1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic VMCore ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // TargetData information. These functions cannot go in VMCore due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringMap.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/GetElementPtrTypeIterator.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/FEnv.h"
35 #include <cerrno>
36 #include <cmath>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 // Constant Folding internal helper functions
41 //===----------------------------------------------------------------------===//
42
43 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
44 /// TargetData. This always returns a non-null constant, but it may be a
45 /// ConstantExpr if unfoldable.
FoldBitCast(Constant * C,Type * DestTy,const TargetData & TD)46 static Constant *FoldBitCast(Constant *C, Type *DestTy,
47 const TargetData &TD) {
48
49 // This only handles casts to vectors currently.
50 VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
51 if (DestVTy == 0)
52 return ConstantExpr::getBitCast(C, DestTy);
53
54 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
55 // vector so the code below can handle it uniformly.
56 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
57 Constant *Ops = C; // don't take the address of C!
58 return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
59 }
60
61 // If this is a bitcast from constant vector -> vector, fold it.
62 ConstantVector *CV = dyn_cast<ConstantVector>(C);
63 if (CV == 0)
64 return ConstantExpr::getBitCast(C, DestTy);
65
66 // If the element types match, VMCore can fold it.
67 unsigned NumDstElt = DestVTy->getNumElements();
68 unsigned NumSrcElt = CV->getNumOperands();
69 if (NumDstElt == NumSrcElt)
70 return ConstantExpr::getBitCast(C, DestTy);
71
72 Type *SrcEltTy = CV->getType()->getElementType();
73 Type *DstEltTy = DestVTy->getElementType();
74
75 // Otherwise, we're changing the number of elements in a vector, which
76 // requires endianness information to do the right thing. For example,
77 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
78 // folds to (little endian):
79 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
80 // and to (big endian):
81 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
82
83 // First thing is first. We only want to think about integer here, so if
84 // we have something in FP form, recast it as integer.
85 if (DstEltTy->isFloatingPointTy()) {
86 // Fold to an vector of integers with same size as our FP type.
87 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
88 Type *DestIVTy =
89 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
90 // Recursively handle this integer conversion, if possible.
91 C = FoldBitCast(C, DestIVTy, TD);
92 if (!C) return ConstantExpr::getBitCast(C, DestTy);
93
94 // Finally, VMCore can handle this now that #elts line up.
95 return ConstantExpr::getBitCast(C, DestTy);
96 }
97
98 // Okay, we know the destination is integer, if the input is FP, convert
99 // it to integer first.
100 if (SrcEltTy->isFloatingPointTy()) {
101 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
102 Type *SrcIVTy =
103 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
104 // Ask VMCore to do the conversion now that #elts line up.
105 C = ConstantExpr::getBitCast(C, SrcIVTy);
106 CV = dyn_cast<ConstantVector>(C);
107 if (!CV) // If VMCore wasn't able to fold it, bail out.
108 return C;
109 }
110
111 // Now we know that the input and output vectors are both integer vectors
112 // of the same size, and that their #elements is not the same. Do the
113 // conversion here, which depends on whether the input or output has
114 // more elements.
115 bool isLittleEndian = TD.isLittleEndian();
116
117 SmallVector<Constant*, 32> Result;
118 if (NumDstElt < NumSrcElt) {
119 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
120 Constant *Zero = Constant::getNullValue(DstEltTy);
121 unsigned Ratio = NumSrcElt/NumDstElt;
122 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
123 unsigned SrcElt = 0;
124 for (unsigned i = 0; i != NumDstElt; ++i) {
125 // Build each element of the result.
126 Constant *Elt = Zero;
127 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
128 for (unsigned j = 0; j != Ratio; ++j) {
129 Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
130 if (!Src) // Reject constantexpr elements.
131 return ConstantExpr::getBitCast(C, DestTy);
132
133 // Zero extend the element to the right size.
134 Src = ConstantExpr::getZExt(Src, Elt->getType());
135
136 // Shift it to the right place, depending on endianness.
137 Src = ConstantExpr::getShl(Src,
138 ConstantInt::get(Src->getType(), ShiftAmt));
139 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
140
141 // Mix it in.
142 Elt = ConstantExpr::getOr(Elt, Src);
143 }
144 Result.push_back(Elt);
145 }
146 } else {
147 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
148 unsigned Ratio = NumDstElt/NumSrcElt;
149 unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
150
151 // Loop over each source value, expanding into multiple results.
152 for (unsigned i = 0; i != NumSrcElt; ++i) {
153 Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
154 if (!Src) // Reject constantexpr elements.
155 return ConstantExpr::getBitCast(C, DestTy);
156
157 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
158 for (unsigned j = 0; j != Ratio; ++j) {
159 // Shift the piece of the value into the right place, depending on
160 // endianness.
161 Constant *Elt = ConstantExpr::getLShr(Src,
162 ConstantInt::get(Src->getType(), ShiftAmt));
163 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
164
165 // Truncate and remember this piece.
166 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
167 }
168 }
169 }
170
171 return ConstantVector::get(Result);
172 }
173
174
175 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
176 /// from a global, return the global and the constant. Because of
177 /// constantexprs, this function is recursive.
IsConstantOffsetFromGlobal(Constant * C,GlobalValue * & GV,int64_t & Offset,const TargetData & TD)178 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
179 int64_t &Offset, const TargetData &TD) {
180 // Trivial case, constant is the global.
181 if ((GV = dyn_cast<GlobalValue>(C))) {
182 Offset = 0;
183 return true;
184 }
185
186 // Otherwise, if this isn't a constant expr, bail out.
187 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
188 if (!CE) return false;
189
190 // Look through ptr->int and ptr->ptr casts.
