• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6  <title>Kaleidoscope: Extending the Language: Control Flow</title>
7  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8  <meta name="author" content="Chris Lattner">
9  <link rel="stylesheet" href="../llvm.css" type="text/css">
10</head>
11
12<body>
13
14<h1>Kaleidoscope: Extending the Language: Control Flow</h1>
15
16<ul>
17<li><a href="index.html">Up to Tutorial Index</a></li>
18<li>Chapter 5
19  <ol>
20    <li><a href="#intro">Chapter 5 Introduction</a></li>
21    <li><a href="#ifthen">If/Then/Else</a>
22    <ol>
23      <li><a href="#iflexer">Lexer Extensions</a></li>
24      <li><a href="#ifast">AST Extensions</a></li>
25      <li><a href="#ifparser">Parser Extensions</a></li>
26      <li><a href="#ifir">LLVM IR</a></li>
27      <li><a href="#ifcodegen">Code Generation</a></li>
28    </ol>
29    </li>
30    <li><a href="#for">'for' Loop Expression</a>
31    <ol>
32      <li><a href="#forlexer">Lexer Extensions</a></li>
33      <li><a href="#forast">AST Extensions</a></li>
34      <li><a href="#forparser">Parser Extensions</a></li>
35      <li><a href="#forir">LLVM IR</a></li>
36      <li><a href="#forcodegen">Code Generation</a></li>
37    </ol>
38    </li>
39    <li><a href="#code">Full Code Listing</a></li>
40  </ol>
41</li>
42<li><a href="LangImpl6.html">Chapter 6</a>: Extending the Language:
43User-defined Operators</li>
44</ul>
45
46<div class="doc_author">
47  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
48</div>
49
50<!-- *********************************************************************** -->
51<h2><a name="intro">Chapter 5 Introduction</a></h2>
52<!-- *********************************************************************** -->
53
54<div>
55
56<p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language
57with LLVM</a>" tutorial.  Parts 1-4 described the implementation of the simple
58Kaleidoscope language and included support for generating LLVM IR, followed by
59optimizations and a JIT compiler.  Unfortunately, as presented, Kaleidoscope is
60mostly useless: it has no control flow other than call and return.  This means
61that you can't have conditional branches in the code, significantly limiting its
62power.  In this episode of "build that compiler", we'll extend Kaleidoscope to
63have an if/then/else expression plus a simple 'for' loop.</p>
64
65</div>
66
67<!-- *********************************************************************** -->
68<h2><a name="ifthen">If/Then/Else</a></h2>
69<!-- *********************************************************************** -->
70
71<div>
72
73<p>
74Extending Kaleidoscope to support if/then/else is quite straightforward.  It
75basically requires adding support for this "new" concept to the lexer,
76parser, AST, and LLVM code emitter.  This example is nice, because it shows how
77easy it is to "grow" a language over time, incrementally extending it as new
78ideas are discovered.</p>
79
80<p>Before we get going on "how" we add this extension, lets talk about "what" we
81want.  The basic idea is that we want to be able to write this sort of thing:
82</p>
83
84<div class="doc_code">
85<pre>
86def fib(x)
87  if x &lt; 3 then
88    1
89  else
90    fib(x-1)+fib(x-2);
91</pre>
92</div>
93
94<p>In Kaleidoscope, every construct is an expression: there are no statements.
95As such, the if/then/else expression needs to return a value like any other.
96Since we're using a mostly functional form, we'll have it evaluate its
97conditional, then return the 'then' or 'else' value based on how the condition
98was resolved.  This is very similar to the C "?:" expression.</p>
99
100<p>The semantics of the if/then/else expression is that it evaluates the
101condition to a boolean equality value: 0.0 is considered to be false and
102everything else is considered to be true.
103If the condition is true, the first subexpression is evaluated and returned, if
104the condition is false, the second subexpression is evaluated and returned.
105Since Kaleidoscope allows side-effects, this behavior is important to nail down.
106</p>
107
108<p>Now that we know what we "want", lets break this down into its constituent
109pieces.</p>
110
111<!-- ======================================================================= -->
112<h4><a name="iflexer">Lexer Extensions for If/Then/Else</a></h4>
113<!-- ======================================================================= -->
114
115
116<div>
117
118<p>The lexer extensions are straightforward.  First we add new enum values
119for the relevant tokens:</p>
120
121<div class="doc_code">
122<pre>
123  // control
124  tok_if = -6, tok_then = -7, tok_else = -8,
125</pre>
126</div>
127
128<p>Once we have that, we recognize the new keywords in the lexer. This is pretty simple
129stuff:</p>
130
131<div class="doc_code">
132<pre>
133    ...
134    if (IdentifierStr == "def") return tok_def;
135    if (IdentifierStr == "extern") return tok_extern;
136    <b>if (IdentifierStr == "if") return tok_if;
137    if (IdentifierStr == "then") return tok_then;
138    if (IdentifierStr == "else") return tok_else;</b>
139    return tok_identifier;
140</pre>
141</div>
142
143</div>
144
145<!-- ======================================================================= -->
146<h4><a name="ifast">AST Extensions for If/Then/Else</a></h4>
147<!-- ======================================================================= -->
148
149<div>
150
151<p>To represent the new expression we add a new AST node for it:</p>
152
153<div class="doc_code">
154<pre>
155/// IfExprAST - Expression class for if/then/else.
156class IfExprAST : public ExprAST {
157  ExprAST *Cond, *Then, *Else;
158public:
159  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
160    : Cond(cond), Then(then), Else(_else) {}
161  virtual Value *Codegen();
162};
163</pre>
164</div>
165
166<p>The AST node just has pointers to the various subexpressions.</p>
167
168</div>
169
170<!-- ======================================================================= -->
171<h4><a name="ifparser">Parser Extensions for If/Then/Else</a></h4>
172<!-- ======================================================================= -->
173
174<div>
175
176<p>Now that we have the relevant tokens coming from the lexer and we have the
177AST node to build, our parsing logic is relatively straightforward.  First we
178define a new parsing function:</p>
179
180<div class="doc_code">
181<pre>
182/// ifexpr ::= 'if' expression 'then' expression 'else' expression
183static ExprAST *ParseIfExpr() {
184  getNextToken();  // eat the if.
