions that are
2047   specific to the code generator for a particular target.  First we start
2048   with a table that summarizes what features are supported by each target.</p>
2049
2050<!-- ======================================================================= -->
2051<h3>
2052  <a name="targetfeatures">Target Feature Matrix</a>
2053</h3>
2054
2055<div>
2056
2057<p>Note that this table does not include the C backend or Cpp backends, since
2058they do not use the target independent code generator infrastructure.  It also
2059doesn't list features that are not supported fully by any target yet.  It
2060considers a feature to be supported if at least one subtarget supports it.  A
2061feature being supported means that it is useful and works for most cases, it
2062does not indicate that there are zero known bugs in the implementation.  Here
2063is the key:</p>
2064
2065
2066<table border="1" cellspacing="0">
2067  <tr>
2068    <th>Unknown</th>
2069    <th>No support</th>
2070    <th>Partial Support</th>
2071    <th>Complete Support</th>
2072  </tr>
2073  <tr>
2074    <td class="unknown"></td>
2075    <td class="no"></td>
2076    <td class="partial"></td>
2077    <td class="yes"></td>
2078  </tr>
2079</table>
2080
2081<p>Here is the table:</p>
2082
2083<table width="689" border="1" cellspacing="0">
2084<tr><td></td>
2085<td colspan="13" align="center" style="background-color:#ffc">Target</td>
2086</tr>
2087  <tr>
2088    <th>Feature</th>
2089    <th>ARM</th>
2090    <th>Alpha</th>
2091    <th>Blackfin</th>
2092    <th>CellSPU</th>
2093    <th>MBlaze</th>
2094    <th>MSP430</th>
2095    <th>Mips</th>
2096    <th>PTX</th>
2097    <th>PowerPC</th>
2098    <th>Sparc</th>
2099    <th>SystemZ</th>
2100    <th>X86</th>
2101    <th>XCore</th>
2102  </tr>
2103
2104<tr>
2105  <td><a href="#feat_reliable">is generally reliable</a></td>
2106  <td class="yes"></td> <!-- ARM -->
2107  <td class="unknown"></td> <!-- Alpha -->
2108  <td class="no"></td> <!-- Blackfin -->
2109  <td class="no"></td> <!-- CellSPU -->
2110  <td class="no"></td> <!-- MBlaze -->
2111  <td class="unknown"></td> <!-- MSP430 -->
2112  <td class="no"></td> <!-- Mips -->
2113  <td class="no"></td> <!-- PTX -->
2114  <td class="yes"></td> <!-- PowerPC -->
2115  <td class="yes"></td> <!-- Sparc -->
2116  <td class="unknown"></td> <!-- SystemZ -->
2117  <td class="yes"></td> <!-- X86 -->
2118  <td class="unknown"></td> <!-- XCore -->
2119</tr>
2120
2121<tr>
2122  <td><a href="#feat_asmparser">assembly parser</a></td>
2123  <td class="no"></td> <!-- ARM -->
2124  <td class="no"></td> <!-- Alpha -->
2125  <td class="no"></td> <!-- Blackfin -->
2126  <td class="no"></td> <!-- CellSPU -->
2127  <td class="yes"></td> <!-- MBlaze -->
2128  <td class="no"></td> <!-- MSP430 -->
2129  <td class="no"></td> <!-- Mips -->
2130  <td class="no"></td> <!-- PTX -->
2131  <td class="no"></td> <!-- PowerPC -->
2132  <td class="no"></td> <!-- Sparc -->
2133  <td class="no"></td> <!-- SystemZ -->
2134  <td class="yes"></td> <!-- X86 -->
2135  <td class="no"></td> <!-- XCore -->
2136</tr>
2137
2138<tr>
2139  <td><a href="#feat_disassembler">disassembler</a></td>
2140  <td class="yes"></td> <!-- ARM -->
2141  <td class="no"></td> <!-- Alpha -->
2142  <td class="no"></td> <!-- Blackfin -->
2143  <td class="no"></td> <!-- CellSPU -->
