• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic VMCore ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // TargetData information. These functions cannot go in VMCore due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringMap.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/GetElementPtrTypeIterator.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/FEnv.h"
35 #include <cerrno>
36 #include <cmath>
37 using namespace llvm;
38 
39 //===----------------------------------------------------------------------===//
40 // Constant Folding internal helper functions
41 //===----------------------------------------------------------------------===//
42 
43 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
44 /// TargetData.  This always returns a non-null constant, but it may be a
45 /// ConstantExpr if unfoldable.
FoldBitCast(Constant * C,Type * DestTy,const TargetData & TD)46 static Constant *FoldBitCast(Constant *C, Type *DestTy,
47                              const TargetData &TD) {
48 
49   // This only handles casts to vectors currently.
50   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
51   if (DestVTy == 0)
52     return ConstantExpr::getBitCast(C, DestTy);
53 
54   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
55   // vector so the code below can handle it uniformly.
56   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
57     Constant *Ops = C; // don't take the address of C!
58     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
59   }
60 
61   // If this is a bitcast from constant vector -> vector, fold it.
62   ConstantVector *CV = dyn_cast<ConstantVector>(C);
63   if (CV == 0)
64     return ConstantExpr::getBitCast(C, DestTy);
65 
66   // If the element types match, VMCore can fold it.
67   unsigned NumDstElt = DestVTy->getNumElements();
68   unsigned NumSrcElt = CV->getNumOperands();
69   if (NumDstElt == NumSrcElt)
70     return ConstantExpr::getBitCast(C, DestTy);
71 
72   Type *SrcEltTy = CV->getType()->getElementType();
73   Type *DstEltTy = DestVTy->getElementType();
74 
75   // Otherwise, we're changing the number of elements in a vector, which
76   // requires endianness information to do the right thing.  For example,
77   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
78   // folds to (little endian):
79   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
80   // and to (big endian):
81   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
82 
83   // First thing is first.  We only want to think about integer here, so if
84   // we have something in FP form, recast it as integer.
85   if (DstEltTy->isFloatingPointTy()) {
86     // Fold to an vector of integers with same size as our FP type.
87     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
88     Type *DestIVTy =
89       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
90     // Recursively handle this integer conversion, if possible.
91     C = FoldBitCast(C, DestIVTy, TD);
92     if (!C) return ConstantExpr::getBitCast(C, DestTy);
93 
94     // Finally, VMCore can handle this now that #elts line up.
95     return ConstantExpr::getBitCast(C, DestTy);
96   }
97 
98   // Okay, we know the destination is integer, if the input is FP, convert
99   // it to integer first.
100   if (SrcEltTy->isFloatingPointTy()) {
101     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
102     Type *SrcIVTy =
103       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
104     // Ask VMCore to do the conversion now that #elts line up.
105     C = ConstantExpr::getBitCast(C, SrcIVTy);
106     CV = dyn_cast<ConstantVector>(C);
107     if (!CV)  // If VMCore wasn't able to fold it, bail out.
108       return C;
109   }
110 
111   // Now we know that the input and output vectors are both integer vectors
112   // of the same size, and that their #elements is not the same.  Do the
113   // conversion here, which depends on whether the input or output has
114   // more elements.
115   bool isLittleEndian = TD.isLittleEndian();
116 
117   SmallVector<Constant*, 32> Result;
118   if (NumDstElt < NumSrcElt) {
119     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
120     Constant *Zero = Constant::getNullValue(DstEltTy);
121     unsigned Ratio = NumSrcElt/NumDstElt;
122     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
123     unsigned SrcElt = 0;
124     for (unsigned i = 0; i != NumDstElt; ++i) {
125       // Build each element of the result.
126       Constant *Elt = Zero;
127       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
128       for (unsigned j = 0; j != Ratio; ++j) {
129         Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
130         if (!Src)  // Reject constantexpr elements.
131           return ConstantExpr::getBitCast(C, DestTy);
132 
133         // Zero extend the element to the right size.
134         Src = ConstantExpr::getZExt(Src, Elt->getType());
135 
136         // Shift it to the right place, depending on endianness.
137         Src = ConstantExpr::getShl(Src,
138                                    ConstantInt::get(Src->getType(), ShiftAmt));
139         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
140 
141         // Mix it in.
142         Elt = ConstantExpr::getOr(Elt, Src);
143       }
144       Result.push_back(Elt);
145     }
146   } else {
147     // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
148     unsigned Ratio = NumDstElt/NumSrcElt;
149     unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
150 
151     // Loop over each source value, expanding into multiple results.
152     for (unsigned i = 0; i != NumSrcElt; ++i) {
153       Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
154       if (!Src)  // Reject constantexpr elements.
155         return ConstantExpr::getBitCast(C, DestTy);
156 
157       unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
158       for (unsigned j = 0; j != Ratio; ++j) {
159         // Shift the piece of the value into the right place, depending on
160         // endianness.
161         Constant *Elt = ConstantExpr::getLShr(Src,
162                                     ConstantInt::get(Src->getType(), ShiftAmt));
163         ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
164 
165         // Truncate and remember this piece.
166         Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
167       }
168     }
169   }
170 
171   return ConstantVector::get(Result);
172 }
173 
174 
175 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
176 /// from a global, return the global and the constant.  Because of
177 /// constantexprs, this function is recursive.
IsConstantOffsetFromGlobal(Constant * C,GlobalValue * & GV,int64_t & Offset,const TargetData & TD)178 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
179                                        int64_t &Offset, const TargetData &TD) {
180   // Trivial case, constant is the global.
181   if ((GV = dyn_cast<GlobalValue>(C))) {
182     Offset = 0;
183     return true;
184   }
185 
186   // Otherwise, if this isn't a constant expr, bail out.