191 if (CE->getOpcode() == Instruction::PtrToInt ||
192 CE->getOpcode() == Instruction::BitCast)
193 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
194
195 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
196 if (CE->getOpcode() == Instruction::GetElementPtr) {
197 // Cannot compute this if the element type of the pointer is missing size
198 // info.
199 if (!cast<PointerType>(CE->getOperand(0)->getType())
200 ->getElementType()->isSized())
201 return false;
202
203 // If the base isn't a global+constant, we aren't either.
204 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
205 return false;
206
207 // Otherwise, add any offset that our operands provide.
208 gep_type_iterator GTI = gep_type_begin(CE);
209 for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
210 i != e; ++i, ++GTI) {
211 ConstantInt *CI = dyn_cast<ConstantInt>(*i);
212 if (!CI) return false; // Index isn't a simple constant?
213 if (CI->isZero()) continue; // Not adding anything.
214
215 if (StructType *ST = dyn_cast<StructType>(*GTI)) {
216 // N = N + Offset
217 Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
218 } else {
219 SequentialType *SQT = cast<SequentialType>(*GTI);
220 Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
221 }
222 }
223 return true;
224 }
225
226 return false;
227 }
228
229 /// ReadDataFromGlobal - Recursive helper to read bits out of global. C is the
230 /// constant being copied out of. ByteOffset is an offset into C. CurPtr is the
231 /// pointer to copy results into and BytesLeft is the number of bytes left in
232 /// the CurPtr buffer. TD is the target data.
ReadDataFromGlobal(Constant * C,uint64_t ByteOffset,unsigned char * CurPtr,unsigned BytesLeft,const TargetData & TD)233 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
234 unsigned char *CurPtr, unsigned BytesLeft,
235 const TargetData &TD) {
236 assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
237 "Out of range access");
238
239 // If this element is zero or undefined, we can just return since *CurPtr is
240 // zero initialized.
241 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
242 return true;
243
244 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
245 if (CI->getBitWidth() > 64 ||
246 (CI->getBitWidth() & 7) != 0)
247 return false;
248
249 uint64_t Val = CI->getZExtValue();
250 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
251
252 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
253 CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
254 ++ByteOffset;
255 }
256 return true;
257 }
258
259 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
260 if (CFP->getType()->isDoubleTy()) {
261 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
262 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
263 }
264 if (CFP->getType()->isFloatTy()){
265 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
266 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
267 }
268 return false;
269 }
270
271 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
272 const StructLayout *SL = TD.getStructLayout(CS->getType());
273 unsigned Index = SL->getElementContainingOffset(ByteOffset);
274 uint64_t CurEltOffset = SL->getElementOffset(Index);
275 ByteOffset -= CurEltOffset;
276
277 while (1) {
278 // If the element access is to the element itself and not to tail padding,
279 // read the bytes from the element.
280 uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
281
282 if (ByteOffset < EltSize &&
283 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
284 BytesLeft, TD))
285 return false;
286
287 ++Index;
288
289 // Check to see if we read from the last struct element, if so we're done.
290 if (Index == CS->getType()->getNumElements())
291 return true;
292
293 // If we read all of the bytes we needed from this element we're done.
294 uint64_t NextEltOffset = SL->getElementOffset(Index);
295
296 if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
297 return true;
298
299 // Move to the next element of the struct.
300 CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
301 BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
302 ByteOffset = 0;
303 CurEltOffset = NextEltOffset;
304 }
305 // not reached.
306 }
307
308 if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
309 uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
310 uint64_t Index = ByteOffset / EltSize;
311 uint64_t Offset = ByteOffset - Index * EltSize;
312 for (; Index != CA->getType()->getNumElements(); ++Index) {
313 if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
314 BytesLeft, TD))
315 return false;
316 if (EltSize >= BytesLeft)
317 return true;
318
319 Offset = 0;
320 BytesLeft -= EltSize;
321 CurPtr += EltSize;
322 }
323 return true;
324 }
325
326 if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
327 uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
328 uint64_t Index = ByteOffset / EltSize;
329 uint64_t Offset = ByteOffset - Index * EltSize;
330 for (; Index != CV->getType()->getNumElements(); ++Index) {
331 if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
332 BytesLeft, TD))
333 return false;
334 if (EltSize >= BytesLeft)
335 return true;
336
337 Offset = 0;
338 BytesLeft -= EltSize;
339 CurPtr += EltSize;
340 }
341 return true;
342 }
343
344 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
345 if (CE->getOpcode() == Instruction::IntToPtr &&
346 CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
347 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
348 BytesLeft, TD);
349 }
350
351 // Otherwise, unknown initializer type.
352 return false;
353 }
354
FoldReinterpretLoadFromConstPtr(Constant * C,const TargetData & TD)355 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
356 const TargetData &TD) {
357 Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
358 IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
359
360 // If this isn't an integer load we can't fold it directly.
361 if (!IntType) {
362 // If this is a float/double load, we can try folding it as an int32/64 load
363 // and then bitcast the result. This can be useful for union cases. Note
364 // that address spaces don't matter here since we're not going to result in
365 // an actual new load.
366 Type *MapTy;
367 if (LoadTy->isFloatTy())
368 MapTy = Type::getInt32PtrTy(C->getContext());
369 else if (LoadTy->isDoubleTy())
370 MapTy = Type::getInt64PtrTy(C->getContext());
371 else if (LoadTy->isVectorTy()) {
372 MapTy = IntegerType::get(C->getContext(),
373 TD.getTypeAllocSizeInBits(LoadTy));
374 MapTy = PointerType::getUnqual(MapTy);
375 } else
376 return 0;
377
378 C = FoldBitCast(C, MapTy, TD);
379 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
380 return FoldBitCast(Res, LoadTy, TD);
381 return 0;
382 }
383
384 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
385 if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
386
387 GlobalValue *GVal;
388 int64_t Offset;
389 if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
390 return 0;
391
392 GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
393 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
394 !GV->getInitializer()->getType()->isSized())
395 return 0;
396
397 // If we're loading off the beginning of the global, some bytes may be valid,
398 // but we don't try to handle this.