185
186  // condition.
187  ExprAST *Cond = ParseExpression();
188  if (!Cond) return 0;
189
190  if (CurTok != tok_then)
191    return Error("expected then");
192  getNextToken();  // eat the then
193
194  ExprAST *Then = ParseExpression();
195  if (Then == 0) return 0;
196
197  if (CurTok != tok_else)
198    return Error("expected else");
199
200  getNextToken();
201
202  ExprAST *Else = ParseExpression();
203  if (!Else) return 0;
204
205  return new IfExprAST(Cond, Then, Else);
206}
207</pre>
208</div>
209
210<p>Next we hook it up as a primary expression:</p>
211
212<div class="doc_code">
213<pre>
214static ExprAST *ParsePrimary() {
215  switch (CurTok) {
216  default: return Error("unknown token when expecting an expression");
217  case tok_identifier: return ParseIdentifierExpr();
218  case tok_number:     return ParseNumberExpr();
219  case '(':            return ParseParenExpr();
220  <b>case tok_if:         return ParseIfExpr();</b>
221  }
222}
223</pre>
224</div>
225
226</div>
227
228<!-- ======================================================================= -->
229<h4><a name="ifir">LLVM IR for If/Then/Else</a></h4>
230<!-- ======================================================================= -->
231
232<div>
233
234<p>Now that we have it parsing and building the AST, the final piece is adding
235LLVM code generation support.  This is the most interesting part of the
236if/then/else example, because this is where it starts to introduce new concepts.
237All of the code above has been thoroughly described in previous chapters.
238</p>
239
240<p>To motivate the code we want to produce, lets take a look at a simple
241example.  Consider:</p>
242
243<div class="doc_code">
244<pre>
245extern foo();
246extern bar();
247def baz(x) if x then foo() else bar();
248</pre>
249</div>
250
251<p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope
252looks like this:</p>
253
254<div class="doc_code">
255<pre>
256declare double @foo()
257
258declare double @bar()
259
260define double @baz(double %x) {
261entry:
262	%ifcond = fcmp one double %x, 0.000000e+00
263	br i1 %ifcond, label %then, label %else
264
265then:		; preds = %entry
266	%calltmp = call double @foo()
267	br label %ifcont
268
269else:		; preds = %entry
270	%calltmp1 = call double @bar()
271	br label %ifcont
272
273ifcont:		; preds = %else, %then
274	%iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
275	ret double %iftmp
276}
277</pre>
278</div>
279
280<p>To visualize the control flow graph, you can use a nifty feature of the LLVM
281'<a href="http://llvm.org/cmds/opt.html">opt</a>' tool.  If you put this LLVM IR
282into "t.ll" and run "<tt>llvm-as &lt; t.ll | opt -analyze -view-cfg</tt>", <a
283href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll
284see this graph:</p>
285
286<div style="text-align: center"><img src="LangImpl5-cfg.png" alt="Example CFG" width="423"
287height="315"></div>
288
289<p>Another way to get this is to call "<tt>F-&gt;viewCFG()</tt>" or
290"<tt>F-&gt;viewCFGOnly()</tt>" (where F is a "<tt>Function*</tt>") either by
291inserting actual calls into the code and recompiling or by calling these in the
292debugger.  LLVM has many nice features for visualizing various graphs.</p>
293
294<p>Getting back to the generated code, it is fairly simple: the entry block
295evaluates the conditional expression ("x" in our case here) and compares the
296result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>"
297instruction ('one' is "Ordered and Not Equal").  Based on the result of this
298expression, the code jumps to either the "then" or "else" blocks, which contain
299the expressions for the true/false cases.</p>
300
301<p>Once the then/else blocks are finished executing, they both branch back to the
302'ifcont' block to execute the code that happens after the if/then/else.  In this
303case the only thing left to do is to return to the caller of the function.  The
304question then becomes: how does the code know which expression to return?</p>
305
306<p>The answer to this question involves an important SSA operation: the
307<a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi
308operation</a>.  If you're not familiar with SSA, <a
309href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia
310article</a> is a good introduction and there are various other introductions to
311it available on your favorite search engine.  The short version is that
312"execution" of the Phi operation requires "remembering" which block control came
313from.  The Phi operation takes on the value corresponding to the input control
314block.  In this case, if control comes in from the "then" block, it gets the
315value of "calltmp".  If control comes from the "else" block, it gets the value
316of "calltmp1".</p>
317
318<p>At this point, you are probably starting to think "Oh no! This means my
319simple and elegant front-end will have to start generating SSA form in order to
320use LLVM!".  Fortunately, this is not the case, and we strongly advise
321<em>not</em> implementing an SSA construction algorithm in your front-end
322unless there is an amazingly good reason to do so.  In practice, there are two
323sorts of values that float around in code written for your average imperative
324programming language that might need Phi nodes:</p>
325
326<ol>
327<li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li>
328<li>Values that are implicit in the structure of your AST, such as the Phi node
329in this case.</li>
330</ol>
331
332<p>In <a href="LangImpl7.html">Chapter 7</a> of this tutorial ("mutable
333variables"), we'll talk about #1
334in depth.  For now, just believe me that you don't need SSA construction to
335handle this case.  For #2, you have the choice of using the techniques that we will
336describe for #1, or you can insert Phi nodes directly, if convenient.  In this
337case, it is really really easy to generate the Phi node, so we choose to do it
338directly.</p>
339
340<p>Okay, enough of the motivation and overview, lets generate code!</p>
341
342</div>
343
344<!-- ======================================================================= -->
345<h4><a name="ifcodegen">Code Generation for If/Then/Else</a></h4>
346<!-- ======================================================================= -->
347
348<div>
349
350<p>In order to generate code for this, we implement the <tt>Codegen</tt> method
351for <tt>IfExprAST</tt>:</p>
352
353<div class="doc_code">
354<pre>
355Value *IfExprAST::Codegen() {
356  Value *CondV = Cond-&gt;Codegen();
357  if (CondV == 0) return 0;
358
359  // Convert condition to a bool by comparing equal to 0.0.
