1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inline cost analysis.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/InlineCost.h"
15 #include "llvm/Support/CallSite.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19
20 using namespace llvm;
21
22 /// callIsSmall - If a call is likely to lower to a single target instruction,
23 /// or is otherwise deemed small return true.
24 /// TODO: Perhaps calls like memcpy, strcpy, etc?
callIsSmall(const Function * F)25 bool llvm::callIsSmall(const Function *F) {
26 if (!F) return false;
27
28 if (F->hasLocalLinkage()) return false;
29
30 if (!F->hasName()) return false;
31
32 StringRef Name = F->getName();
33
34 // These will all likely lower to a single selection DAG node.
35 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
36 Name == "fabs" || Name == "fabsf" || Name == "fabsl" ||
37 Name == "sin" || Name == "sinf" || Name == "sinl" ||
38 Name == "cos" || Name == "cosf" || Name == "cosl" ||
39 Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" )
40 return true;
41
42 // These are all likely to be optimized into something smaller.
43 if (Name == "pow" || Name == "powf" || Name == "powl" ||
44 Name == "exp2" || Name == "exp2l" || Name == "exp2f" ||
45 Name == "floor" || Name == "floorf" || Name == "ceil" ||
46 Name == "round" || Name == "ffs" || Name == "ffsl" ||
47 Name == "abs" || Name == "labs" || Name == "llabs")
48 return true;
49
50 return false;
51 }
52
53 /// analyzeBasicBlock - Fill in the current structure with information gleaned
54 /// from the specified block.
analyzeBasicBlock(const BasicBlock * BB)55 void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
56 ++NumBlocks;
57 unsigned NumInstsBeforeThisBB = NumInsts;
58 for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
59 II != E; ++II) {
60 if (isa<PHINode>(II)) continue; // PHI nodes don't count.
61
62 // Special handling for calls.
63 if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
64 if (isa<DbgInfoIntrinsic>(II))
65 continue; // Debug intrinsics don't count as size.
66
67 ImmutableCallSite CS(cast<Instruction>(II));
68
69 if (const Function *F = CS.getCalledFunction()) {
70 // If a function is both internal and has a single use, then it is
71 // extremely likely to get inlined in the future (it was probably
72 // exposed by an interleaved devirtualization pass).
73 if (F->hasInternalLinkage() && F->hasOneUse())
74 ++NumInlineCandidates;
75
76 // If this call is to function itself, then the function is recursive.
77 // Inlining it into other functions is a bad idea, because this is
78 // basically just a form of loop peeling, and our metrics aren't useful
79 // for that case.
80 if (F == BB->getParent())
81 isRecursive = true;
82 }
83
84 if (!isa<IntrinsicInst>(II) && !callIsSmall(CS.getCalledFunction())) {
85 // Each argument to a call takes on average one instruction to set up.
86 NumInsts += CS.arg_size();
87
88 // We don't want inline asm to count as a call - that would prevent loop
89 // unrolling. The argument setup cost is still real, though.
90 if (!isa<InlineAsm>(CS.getCalledValue()))
91 ++NumCalls;
92 }
93 }
94
95 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
96 if (!AI->isStaticAlloca())
97 this->usesDynamicAlloca = true;
98 }
99
100 if (isa<ExtractElementInst>(II) || II->getType()->isVectorTy())
101 ++NumVectorInsts;
102
103 if (const CastInst *CI = dyn_cast<CastInst>(II)) {
104 // Noop casts, including ptr <-> int, don't count.
105 if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
106 isa<PtrToIntInst>(CI))
107 continue;
108 // Result of a cmp instruction is often extended (to be used by other
109 // cmp instructions, logical or return instructions). These are usually
110 // nop on most sane targets.
111 if (isa<CmpInst>(CI->getOperand(0)))
112 continue;
113 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(II)){
114 // If a GEP has all constant indices, it will probably be folded with
115 // a load/store.