187   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
188   if (!CE) return false;
189 
190   // Look through ptr->int and ptr->ptr casts.
191   if (CE->getOpcode() == Instruction::PtrToInt ||
192       CE->getOpcode() == Instruction::BitCast)
193     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
194 
195   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
196   if (CE->getOpcode() == Instruction::GetElementPtr) {
197     // Cannot compute this if the element type of the pointer is missing size
198     // info.
199     if (!cast<PointerType>(CE->getOperand(0)->getType())
200                  ->getElementType()->isSized())
201       return false;
202 
203     // If the base isn't a global+constant, we aren't either.
204     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
205       return false;
206 
207     // Otherwise, add any offset that our operands provide.
208     gep_type_iterator GTI = gep_type_begin(CE);
209     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
210          i != e; ++i, ++GTI) {
211       ConstantInt *CI = dyn_cast<ConstantInt>(*i);
212       if (!CI) return false;  // Index isn't a simple constant?
213       if (CI->isZero()) continue;  // Not adding anything.
214 
215       if (StructType *ST = dyn_cast<StructType>(*GTI)) {
216         // N = N + Offset
217         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
218       } else {
219         SequentialType *SQT = cast<SequentialType>(*GTI);
220         Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
221       }
222     }
223     return true;
224   }
225 
226   return false;
227 }
228 
229 /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
230 /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
231 /// pointer to copy results into and BytesLeft is the number of bytes left in
232 /// the CurPtr buffer.  TD is the target data.
ReadDataFromGlobal(Constant * C,uint64_t ByteOffset,unsigned char * CurPtr,unsigned BytesLeft,const TargetData & TD)233 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
234                                unsigned char *CurPtr, unsigned BytesLeft,
235                                const TargetData &TD) {
236   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
237          "Out of range access");
238 
239   // If this element is zero or undefined, we can just return since *CurPtr is
240   // zero initialized.
241   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
242     return true;
243 
244   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
245     if (CI->getBitWidth() > 64 ||
246         (CI->getBitWidth() & 7) != 0)
247       return false;
248 
249     uint64_t Val = CI->getZExtValue();
250     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
251 
252     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
253       CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
254       ++ByteOffset;
255     }
256     return true;
257   }
258 
259   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
260     if (CFP->getType()->isDoubleTy()) {
261       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
262       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
263     }
264     if (CFP->getType()->isFloatTy()){
265       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
266       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
267     }
268     return false;
269   }
270 
271   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
272     const StructLayout *SL = TD.getStructLayout(CS->getType());
273     unsigned Index = SL->getElementContainingOffset(ByteOffset);
274     uint64_t CurEltOffset = SL->getElementOffset(Index);
275     ByteOffset -= CurEltOffset;
276 
277     while (1) {
278       // If the element access is to the element itself and not to tail padding,
279       // read the bytes from the element.
280       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
281 
282       if (ByteOffset < EltSize &&
283           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
284                               BytesLeft, TD))
285         return false;
286 
287       ++Index;
288 
289       // Check to see if we read from the last struct element, if so we're done.
290       if (Index == CS->getType()->getNumElements())
291         return true;
292 
293       // If we read all of the bytes we needed from this element we're done.
294       uint64_t NextEltOffset = SL->getElementOffset(Index);
295 
296       if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
297         return true;
298 
299       // Move to the next element of the struct.
300       CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
301       BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
302       ByteOffset = 0;
303       CurEltOffset = NextEltOffset;
304     }
305     // not reached.
306   }
307 
308   if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
309     uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
310     uint64_t Index = ByteOffset / EltSize;
311     uint64_t Offset = ByteOffset - Index * EltSize;
312     for (; Index != CA->getType()->getNumElements(); ++Index) {
313       if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
314                               BytesLeft, TD))
315         return false;
316       if (EltSize >= BytesLeft)
317         return true;
318 
319       Offset = 0;
320       BytesLeft -= EltSize;
321       CurPtr += EltSize;
322     }
323     return true;
324   }
325 
326   if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
327     uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
328     uint64_t Index = ByteOffset / EltSize;
329     uint64_t Offset = ByteOffset - Index * EltSize;
330     for (; Index != CV->getType()->getNumElements(); ++Index) {
331       if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
332                               BytesLeft, TD))
333         return false;
334       if (EltSize >= BytesLeft)
335         return true;
336 
337       Offset = 0;
338       BytesLeft -= EltSize;
339       CurPtr += EltSize;
340     }
341     return true;
342   }
343 
344   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
345     if (CE->getOpcode() == Instruction::IntToPtr &&
346         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
347         return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
348                                   BytesLeft, TD);
349   }
350 
351   // Otherwise, unknown initializer type.
352   return false;
353 }
354 
FoldReinterpretLoadFromConstPtr(Constant * C,const TargetData & TD)355 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
356                                                  const TargetData &TD) {
357   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
358   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
359 
360   // If this isn't an integer load we can't fold it directly.
361   if (!IntType) {
362     // If this is a float/double load, we can try folding it as an int32/64 load
363     // and then bitcast the result.  This can be useful for union cases.  Note
364     // that address spaces don't matter here since we're not going to result in
365     // an actual new load.
366     Type *MapTy;
367     if (LoadTy->isFloatTy())
368       MapTy = Type::getInt32PtrTy(C->getContext());
369     else if (LoadTy->isDoubleTy())
370       MapTy = Type::getInt64PtrTy(C->getContext());
371     else if (LoadTy->isVectorTy()) {
372       MapTy = IntegerType::get(C->getContext(),
373                                TD.getTypeAllocSizeInBits(LoadTy));
374       MapTy = PointerType::getUnqual(MapTy);
375     } else
376       return 0;
377 
378     C = FoldBitCast(C, MapTy, TD);
379     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
380       return FoldBitCast(Res, LoadTy, TD);
381     return 0;
382   }
383 
384   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
385   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
386 
387   GlobalValue *GVal;
388   int64_t Offset;
389   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
390     return 0;
391 
392   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
393   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
394       !GV->getInitializer()->getType()->isSized())
395     return 0;
396 
397   // If we're loading off the beginning of the global, some bytes may be valid,
398   // but we don't try to handle this.