2144  <td class="yes"></td> <!-- MBlaze -->
2145  <td class="no"></td> <!-- MSP430 -->
2146  <td class="no"></td> <!-- Mips -->
2147  <td class="no"></td> <!-- PTX -->
2148  <td class="no"></td> <!-- PowerPC -->
2149  <td class="no"></td> <!-- Sparc -->
2150  <td class="no"></td> <!-- SystemZ -->
2151  <td class="yes"></td> <!-- X86 -->
2152  <td class="no"></td> <!-- XCore -->
2153</tr>
2154
2155<tr>
2156  <td><a href="#feat_inlineasm">inline asm</a></td>
2157  <td class="yes"></td> <!-- ARM -->
2158  <td class="unknown"></td> <!-- Alpha -->
2159  <td class="yes"></td> <!-- Blackfin -->
2160  <td class="no"></td> <!-- CellSPU -->
2161  <td class="yes"></td> <!-- MBlaze -->
2162  <td class="unknown"></td> <!-- MSP430 -->
2163  <td class="no"></td> <!-- Mips -->
2164  <td class="unknown"></td> <!-- PTX -->
2165  <td class="yes"></td> <!-- PowerPC -->
2166  <td class="unknown"></td> <!-- Sparc -->
2167  <td class="unknown"></td> <!-- SystemZ -->
2168  <td class="yes"><a href="#feat_inlineasm_x86">*</a></td> <!-- X86 -->
2169  <td class="unknown"></td> <!-- XCore -->
2170</tr>
2171
2172<tr>
2173  <td><a href="#feat_jit">jit</a></td>
2174  <td class="partial"><a href="#feat_jit_arm">*</a></td> <!-- ARM -->
2175  <td class="no"></td> <!-- Alpha -->
2176  <td class="no"></td> <!-- Blackfin -->
2177  <td class="no"></td> <!-- CellSPU -->
2178  <td class="no"></td> <!-- MBlaze -->
2179  <td class="unknown"></td> <!-- MSP430 -->
2180  <td class="no"></td> <!-- Mips -->
2181  <td class="unknown"></td> <!-- PTX -->
2182  <td class="yes"></td> <!-- PowerPC -->
2183  <td class="unknown"></td> <!-- Sparc -->
2184  <td class="unknown"></td> <!-- SystemZ -->
2185  <td class="yes"></td> <!-- X86 -->
2186  <td class="unknown"></td> <!-- XCore -->
2187</tr>
2188
2189<tr>
2190  <td><a href="#feat_objectwrite">.o&nbsp;file writing</a></td>
2191  <td class="no"></td> <!-- ARM -->
2192  <td class="no"></td> <!-- Alpha -->
2193  <td class="no"></td> <!-- Blackfin -->
2194  <td class="no"></td> <!-- CellSPU -->
2195  <td class="yes"></td> <!-- MBlaze -->
2196  <td class="no"></td> <!-- MSP430 -->
2197  <td class="no"></td> <!-- Mips -->
2198  <td class="no"></td> <!-- PTX -->
2199  <td class="no"></td> <!-- PowerPC -->
2200  <td class="no"></td> <!-- Sparc -->
2201  <td class="no"></td> <!-- SystemZ -->
2202  <td class="yes"></td> <!-- X86 -->
2203  <td class="no"></td> <!-- XCore -->
2204</tr>
2205
2206<tr>
2207  <td><a href="#feat_tailcall">tail calls</a></td>
2208  <td class="yes"></td> <!-- ARM -->
2209  <td class="unknown"></td> <!-- Alpha -->
2210  <td class="no"></td> <!-- Blackfin -->
2211  <td class="no"></td> <!-- CellSPU -->
2212  <td class="no"></td> <!-- MBlaze -->
2213  <td class="unknown"></td> <!-- MSP430 -->
2214  <td class="no"></td> <!-- Mips -->
2215  <td class="unknown"></td> <!-- PTX -->
2216  <td class="yes"></td> <!-- PowerPC -->
2217  <td class="unknown"></td> <!-- Sparc -->
2218  <td class="unknown"></td> <!-- SystemZ -->
2219  <td class="yes"></td> <!-- X86 -->
2220  <td class="unknown"></td> <!-- XCore -->
2221</tr>
2222
2223
2224</table>
2225
2226<!-- _______________________________________________________________________ -->
2227<h4 id="feat_reliable">Is Generally Reliable</h4>
2228
2229<div>
2230<p>This box indicates whether the target is considered to be production quality.