360  CondV = Builder.CreateFCmpONE(CondV,
361                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
362                                "ifcond");
363</pre>
364</div>
365
366<p>This code is straightforward and similar to what we saw before.  We emit the
367expression for the condition, then compare that value to zero to get a truth
368value as a 1-bit (bool) value.</p>
369
370<div class="doc_code">
371<pre>
372  Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
373
374  // Create blocks for the then and else cases.  Insert the 'then' block at the
375  // end of the function.
376  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
377  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
378  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
379
380  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
381</pre>
382</div>
383
384<p>This code creates the basic blocks that are related to the if/then/else
385statement, and correspond directly to the blocks in the example above.  The
386first line gets the current Function object that is being built.  It
387gets this by asking the builder for the current BasicBlock, and asking that
388block for its "parent" (the function it is currently embedded into).</p>
389
390<p>Once it has that, it creates three blocks.  Note that it passes "TheFunction"
391into the constructor for the "then" block.  This causes the constructor to
392automatically insert the new block into the end of the specified function.  The
393other two blocks are created, but aren't yet inserted into the function.</p>
394
395<p>Once the blocks are created, we can emit the conditional branch that chooses
396between them.  Note that creating new blocks does not implicitly affect the
397IRBuilder, so it is still inserting into the block that the condition
398went into.  Also note that it is creating a branch to the "then" block and the
399"else" block, even though the "else" block isn't inserted into the function yet.
400This is all ok: it is the standard way that LLVM supports forward
401references.</p>
402
403<div class="doc_code">
404<pre>
405  // Emit then value.
406  Builder.SetInsertPoint(ThenBB);
407
408  Value *ThenV = Then-&gt;Codegen();
409  if (ThenV == 0) return 0;
410
411  Builder.CreateBr(MergeBB);
412  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
413  ThenBB = Builder.GetInsertBlock();
414</pre>
415</div>
416
417<p>After the conditional branch is inserted, we move the builder to start
418inserting into the "then" block.  Strictly speaking, this call moves the
419insertion point to be at the end of the specified block.  However, since the
420"then" block is empty, it also starts out by inserting at the beginning of the
421block.  :)</p>
422
423<p>Once the insertion point is set, we recursively codegen the "then" expression
424from the AST.  To finish off the "then" block, we create an unconditional branch
425to the merge block.  One interesting (and very important) aspect of the LLVM IR
426is that it <a href="../LangRef.html#functionstructure">requires all basic blocks
427to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow
428instruction</a> such as return or branch.  This means that all control flow,
429<em>including fall throughs</em> must be made explicit in the LLVM IR.  If you
430violate this rule, the verifier will emit an error.</p>
431
432<p>The final line here is quite subtle, but is very important.  The basic issue
433is that when we create the Phi node in the merge block, we need to set up the
434block/value pairs that indicate how the Phi will work.  Importantly, the Phi
435node expects to have an entry for each predecessor of the block in the CFG.  Why
436then, are we getting the current block when we just set it to ThenBB 5 lines
437above?  The problem is that the "Then" expression may actually itself change the
438block that the Builder is emitting into if, for example, it contains a nested
439"if/then/else" expression.  Because calling Codegen recursively could
440arbitrarily change the notion of the current block, we are required to get an
441up-to-date value for code that will set up the Phi node.</p>
442
443<div class="doc_code">
444<pre>
445  // Emit else block.
446  TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
447  Builder.SetInsertPoint(ElseBB);
448
449  Value *ElseV = Else-&gt;Codegen();
450  if (ElseV == 0) return 0;
451
452  Builder.CreateBr(MergeBB);
453  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
454  ElseBB = Builder.GetInsertBlock();
455</pre>
456</div>
457
458<p>Code generation for the 'else' block is basically identical to codegen for
459the 'then' block.  The only significant difference is the first line, which adds
460the 'else' block to the function.  Recall previously that the 'else' block was
461created, but not added to the function.  Now that the 'then' and 'else' blocks
462are emitted, we can finish up with the merge code:</p>
463
464<div class="doc_code">
465<pre>
466  // Emit merge block.
467  TheFunction->getBasicBlockList().push_back(MergeBB);
468  Builder.SetInsertPoint(MergeBB);
469  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
470                                  "iftmp");
471
472  PN->addIncoming(ThenV, ThenBB);
473  PN->addIncoming(ElseV, ElseBB);
474  return PN;
475}
476</pre>
477</div>
478
479<p>The first two lines here are now familiar: the first adds the "merge" block
480to the Function object (it was previously floating, like the else block above).