399   if (Offset < 0) return 0;
400 
401   // If we're not accessing anything in this constant, the result is undefined.
402   if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
403     return UndefValue::get(IntType);
404 
405   unsigned char RawBytes[32] = {0};
406   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
407                           BytesLoaded, TD))
408     return 0;
409 
410   APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
411   for (unsigned i = 1; i != BytesLoaded; ++i) {
412     ResultVal <<= 8;
413     ResultVal |= RawBytes[BytesLoaded-1-i];
414   }
415 
416   return ConstantInt::get(IntType->getContext(), ResultVal);
417 }
418 
419 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
420 /// produce if it is constant and determinable.  If this is not determinable,
421 /// return null.
ConstantFoldLoadFromConstPtr(Constant * C,const TargetData * TD)422 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
423                                              const TargetData *TD) {
424   // First, try the easy cases:
425   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
426     if (GV->isConstant() && GV->hasDefinitiveInitializer())
427       return GV->getInitializer();
428 
429   // If the loaded value isn't a constant expr, we can't handle it.
430   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
431   if (!CE) return 0;
432 
433   if (CE->getOpcode() == Instruction::GetElementPtr) {
434     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
435       if (GV->isConstant() && GV->hasDefinitiveInitializer())
436         if (Constant *V =
437              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
438           return V;
439   }
440 
441   // Instead of loading constant c string, use corresponding integer value
442   // directly if string length is small enough.
443   std::string Str;
444   if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
445     unsigned StrLen = Str.length();
446     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
447     unsigned NumBits = Ty->getPrimitiveSizeInBits();
448     // Replace load with immediate integer if the result is an integer or fp
449     // value.
450     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
451         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
452       APInt StrVal(NumBits, 0);
453       APInt SingleChar(NumBits, 0);
454       if (TD->isLittleEndian()) {
455         for (signed i = StrLen-1; i >= 0; i--) {
456           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
457           StrVal = (StrVal << 8) | SingleChar;
458         }
459       } else {
460         for (unsigned i = 0; i < StrLen; i++) {
461           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
462           StrVal = (StrVal << 8) | SingleChar;
463         }
464         // Append NULL at the end.
465         SingleChar = 0;
466         StrVal = (StrVal << 8) | SingleChar;
467       }
468 
469       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
470       if (Ty->isFloatingPointTy())
471         Res = ConstantExpr::getBitCast(Res, Ty);
472       return Res;
473     }
474   }
475 
476   // If this load comes from anywhere in a constant global, and if the global
477   // is all undef or zero, we know what it loads.
478   if (GlobalVariable *GV =
479         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
480     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
481       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
482       if (GV->getInitializer()->isNullValue())
483         return Constant::getNullValue(ResTy);
484       if (isa<UndefValue>(GV->getInitializer()))
485         return UndefValue::get(ResTy);
486     }
487   }
488 
489   // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
490   // currently don't do any of this for big endian systems.  It can be
491   // generalized in the future if someone is interested.
492   if (TD && TD->isLittleEndian())
493     return FoldReinterpretLoadFromConstPtr(CE, *TD);
494   return 0;
495 }
496 
ConstantFoldLoadInst(const LoadInst * LI,const TargetData * TD)497 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
498   if (LI->isVolatile()) return 0;
499 
500   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
501     return ConstantFoldLoadFromConstPtr(C, TD);
502 
503   return 0;
504 }
505 
506 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
507 /// Attempt to symbolically evaluate the result of a binary operator merging
508 /// these together.  If target data info is available, it is provided as TD,
509 /// otherwise TD is null.
SymbolicallyEvaluateBinop(unsigned Opc,Constant * Op0,Constant * Op1,const TargetData * TD)510 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
511                                            Constant *Op1, const TargetData *TD){
512   // SROA
513 
514   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
515   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
516   // bits.
517 
518 
519   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
520   // constant.  This happens frequently when iterating over a global array.
521   if (Opc == Instruction::Sub && TD) {
522     GlobalValue *GV1, *GV2;
523     int64_t Offs1, Offs2;
524 
525     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
526       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
527           GV1 == GV2) {
528         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
529         return ConstantInt::get(Op0->getType(), Offs1-Offs2);
530       }
531   }
532 
533   return 0;
534 }
535 
536 /// CastGEPIndices - If array indices are not pointer-sized integers,
537 /// explicitly cast them so that they aren't implicitly casted by the
538 /// getelementptr.
CastGEPIndices(ArrayRef<Constant * > Ops,Type * ResultTy,const TargetData * TD)539 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
540                                 Type *ResultTy,
541                                 const TargetData *TD) {
542   if (!TD) return 0;
543   Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
544 
545   bool Any = false;
546   SmallVector<Constant*, 32> NewIdxs;
547   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
548     if ((i == 1 ||
549          !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
550                                                             Ops.data() + 1,
551                                                             i-1))) &&
552         Ops[i]->getType() != IntPtrTy) {
553       Any = true;
554       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
555                                                                       true,
556                                                                       IntPtrTy,
557                                                                       true),
558                                               Ops[i], IntPtrTy));
559     } else
560       NewIdxs.push_back(Ops[i]);
561   }
562   if (!Any) return 0;
563 
564   Constant *C =
565     ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
566   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
567     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
568       C = Folded;
569   return C;
570 }
571 
572 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
573 /// constant expression, do so.