2231This indicates that the target has been used as a static compiler to
2232compile large amounts of code by a variety of different people and is in
2233continuous use.</p>
2234</div>
2235
2236<!-- _______________________________________________________________________ -->
2237<h4 id="feat_asmparser">Assembly Parser</h4>
2238
2239<div>
2240<p>This box indicates whether the target supports parsing target specific .s
2241files by implementing the MCAsmParser interface.  This is required for llvm-mc
2242to be able to act as a native assembler and is required for inline assembly
2243support in the native .o file writer.</p>
2244
2245</div>
2246
2247
2248<!-- _______________________________________________________________________ -->
2249<h4 id="feat_disassembler">Disassembler</h4>
2250
2251<div>
2252<p>This box indicates whether the target supports the MCDisassembler API for
2253disassembling machine opcode bytes into MCInst's.</p>
2254
2255</div>
2256
2257<!-- _______________________________________________________________________ -->
2258<h4 id="feat_inlineasm">Inline Asm</h4>
2259
2260<div>
2261<p>This box indicates whether the target supports most popular inline assembly
2262constraints and modifiers.</p>
2263
2264<p id="feat_inlineasm_x86">X86 lacks reliable support for inline assembly
2265constraints relating to the X86 floating point stack.</p>
2266
2267</div>
2268
2269<!-- _______________________________________________________________________ -->
2270<h4 id="feat_jit">JIT Support</h4>
2271
2272<div>
2273<p>This box indicates whether the target supports the JIT compiler through
2274the ExecutionEngine interface.</p>
2275
2276<p id="feat_jit_arm">The ARM backend has basic support for integer code
2277in ARM codegen mode, but lacks NEON and full Thumb support.</p>
2278
2279</div>
2280
2281<!-- _______________________________________________________________________ -->
2282<h4 id="feat_objectwrite">.o File Writing</h4>
2283
2284<div>
2285
2286<p>This box indicates whether the target supports writing .o files (e.g. MachO,
2287ELF, and/or COFF) files directly from the target.  Note that the target also
2288must include an assembly parser and general inline assembly support for full
2289inline assembly support in the .o writer.</p>
2290
2291<p>Targets that don't support this feature can obviously still write out .o
2292files, they just rely on having an external assembler to translate from a .s
2293file to a .o file (as is the case for many C compilers).</p>
2294
2295</div>
2296
2297<!-- _______________________________________________________________________ -->
2298<h4 id="feat_tailcall">Tail Calls</h4>
2299
2300<div>
2301
2302<p>This box indicates whether the target supports guaranteed tail calls.  These
2303are calls marked "<a href="LangRef.html#i_call">tail</a>" and use the fastcc
2304calling convention.  Please see the <a href="#tailcallopt">tail call section
2305more more details</a>.</p>
2306
2307</div>
2308
2309</div>
2310
2311<!-- ======================================================================= -->
2312<h3>
2313  <a name="tailcallopt">Tail call optimization</a>
2314</h3>
2315
2316<div>
2317
2318<p>Tail call optimization, callee reusing the stack of the caller, is currently
2319   supported on x86/x86-64 and PowerPC. It is performed if:</p>
2320
2321<ul>
2322  <li>Caller and callee have the calling convention <tt>fastcc</tt> or
2323       <tt>cc 10</tt> (GHC call convention).</li>
2324
2325  <li>The call is a tail call - in tail position (ret immediately follows call
2326      and ret uses value of call or is void).</li>
2327
2328  <li>Option <tt>-tailcallopt</tt> is enabled.</li>
2329
2330  <li>Platform specific constraints are met.</li>
2331</ul>
2332
2333<p>x86/x86-64 constraints:</p>
2334
2335<ul>
2336  <li>No variable argument lists are used.</li>
2337
2338  <li>On x86-64 when generating GOT/PIC code only module-local calls (visibility
2339  = hidden or protected) are supported.</li>
2340</ul>
2341
2342<p>PowerPC constraints:</p>
2343
2344<ul>
2345  <li>No variable argument lists are used.</li>
2346
2347  <li>No byval parameters are used.</li>
2348
2349  <li>On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.</li>
2350</ul>
2351
2352<p>Example:</p>
2353
2354<p>Call as <tt>llc -tailcallopt test.ll</tt>.</p>
2355
2356<div class="doc_code">
2357<pre>
2358declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)
2359
2360define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
2361  %l1 = add i32 %in1, %in2
2362  %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
2363  ret i32 %tmp
2364}
2365</pre>
2366</div>
2367
2368<p>Implications of <tt>-tailcallopt</tt>:</p>
2369
2370<p>To support tail call optimization in situations where the callee has more
2371   arguments than the caller a 'callee pops arguments' convention is used. This
2372   currently causes each <tt>fastcc</tt> call that is not tail call optimized
2373   (because one or more of above constraints are not met) to be followed by a
2374   readjustment of the stack. So performance might be worse in such cases.</p>
2375
2376</div>
2377<!-- ======================================================================= -->
2378<h3>
2379  <a name="sibcallopt">Sibling call optimization</a>
2380</h3>
2381
2382<div>
2383
2384<p>Sibling call optimization is a restricted form of tail call optimization.