399 if (Offset < 0) return 0;
400
401 // If we're not accessing anything in this constant, the result is undefined.
402 if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
403 return UndefValue::get(IntType);
404
405 unsigned char RawBytes[32] = {0};
406 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
407 BytesLoaded, TD))
408 return 0;
409
410 APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
411 for (unsigned i = 1; i != BytesLoaded; ++i) {
412 ResultVal <<= 8;
413 ResultVal |= RawBytes[BytesLoaded-1-i];
414 }
415
416 return ConstantInt::get(IntType->getContext(), ResultVal);
417 }
418
419 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
420 /// produce if it is constant and determinable. If this is not determinable,
421 /// return null.
ConstantFoldLoadFromConstPtr(Constant * C,const TargetData * TD)422 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
423 const TargetData *TD) {
424 // First, try the easy cases:
425 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
426 if (GV->isConstant() && GV->hasDefinitiveInitializer())
427 return GV->getInitializer();
428
429 // If the loaded value isn't a constant expr, we can't handle it.
430 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
431 if (!CE) return 0;
432
433 if (CE->getOpcode() == Instruction::GetElementPtr) {
434 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
435 if (GV->isConstant() && GV->hasDefinitiveInitializer())
436 if (Constant *V =
437 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
438 return V;
439 }
440
441 // Instead of loading constant c string, use corresponding integer value
442 // directly if string length is small enough.
443 std::string Str;
444 if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
445 unsigned StrLen = Str.length();
446 Type *Ty = cast<PointerType>(CE->getType())->getElementType();
447 unsigned NumBits = Ty->getPrimitiveSizeInBits();
448 // Replace load with immediate integer if the result is an integer or fp
449 // value.
450 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
451 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
452 APInt StrVal(NumBits, 0);
453 APInt SingleChar(NumBits, 0);
454 if (TD->isLittleEndian()) {
455 for (signed i = StrLen-1; i >= 0; i--) {
456 SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
457 StrVal = (StrVal << 8) | SingleChar;
458 }
459 } else {
460 for (unsigned i = 0; i < StrLen; i++) {
461 SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
462 StrVal = (StrVal << 8) | SingleChar;
463 }
464 // Append NULL at the end.
465 SingleChar = 0;
466 StrVal = (StrVal << 8) | SingleChar;
467 }
468
469 Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
470 if (Ty->isFloatingPointTy())
471 Res = ConstantExpr::getBitCast(Res, Ty);
472 return Res;
473 }
474 }
475
476 // If this load comes from anywhere in a constant global, and if the global
477 // is all undef or zero, we know what it loads.
478 if (GlobalVariable *GV =
479 dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
480 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
481 Type *ResTy = cast<PointerType>(C->getType())->getElementType();
482 if (GV->getInitializer()->isNullValue())
483 return Constant::getNullValue(ResTy);
484 if (isa<UndefValue>(GV->getInitializer()))
485 return UndefValue::get(ResTy);
486 }
487 }
488
489 // Try hard to fold loads from bitcasted strange and non-type-safe things. We
490 // currently don't do any of this for big endian systems. It can be
491 // generalized in the future if someone is interested.
492 if (TD && TD->isLittleEndian())
493 return FoldReinterpretLoadFromConstPtr(CE, *TD);
494 return 0;
495 }
496
ConstantFoldLoadInst(const LoadInst * LI,const TargetData * TD)497 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
498 if (LI->isVolatile()) return 0;
499
500 if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
501 return ConstantFoldLoadFromConstPtr(C, TD);
502
503 return 0;
504 }
505
506 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
507 /// Attempt to symbolically evaluate the result of a binary operator merging
508 /// these together. If target data info is available, it is provided as TD,
509 /// otherwise TD is null.
SymbolicallyEvaluateBinop(unsigned Opc,Constant * Op0,Constant * Op1,const TargetData * TD)510 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
511 Constant *Op1, const TargetData *TD){
512 // SROA
513
514 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
515 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
516 // bits.
517
518
519 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
520 // constant. This happens frequently when iterating over a global array.
521 if (Opc == Instruction::Sub && TD) {
522 GlobalValue *GV1, *GV2;
523 int64_t Offs1, Offs2;
524
525 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
526 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
527 GV1 == GV2) {
528 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
529 return ConstantInt::get(Op0->getType(), Offs1-Offs2);
530 }
531 }
532
533 return 0;
534 }
535
536 /// CastGEPIndices - If array indices are not pointer-sized integers,
537 /// explicitly cast them so that they aren't implicitly casted by the
538 /// getelementptr.
CastGEPIndices(ArrayRef<Constant * > Ops,Type * ResultTy,const TargetData * TD)539 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
540 Type *ResultTy,
541 const TargetData *TD) {
542 if (!TD) return 0;
543 Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
544
545 bool Any = false;
546 SmallVector<Constant*, 32> NewIdxs;
547 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
548 if ((i == 1 ||
549 !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
550 Ops.data() + 1,
551 i-1))) &&
552 Ops[i]->getType() != IntPtrTy) {
553 Any = true;
554 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
555 true,
556 IntPtrTy,
557 true),
558 Ops[i], IntPtrTy));
559 } else
560 NewIdxs.push_back(Ops[i]);
561 }
562 if (!Any) return 0;
563
564 Constant *C =
565 ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
566 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
567 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
568 C = Folded;
569 return C;
570 }
571
572 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
573 /// constant expression, do so.