481The second block changes the insertion point so that newly created code will go
482into the "merge" block.  Once that is done, we need to create the PHI node and
483set up the block/value pairs for the PHI.</p>
484
485<p>Finally, the CodeGen function returns the phi node as the value computed by
486the if/then/else expression.  In our example above, this returned value will
487feed into the code for the top-level function, which will create the return
488instruction.</p>
489
490<p>Overall, we now have the ability to execute conditional code in
491Kaleidoscope.  With this extension, Kaleidoscope is a fairly complete language
492that can calculate a wide variety of numeric functions.  Next up we'll add
493another useful expression that is familiar from non-functional languages...</p>
494
495</div>
496
497</div>
498
499<!-- *********************************************************************** -->
500<h2><a name="for">'for' Loop Expression</a></h2>
501<!-- *********************************************************************** -->
502
503<div>
504
505<p>Now that we know how to add basic control flow constructs to the language,
506we have the tools to add more powerful things.  Lets add something more
507aggressive, a 'for' expression:</p>
508
509<div class="doc_code">
510<pre>
511 extern putchard(char)
512 def printstar(n)
513   for i = 1, i &lt; n, 1.0 in
514     putchard(42);  # ascii 42 = '*'
515
516 # print 100 '*' characters
517 printstar(100);
518</pre>
519</div>
520
521<p>This expression defines a new variable ("i" in this case) which iterates from
522a starting value, while the condition ("i &lt; n" in this case) is true,
523incrementing by an optional step value ("1.0" in this case).  If the step value
524is omitted, it defaults to 1.0.  While the loop is true, it executes its
525body expression.  Because we don't have anything better to return, we'll just
526define the loop as always returning 0.0.  In the future when we have mutable
527variables, it will get more useful.</p>
528
529<p>As before, lets talk about the changes that we need to Kaleidoscope to
530support this.</p>
531
532<!-- ======================================================================= -->
533<h4><a name="forlexer">Lexer Extensions for the 'for' Loop</a></h4>
534<!-- ======================================================================= -->
535
536<div>
537
538<p>The lexer extensions are the same sort of thing as for if/then/else:</p>
539
540<div class="doc_code">
541<pre>
542  ... in enum Token ...
543  // control
544  tok_if = -6, tok_then = -7, tok_else = -8,
545<b>  tok_for = -9, tok_in = -10</b>
546
547  ... in gettok ...
548  if (IdentifierStr == "def") return tok_def;
549  if (IdentifierStr == "extern") return tok_extern;
550  if (IdentifierStr == "if") return tok_if;
551  if (IdentifierStr == "then") return tok_then;
552  if (IdentifierStr == "else") return tok_else;
553  <b>if (IdentifierStr == "for") return tok_for;
554  if (IdentifierStr == "in") return tok_in;</b>
555  return tok_identifier;
556</pre>
557</div>
558
559</div>
560
561<!-- ======================================================================= -->
562<h4><a name="forast">AST Extensions for the 'for' Loop</a></h4>
563<!-- ======================================================================= -->
564
565<div>
566
567<p>The AST node is just as simple.  It basically boils down to capturing
568the variable name and the constituent expressions in the node.</p>
569
570<div class="doc_code">
571<pre>
572/// ForExprAST - Expression class for for/in.
573class ForExprAST : public ExprAST {
574  std::string VarName;
575  ExprAST *Start, *End, *Step, *Body;
576public:
577  ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
578             ExprAST *step, ExprAST *body)
579    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
580  virtual Value *Codegen();
581};
582</pre>
583</div>
584
585</div>
586
587<!-- ======================================================================= -->
588<h4><a name="forparser">Parser Extensions for the 'for' Loop</a></h4>
589<!-- ======================================================================= -->
590
591<div>
592
593<p>The parser code is also fairly standard.  The only interesting thing here is
594handling of the optional step value.  The parser code handles it by checking to
595see if the second comma is present.  If not, it sets the step value to null in
596the AST node:</p>
597
598<div class="doc_code">
599<pre>
600/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
601static ExprAST *ParseForExpr() {
602  getNextToken();  // eat the for.
603
604  if (CurTok != tok_identifier)
605    return Error("expected identifier after for");
606
607  std::string IdName = IdentifierStr;
608  getNextToken();  // eat identifier.
609
610  if (CurTok != '=')
611    return Error("expected '=' after for");
612  getNextToken();  // eat '='.
613
614
615  ExprAST *Start = ParseExpression();
616  if (Start == 0) return 0;
617  if (CurTok != ',')
618    return Error("expected ',' after for start value");
619  getNextToken();
620
621  ExprAST *End = ParseExpression();
622  if (End == 0) return 0;
623
624  // The step value is optional.
625  ExprAST *Step = 0;
626  if (CurTok == ',') {
627    getNextToken();
628    Step = ParseExpression();
629    if (Step == 0) return 0;
630  }
631
632  if (CurTok != tok_in)
633    return Error("expected 'in' after for");
634  getNextToken();  // eat 'in'.
635
636  ExprAST *Body = ParseExpression();
637  if (Body == 0) return 0;
638
639  return new ForExprAST(IdName, Start, End, Step, Body);
640}
641</pre>
642</div>
643
644</div>
645
646<!-- ======================================================================= -->
647<h4><a name="forir">LLVM IR for the 'for' Loop</a></h4>
648<!-- ======================================================================= -->
649
650<div>
651
652<p>Now we get to the good part: the LLVM IR we want to generate for this thing.
653With the simple example above, we get this LLVM IR (note that this dump is
654generated with optimizations disabled for clarity):
655</p>
656
657<div class="doc_code">
658<pre>
659declare double @putchard(double)
660
661define double @printstar(double %n) {
662entry:
663        ; initial value = 1.0 (inlined into phi)
664	br label %loop
665
666loop:		; preds = %loop, %entry
667	%i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
668        ; body
669	%calltmp = call double @putchard(double 4.200000e+01)
670        ; increment
671	%nextvar = fadd double %i, 1.000000e+00
672
673        ; termination test
674	%cmptmp = fcmp ult double %i, %n
675	%booltmp = uitofp i1 %cmptmp to double
676	%loopcond = fcmp one double %booltmp, 0.000000e+00
677	br i1 %loopcond, label %loop, label %afterloop
678
679afterloop:		; preds = %loop
680        ; loop always returns 0.0
681	ret double 0.000000e+00
682}
683</pre>
684</div>
685
686<p>This loop contains all the same constructs we saw before: a phi node, several
687expressions, and some basic blocks.  Lets see how this fits together.</p>
688
689</div>
690
691<!-- ======================================================================= -->
692<h4><a name="forcodegen">Code Generation for the 'for' Loop</a></h4>
693<!-- ======================================================================= -->
694
695<div>
696
697<p>The first part of Codegen is very simple: we just output the start expression
698for the loop value:</p>
699
700<div class="doc_code">
701<pre>
702Value *ForExprAST::Codegen() {
703  // Emit the start code first, without 'variable' in scope.