2385   Unlike tail call optimization described in the previous section, it can be
2386   performed automatically on any tail calls when <tt>-tailcallopt</tt> option
2387   is not specified.</p>
2388
2389<p>Sibling call optimization is currently performed on x86/x86-64 when the
2390   following constraints are met:</p>
2391
2392<ul>
2393  <li>Caller and callee have the same calling convention. It can be either
2394      <tt>c</tt> or <tt>fastcc</tt>.
2395
2396  <li>The call is a tail call - in tail position (ret immediately follows call
2397      and ret uses value of call or is void).</li>
2398
2399  <li>Caller and callee have matching return type or the callee result is not
2400      used.
2401
2402  <li>If any of the callee arguments are being passed in stack, they must be
2403      available in caller's own incoming argument stack and the frame offsets
2404      must be the same.
2405</ul>
2406
2407<p>Example:</p>
2408<div class="doc_code">
2409<pre>
2410declare i32 @bar(i32, i32)
2411
2412define i32 @foo(i32 %a, i32 %b, i32 %c) {
2413entry:
2414  %0 = tail call i32 @bar(i32 %a, i32 %b)
2415  ret i32 %0
2416}
2417</pre>
2418</div>
2419
2420</div>
2421<!-- ======================================================================= -->
2422<h3>
2423  <a name="x86">The X86 backend</a>
2424</h3>
2425
2426<div>
2427
2428<p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory.  This
2429   code generator is capable of targeting a variety of x86-32 and x86-64
2430   processors, and includes support for ISA extensions such as MMX and SSE.</p>
2431
2432<!-- _______________________________________________________________________ -->
2433<h4>
2434  <a name="x86_tt">X86 Target Triples supported</a>
2435</h4>
2436
2437<div>
2438
2439<p>The following are the known target triples that are supported by the X86
2440   backend.  This is not an exhaustive list, and it would be useful to add those
2441   that people test.</p>
2442
2443<ul>
2444  <li><b>i686-pc-linux-gnu</b> &mdash; Linux</li>
2445
2446  <li><b>i386-unknown-freebsd5.3</b> &mdash; FreeBSD 5.3</li>
2447
2448  <li><b>i686-pc-cygwin</b> &mdash; Cygwin on Win32</li>
2449
2450  <li><b>i686-pc-mingw32</b> &mdash; MingW on Win32</li>
2451
2452  <li><b>i386-pc-mingw32msvc</b> &mdash; MingW crosscompiler on Linux</li>
2453
2454  <li><b>i686-apple-darwin*</b> &mdash; Apple Darwin on X86</li>
2455
2456  <li><b>x86_64-unknown-linux-gnu</b> &mdash; Linux</li>
2457</ul>
2458
2459</div>
2460
2461<!-- _______________________________________________________________________ -->
2462<h4>
2463  <a name="x86_cc">X86 Calling Conventions supported</a>
2464</h4>
2465
2466
2467<div>
2468
2469<p>The following target-specific calling conventions are known to backend:</p>
2470
2471<ul>
2472<li><b>x86_StdCall</b> &mdash; stdcall calling convention seen on Microsoft
2473    Windows platform (CC ID = 64).</li>
2474<li><b>x86_FastCall</b> &mdash; fastcall calling convention seen on Microsoft
2475    Windows platform (CC ID = 65).</li>
2476<li><b>x86_ThisCall</b> &mdash; Similar to X86_StdCall. Passes first argument
2477    in ECX,  others via stack. Callee is responsible for stack cleaning. This
2478    convention is used by MSVC by default for methods in its ABI
2479    (CC ID = 70).</li>
2480</ul>
2481
2482</div>
2483
2484<!-- _______________________________________________________________________ -->