SymbolicallyEvaluateGEP(ArrayRef<Constant * > Ops,Type * ResultTy,const TargetData * TD)574 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
575 Type *ResultTy,
576 const TargetData *TD) {
577 Constant *Ptr = Ops[0];
578 if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
579 return 0;
580
581 Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
582
583 // If this is a constant expr gep that is effectively computing an
584 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
585 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
586 if (!isa<ConstantInt>(Ops[i])) {
587
588 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
589 // "inttoptr (sub (ptrtoint Ptr), V)"
590 if (Ops.size() == 2 &&
591 cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
592 ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
593 assert((CE == 0 || CE->getType() == IntPtrTy) &&
594 "CastGEPIndices didn't canonicalize index types!");
595 if (CE && CE->getOpcode() == Instruction::Sub &&
596 CE->getOperand(0)->isNullValue()) {
597 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
598 Res = ConstantExpr::getSub(Res, CE->getOperand(1));
599 Res = ConstantExpr::getIntToPtr(Res, ResultTy);
600 if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
601 Res = ConstantFoldConstantExpression(ResCE, TD);
602 return Res;
603 }
604 }
605 return 0;
606 }
607
608 unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
609 APInt Offset =
610 APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
611 makeArrayRef((Value **)Ops.data() + 1,
612 Ops.size() - 1)));
613 Ptr = cast<Constant>(Ptr->stripPointerCasts());
614
615 // If this is a GEP of a GEP, fold it all into a single GEP.
616 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
617 SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
618
619 // Do not try the incorporate the sub-GEP if some index is not a number.
620 bool AllConstantInt = true;
621 for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
622 if (!isa<ConstantInt>(NestedOps[i])) {
623 AllConstantInt = false;
624 break;
625 }
626 if (!AllConstantInt)
627 break;
628
629 Ptr = cast<Constant>(GEP->getOperand(0));
630 Offset += APInt(BitWidth,
631 TD->getIndexedOffset(Ptr->getType(), NestedOps));
632 Ptr = cast<Constant>(Ptr->stripPointerCasts());
633 }
634
635 // If the base value for this address is a literal integer value, fold the
636 // getelementptr to the resulting integer value casted to the pointer type.
637 APInt BasePtr(BitWidth, 0);
638 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
639 if (CE->getOpcode() == Instruction::IntToPtr)
640 if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
641 BasePtr = Base->getValue().zextOrTrunc(BitWidth);
642 if (Ptr->isNullValue() || BasePtr != 0) {
643 Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
644 return ConstantExpr::getIntToPtr(C, ResultTy);
645 }
646
647 // Otherwise form a regular getelementptr. Recompute the indices so that
648 // we eliminate over-indexing of the notional static type array bounds.
649 // This makes it easy to determine if the getelementptr is "inbounds".
650 // Also, this helps GlobalOpt do SROA on GlobalVariables.
651 Type *Ty = Ptr->getType();
652 SmallVector<Constant*, 32> NewIdxs;
653 do {
654 if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
655 if (ATy->isPointerTy()) {
656 // The only pointer indexing we'll do is on the first index of the GEP.
657 if (!NewIdxs.empty())
658 break;
659
660 // Only handle pointers to sized types, not pointers to functions.
661 if (!ATy->getElementType()->isSized())
662 return 0;
663 }
664
665 // Determine which element of the array the offset points into.
666 APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
667 IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
668 if (ElemSize == 0)
669 // The element size is 0. This may be [0 x Ty]*, so just use a zero
670 // index for this level and proceed to the next level to see if it can
671 // accommodate the offset.
672 NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
673 else {
674 // The element size is non-zero divide the offset by the element
675 // size (rounding down), to compute the index at this level.
676 APInt NewIdx = Offset.udiv(ElemSize);
677 Offset -= NewIdx * ElemSize;
678 NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
679 }
680 Ty = ATy->getElementType();
681 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
682 // Determine which field of the struct the offset points into. The
683 // getZExtValue is at least as safe as the StructLayout API because we
684 // know the offset is within the struct at this point.
685 const StructLayout &SL = *TD->getStructLayout(STy);
686 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
687 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
688 ElIdx));
689 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
690 Ty = STy->getTypeAtIndex(ElIdx);
691 } else {
692 // We've reached some non-indexable type.
693 break;
694 }
695 } while (Ty != cast<PointerType>(ResultTy)->getElementType());
696
697 // If we haven't used up the entire offset by descending the static
698 // type, then the offset is pointing into the middle of an indivisible
699 // member, so we can't simplify it.
700 if (Offset != 0)
701 return 0;
702
703 // Create a GEP.
704 Constant *C =
705 ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
706 assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
707 "Computed GetElementPtr has unexpected type!");
708
709 // If we ended up indexing a member with a type that doesn't match
710 // the type of what the original indices indexed, add a cast.
711 if (Ty != cast<PointerType>(ResultTy)->getElementType())
712 C = FoldBitCast(C, ResultTy, *TD);
713
714 return C;
715 }
716
717
718
719 //===----------------------------------------------------------------------===//
720 // Constant Folding public APIs
721 //===----------------------------------------------------------------------===//
722
723 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
724 /// If successful, the constant result is returned, if not, null is returned.
725 /// Note that this fails if not all of the operands are constant. Otherwise,
726 /// this function can only fail when attempting to fold instructions like loads
727 /// and stores, which have no constant expression form.
ConstantFoldInstruction(Instruction * I,const TargetData * TD)728 Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
729 // Handle PHI nodes quickly here...
730 if (PHINode *PN = dyn_cast<PHINode>(I)) {
731 Constant *CommonValue = 0;
732
733 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
734 Value *Incoming = PN->getIncomingValue(i);
735 // If the incoming value is undef then skip it. Note that while we could
736 // skip the value if it is equal to the phi node itself we choose not to
737 // because that would break the rule that constant folding only applies if
738 // all operands are constants.