116 if (GEPI->hasAllConstantIndices())
117 continue;
118 }
119
120 ++NumInsts;
121 }
122
123 if (isa<ReturnInst>(BB->getTerminator()))
124 ++NumRets;
125
126 // We never want to inline functions that contain an indirectbr. This is
127 // incorrect because all the blockaddress's (in static global initializers
128 // for example) would be referring to the original function, and this indirect
129 // jump would jump from the inlined copy of the function into the original
130 // function which is extremely undefined behavior.
131 if (isa<IndirectBrInst>(BB->getTerminator()))
132 containsIndirectBr = true;
133
134 // Remember NumInsts for this BB.
135 NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB;
136 }
137
138 // CountCodeReductionForConstant - Figure out an approximation for how many
139 // instructions will be constant folded if the specified value is constant.
140 //
CountCodeReductionForConstant(Value * V)141 unsigned CodeMetrics::CountCodeReductionForConstant(Value *V) {
142 unsigned Reduction = 0;
143 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
144 User *U = *UI;
145 if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
146 // We will be able to eliminate all but one of the successors.
147 const TerminatorInst &TI = cast<TerminatorInst>(*U);
148 const unsigned NumSucc = TI.getNumSuccessors();
149 unsigned Instrs = 0;
150 for (unsigned I = 0; I != NumSucc; ++I)
151 Instrs += NumBBInsts[TI.getSuccessor(I)];
152 // We don't know which blocks will be eliminated, so use the average size.
153 Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc;
154 } else {
155 // Figure out if this instruction will be removed due to simple constant
156 // propagation.
157 Instruction &Inst = cast<Instruction>(*U);
158
159 // We can't constant propagate instructions which have effects or
160 // read memory.
161 //
162 // FIXME: It would be nice to capture the fact that a load from a
163 // pointer-to-constant-global is actually a *really* good thing to zap.
164 // Unfortunately, we don't know the pointer that may get propagated here,
165 // so we can't make this decision.
166 if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
167 isa<AllocaInst>(Inst))
168 continue;
169
170 bool AllOperandsConstant = true;
171 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
172 if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
173 AllOperandsConstant = false;
174 break;
175 }
176
177 if (AllOperandsConstant) {
178 // We will get to remove this instruction...
179 Reduction += InlineConstants::InstrCost;
180
181 // And any other instructions that use it which become constants
182 // themselves.
183 Reduction += CountCodeReductionForConstant(&Inst);
184 }
185 }
186 }
187 return Reduction;
188 }
189
190 // CountCodeReductionForAlloca - Figure out an approximation of how much smaller
191 // the function will be if it is inlined into a context where an argument
192 // becomes an alloca.
193 //
CountCodeReductionForAlloca(Value * V)194 unsigned CodeMetrics::CountCodeReductionForAlloca(Value *V) {
195 if (!V->getType()->isPointerTy()) return 0; // Not a pointer
196 unsigned Reduction = 0;
197 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
198 Instruction *I = cast<Instruction>(*UI);
199 if (isa<LoadInst>(I) || isa<StoreInst>(I))
200 Reduction += InlineConstants::InstrCost;
201 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
202 // If the GEP has variable indices, we won't be able to do much with it.
203 if (GEP->hasAllConstantIndices())
204 Reduction += CountCodeReductionForAlloca(GEP);
205 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
206 // Track pointer through bitcasts.
207 Reduction += CountCodeReductionForAlloca(BCI);
208 } else {
209 // If there is some other strange instruction, we're not going to be able
210 // to do much if we inline this.
211 return 0;
212 }
213 }
214
215 return Reduction;
216 }
217
218 /// analyzeFunction - Fill in the current structure with information gleaned
219 /// from the specified function.
analyzeFunction(Function * F)220 void CodeMetrics::analyzeFunction(Function *F) {
221 // If this function contains a call to setjmp or _setjmp, never inline
222 // it. This is a hack because we depend on the user marking their local
223 // variables as volatile if they are live across a setjmp call, and they
224 // probably won't do this in callers.
225 if (F->callsFunctionThatReturnsTwice())
226 callsSetJmp = true;
227
228 // Look at the size of the callee.