2485<h4>
2486  <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
2487</h4>
2488
2489<div>
2490
2491<p>The x86 has a very flexible way of accessing memory.  It is capable of
2492   forming memory addresses of the following expression directly in integer
2493   instructions (which use ModR/M addressing):</p>
2494
2495<div class="doc_code">
2496<pre>
2497SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32
2498</pre>
2499</div>
2500
2501<p>In order to represent this, LLVM tracks no less than 5 operands for each
2502   memory operand of this form.  This means that the "load" form of
2503   '<tt>mov</tt>' has the following <tt>MachineOperand</tt>s in this order:</p>
2504
2505<div class="doc_code">
2506<pre>
2507Index:        0     |    1        2       3           4          5
2508Meaning:   DestReg, | BaseReg,  Scale, IndexReg, Displacement Segment
2509OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg,   SignExtImm  PhysReg
2510</pre>
2511</div>
2512
2513<p>Stores, and all other instructions, treat the four memory operands in the
2514   same way and in the same order.  If the segment register is unspecified
2515   (regno = 0), then no segment override is generated.  "Lea" operations do not
2516   have a segment register specified, so they only have 4 operands for their
2517   memory reference.</p>
2518
2519</div>
2520
2521<!-- _______________________________________________________________________ -->
2522<h4>
2523  <a name="x86_memory">X86 address spaces supported</a>
2524</h4>
2525
2526<div>
2527
2528<p>x86 has a feature which provides
2529   the ability to perform loads and stores to different address spaces
2530   via the x86 segment registers.  A segment override prefix byte on an
2531   instruction causes the instruction's memory access to go to the specified
2532   segment.  LLVM address space 0 is the default address space, which includes
2533   the stack, and any unqualified memory accesses in a program.  Address spaces
2534   1-255 are currently reserved for user-defined code.  The GS-segment is
2535   represented by address space 256, while the FS-segment is represented by
2536   address space 257. Other x86 segments have yet to be allocated address space
2537   numbers.</p>
2538
2539<p>While these address spaces may seem similar to TLS via the
2540   <tt>thread_local</tt> keyword, and often use the same underlying hardware,
2541   there are some fundamental differences.</p>
2542
2543<p>The <tt>thread_local</tt> keyword applies to global variables and
2544   specifies that they are to be allocated in thread-local memory. There are
2545   no type qualifiers involved, and these variables can be pointed to with
2546   normal pointers and accessed with normal loads and stores.
2547   The <tt>thread_local</tt> keyword is target-independent at the LLVM IR
2548   level (though LLVM doesn't yet have implementations of it for some
2549   configurations).<p>
2550
2551<p>Special address spaces, in contrast, apply to static types. Every
2552   load and store has a particular address space in its address operand type,
2553   and this is what determines which address space is accessed.
2554   LLVM ignores these special address space qualifiers on global variables,
2555   and does not provide a way to directly allocate storage in them.