739 if (isa<UndefValue>(Incoming))
740 continue;
741 // If the incoming value is not a constant, or is a different constant to
742 // the one we saw previously, then give up.
743 Constant *C = dyn_cast<Constant>(Incoming);
744 if (!C || (CommonValue && C != CommonValue))
745 return 0;
746 CommonValue = C;
747 }
748
749 // If we reach here, all incoming values are the same constant or undef.
750 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
751 }
752
753 // Scan the operand list, checking to see if they are all constants, if so,
754 // hand off to ConstantFoldInstOperands.
755 SmallVector<Constant*, 8> Ops;
756 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
757 if (Constant *Op = dyn_cast<Constant>(*i))
758 Ops.push_back(Op);
759 else
760 return 0; // All operands not constant!
761
762 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
763 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
764 TD);
765
766 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
767 return ConstantFoldLoadInst(LI, TD);
768
769 if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
770 return ConstantExpr::getInsertValue(
771 cast<Constant>(IVI->getAggregateOperand()),
772 cast<Constant>(IVI->getInsertedValueOperand()),
773 IVI->getIndices());
774
775 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
776 return ConstantExpr::getExtractValue(
777 cast<Constant>(EVI->getAggregateOperand()),
778 EVI->getIndices());
779
780 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD);
781 }
782
783 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
784 /// using the specified TargetData. If successful, the constant result is
785 /// result is returned, if not, null is returned.
ConstantFoldConstantExpression(const ConstantExpr * CE,const TargetData * TD)786 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
787 const TargetData *TD) {
788 SmallVector<Constant*, 8> Ops;
789 for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
790 i != e; ++i) {
791 Constant *NewC = cast<Constant>(*i);
792 // Recursively fold the ConstantExpr's operands.
793 if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
794 NewC = ConstantFoldConstantExpression(NewCE, TD);
795 Ops.push_back(NewC);
796 }
797
798 if (CE->isCompare())
799 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
800 TD);
801 return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD);
802 }
803
804 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
805 /// specified opcode and operands. If successful, the constant result is
806 /// returned, if not, null is returned. Note that this function can fail when
807 /// attempting to fold instructions like loads and stores, which have no
808 /// constant expression form.
809 ///
810 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
811 /// information, due to only being passed an opcode and operands. Constant
812 /// folding using this function strips this information.
813 ///
ConstantFoldInstOperands(unsigned Opcode,Type * DestTy,ArrayRef<Constant * > Ops,const TargetData * TD)814 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
815 ArrayRef<Constant *> Ops,
816 const TargetData *TD) {
817 // Handle easy binops first.
818 if (Instruction::isBinaryOp(Opcode)) {
819 if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
820 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
821 return C;
822
823 return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
824 }
825
826 switch (Opcode) {
827 default: return 0;
828 case Instruction::ICmp:
829 case Instruction::FCmp: assert(0 && "Invalid for compares");
830 case Instruction::Call:
831 if (Function *F = dyn_cast<Function>(Ops.back()))
832 if (canConstantFoldCallTo(F))
833 return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1));
834 return 0;
835 case Instruction::PtrToInt:
836 // If the input is a inttoptr, eliminate the pair. This requires knowing
837 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
838 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
839 if (TD && CE->getOpcode() == Instruction::IntToPtr) {
840 Constant *Input = CE->getOperand(0);
841 unsigned InWidth = Input->getType()->getScalarSizeInBits();
842 if (TD->getPointerSizeInBits() < InWidth) {
843 Constant *Mask =
844 ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
845 TD->getPointerSizeInBits()));
846 Input = ConstantExpr::getAnd(Input, Mask);
847 }
848 // Do a zext or trunc to get to the dest size.
849 return ConstantExpr::getIntegerCast(Input, DestTy, false);
850 }
851 }
852 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
853 case Instruction::IntToPtr:
854 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
855 // the int size is >= the ptr size. This requires knowing the width of a
856 // pointer, so it can't be done in ConstantExpr::getCast.
857 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
858 if (TD &&
859 TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
860 CE->getOpcode() == Instruction::PtrToInt)
861 return FoldBitCast(CE->getOperand(0), DestTy, *TD);
862
863 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
864 case Instruction::Trunc:
865 case Instruction::ZExt:
866 case Instruction::SExt:
867 case Instruction::FPTrunc:
868 case Instruction::FPExt:
869 case Instruction::UIToFP:
870 case Instruction::SIToFP:
871 case Instruction::FPToUI:
872 case Instruction::FPToSI:
873 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
874 case Instruction::BitCast:
875 if (TD)
876 return FoldBitCast(Ops[0], DestTy, *TD);
877 return ConstantExpr::getBitCast(Ops[0], DestTy);
878 case Instruction::Select:
879 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
880 case Instruction::ExtractElement:
881 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
882 case Instruction::InsertElement:
883 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
884 case Instruction::ShuffleVector:
885 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
886 case Instruction::GetElementPtr:
887 if (Constant *C = CastGEPIndices(Ops, DestTy, TD))
888 return C;
889 if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD))
890 return C;
891
892 return ConstantExpr::getGetElementPtr(Ops[0], Ops.data() + 1,
893 Ops.size() - 1);
894 }
895 }
896
897 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
898 /// instruction (icmp/fcmp) with the specified operands. If it fails, it
899 /// returns a constant expression of the specified operands.
900 ///
ConstantFoldCompareInstOperands(unsigned Predicate,Constant * Ops0,Constant * Ops1,const TargetData * TD)901 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
902 Constant *Ops0, Constant *Ops1,
903 const TargetData *TD) {
904 // fold: icmp (inttoptr x), null -> icmp x, 0
905 // fold: icmp (ptrtoint x), 0 -> icmp x, null
906 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
907 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
908 //
909 // ConstantExpr::getCompare cannot do this, because it doesn't have TD
910 // around to know if bit truncation is happening.