SymbolicallyEvaluateGEP(ArrayRef<Constant * > Ops,Type * ResultTy,const TargetData * TD)574 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
575                                          Type *ResultTy,
576                                          const TargetData *TD) {
577   Constant *Ptr = Ops[0];
578   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
579     return 0;
580 
581   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
582 
583   // If this is a constant expr gep that is effectively computing an
584   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
585   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
586     if (!isa<ConstantInt>(Ops[i])) {
587 
588       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
589       // "inttoptr (sub (ptrtoint Ptr), V)"
590       if (Ops.size() == 2 &&
591           cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
592         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
593         assert((CE == 0 || CE->getType() == IntPtrTy) &&
594                "CastGEPIndices didn't canonicalize index types!");
595         if (CE && CE->getOpcode() == Instruction::Sub &&
596             CE->getOperand(0)->isNullValue()) {
597           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
598           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
599           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
600           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
601             Res = ConstantFoldConstantExpression(ResCE, TD);
602           return Res;
603         }
604       }
605       return 0;
606     }
607 
608   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
609   APInt Offset =
610     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
611                                          makeArrayRef((Value **)Ops.data() + 1,
612                                                       Ops.size() - 1)));
613   Ptr = cast<Constant>(Ptr->stripPointerCasts());
614 
615   // If this is a GEP of a GEP, fold it all into a single GEP.
616   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
617     SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
618 
619     // Do not try the incorporate the sub-GEP if some index is not a number.
620     bool AllConstantInt = true;
621     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
622       if (!isa<ConstantInt>(NestedOps[i])) {
623         AllConstantInt = false;
624         break;
625       }
626     if (!AllConstantInt)
627       break;
628 
629     Ptr = cast<Constant>(GEP->getOperand(0));
630     Offset += APInt(BitWidth,
631                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
632     Ptr = cast<Constant>(Ptr->stripPointerCasts());
633   }
634 
635   // If the base value for this address is a literal integer value, fold the
636   // getelementptr to the resulting integer value casted to the pointer type.
637   APInt BasePtr(BitWidth, 0);
638   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
639     if (CE->getOpcode() == Instruction::IntToPtr)
640       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
641         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
642   if (Ptr->isNullValue() || BasePtr != 0) {
643     Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
644     return ConstantExpr::getIntToPtr(C, ResultTy);
645   }
646 
647   // Otherwise form a regular getelementptr. Recompute the indices so that
648   // we eliminate over-indexing of the notional static type array bounds.
649   // This makes it easy to determine if the getelementptr is "inbounds".
650   // Also, this helps GlobalOpt do SROA on GlobalVariables.
651   Type *Ty = Ptr->getType();
652   SmallVector<Constant*, 32> NewIdxs;
653   do {
654     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
655       if (ATy->isPointerTy()) {
656         // The only pointer indexing we'll do is on the first index of the GEP.
657         if (!NewIdxs.empty())
658           break;
659 
660         // Only handle pointers to sized types, not pointers to functions.
661         if (!ATy->getElementType()->isSized())
662           return 0;
663       }
664 
665       // Determine which element of the array the offset points into.
666       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
667       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
668       if (ElemSize == 0)
669         // The element size is 0. This may be [0 x Ty]*, so just use a zero
670         // index for this level and proceed to the next level to see if it can
671         // accommodate the offset.
672         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
673       else {
674         // The element size is non-zero divide the offset by the element
675         // size (rounding down), to compute the index at this level.
676         APInt NewIdx = Offset.udiv(ElemSize);
677         Offset -= NewIdx * ElemSize;
678         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
679       }
680       Ty = ATy->getElementType();
681     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
682       // Determine which field of the struct the offset points into. The
683       // getZExtValue is at least as safe as the StructLayout API because we
684       // know the offset is within the struct at this point.
685       const StructLayout &SL = *TD->getStructLayout(STy);
686       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
687       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
688                                          ElIdx));
689       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
690       Ty = STy->getTypeAtIndex(ElIdx);
691     } else {
692       // We've reached some non-indexable type.
693       break;
694     }
695   } while (Ty != cast<PointerType>(ResultTy)->getElementType());
696 
697   // If we haven't used up the entire offset by descending the static
698   // type, then the offset is pointing into the middle of an indivisible
699   // member, so we can't simplify it.
700   if (Offset != 0)
701     return 0;
702 
703   // Create a GEP.
704   Constant *C =
705     ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
706   assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
707          "Computed GetElementPtr has unexpected type!");
708 
709   // If we ended up indexing a member with a type that doesn't match
710   // the type of what the original indices indexed, add a cast.
711   if (Ty != cast<PointerType>(ResultTy)->getElementType())
712     C = FoldBitCast(C, ResultTy, *TD);
713 
714   return C;
715 }
716 
717 
718 
719 //===----------------------------------------------------------------------===//
720 // Constant Folding public APIs
721 //===----------------------------------------------------------------------===//
722 
723 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
724 /// If successful, the constant result is returned, if not, null is returned.
725 /// Note that this fails if not all of the operands are constant.  Otherwise,
726 /// this function can only fail when attempting to fold instructions like loads
727 /// and stores, which have no constant expression form.
ConstantFoldInstruction(Instruction * I,const TargetData * TD)728 Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
729   // Handle PHI nodes quickly here...
730   if (PHINode *PN = dyn_cast<PHINode>(I)) {
731     Constant *CommonValue = 0;
732 
733     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
734       Value *Incoming = PN->getIncomingValue(i);
735       // If the incoming value is undef then skip it.  Note that while we could
736       // skip the value if it is equal to the phi node itself we choose not to
737       // because that would break the rule that constant folding only applies if
738       // all operands are constants.