2556   At the LLVM IR level, the behavior of these special address spaces depends
2557   in part on the underlying OS or runtime environment, and they are specific
2558   to x86 (and LLVM doesn't yet handle them correctly in some cases).</p>
2559
2560<p>Some operating systems and runtime environments use (or may in the future
2561   use) the FS/GS-segment registers for various low-level purposes, so care
2562   should be taken when considering them.</p>
2563
2564</div>
2565
2566<!-- _______________________________________________________________________ -->
2567<h4>
2568  <a name="x86_names">Instruction naming</a>
2569</h4>
2570
2571<div>
2572
2573<p>An instruction name consists of the base name, a default operand size, and a
2574   a character per operand with an optional special size. For example:</p>
2575
2576<div class="doc_code">
2577<pre>
2578ADD8rr      -&gt; add, 8-bit register, 8-bit register
2579IMUL16rmi   -&gt; imul, 16-bit register, 16-bit memory, 16-bit immediate
2580IMUL16rmi8  -&gt; imul, 16-bit register, 16-bit memory, 8-bit immediate
2581MOVSX32rm16 -&gt; movsx, 32-bit register, 16-bit memory
2582</pre>
2583</div>
2584
2585</div>
2586
2587</div>
2588
2589<!-- ======================================================================= -->
2590<h3>
2591  <a name="ppc">The PowerPC backend</a>
2592</h3>
2593
2594<div>
2595
2596<p>The PowerPC code generator lives in the lib/Target/PowerPC directory.  The
2597   code generation is retargetable to several variations or <i>subtargets</i> of
2598   the PowerPC ISA; including ppc32, ppc64 and altivec.</p>
2599
2600<!-- _______________________________________________________________________ -->
2601<h4>
2602  <a name="ppc_abi">LLVM PowerPC ABI</a>
2603</h4>
2604
2605<div>
2606
2607<p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
2608   relative (PIC) or static addressing for accessing global values, so no TOC
2609   (r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth
2610   of a stack frame.  LLVM takes advantage of having no TOC to provide space to
2611   save the frame pointer in the PowerPC linkage area of the caller frame.
2612   Other details of PowerPC ABI can be found at <a href=
2613   "http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
2614   >PowerPC ABI.</a> Note: This link describes the 32 bit ABI.  The 64 bit ABI
2615   is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved
2616   for system use.</p>
2617
2618</div>
2619
2620<!-- _______________________________________________________________________ -->
2621<h4>
2622  <a name="ppc_frame">Frame Layout</a>
2623</h4>
2624
2625<div>
2626
2627<p>The size of a PowerPC frame is usually fixed for the duration of a
2628   function's invocation.  Since the frame is fixed size, all references
2629   into the frame can be accessed via fixed offsets from the stack pointer.  The
2630   exception to this is when dynamic alloca or variable sized arrays are
2631   present, then a base pointer (r31) is used as a proxy for the stack pointer
2632   and stack pointer is free to grow or shrink.  A base pointer is also used if
2633   llvm-gcc is not passed the -fomit-frame-pointer flag. The stack pointer is
2634   always aligned to 16 bytes, so that space allocated for altivec vectors will
2635   be properly aligned.</p>
2636
2637<p>An invocation frame is laid out as follows (low memory at top);</p>
2638
2639<table class="layout">
2640  <tr>
2641    <td>Linkage<br><br></td>
2642  </tr>
2643  <tr>
2644    <td>Parameter area<br><br></td>
2645  </tr>
2646  <tr>
2647    <td>Dynamic area<br><br></td>
2648  </tr>
2649  <tr>
2650    <td>Locals area<br><br></td>
2651  </tr>
2652  <tr>
2653    <td>Saved registers area<br><br></td>
2654  </tr>
2655  <tr style="border-style: none hidden none hidden;">
2656    <td><br></td>
2657  </tr>
2658  <tr>
2659    <td>Previous Frame<br><br></td>
2660  </tr>
2661</table>
2662
2663<p>The <i>linkage</i> area is used by a callee to save special registers prior
2664   to allocating its own frame.  Only three entries are relevant to LLVM. The
2665   first entry is the previous stack pointer (sp), aka link.  This allows
2666   probing tools like gdb or exception handlers to quickly scan the frames in
2667   the stack.  A function epilog can also use the link to pop the frame from the
2668   stack.  The third entry in the linkage area is used to save the return
2669   address from the lr register. Finally, as mentioned above, the last entry is
2670   used to save the previous frame pointer (r31.)  The entries in the linkage
2671   area are the size of a GPR, thus the linkage area is 24 bytes long in 32 bit