229 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
230 analyzeBasicBlock(&*BB);
231 }
232
233 /// analyzeFunction - Fill in the current structure with information gleaned
234 /// from the specified function.
analyzeFunction(Function * F)235 void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
236 Metrics.analyzeFunction(F);
237
238 // A function with exactly one return has it removed during the inlining
239 // process (see InlineFunction), so don't count it.
240 // FIXME: This knowledge should really be encoded outside of FunctionInfo.
241 if (Metrics.NumRets==1)
242 --Metrics.NumInsts;
243
244 // Check out all of the arguments to the function, figuring out how much
245 // code can be eliminated if one of the arguments is a constant.
246 ArgumentWeights.reserve(F->arg_size());
247 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
248 ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I),
249 Metrics.CountCodeReductionForAlloca(I)));
250 }
251
252 /// NeverInline - returns true if the function should never be inlined into
253 /// any caller
NeverInline()254 bool InlineCostAnalyzer::FunctionInfo::NeverInline() {
255 return (Metrics.callsSetJmp || Metrics.isRecursive ||
256 Metrics.containsIndirectBr);
257 }
258 // getSpecializationBonus - The heuristic used to determine the per-call
259 // performance boost for using a specialization of Callee with argument
260 // specializedArgNo replaced by a constant.
getSpecializationBonus(Function * Callee,SmallVectorImpl<unsigned> & SpecializedArgNos)261 int InlineCostAnalyzer::getSpecializationBonus(Function *Callee,
262 SmallVectorImpl<unsigned> &SpecializedArgNos)
263 {
264 if (Callee->mayBeOverridden())
265 return 0;
266
267 int Bonus = 0;
268 // If this function uses the coldcc calling convention, prefer not to
269 // specialize it.
270 if (Callee->getCallingConv() == CallingConv::Cold)
271 Bonus -= InlineConstants::ColdccPenalty;
272
273 // Get information about the callee.
274 FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
275
276 // If we haven't calculated this information yet, do so now.
277 if (CalleeFI->Metrics.NumBlocks == 0)
278 CalleeFI->analyzeFunction(Callee);
279
280 unsigned ArgNo = 0;
281 unsigned i = 0;
282 for (Function::arg_iterator I = Callee->arg_begin(), E = Callee->arg_end();
283 I != E; ++I, ++ArgNo)
284 if (ArgNo == SpecializedArgNos[i]) {
285 ++i;
286 Bonus += CountBonusForConstant(I);
287 }
288
289 // Calls usually take a long time, so they make the specialization gain
290 // smaller.
291 Bonus -= CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
292
293 return Bonus;
294 }
295
296 // ConstantFunctionBonus - Figure out how much of a bonus we can get for
297 // possibly devirtualizing a function. We'll subtract the size of the function
298 // we may wish to inline from the indirect call bonus providing a limit on
299 // growth. Leave an upper limit of 0 for the bonus - we don't want to penalize
300 // inlining because we decide we don't want to give a bonus for
301 // devirtualizing.
ConstantFunctionBonus(CallSite CS,Constant * C)302 int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS, Constant *C) {
303
304 // This could just be NULL.
305 if (!C) return 0;
306
307 Function *F = dyn_cast<Function>(C);
308 if (!F) return 0;
309
310 int Bonus = InlineConstants::IndirectCallBonus + getInlineSize(CS, F);
311 return (Bonus > 0) ? 0 : Bonus;
312 }
313
314 // CountBonusForConstant - Figure out an approximation for how much per-call
315 // performance boost we can expect if the specified value is constant.
CountBonusForConstant(Value * V,Constant * C)316 int InlineCostAnalyzer::CountBonusForConstant(Value *V, Constant *C) {
317 unsigned Bonus = 0;
318 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
319 User *U = *UI;
320 if (CallInst *CI = dyn_cast<CallInst>(U)) {
321 // Turning an indirect call into a direct call is a BIG win
322 if (CI->getCalledValue() == V)
323 Bonus += ConstantFunctionBonus(CallSite(CI), C);
324 } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
325 // Turning an indirect call into a direct call is a BIG win
326 if (II->getCalledValue() == V)
327 Bonus += ConstantFunctionBonus(CallSite(II), C);
328 }
329 // FIXME: Eliminating conditional branches and switches should
330 // also yield a per-call performance boost.