911 if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
912 if (TD && Ops1->isNullValue()) {
913 Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
914 if (CE0->getOpcode() == Instruction::IntToPtr) {
915 // Convert the integer value to the right size to ensure we get the
916 // proper extension or truncation.
917 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
918 IntPtrTy, false);
919 Constant *Null = Constant::getNullValue(C->getType());
920 return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
921 }
922
923 // Only do this transformation if the int is intptrty in size, otherwise
924 // there is a truncation or extension that we aren't modeling.
925 if (CE0->getOpcode() == Instruction::PtrToInt &&
926 CE0->getType() == IntPtrTy) {
927 Constant *C = CE0->getOperand(0);
928 Constant *Null = Constant::getNullValue(C->getType());
929 return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
930 }
931 }
932
933 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
934 if (TD && CE0->getOpcode() == CE1->getOpcode()) {
935 Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
936
937 if (CE0->getOpcode() == Instruction::IntToPtr) {
938 // Convert the integer value to the right size to ensure we get the
939 // proper extension or truncation.
940 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
941 IntPtrTy, false);
942 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
943 IntPtrTy, false);
944 return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
945 }
946
947 // Only do this transformation if the int is intptrty in size, otherwise
948 // there is a truncation or extension that we aren't modeling.
949 if ((CE0->getOpcode() == Instruction::PtrToInt &&
950 CE0->getType() == IntPtrTy &&
951 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
952 return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
953 CE1->getOperand(0), TD);
954 }
955 }
956
957 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
958 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
959 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
960 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
961 Constant *LHS =
962 ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
963 Constant *RHS =
964 ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
965 unsigned OpC =
966 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
967 Constant *Ops[] = { LHS, RHS };
968 return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD);
969 }
970 }
971
972 return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
973 }
974
975
976 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
977 /// getelementptr constantexpr, return the constant value being addressed by the
978 /// constant expression, or null if something is funny and we can't decide.
ConstantFoldLoadThroughGEPConstantExpr(Constant * C,ConstantExpr * CE)979 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
980 ConstantExpr *CE) {
981 if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
982 return 0; // Do not allow stepping over the value!
983
984 // Loop over all of the operands, tracking down which value we are
985 // addressing...
986 gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
987 for (++I; I != E; ++I)
988 if (StructType *STy = dyn_cast<StructType>(*I)) {
989 ConstantInt *CU = cast<ConstantInt>(I.getOperand());
990 assert(CU->getZExtValue() < STy->getNumElements() &&
991 "Struct index out of range!");
992 unsigned El = (unsigned)CU->getZExtValue();
993 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
994 C = CS->getOperand(El);
995 } else if (isa<ConstantAggregateZero>(C)) {
996 C = Constant::getNullValue(STy->getElementType(El));
997 } else if (isa<UndefValue>(C)) {
998 C = UndefValue::get(STy->getElementType(El));
999 } else {
1000 return 0;
1001 }
1002 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
1003 if (ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
1004 if (CI->getZExtValue() >= ATy->getNumElements())
1005 return 0;
1006 if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
1007 C = CA->getOperand(CI->getZExtValue());
1008 else if (isa<ConstantAggregateZero>(C))
1009 C = Constant::getNullValue(ATy->getElementType());
1010 else if (isa<UndefValue>(C))
1011 C = UndefValue::get(ATy->getElementType());
1012 else
1013 return 0;
1014 } else if (VectorType *VTy = dyn_cast<VectorType>(*I)) {
1015 if (CI->getZExtValue() >= VTy->getNumElements())
1016 return 0;
1017 if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
1018 C = CP->getOperand(CI->getZExtValue());
1019 else if (isa<ConstantAggregateZero>(C))
1020 C = Constant::getNullValue(VTy->getElementType());
1021 else if (isa<UndefValue>(C))
1022 C = UndefValue::get(VTy->getElementType());
1023 else
1024 return 0;
1025 } else {
1026 return 0;
1027 }
1028 } else {
1029 return 0;
1030 }
1031 return C;
1032 }
1033
1034
1035 //===----------------------------------------------------------------------===//
1036 // Constant Folding for Calls
1037 //
1038
1039 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
1040 /// the specified function.
1041 bool
canConstantFoldCallTo(const Function * F)1042 llvm::canConstantFoldCallTo(const Function *F) {
1043 switch (F->getIntrinsicID()) {
1044 case Intrinsic::sqrt:
1045 case Intrinsic::powi:
1046 case Intrinsic::bswap:
1047 case Intrinsic::ctpop:
1048 case Intrinsic::ctlz:
1049 case Intrinsic::cttz:
1050 case Intrinsic::sadd_with_overflow:
1051 case Intrinsic::uadd_with_overflow:
1052 case Intrinsic::ssub_with_overflow:
1053 case Intrinsic::usub_with_overflow:
1054 case Intrinsic::smul_with_overflow:
1055 case Intrinsic::umul_with_overflow:
1056 case Intrinsic::convert_from_fp16:
1057 case Intrinsic::convert_to_fp16:
1058 case Intrinsic::x86_sse_cvtss2si:
1059 case Intrinsic::x86_sse_cvtss2si64:
1060 case Intrinsic::x86_sse_cvttss2si:
1061 case Intrinsic::x86_sse_cvttss2si64:
1062 case Intrinsic::x86_sse2_cvtsd2si:
1063 case Intrinsic::x86_sse2_cvtsd2si64:
1064 case Intrinsic::x86_sse2_cvttsd2si:
1065 case Intrinsic::x86_sse2_cvttsd2si64:
1066 return true;
1067 default:
1068 return false;
1069 case 0: break;
1070 }
1071
1072 if (!F->hasName()) return false;
1073 StringRef Name = F->getName();
1074
1075 // In these cases, the check of the length is required. We don't want to
1076 // return true for a name like "cos\0blah" which strcmp would return equal to
1077 // "cos", but has length 8.