704  Value *StartVal = Start-&gt;Codegen();
705  if (StartVal == 0) return 0;
706</pre>
707</div>
708
709<p>With this out of the way, the next step is to set up the LLVM basic block
710for the start of the loop body.  In the case above, the whole loop body is one
711block, but remember that the body code itself could consist of multiple blocks
712(e.g. if it contains an if/then/else or a for/in expression).</p>
713
714<div class="doc_code">
715<pre>
716  // Make the new basic block for the loop header, inserting after current
717  // block.
718  Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
719  BasicBlock *PreheaderBB = Builder.GetInsertBlock();
720  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
721
722  // Insert an explicit fall through from the current block to the LoopBB.
723  Builder.CreateBr(LoopBB);
724</pre>
725</div>
726
727<p>This code is similar to what we saw for if/then/else.  Because we will need
728it to create the Phi node, we remember the block that falls through into the
729loop.  Once we have that, we create the actual block that starts the loop and
730create an unconditional branch for the fall-through between the two blocks.</p>
731
732<div class="doc_code">
733<pre>
734  // Start insertion in LoopBB.
735  Builder.SetInsertPoint(LoopBB);
736
737  // Start the PHI node with an entry for Start.
738  PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
739  Variable-&gt;addIncoming(StartVal, PreheaderBB);
740</pre>
741</div>
742
743<p>Now that the "preheader" for the loop is set up, we switch to emitting code
744for the loop body.  To begin with, we move the insertion point and create the
745PHI node for the loop induction variable.  Since we already know the incoming
746value for the starting value, we add it to the Phi node.  Note that the Phi will
747eventually get a second value for the backedge, but we can't set it up yet
748(because it doesn't exist!).</p>
749
750<div class="doc_code">
751<pre>
752  // Within the loop, the variable is defined equal to the PHI node.  If it
753  // shadows an existing variable, we have to restore it, so save it now.
754  Value *OldVal = NamedValues[VarName];
755  NamedValues[VarName] = Variable;
756
757  // Emit the body of the loop.  This, like any other expr, can change the
758  // current BB.  Note that we ignore the value computed by the body, but don't
759  // allow an error.
760  if (Body-&gt;Codegen() == 0)
761    return 0;
762</pre>
763</div>
764
765<p>Now the code starts to get more interesting.  Our 'for' loop introduces a new
766variable to the symbol table.  This means that our symbol table can now contain
767either function arguments or loop variables.  To handle this, before we codegen
768the body of the loop, we add the loop variable as the current value for its
769name.  Note that it is possible that there is a variable of the same name in the
770outer scope.  It would be easy to make this an error (emit an error and return
771null if there is already an entry for VarName) but we choose to allow shadowing
772of variables.  In order to handle this correctly, we remember the Value that
773we are potentially shadowing in <tt>OldVal</tt> (which will be null if there is
774no shadowed variable).</p>
775
776<p>Once the loop variable is set into the symbol table, the code recursively
777codegen's the body.  This allows the body to use the loop variable: any
778references to it will naturally find it in the symbol table.</p>
779
780<div class="doc_code">
781<pre>
782  // Emit the step value.
783  Value *StepVal;
784  if (Step) {
785    StepVal = Step-&gt;Codegen();
786    if (StepVal == 0) return 0;
787  } else {
788    // If not specified, use 1.0.
789    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
790  }
791
792  Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
793</pre>
794</div>
795
796<p>Now that the body is emitted, we compute the next value of the iteration
797variable by adding the step value, or 1.0 if it isn't present. '<tt>NextVar</tt>'
798will be the value of the loop variable on the next iteration of the loop.</p>
799
800<div class="doc_code">
801<pre>
802  // Compute the end condition.
803  Value *EndCond = End-&gt;Codegen();
804  if (EndCond == 0) return EndCond;
805
806  // Convert condition to a bool by comparing equal to 0.0.
807  EndCond = Builder.CreateFCmpONE(EndCond,
808                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
809                                  "loopcond");
810</pre>
811</div>
812
813<p>Finally, we evaluate the exit value of the loop, to determine whether the
814loop should exit.  This mirrors the condition evaluation for the if/then/else
815statement.</p>
816
817<div class="doc_code">
818<pre>
819  // Create the "after loop" block and insert it.
820  BasicBlock *LoopEndBB = Builder.GetInsertBlock();
821  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
822
823  // Insert the conditional branch into the end of LoopEndBB.
824  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
825
826  // Any new code will be inserted in AfterBB.
827  Builder.SetInsertPoint(AfterBB);
828</pre>
829</div>
830
831<p>With the code for the body of the loop complete, we just need to finish up
832the control flow for it.  This code remembers the end block (for the phi node), then creates the block for the loop exit ("afterloop").  Based on the value of the
833exit condition, it creates a conditional branch that chooses between executing
834the loop again and exiting the loop.  Any future code is emitted in the
835"afterloop" block, so it sets the insertion position to it.</p>
836
837<div class="doc_code">
838<pre>
839  // Add a new entry to the PHI node for the backedge.
840  Variable-&gt;addIncoming(NextVar, LoopEndBB);
841
842  // Restore the unshadowed variable.
843  if (OldVal)
844    NamedValues[VarName] = OldVal;
845  else
846    NamedValues.erase(VarName);
847
848  // for expr always returns 0.0.