331 else {
332 // Figure out the bonuses that wll accrue due to simple constant
333 // propagation.
334 Instruction &Inst = cast<Instruction>(*U);
335
336 // We can't constant propagate instructions which have effects or
337 // read memory.
338 //
339 // FIXME: It would be nice to capture the fact that a load from a
340 // pointer-to-constant-global is actually a *really* good thing to zap.
341 // Unfortunately, we don't know the pointer that may get propagated here,
342 // so we can't make this decision.
343 if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
344 isa<AllocaInst>(Inst))
345 continue;
346
347 bool AllOperandsConstant = true;
348 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
349 if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
350 AllOperandsConstant = false;
351 break;
352 }
353
354 if (AllOperandsConstant)
355 Bonus += CountBonusForConstant(&Inst);
356 }
357 }
358
359 return Bonus;
360 }
361
getInlineSize(CallSite CS,Function * Callee)362 int InlineCostAnalyzer::getInlineSize(CallSite CS, Function *Callee) {
363 // Get information about the callee.
364 FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
365
366 // If we haven't calculated this information yet, do so now.
367 if (CalleeFI->Metrics.NumBlocks == 0)
368 CalleeFI->analyzeFunction(Callee);
369
370 // InlineCost - This value measures how good of an inline candidate this call
371 // site is to inline. A lower inline cost make is more likely for the call to
372 // be inlined. This value may go negative.
373 //
374 int InlineCost = 0;
375
376 // Compute any size reductions we can expect due to arguments being passed into
377 // the function.
378 //
379 unsigned ArgNo = 0;
380 CallSite::arg_iterator I = CS.arg_begin();
381 for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
382 FI != FE; ++I, ++FI, ++ArgNo) {
383
384 // If an alloca is passed in, inlining this function is likely to allow
385 // significant future optimization possibilities (like scalar promotion, and
386 // scalarization), so encourage the inlining of the function.
387 //
388 if (isa<AllocaInst>(I))
389 InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight;
390
391 // If this is a constant being passed into the function, use the argument
392 // weights calculated for the callee to determine how much will be folded
393 // away with this information.
394 else if (isa<Constant>(I))
395 InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight;
396 }
397
398 // Each argument passed in has a cost at both the caller and the callee
399 // sides. Measurements show that each argument costs about the same as an
400 // instruction.
401 InlineCost -= (CS.arg_size() * InlineConstants::InstrCost);
402
403 // Now that we have considered all of the factors that make the call site more
404 // likely to be inlined, look at factors that make us not want to inline it.
405
406 // Calls usually take a long time, so they make the inlining gain smaller.
407 InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
408
409 // Look at the size of the callee. Each instruction counts as 5.
410 InlineCost += CalleeFI->Metrics.NumInsts*InlineConstants::InstrCost;
411
412 return InlineCost;
413 }
414
getInlineBonuses(CallSite CS,Function * Callee)415 int InlineCostAnalyzer::getInlineBonuses(CallSite CS, Function *Callee) {
416 // Get information about the callee.
417 FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
418
419 // If we haven't calculated this information yet, do so now.
420 if (CalleeFI->Metrics.NumBlocks == 0)
421 CalleeFI->analyzeFunction(Callee);
422
423 bool isDirectCall = CS.getCalledFunction() == Callee;
424 Instruction *TheCall = CS.getInstruction();
425 int Bonus = 0;
426
427 // If there is only one call of the function, and it has internal linkage,
428 // make it almost guaranteed to be inlined.
429 //
430 if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall)
431 Bonus += InlineConstants::LastCallToStaticBonus;
432
433 // If the instruction after the call, or if the normal destination of the
434 // invoke is an unreachable instruction, the function is noreturn. As such,
435 // there is little point in inlining this.
436 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
437 if (isa<UnreachableInst>(II->getNormalDest()->begin()))
438 Bonus += InlineConstants::NoreturnPenalty;
439 } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
440 Bonus += InlineConstants::NoreturnPenalty;
441
442 // If this function uses the coldcc calling convention, prefer not to inline
443 // it.