739       if (isa<UndefValue>(Incoming))
740         continue;
741       // If the incoming value is not a constant, or is a different constant to
742       // the one we saw previously, then give up.
743       Constant *C = dyn_cast<Constant>(Incoming);
744       if (!C || (CommonValue && C != CommonValue))
745         return 0;
746       CommonValue = C;
747     }
748 
749     // If we reach here, all incoming values are the same constant or undef.
750     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
751   }
752 
753   // Scan the operand list, checking to see if they are all constants, if so,
754   // hand off to ConstantFoldInstOperands.
755   SmallVector<Constant*, 8> Ops;
756   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
757     if (Constant *Op = dyn_cast<Constant>(*i))
758       Ops.push_back(Op);
759     else
760       return 0;  // All operands not constant!
761 
762   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
763     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
764                                            TD);
765 
766   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
767     return ConstantFoldLoadInst(LI, TD);
768 
769   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
770     return ConstantExpr::getInsertValue(
771                                 cast<Constant>(IVI->getAggregateOperand()),
772                                 cast<Constant>(IVI->getInsertedValueOperand()),
773                                 IVI->getIndices());
774 
775   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
776     return ConstantExpr::getExtractValue(
777                                     cast<Constant>(EVI->getAggregateOperand()),
778                                     EVI->getIndices());
779 
780   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD);
781 }
782 
783 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
784 /// using the specified TargetData.  If successful, the constant result is
785 /// result is returned, if not, null is returned.
ConstantFoldConstantExpression(const ConstantExpr * CE,const TargetData * TD)786 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
787                                                const TargetData *TD) {
788   SmallVector<Constant*, 8> Ops;
789   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
790        i != e; ++i) {
791     Constant *NewC = cast<Constant>(*i);
792     // Recursively fold the ConstantExpr's operands.
793     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
794       NewC = ConstantFoldConstantExpression(NewCE, TD);
795     Ops.push_back(NewC);
796   }
797 
798   if (CE->isCompare())
799     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
800                                            TD);
801   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD);
802 }
803 
804 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
805 /// specified opcode and operands.  If successful, the constant result is
806 /// returned, if not, null is returned.  Note that this function can fail when
807 /// attempting to fold instructions like loads and stores, which have no
808 /// constant expression form.
809 ///
810 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
811 /// information, due to only being passed an opcode and operands. Constant
812 /// folding using this function strips this information.
813 ///
ConstantFoldInstOperands(unsigned Opcode,Type * DestTy,ArrayRef<Constant * > Ops,const TargetData * TD)814 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
815                                          ArrayRef<Constant *> Ops,
816                                          const TargetData *TD) {
817   // Handle easy binops first.
818   if (Instruction::isBinaryOp(Opcode)) {
819     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
820       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
821         return C;
822 
823     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
824   }
825 
826   switch (Opcode) {
827   default: return 0;
828   case Instruction::ICmp:
829   case Instruction::FCmp: assert(0 && "Invalid for compares");
830   case Instruction::Call:
831     if (Function *F = dyn_cast<Function>(Ops.back()))
832       if (canConstantFoldCallTo(F))
833         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1));
834     return 0;
835   case Instruction::PtrToInt:
836     // If the input is a inttoptr, eliminate the pair.  This requires knowing
837     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
838     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
839       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
840         Constant *Input = CE->getOperand(0);
841         unsigned InWidth = Input->getType()->getScalarSizeInBits();
842         if (TD->getPointerSizeInBits() < InWidth) {
843           Constant *Mask =
844             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
845                                                   TD->getPointerSizeInBits()));
846           Input = ConstantExpr::getAnd(Input, Mask);
847         }
848         // Do a zext or trunc to get to the dest size.
849         return ConstantExpr::getIntegerCast(Input, DestTy, false);
850       }
851     }
852     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
853   case Instruction::IntToPtr:
854     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
855     // the int size is >= the ptr size.  This requires knowing the width of a
856     // pointer, so it can't be done in ConstantExpr::getCast.
857     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
858       if (TD &&
859           TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
860           CE->getOpcode() == Instruction::PtrToInt)
861         return FoldBitCast(CE->getOperand(0), DestTy, *TD);
862 
863     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
864   case Instruction::Trunc:
865   case Instruction::ZExt:
866   case Instruction::SExt:
867   case Instruction::FPTrunc:
868   case Instruction::FPExt:
869   case Instruction::UIToFP:
870   case Instruction::SIToFP:
871   case Instruction::FPToUI:
872   case Instruction::FPToSI:
873       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
874   case Instruction::BitCast:
875     if (TD)
876       return FoldBitCast(Ops[0], DestTy, *TD);
877     return ConstantExpr::getBitCast(Ops[0], DestTy);
878   case Instruction::Select:
879     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
880   case Instruction::ExtractElement:
881     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
882   case Instruction::InsertElement:
883     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
884   case Instruction::ShuffleVector:
885     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
886   case Instruction::GetElementPtr:
887     if (Constant *C = CastGEPIndices(Ops, DestTy, TD))
888       return C;
889     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD))
890       return C;
891 
892     return ConstantExpr::getGetElementPtr(Ops[0], Ops.data() + 1,
893                                           Ops.size() - 1);
894   }
895 }
896 
897 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
898 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
899 /// returns a constant expression of the specified operands.
900 ///
ConstantFoldCompareInstOperands(unsigned Predicate,Constant * Ops0,Constant * Ops1,const TargetData * TD)901 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
902                                                 Constant *Ops0, Constant *Ops1,
903                                                 const TargetData *TD) {
904   // fold: icmp (inttoptr x), null         -> icmp x, 0
905   // fold: icmp (ptrtoint x), 0            -> icmp x, null
906   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
907   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
908   //
909   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
910   // around to know if bit truncation is happening.