849  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
850}
851</pre>
852</div>
853
854<p>The final code handles various cleanups: now that we have the "NextVar"
855value, we can add the incoming value to the loop PHI node.  After that, we
856remove the loop variable from the symbol table, so that it isn't in scope after
857the for loop.  Finally, code generation of the for loop always returns 0.0, so
858that is what we return from <tt>ForExprAST::Codegen</tt>.</p>
859
860<p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of
861the tutorial.  In this chapter we added two control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end implementors
862to know.  In the next chapter of our saga, we will get a bit crazier and add
863<a href="LangImpl6.html">user-defined operators</a> to our poor innocent
864language.</p>
865
866</div>
867
868</div>
869
870<!-- *********************************************************************** -->
871<h2><a name="code">Full Code Listing</a></h2>
872<!-- *********************************************************************** -->
873
874<div>
875
876<p>
877Here is the complete code listing for our running example, enhanced with the
878if/then/else and for expressions..  To build this example, use:
879</p>
880
881<div class="doc_code">
882<pre>
883   # Compile
884   g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
885   # Run
886   ./toy
887</pre>
888</div>
889
890<p>Here is the code:</p>
891
892<div class="doc_code">
893<pre>
894#include "llvm/DerivedTypes.h"
895#include "llvm/ExecutionEngine/ExecutionEngine.h"
896#include "llvm/ExecutionEngine/JIT.h"
897#include "llvm/LLVMContext.h"
898#include "llvm/Module.h"
899#include "llvm/PassManager.h"
900#include "llvm/Analysis/Verifier.h"
901#include "llvm/Analysis/Passes.h"
902#include "llvm/Target/TargetData.h"
903#include "llvm/Target/TargetSelect.h"
904#include "llvm/Transforms/Scalar.h"
905#include "llvm/Support/IRBuilder.h"
906#include &lt;cstdio&gt;
907#include &lt;string&gt;
908#include &lt;map&gt;
909#include &lt;vector&gt;
910using namespace llvm;
911
912//===----------------------------------------------------------------------===//
913// Lexer
914//===----------------------------------------------------------------------===//
915
916// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
917// of these for known things.
918enum Token {
919  tok_eof = -1,
920
921  // commands
922  tok_def = -2, tok_extern = -3,
923
924  // primary
925  tok_identifier = -4, tok_number = -5,
926
927  // control
928  tok_if = -6, tok_then = -7, tok_else = -8,
929  tok_for = -9, tok_in = -10
930};
931
932static std::string IdentifierStr;  // Filled in if tok_identifier
933static double NumVal;              // Filled in if tok_number
934
935/// gettok - Return the next token from standard input.
936static int gettok() {
937  static int LastChar = ' ';
938
939  // Skip any whitespace.
940  while (isspace(LastChar))
941    LastChar = getchar();
942
943  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
944    IdentifierStr = LastChar;
945    while (isalnum((LastChar = getchar())))
946      IdentifierStr += LastChar;
947
948    if (IdentifierStr == "def") return tok_def;
949    if (IdentifierStr == "extern") return tok_extern;
950    if (IdentifierStr == "if") return tok_if;
951    if (IdentifierStr == "then") return tok_then;
952    if (IdentifierStr == "else") return tok_else;
953    if (IdentifierStr == "for") return tok_for;
954    if (IdentifierStr == "in") return tok_in;
955    return tok_identifier;
956  }
957
958  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
959    std::string NumStr;
960    do {
961      NumStr += LastChar;
962      LastChar = getchar();
963    } while (isdigit(LastChar) || LastChar == '.');
964
965    NumVal = strtod(NumStr.c_str(), 0);
966    return tok_number;
967  }
968
969  if (LastChar == '#') {
970    // Comment until end of line.
971    do LastChar = getchar();
972    while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
973
974    if (LastChar != EOF)
975      return gettok();
976  }
977
978  // Check for end of file.  Don't eat the EOF.
979  if (LastChar == EOF)
980    return tok_eof;
981
982  // Otherwise, just return the character as its ascii value.
983  int ThisChar = LastChar;
984  LastChar = getchar();
985  return ThisChar;
986}
987
988//===----------------------------------------------------------------------===//
989// Abstract Syntax Tree (aka Parse Tree)
990//===----------------------------------------------------------------------===//
991
992/// ExprAST - Base class for all expression nodes.
993class ExprAST {
994public:
995  virtual ~ExprAST() {}
996  virtual Value *Codegen() = 0;
997};
998
999/// NumberExprAST - Expression class for numeric literals like "1.0".
1000class NumberExprAST : public ExprAST {
1001  double Val;
1002public:
1003  NumberExprAST(double val) : Val(val) {}
1004  virtual Value *Codegen();
1005};
1006
1007/// VariableExprAST - Expression class for referencing a variable, like "a".
1008class VariableExprAST : public ExprAST {
1009  std::string Name;
1010public:
1011  VariableExprAST(const std::string &amp;name) : Name(name) {}
1012  virtual Value *Codegen();
1013};
1014
1015/// BinaryExprAST - Expression class for a binary operator.
1016class BinaryExprAST : public ExprAST {
1017  char Op;
1018  ExprAST *LHS, *RHS;
1019public:
1020  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
1021    : Op(op), LHS(lhs), RHS(rhs) {}
1022  virtual Value *Codegen();
1023};
1024
1025/// CallExprAST - Expression class for function calls.
1026class CallExprAST : public ExprAST {
1027  std::string Callee;
1028  std::vector&lt;ExprAST*&gt; Args;
1029public:
1030  CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
1031    : Callee(callee), Args(args) {}
1032  virtual Value *Codegen();
1033};
1034
1035/// IfExprAST - Expression class for if/then/else.
1036class IfExprAST : public ExprAST {
1037  ExprAST *Cond, *Then, *Else;
1038public:
1039  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
1040  : Cond(cond), Then(then), Else(_else) {}
1041  virtual Value *Codegen();
1042};
1043
1044/// ForExprAST - Expression class for for/in.