1078 switch (Name[0]) {
1079 default: return false;
1080 case 'a':
1081 return Name == "acos" || Name == "asin" ||
1082 Name == "atan" || Name == "atan2";
1083 case 'c':
1084 return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1085 case 'e':
1086 return Name == "exp" || Name == "exp2";
1087 case 'f':
1088 return Name == "fabs" || Name == "fmod" || Name == "floor";
1089 case 'l':
1090 return Name == "log" || Name == "log10";
1091 case 'p':
1092 return Name == "pow";
1093 case 's':
1094 return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1095 Name == "sinf" || Name == "sqrtf";
1096 case 't':
1097 return Name == "tan" || Name == "tanh";
1098 }
1099 }
1100
ConstantFoldFP(double (* NativeFP)(double),double V,Type * Ty)1101 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1102 Type *Ty) {
1103 sys::llvm_fenv_clearexcept();
1104 V = NativeFP(V);
1105 if (sys::llvm_fenv_testexcept()) {
1106 sys::llvm_fenv_clearexcept();
1107 return 0;
1108 }
1109
1110 if (Ty->isFloatTy())
1111 return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1112 if (Ty->isDoubleTy())
1113 return ConstantFP::get(Ty->getContext(), APFloat(V));
1114 llvm_unreachable("Can only constant fold float/double");
1115 return 0; // dummy return to suppress warning
1116 }
1117
ConstantFoldBinaryFP(double (* NativeFP)(double,double),double V,double W,Type * Ty)1118 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1119 double V, double W, Type *Ty) {
1120 sys::llvm_fenv_clearexcept();
1121 V = NativeFP(V, W);
1122 if (sys::llvm_fenv_testexcept()) {
1123 sys::llvm_fenv_clearexcept();
1124 return 0;
1125 }
1126
1127 if (Ty->isFloatTy())
1128 return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1129 if (Ty->isDoubleTy())
1130 return ConstantFP::get(Ty->getContext(), APFloat(V));
1131 llvm_unreachable("Can only constant fold float/double");
1132 return 0; // dummy return to suppress warning
1133 }
1134
1135 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1136 /// conversion of a constant floating point. If roundTowardZero is false, the
1137 /// default IEEE rounding is used (toward nearest, ties to even). This matches
1138 /// the behavior of the non-truncating SSE instructions in the default rounding
1139 /// mode. The desired integer type Ty is used to select how many bits are
1140 /// available for the result. Returns null if the conversion cannot be
1141 /// performed, otherwise returns the Constant value resulting from the
1142 /// conversion.
ConstantFoldConvertToInt(ConstantFP * Op,bool roundTowardZero,Type * Ty)1143 static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
1144 Type *Ty) {
1145 assert(Op && "Called with NULL operand");
1146 APFloat Val(Op->getValueAPF());
1147
1148 // All of these conversion intrinsics form an integer of at most 64bits.
1149 unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1150 assert(ResultWidth <= 64 &&
1151 "Can only constant fold conversions to 64 and 32 bit ints");
1152
1153 uint64_t UIntVal;
1154 bool isExact = false;
1155 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1156 : APFloat::rmNearestTiesToEven;
1157 APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1158 /*isSigned=*/true, mode,
1159 &isExact);
1160 if (status != APFloat::opOK && status != APFloat::opInexact)
1161 return 0;
1162 return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1163 }
1164
1165 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
1166 /// with the specified arguments, returning null if unsuccessful.
1167 Constant *
ConstantFoldCall(Function * F,ArrayRef<Constant * > Operands)1168 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands) {
1169 if (!F->hasName()) return 0;
1170 StringRef Name = F->getName();
1171
1172 Type *Ty = F->getReturnType();
1173 if (Operands.size() == 1) {
1174 if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1175 if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1176 APFloat Val(Op->getValueAPF());
1177
1178 bool lost = false;
1179 Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1180
1181 return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1182 }
1183
1184 if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1185 return 0;
1186
1187 /// We only fold functions with finite arguments. Folding NaN and inf is
1188 /// likely to be aborted with an exception anyway, and some host libms
1189 /// have known errors raising exceptions.
1190 if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1191 return 0;
1192
1193 /// Currently APFloat versions of these functions do not exist, so we use
1194 /// the host native double versions. Float versions are not called
1195 /// directly but for all these it is true (float)(f((double)arg)) ==
1196 /// f(arg). Long double not supported yet.
1197 double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1198 Op->getValueAPF().convertToDouble();
1199 switch (Name[0]) {
1200 case 'a':
1201 if (Name == "acos")
1202 return ConstantFoldFP(acos, V, Ty);
1203 else if (Name == "asin")
1204 return ConstantFoldFP(asin, V, Ty);
1205 else if (Name == "atan")
1206 return ConstantFoldFP(atan, V, Ty);
1207 break;
1208 case 'c':
1209 if (Name == "ceil")
1210 return ConstantFoldFP(ceil, V, Ty);
1211 else if (Name == "cos")
1212 return ConstantFoldFP(cos, V, Ty);
1213 else if (Name == "cosh")
1214 return ConstantFoldFP(cosh, V, Ty);
1215 else if (Name == "cosf")
1216 return ConstantFoldFP(cos, V, Ty);
1217 break;
1218 case 'e':
1219 if (Name == "exp")
1220 return ConstantFoldFP(exp, V, Ty);
1221
1222 if (Name == "exp2") {
1223 // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1224 // C99 library.