911   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
912     if (TD && Ops1->isNullValue()) {
913       Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
914       if (CE0->getOpcode() == Instruction::IntToPtr) {
915         // Convert the integer value to the right size to ensure we get the
916         // proper extension or truncation.
917         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
918                                                    IntPtrTy, false);
919         Constant *Null = Constant::getNullValue(C->getType());
920         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
921       }
922 
923       // Only do this transformation if the int is intptrty in size, otherwise
924       // there is a truncation or extension that we aren't modeling.
925       if (CE0->getOpcode() == Instruction::PtrToInt &&
926           CE0->getType() == IntPtrTy) {
927         Constant *C = CE0->getOperand(0);
928         Constant *Null = Constant::getNullValue(C->getType());
929         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
930       }
931     }
932 
933     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
934       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
935         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
936 
937         if (CE0->getOpcode() == Instruction::IntToPtr) {
938           // Convert the integer value to the right size to ensure we get the
939           // proper extension or truncation.
940           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
941                                                       IntPtrTy, false);
942           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
943                                                       IntPtrTy, false);
944           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
945         }
946 
947         // Only do this transformation if the int is intptrty in size, otherwise
948         // there is a truncation or extension that we aren't modeling.
949         if ((CE0->getOpcode() == Instruction::PtrToInt &&
950              CE0->getType() == IntPtrTy &&
951              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
952           return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
953                                                  CE1->getOperand(0), TD);
954       }
955     }
956 
957     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
958     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
959     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
960         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
961       Constant *LHS =
962         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
963       Constant *RHS =
964         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
965       unsigned OpC =
966         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
967       Constant *Ops[] = { LHS, RHS };
968       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD);
969     }
970   }
971 
972   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
973 }
974 
975 
976 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
977 /// getelementptr constantexpr, return the constant value being addressed by the
978 /// constant expression, or null if something is funny and we can't decide.
ConstantFoldLoadThroughGEPConstantExpr(Constant * C,ConstantExpr * CE)979 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
980                                                        ConstantExpr *CE) {
981   if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
982     return 0;  // Do not allow stepping over the value!
983 
984   // Loop over all of the operands, tracking down which value we are
985   // addressing...
986   gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
987   for (++I; I != E; ++I)
988     if (StructType *STy = dyn_cast<StructType>(*I)) {
989       ConstantInt *CU = cast<ConstantInt>(I.getOperand());
990       assert(CU->getZExtValue() < STy->getNumElements() &&
991              "Struct index out of range!");
992       unsigned El = (unsigned)CU->getZExtValue();
993       if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
994         C = CS->getOperand(El);
995       } else if (isa<ConstantAggregateZero>(C)) {
996         C = Constant::getNullValue(STy->getElementType(El));
997       } else if (isa<UndefValue>(C)) {
998         C = UndefValue::get(STy->getElementType(El));
999       } else {
1000         return 0;
1001       }
1002     } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
1003       if (ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
1004         if (CI->getZExtValue() >= ATy->getNumElements())
1005          return 0;
1006         if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
1007           C = CA->getOperand(CI->getZExtValue());
1008         else if (isa<ConstantAggregateZero>(C))
1009           C = Constant::getNullValue(ATy->getElementType());
1010         else if (isa<UndefValue>(C))
1011           C = UndefValue::get(ATy->getElementType());
1012         else
1013           return 0;
1014       } else if (VectorType *VTy = dyn_cast<VectorType>(*I)) {
1015         if (CI->getZExtValue() >= VTy->getNumElements())
1016           return 0;
1017         if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
1018           C = CP->getOperand(CI->getZExtValue());
1019         else if (isa<ConstantAggregateZero>(C))
1020           C = Constant::getNullValue(VTy->getElementType());
1021         else if (isa<UndefValue>(C))
1022           C = UndefValue::get(VTy->getElementType());
1023         else
1024           return 0;
1025       } else {
1026         return 0;
1027       }
1028     } else {
1029       return 0;
1030     }
1031   return C;
1032 }
1033 
1034 
1035 //===----------------------------------------------------------------------===//
1036 //  Constant Folding for Calls
1037 //
1038 
1039 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
1040 /// the specified function.
1041 bool
canConstantFoldCallTo(const Function * F)1042 llvm::canConstantFoldCallTo(const Function *F) {
1043   switch (F->getIntrinsicID()) {
1044   case Intrinsic::sqrt:
1045   case Intrinsic::powi:
1046   case Intrinsic::bswap:
1047   case Intrinsic::ctpop:
1048   case Intrinsic::ctlz:
1049   case Intrinsic::cttz:
1050   case Intrinsic::sadd_with_overflow:
1051   case Intrinsic::uadd_with_overflow:
1052   case Intrinsic::ssub_with_overflow:
1053   case Intrinsic::usub_with_overflow:
1054   case Intrinsic::smul_with_overflow:
1055   case Intrinsic::umul_with_overflow:
1056   case Intrinsic::convert_from_fp16:
1057   case Intrinsic::convert_to_fp16:
1058   case Intrinsic::x86_sse_cvtss2si:
1059   case Intrinsic::x86_sse_cvtss2si64:
1060   case Intrinsic::x86_sse_cvttss2si:
1061   case Intrinsic::x86_sse_cvttss2si64:
1062   case Intrinsic::x86_sse2_cvtsd2si:
1063   case Intrinsic::x86_sse2_cvtsd2si64:
1064   case Intrinsic::x86_sse2_cvttsd2si:
1065   case Intrinsic::x86_sse2_cvttsd2si64:
1066     return true;
1067   default:
1068     return false;
1069   case 0: break;
1070   }
1071 
1072   if (!F->hasName()) return false;
1073   StringRef Name = F->getName();
1074 
1075   // In these cases, the check of the length is required.  We don't want to
1076   // return true for a name like "cos\0blah" which strcmp would return equal to
1077   // "cos", but has length 8.