1045class ForExprAST : public ExprAST {
1046  std::string VarName;
1047  ExprAST *Start, *End, *Step, *Body;
1048public:
1049  ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
1050             ExprAST *step, ExprAST *body)
1051    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
1052  virtual Value *Codegen();
1053};
1054
1055/// PrototypeAST - This class represents the "prototype" for a function,
1056/// which captures its name, and its argument names (thus implicitly the number
1057/// of arguments the function takes).
1058class PrototypeAST {
1059  std::string Name;
1060  std::vector&lt;std::string&gt; Args;
1061public:
1062  PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
1063    : Name(name), Args(args) {}
1064
1065  Function *Codegen();
1066};
1067
1068/// FunctionAST - This class represents a function definition itself.
1069class FunctionAST {
1070  PrototypeAST *Proto;
1071  ExprAST *Body;
1072public:
1073  FunctionAST(PrototypeAST *proto, ExprAST *body)
1074    : Proto(proto), Body(body) {}
1075
1076  Function *Codegen();
1077};
1078
1079//===----------------------------------------------------------------------===//
1080// Parser
1081//===----------------------------------------------------------------------===//
1082
1083/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
1084/// token the parser is looking at.  getNextToken reads another token from the
1085/// lexer and updates CurTok with its results.
1086static int CurTok;
1087static int getNextToken() {
1088  return CurTok = gettok();
1089}
1090
1091/// BinopPrecedence - This holds the precedence for each binary operator that is
1092/// defined.
1093static std::map&lt;char, int&gt; BinopPrecedence;
1094
1095/// GetTokPrecedence - Get the precedence of the pending binary operator token.
1096static int GetTokPrecedence() {
1097  if (!isascii(CurTok))
1098    return -1;
1099
1100  // Make sure it's a declared binop.
1101  int TokPrec = BinopPrecedence[CurTok];
1102  if (TokPrec &lt;= 0) return -1;
1103  return TokPrec;
1104}
1105
1106/// Error* - These are little helper functions for error handling.
1107ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
1108PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
1109FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
1110
1111static ExprAST *ParseExpression();
1112
1113/// identifierexpr
1114///   ::= identifier
1115///   ::= identifier '(' expression* ')'
1116static ExprAST *ParseIdentifierExpr() {
1117  std::string IdName = IdentifierStr;
1118
1119  getNextToken();  // eat identifier.
1120
1121  if (CurTok != '(') // Simple variable ref.
1122    return new VariableExprAST(IdName);
1123
1124  // Call.
1125  getNextToken();  // eat (
1126  std::vector&lt;ExprAST*&gt; Args;
1127  if (CurTok != ')') {
1128    while (1) {
1129      ExprAST *Arg = ParseExpression();
1130      if (!Arg) return 0;
1131      Args.push_back(Arg);
1132
1133      if (CurTok == ')') break;
1134
1135      if (CurTok != ',')
1136        return Error("Expected ')' or ',' in argument list");
1137      getNextToken();
1138    }
1139  }
1140
1141  // Eat the ')'.
1142  getNextToken();
1143
1144  return new CallExprAST(IdName, Args);
1145}
1146
1147/// numberexpr ::= number
1148static ExprAST *ParseNumberExpr() {
1149  ExprAST *Result = new NumberExprAST(NumVal);
1150  getNextToken(); // consume the number
1151  return Result;
1152}
1153
1154/// parenexpr ::= '(' expression ')'
1155static ExprAST *ParseParenExpr() {
1156  getNextToken();  // eat (.
1157  ExprAST *V = ParseExpression();
1158  if (!V) return 0;
1159
1160  if (CurTok != ')')
1161    return Error("expected ')'");
1162  getNextToken();  // eat ).
1163  return V;
1164}
1165
1166/// ifexpr ::= 'if' expression 'then' expression 'else' expression
1167static ExprAST *ParseIfExpr() {
1168  getNextToken();  // eat the if.
1169
1170  // condition.
1171  ExprAST *Cond = ParseExpression();
1172  if (!Cond) return 0;
1173
1174  if (CurTok != tok_then)
1175    return Error("expected then");
1176  getNextToken();  // eat the then
1177
1178  ExprAST *Then = ParseExpression();
1179  if (Then == 0) return 0;
1180
1181  if (CurTok != tok_else)
1182    return Error("expected else");
1183
1184  getNextToken();
1185
1186  ExprAST *Else = ParseExpression();
1187  if (!Else) return 0;
1188
1189  return new IfExprAST(Cond, Then, Else);
1190}
1191
1192/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
1193static ExprAST *ParseForExpr() {
1194  getNextToken();  // eat the for.
1195
1196  if (CurTok != tok_identifier)
1197    return Error("expected identifier after for");
1198
1199  std::string IdName = IdentifierStr;
1200  getNextToken();  // eat identifier.
1201
1202  if (CurTok != '=')
1203    return Error("expected '=' after for");
1204  getNextToken();  // eat '='.
1205
1206
1207  ExprAST *Start = ParseExpression();
1208  if (Start == 0) return 0;
1209  if (CurTok != ',')
1210    return Error("expected ',' after for start value");
1211  getNextToken();
1212
1213  ExprAST *End = ParseExpression();
1214  if (End == 0) return 0;
1215
1216  // The step value is optional.
1217  ExprAST *Step = 0;
1218  if (CurTok == ',') {
1219    getNextToken();
1220    Step = ParseExpression();
1221    if (Step == 0) return 0;
1222  }
1223
1224  if (CurTok != tok_in)
1225    return Error("expected 'in' after for");
1226  getNextToken();  // eat 'in'.