1225 return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1226 }
1227 break;
1228 case 'f':
1229 if (Name == "fabs")
1230 return ConstantFoldFP(fabs, V, Ty);
1231 else if (Name == "floor")
1232 return ConstantFoldFP(floor, V, Ty);
1233 break;
1234 case 'l':
1235 if (Name == "log" && V > 0)
1236 return ConstantFoldFP(log, V, Ty);
1237 else if (Name == "log10" && V > 0)
1238 return ConstantFoldFP(log10, V, Ty);
1239 else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1240 (Ty->isFloatTy() || Ty->isDoubleTy())) {
1241 if (V >= -0.0)
1242 return ConstantFoldFP(sqrt, V, Ty);
1243 else // Undefined
1244 return Constant::getNullValue(Ty);
1245 }
1246 break;
1247 case 's':
1248 if (Name == "sin")
1249 return ConstantFoldFP(sin, V, Ty);
1250 else if (Name == "sinh")
1251 return ConstantFoldFP(sinh, V, Ty);
1252 else if (Name == "sqrt" && V >= 0)
1253 return ConstantFoldFP(sqrt, V, Ty);
1254 else if (Name == "sqrtf" && V >= 0)
1255 return ConstantFoldFP(sqrt, V, Ty);
1256 else if (Name == "sinf")
1257 return ConstantFoldFP(sin, V, Ty);
1258 break;
1259 case 't':
1260 if (Name == "tan")
1261 return ConstantFoldFP(tan, V, Ty);
1262 else if (Name == "tanh")
1263 return ConstantFoldFP(tanh, V, Ty);
1264 break;
1265 default:
1266 break;
1267 }
1268 return 0;
1269 }
1270
1271 if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1272 switch (F->getIntrinsicID()) {
1273 case Intrinsic::bswap:
1274 return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1275 case Intrinsic::ctpop:
1276 return ConstantInt::get(Ty, Op->getValue().countPopulation());
1277 case Intrinsic::cttz:
1278 return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1279 case Intrinsic::ctlz:
1280 return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1281 case Intrinsic::convert_from_fp16: {
1282 APFloat Val(Op->getValue());
1283
1284 bool lost = false;
1285 APFloat::opStatus status =
1286 Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1287
1288 // Conversion is always precise.
1289 (void)status;
1290 assert(status == APFloat::opOK && !lost &&
1291 "Precision lost during fp16 constfolding");
1292
1293 return ConstantFP::get(F->getContext(), Val);
1294 }
1295 default:
1296 return 0;
1297 }
1298 }
1299
1300 if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
1301 switch (F->getIntrinsicID()) {
1302 default: break;
1303 case Intrinsic::x86_sse_cvtss2si:
1304 case Intrinsic::x86_sse_cvtss2si64:
1305 case Intrinsic::x86_sse2_cvtsd2si:
1306 case Intrinsic::x86_sse2_cvtsd2si64:
1307 if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1308 return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
1309 case Intrinsic::x86_sse_cvttss2si:
1310 case Intrinsic::x86_sse_cvttss2si64:
1311 case Intrinsic::x86_sse2_cvttsd2si:
1312 case Intrinsic::x86_sse2_cvttsd2si64:
1313 if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1314 return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
1315 }
1316 }
1317
1318 if (isa<UndefValue>(Operands[0])) {
1319 if (F->getIntrinsicID() == Intrinsic::bswap)
1320 return Operands[0];
1321 return 0;
1322 }
1323
1324 return 0;
1325 }
1326
1327 if (Operands.size() == 2) {
1328 if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1329 if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1330 return 0;
1331 double Op1V = Ty->isFloatTy() ?
1332 (double)Op1->getValueAPF().convertToFloat() :
1333 Op1->getValueAPF().convertToDouble();
1334 if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1335 if (Op2->getType() != Op1->getType())
1336 return 0;
1337
1338 double Op2V = Ty->isFloatTy() ?
1339 (double)Op2->getValueAPF().convertToFloat():
1340 Op2->getValueAPF().convertToDouble();
1341
1342 if (Name == "pow")
1343 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1344 if (Name == "fmod")
1345 return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1346 if (Name == "atan2")
1347 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1348 } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1349 if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1350 return ConstantFP::get(F->getContext(),
1351 APFloat((float)std::pow((float)Op1V,
1352 (int)Op2C->getZExtValue())));
1353 if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1354 return ConstantFP::get(F->getContext(),
1355 APFloat((double)std::pow((double)Op1V,
1356 (int)Op2C->getZExtValue())));
1357 }
1358 return 0;
1359 }
1360
1361
1362 if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1363 if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1364 switch (F->getIntrinsicID()) {
1365 default: break;
1366 case Intrinsic::sadd_with_overflow:
1367 case Intrinsic::uadd_with_overflow:
1368 case Intrinsic::ssub_with_overflow:
1369 case Intrinsic::usub_with_overflow:
1370 case Intrinsic::smul_with_overflow:
1371 case Intrinsic::umul_with_overflow: {
1372 APInt Res;
1373 bool Overflow;
1374 switch (F->getIntrinsicID()) {
1375 default: assert(0 && "Invalid case");
1376 case Intrinsic::sadd_with_overflow:
1377 Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1378 break;
1379 case Intrinsic::uadd_with_overflow:
1380 Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1381 break;
1382 case Intrinsic::ssub_with_overflow:
1383 Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1384 break;
1385 case Intrinsic::usub_with_overflow:
1386 Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1387 break;
1388 case Intrinsic::smul_with_overflow:
1389 Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1390 break;
1391 case Intrinsic::umul_with_overflow:
1392 Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1393 break;
1394 }
1395 Constant *Ops[] = {
1396 ConstantInt::get(F->getContext(), Res),
1397 ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1398 };
1399 return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1400 }
1401 }
1402 }
1403
1404 return 0;
1405 }
1406 return 0;
1407 }
1408 return 0;
1409 }
1410