444 if (Callee->getCallingConv() == CallingConv::Cold)
445 Bonus += InlineConstants::ColdccPenalty;
446
447 // Add to the inline quality for properties that make the call valuable to
448 // inline. This includes factors that indicate that the result of inlining
449 // the function will be optimizable. Currently this just looks at arguments
450 // passed into the function.
451 //
452 CallSite::arg_iterator I = CS.arg_begin();
453 for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
454 FI != FE; ++I, ++FI)
455 // Compute any constant bonus due to inlining we want to give here.
456 if (isa<Constant>(I))
457 Bonus += CountBonusForConstant(FI, cast<Constant>(I));
458
459 return Bonus;
460 }
461
462 // getInlineCost - The heuristic used to determine if we should inline the
463 // function call or not.
464 //
getInlineCost(CallSite CS,SmallPtrSet<const Function *,16> & NeverInline)465 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
466 SmallPtrSet<const Function*, 16> &NeverInline) {
467 return getInlineCost(CS, CS.getCalledFunction(), NeverInline);
468 }
469
getInlineCost(CallSite CS,Function * Callee,SmallPtrSet<const Function *,16> & NeverInline)470 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
471 Function *Callee,
472 SmallPtrSet<const Function*, 16> &NeverInline) {
473 Instruction *TheCall = CS.getInstruction();
474 Function *Caller = TheCall->getParent()->getParent();
475
476 // Don't inline functions which can be redefined at link-time to mean
477 // something else. Don't inline functions marked noinline or call sites
478 // marked noinline.
479 if (Callee->mayBeOverridden() ||
480 Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) ||
481 CS.isNoInline())
482 return llvm::InlineCost::getNever();
483
484 // Get information about the callee.
485 FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
486
487 // If we haven't calculated this information yet, do so now.
488 if (CalleeFI->Metrics.NumBlocks == 0)
489 CalleeFI->analyzeFunction(Callee);
490
491 // If we should never inline this, return a huge cost.
492 if (CalleeFI->NeverInline())
493 return InlineCost::getNever();
494
495 // FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we
496 // could move this up and avoid computing the FunctionInfo for
497 // things we are going to just return always inline for. This
498 // requires handling setjmp somewhere else, however.
499 if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
500 return InlineCost::getAlways();
501
502 if (CalleeFI->Metrics.usesDynamicAlloca) {
503 // Get information about the caller.
504 FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
505
506 // If we haven't calculated this information yet, do so now.
507 if (CallerFI.Metrics.NumBlocks == 0) {
508 CallerFI.analyzeFunction(Caller);
509
510 // Recompute the CalleeFI pointer, getting Caller could have invalidated
511 // it.
512 CalleeFI = &CachedFunctionInfo[Callee];
513 }
514
515 // Don't inline a callee with dynamic alloca into a caller without them.
516 // Functions containing dynamic alloca's are inefficient in various ways;
517 // don't create more inefficiency.
518 if (!CallerFI.Metrics.usesDynamicAlloca)
519 return InlineCost::getNever();
520 }
521
522 // InlineCost - This value measures how good of an inline candidate this call
523 // site is to inline. A lower inline cost make is more likely for the call to
524 // be inlined. This value may go negative due to the fact that bonuses
525 // are negative numbers.
526 //
527 int InlineCost = getInlineSize(CS, Callee) + getInlineBonuses(CS, Callee);
528 return llvm::InlineCost::get(InlineCost);
529 }
530
531 // getSpecializationCost - The heuristic used to determine the code-size
532 // impact of creating a specialized version of Callee with argument
533 // SpecializedArgNo replaced by a constant.
getSpecializationCost(Function * Callee,SmallVectorImpl<unsigned> & SpecializedArgNos)534 InlineCost InlineCostAnalyzer::getSpecializationCost(Function *Callee,
535 SmallVectorImpl<unsigned> &SpecializedArgNos)
536 {
537 // Don't specialize functions which can be redefined at link-time to mean
538 // something else.