1078   switch (Name[0]) {
1079   default: return false;
1080   case 'a':
1081     return Name == "acos" || Name == "asin" ||
1082       Name == "atan" || Name == "atan2";
1083   case 'c':
1084     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1085   case 'e':
1086     return Name == "exp" || Name == "exp2";
1087   case 'f':
1088     return Name == "fabs" || Name == "fmod" || Name == "floor";
1089   case 'l':
1090     return Name == "log" || Name == "log10";
1091   case 'p':
1092     return Name == "pow";
1093   case 's':
1094     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1095       Name == "sinf" || Name == "sqrtf";
1096   case 't':
1097     return Name == "tan" || Name == "tanh";
1098   }
1099 }
1100 
ConstantFoldFP(double (* NativeFP)(double),double V,Type * Ty)1101 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1102                                 Type *Ty) {
1103   sys::llvm_fenv_clearexcept();
1104   V = NativeFP(V);
1105   if (sys::llvm_fenv_testexcept()) {
1106     sys::llvm_fenv_clearexcept();
1107     return 0;
1108   }
1109 
1110   if (Ty->isFloatTy())
1111     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1112   if (Ty->isDoubleTy())
1113     return ConstantFP::get(Ty->getContext(), APFloat(V));
1114   llvm_unreachable("Can only constant fold float/double");
1115   return 0; // dummy return to suppress warning
1116 }
1117 
ConstantFoldBinaryFP(double (* NativeFP)(double,double),double V,double W,Type * Ty)1118 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1119                                       double V, double W, Type *Ty) {
1120   sys::llvm_fenv_clearexcept();
1121   V = NativeFP(V, W);
1122   if (sys::llvm_fenv_testexcept()) {
1123     sys::llvm_fenv_clearexcept();
1124     return 0;
1125   }
1126 
1127   if (Ty->isFloatTy())
1128     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1129   if (Ty->isDoubleTy())
1130     return ConstantFP::get(Ty->getContext(), APFloat(V));
1131   llvm_unreachable("Can only constant fold float/double");
1132   return 0; // dummy return to suppress warning
1133 }
1134 
1135 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1136 /// conversion of a constant floating point. If roundTowardZero is false, the
1137 /// default IEEE rounding is used (toward nearest, ties to even). This matches
1138 /// the behavior of the non-truncating SSE instructions in the default rounding
1139 /// mode. The desired integer type Ty is used to select how many bits are
1140 /// available for the result. Returns null if the conversion cannot be
1141 /// performed, otherwise returns the Constant value resulting from the
1142 /// conversion.
ConstantFoldConvertToInt(ConstantFP * Op,bool roundTowardZero,Type * Ty)1143 static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
1144                                           Type *Ty) {
1145   assert(Op && "Called with NULL operand");
1146   APFloat Val(Op->getValueAPF());
1147 
1148   // All of these conversion intrinsics form an integer of at most 64bits.
1149   unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1150   assert(ResultWidth <= 64 &&
1151          "Can only constant fold conversions to 64 and 32 bit ints");
1152 
1153   uint64_t UIntVal;
1154   bool isExact = false;
1155   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1156                                               : APFloat::rmNearestTiesToEven;
1157   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1158                                                   /*isSigned=*/true, mode,
1159                                                   &isExact);
1160   if (status != APFloat::opOK && status != APFloat::opInexact)
1161     return 0;
1162   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1163 }
1164 
1165 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
1166 /// with the specified arguments, returning null if unsuccessful.
1167 Constant *
ConstantFoldCall(Function * F,ArrayRef<Constant * > Operands)1168 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands) {
1169   if (!F->hasName()) return 0;
1170   StringRef Name = F->getName();
1171 
1172   Type *Ty = F->getReturnType();
1173   if (Operands.size() == 1) {
1174     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1175       if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1176         APFloat Val(Op->getValueAPF());
1177 
1178         bool lost = false;
1179         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1180 
1181         return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1182       }
1183 
1184       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1185         return 0;
1186 
1187       /// We only fold functions with finite arguments. Folding NaN and inf is
1188       /// likely to be aborted with an exception anyway, and some host libms
1189       /// have known errors raising exceptions.
1190       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1191         return 0;
1192 
1193       /// Currently APFloat versions of these functions do not exist, so we use
1194       /// the host native double versions.  Float versions are not called
1195       /// directly but for all these it is true (float)(f((double)arg)) ==
1196       /// f(arg).  Long double not supported yet.
1197       double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1198                                      Op->getValueAPF().convertToDouble();
1199       switch (Name[0]) {
1200       case 'a':
1201         if (Name == "acos")
1202           return ConstantFoldFP(acos, V, Ty);
1203         else if (Name == "asin")
1204           return ConstantFoldFP(asin, V, Ty);
1205         else if (Name == "atan")
1206           return ConstantFoldFP(atan, V, Ty);
1207         break;
1208       case 'c':
1209         if (Name == "ceil")
1210           return ConstantFoldFP(ceil, V, Ty);
1211         else if (Name == "cos")
1212           return ConstantFoldFP(cos, V, Ty);
1213         else if (Name == "cosh")
1214           return ConstantFoldFP(cosh, V, Ty);
1215         else if (Name == "cosf")
1216           return ConstantFoldFP(cos, V, Ty);
1217         break;
1218       case 'e':
1219         if (Name == "exp")
1220           return ConstantFoldFP(exp, V, Ty);
1221 
1222         if (Name == "exp2") {
1223           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1224           // C99 library.