2672   mode and 48 bytes in 64 bit mode.</p>
2673
2674<p>32 bit linkage area</p>
2675
2676<table class="layout">
2677  <tr>
2678    <td>0</td>
2679    <td>Saved SP (r1)</td>
2680  </tr>
2681  <tr>
2682    <td>4</td>
2683    <td>Saved CR</td>
2684  </tr>
2685  <tr>
2686    <td>8</td>
2687    <td>Saved LR</td>
2688  </tr>
2689  <tr>
2690    <td>12</td>
2691    <td>Reserved</td>
2692  </tr>
2693  <tr>
2694    <td>16</td>
2695    <td>Reserved</td>
2696  </tr>
2697  <tr>
2698    <td>20</td>
2699    <td>Saved FP (r31)</td>
2700  </tr>
2701</table>
2702
2703<p>64 bit linkage area</p>
2704
2705<table class="layout">
2706  <tr>
2707    <td>0</td>
2708    <td>Saved SP (r1)</td>
2709  </tr>
2710  <tr>
2711    <td>8</td>
2712    <td>Saved CR</td>
2713  </tr>
2714  <tr>
2715    <td>16</td>
2716    <td>Saved LR</td>
2717  </tr>
2718  <tr>
2719    <td>24</td>
2720    <td>Reserved</td>
2721  </tr>
2722  <tr>
2723    <td>32</td>
2724    <td>Reserved</td>
2725  </tr>
2726  <tr>
2727    <td>40</td>
2728    <td>Saved FP (r31)</td>
2729  </tr>
2730</table>
2731
2732<p>The <i>parameter area</i> is used to store arguments being passed to a callee
2733   function.  Following the PowerPC ABI, the first few arguments are actually
2734   passed in registers, with the space in the parameter area unused.  However,
2735   if there are not enough registers or the callee is a thunk or vararg
2736   function, these register arguments can be spilled into the parameter area.
2737   Thus, the parameter area must be large enough to store all the parameters for
2738   the largest call sequence made by the caller.  The size must also be
2739   minimally large enough to spill registers r3-r10.  This allows callees blind
2740   to the call signature, such as thunks and vararg functions, enough space to
2741   cache the argument registers.  Therefore, the parameter area is minimally 32
2742   bytes (64 bytes in 64 bit mode.)  Also note that since the parameter area is
2743   a fixed offset from the top of the frame, that a callee can access its spilt
2744   arguments using fixed offsets from the stack pointer (or base pointer.)</p>
2745
2746<p>Combining the information about the linkage, parameter areas and alignment. A
2747   stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
2748   mode.</p>
2749
2750<p>The <i>dynamic area</i> starts out as size zero.  If a function uses dynamic
2751   alloca then space is added to the stack, the linkage and parameter areas are
2752   shifted to top of stack, and the new space is available immediately below the
2753   linkage and parameter areas.  The cost of shifting the linkage and parameter
2754   areas is minor since only the link value needs to be copied.  The link value
2755   can be easily fetched by adding the original frame size to the base pointer.
2756   Note that allocations in the dynamic space need to observe 16 byte
2757   alignment.</p>
2758
2759<p>The <i>locals area</i> is where the llvm compiler reserves space for local
2760   variables.</p>
2761
2762<p>The <i>saved registers area</i> is where the llvm compiler spills callee
2763   saved registers on entry to the callee.</p>
2764
2765</div>
2766
2767<!-- _______________________________________________________________________ -->
2768<h4>
2769  <a name="ppc_prolog">Prolog/Epilog</a>
2770</h4>
2771
2772<div>
2773
2774<p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
2775   the following exceptions.  Callee saved registers are spilled after the frame
2776   is created.  This allows the llvm epilog/prolog support to be common with
2777   other targets.  The base pointer callee saved register r31 is saved in the
2778   TOC slot of linkage area.  This simplifies allocation of space for the base
2779   pointer and makes it convenient to locate programatically and during
2780   debugging.</p>
2781
2782</div>
2783
2784<!-- _______________________________________________________________________ -->
2785<h4>
2786  <a name="ppc_dynamic">Dynamic Allocation</a>
2787</h4>
2788
2789<div>
2790
2791<p><i>TODO - More to come.</i></p>
2792
2793</div>
2794
2795</div>
2796
2797</div>
2798
2799<!-- *********************************************************************** -->
2800<hr>
2801<address>
2802  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2803  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
2804  <a href="http://validator.w3.org/check/referer"><img
2805  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
2806
2807  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
2808  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
2809  Last modified: $Date$
2810</address>
2811
2812</body>
2813</html>
2814