539 if (Callee->mayBeOverridden())
540 return llvm::InlineCost::getNever();
541
542 // Get information about the callee.
543 FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
544
545 // If we haven't calculated this information yet, do so now.
546 if (CalleeFI->Metrics.NumBlocks == 0)
547 CalleeFI->analyzeFunction(Callee);
548
549 int Cost = 0;
550
551 // Look at the original size of the callee. Each instruction counts as 5.
552 Cost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost;
553
554 // Offset that with the amount of code that can be constant-folded
555 // away with the given arguments replaced by constants.
556 for (SmallVectorImpl<unsigned>::iterator an = SpecializedArgNos.begin(),
557 ae = SpecializedArgNos.end(); an != ae; ++an)
558 Cost -= CalleeFI->ArgumentWeights[*an].ConstantWeight;
559
560 return llvm::InlineCost::get(Cost);
561 }
562
563 // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
564 // higher threshold to determine if the function call should be inlined.
getInlineFudgeFactor(CallSite CS)565 float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
566 Function *Callee = CS.getCalledFunction();
567
568 // Get information about the callee.
569 FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
570
571 // If we haven't calculated this information yet, do so now.
572 if (CalleeFI.Metrics.NumBlocks == 0)
573 CalleeFI.analyzeFunction(Callee);
574
575 float Factor = 1.0f;
576 // Single BB functions are often written to be inlined.
577 if (CalleeFI.Metrics.NumBlocks == 1)
578 Factor += 0.5f;
579
580 // Be more aggressive if the function contains a good chunk (if it mades up
581 // at least 10% of the instructions) of vector instructions.
582 if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2)
583 Factor += 2.0f;
584 else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10)
585 Factor += 1.5f;
586 return Factor;
587 }
588
589 /// growCachedCostInfo - update the cached cost info for Caller after Callee has
590 /// been inlined.
591 void
growCachedCostInfo(Function * Caller,Function * Callee)592 InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) {
593 CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics;
594
595 // For small functions we prefer to recalculate the cost for better accuracy.
596 if (CallerMetrics.NumBlocks < 10 && CallerMetrics.NumInsts < 1000) {
597 resetCachedCostInfo(Caller);
598 return;
599 }
600
601 // For large functions, we can save a lot of computation time by skipping
602 // recalculations.
603 if (CallerMetrics.NumCalls > 0)
604 --CallerMetrics.NumCalls;
605
606 if (Callee == 0) return;
607
608 CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics;
609
610 // If we don't have metrics for the callee, don't recalculate them just to
611 // update an approximation in the caller. Instead, just recalculate the
612 // caller info from scratch.
613 if (CalleeMetrics.NumBlocks == 0) {
614 resetCachedCostInfo(Caller);
615 return;
616 }
617
618 // Since CalleeMetrics were already calculated, we know that the CallerMetrics
619 // reference isn't invalidated: both were in the DenseMap.
620 CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca;
621
622 // FIXME: If any of these three are true for the callee, the callee was
623 // not inlined into the caller, so I think they're redundant here.
624 CallerMetrics.callsSetJmp |= CalleeMetrics.callsSetJmp;
625 CallerMetrics.isRecursive |= CalleeMetrics.isRecursive;
626 CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr;
627
628 CallerMetrics.NumInsts += CalleeMetrics.NumInsts;
629 CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks;
630 CallerMetrics.NumCalls += CalleeMetrics.NumCalls;
631 CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts;
632 CallerMetrics.NumRets += CalleeMetrics.NumRets;
633
634 // analyzeBasicBlock counts each function argument as an inst.
635 if (CallerMetrics.NumInsts >= Callee->arg_size())
636 CallerMetrics.NumInsts -= Callee->arg_size();
637 else
638 CallerMetrics.NumInsts = 0;
639
640 // We are not updating the argument weights. We have already determined that
641 // Caller is a fairly large function, so we accept the loss of precision.
642 }
643
644 /// clear - empty the cache of inline costs
clear()645 void InlineCostAnalyzer::clear() {
646 CachedFunctionInfo.clear();
647 }
648