1225           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1226         }
1227         break;
1228       case 'f':
1229         if (Name == "fabs")
1230           return ConstantFoldFP(fabs, V, Ty);
1231         else if (Name == "floor")
1232           return ConstantFoldFP(floor, V, Ty);
1233         break;
1234       case 'l':
1235         if (Name == "log" && V > 0)
1236           return ConstantFoldFP(log, V, Ty);
1237         else if (Name == "log10" && V > 0)
1238           return ConstantFoldFP(log10, V, Ty);
1239         else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1240                  (Ty->isFloatTy() || Ty->isDoubleTy())) {
1241           if (V >= -0.0)
1242             return ConstantFoldFP(sqrt, V, Ty);
1243           else // Undefined
1244             return Constant::getNullValue(Ty);
1245         }
1246         break;
1247       case 's':
1248         if (Name == "sin")
1249           return ConstantFoldFP(sin, V, Ty);
1250         else if (Name == "sinh")
1251           return ConstantFoldFP(sinh, V, Ty);
1252         else if (Name == "sqrt" && V >= 0)
1253           return ConstantFoldFP(sqrt, V, Ty);
1254         else if (Name == "sqrtf" && V >= 0)
1255           return ConstantFoldFP(sqrt, V, Ty);
1256         else if (Name == "sinf")
1257           return ConstantFoldFP(sin, V, Ty);
1258         break;
1259       case 't':
1260         if (Name == "tan")
1261           return ConstantFoldFP(tan, V, Ty);
1262         else if (Name == "tanh")
1263           return ConstantFoldFP(tanh, V, Ty);
1264         break;
1265       default:
1266         break;
1267       }
1268       return 0;
1269     }
1270 
1271     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1272       switch (F->getIntrinsicID()) {
1273       case Intrinsic::bswap:
1274         return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1275       case Intrinsic::ctpop:
1276         return ConstantInt::get(Ty, Op->getValue().countPopulation());
1277       case Intrinsic::cttz:
1278         return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1279       case Intrinsic::ctlz:
1280         return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1281       case Intrinsic::convert_from_fp16: {
1282         APFloat Val(Op->getValue());
1283 
1284         bool lost = false;
1285         APFloat::opStatus status =
1286           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1287 
1288         // Conversion is always precise.
1289         (void)status;
1290         assert(status == APFloat::opOK && !lost &&
1291                "Precision lost during fp16 constfolding");
1292 
1293         return ConstantFP::get(F->getContext(), Val);
1294       }
1295       default:
1296         return 0;
1297       }
1298     }
1299 
1300     if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
1301       switch (F->getIntrinsicID()) {
1302       default: break;
1303       case Intrinsic::x86_sse_cvtss2si:
1304       case Intrinsic::x86_sse_cvtss2si64:
1305       case Intrinsic::x86_sse2_cvtsd2si:
1306       case Intrinsic::x86_sse2_cvtsd2si64:
1307         if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1308           return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
1309       case Intrinsic::x86_sse_cvttss2si:
1310       case Intrinsic::x86_sse_cvttss2si64:
1311       case Intrinsic::x86_sse2_cvttsd2si:
1312       case Intrinsic::x86_sse2_cvttsd2si64:
1313         if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1314           return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
1315       }
1316     }
1317 
1318     if (isa<UndefValue>(Operands[0])) {
1319       if (F->getIntrinsicID() == Intrinsic::bswap)
1320         return Operands[0];
1321       return 0;
1322     }
1323 
1324     return 0;
1325   }
1326 
1327   if (Operands.size() == 2) {
1328     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1329       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1330         return 0;
1331       double Op1V = Ty->isFloatTy() ?
1332                       (double)Op1->getValueAPF().convertToFloat() :
1333                       Op1->getValueAPF().convertToDouble();
1334       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1335         if (Op2->getType() != Op1->getType())
1336           return 0;
1337 
1338         double Op2V = Ty->isFloatTy() ?
1339                       (double)Op2->getValueAPF().convertToFloat():
1340                       Op2->getValueAPF().convertToDouble();
1341 
1342         if (Name == "pow")
1343           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1344         if (Name == "fmod")
1345           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1346         if (Name == "atan2")
1347           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1348       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1349         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1350           return ConstantFP::get(F->getContext(),
1351                                  APFloat((float)std::pow((float)Op1V,
1352                                                  (int)Op2C->getZExtValue())));
1353         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1354           return ConstantFP::get(F->getContext(),
1355                                  APFloat((double)std::pow((double)Op1V,
1356                                                    (int)Op2C->getZExtValue())));
1357       }
1358       return 0;
1359     }
1360 
1361 
1362     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1363       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1364         switch (F->getIntrinsicID()) {
1365         default: break;
1366         case Intrinsic::sadd_with_overflow:
1367         case Intrinsic::uadd_with_overflow:
1368         case Intrinsic::ssub_with_overflow:
1369         case Intrinsic::usub_with_overflow:
1370         case Intrinsic::smul_with_overflow:
1371         case Intrinsic::umul_with_overflow: {
1372           APInt Res;
1373           bool Overflow;
1374           switch (F->getIntrinsicID()) {
1375           default: assert(0 && "Invalid case");
1376           case Intrinsic::sadd_with_overflow:
1377             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1378             break;
1379           case Intrinsic::uadd_with_overflow:
1380             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1381             break;
1382           case Intrinsic::ssub_with_overflow:
1383             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1384             break;
1385           case Intrinsic::usub_with_overflow:
1386             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1387             break;
1388           case Intrinsic::smul_with_overflow:
1389             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1390             break;
1391           case Intrinsic::umul_with_overflow:
1392             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1393             break;
1394           }
1395           Constant *Ops[] = {
1396             ConstantInt::get(F->getContext(), Res),
1397             ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1398           };
1399           return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1400         }
1401         }
1402       }
1403 
1404       return 0;
1405     }
1406     return 0;
1407   }
1408   return 0;
1409 }
1410