1227
1228  ExprAST *Body = ParseExpression();
1229  if (Body == 0) return 0;
1230
1231  return new ForExprAST(IdName, Start, End, Step, Body);
1232}
1233
1234/// primary
1235///   ::= identifierexpr
1236///   ::= numberexpr
1237///   ::= parenexpr
1238///   ::= ifexpr
1239///   ::= forexpr
1240static ExprAST *ParsePrimary() {
1241  switch (CurTok) {
1242  default: return Error("unknown token when expecting an expression");
1243  case tok_identifier: return ParseIdentifierExpr();
1244  case tok_number:     return ParseNumberExpr();
1245  case '(':            return ParseParenExpr();
1246  case tok_if:         return ParseIfExpr();
1247  case tok_for:        return ParseForExpr();
1248  }
1249}
1250
1251/// binoprhs
1252///   ::= ('+' primary)*
1253static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
1254  // If this is a binop, find its precedence.
1255  while (1) {
1256    int TokPrec = GetTokPrecedence();
1257
1258    // If this is a binop that binds at least as tightly as the current binop,
1259    // consume it, otherwise we are done.
1260    if (TokPrec &lt; ExprPrec)
1261      return LHS;
1262
1263    // Okay, we know this is a binop.
1264    int BinOp = CurTok;
1265    getNextToken();  // eat binop
1266
1267    // Parse the primary expression after the binary operator.
1268    ExprAST *RHS = ParsePrimary();
1269    if (!RHS) return 0;
1270
1271    // If BinOp binds less tightly with RHS than the operator after RHS, let
1272    // the pending operator take RHS as its LHS.
1273    int NextPrec = GetTokPrecedence();
1274    if (TokPrec &lt; NextPrec) {
1275      RHS = ParseBinOpRHS(TokPrec+1, RHS);
1276      if (RHS == 0) return 0;
1277    }
1278
1279    // Merge LHS/RHS.
1280    LHS = new BinaryExprAST(BinOp, LHS, RHS);
1281  }
1282}
1283
1284/// expression
1285///   ::= primary binoprhs
1286///
1287static ExprAST *ParseExpression() {
1288  ExprAST *LHS = ParsePrimary();
1289  if (!LHS) return 0;
1290
1291  return ParseBinOpRHS(0, LHS);
1292}
1293
1294/// prototype
1295///   ::= id '(' id* ')'
1296static PrototypeAST *ParsePrototype() {
1297  if (CurTok != tok_identifier)
1298    return ErrorP("Expected function name in prototype");
1299
1300  std::string FnName = IdentifierStr;
1301  getNextToken();
1302
1303  if (CurTok != '(')
1304    return ErrorP("Expected '(' in prototype");
1305
1306  std::vector&lt;std::string&gt; ArgNames;
1307  while (getNextToken() == tok_identifier)
1308    ArgNames.push_back(IdentifierStr);
1309  if (CurTok != ')')
1310    return ErrorP("Expected ')' in prototype");
1311
1312  // success.
1313  getNextToken();  // eat ')'.
1314
1315  return new PrototypeAST(FnName, ArgNames);
1316}
1317
1318/// definition ::= 'def' prototype expression
1319static FunctionAST *ParseDefinition() {
1320  getNextToken();  // eat def.
1321  PrototypeAST *Proto = ParsePrototype();
1322  if (Proto == 0) return 0;
1323
1324  if (ExprAST *E = ParseExpression())
1325    return new FunctionAST(Proto, E);
1326  return 0;
1327}
1328
1329/// toplevelexpr ::= expression
1330static FunctionAST *ParseTopLevelExpr() {
1331  if (ExprAST *E = ParseExpression()) {
1332    // Make an anonymous proto.
1333    PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
1334    return new FunctionAST(Proto, E);
1335  }
1336  return 0;
1337}
1338
1339/// external ::= 'extern' prototype
1340static PrototypeAST *ParseExtern() {
1341  getNextToken();  // eat extern.
1342  return ParsePrototype();
1343}
1344
1345//===----------------------------------------------------------------------===//
1346// Code Generation
1347//===----------------------------------------------------------------------===//
1348
1349static Module *TheModule;
1350static IRBuilder&lt;&gt; Builder(getGlobalContext());
1351static std::map&lt;std::string, Value*&gt; NamedValues;
1352static FunctionPassManager *TheFPM;
1353
1354Value *ErrorV(const char *Str) { Error(Str); return 0; }
1355
1356Value *NumberExprAST::Codegen() {
1357  return ConstantFP::get(getGlobalContext(), APFloat(Val));
1358}
1359
1360Value *VariableExprAST::Codegen() {
1361  // Look this variable up in the function.
1362  Value *V = NamedValues[Name];
1363  return V ? V : ErrorV("Unknown variable name");
1364}
1365
1366Value *BinaryExprAST::Codegen() {
1367  Value *L = LHS-&gt;Codegen();
1368  Value *R = RHS-&gt;Codegen();
1369  if (L == 0 || R == 0) return 0;
1370
1371  switch (Op) {
1372  case '+': return Builder.CreateFAdd(L, R, "addtmp");
1373  case '-': return Builder.CreateFSub(L, R, "subtmp");
1374  case '*': return Builder.CreateFMul(L, R, "multmp");
1375  case '&lt;':
1376    L = Builder.CreateFCmpULT(L, R, "cmptmp");
1377    // Convert bool 0/1 to double 0.0 or 1.0
1378    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
1379                                "booltmp");
1380  default: return ErrorV("invalid binary operator");
1381  }
1382}
1383
1384Value *CallExprAST::Codegen() {
1385  // Look up the name in the global module table.
1386  Function *CalleeF = TheModule-&gt;getFunction(Callee);
1387  if (CalleeF == 0)
1388    return ErrorV("Unknown function referenced");
1389
1390  // If argument mismatch error.
1391  if (CalleeF-&gt;arg_size() != Args.size())
1392    return ErrorV("Incorrect # arguments passed");
1393
1394  std::vector&lt;Value*&gt; ArgsV;
1395  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1396    ArgsV.push_back(Args[i]-&gt;Codegen());
1397    if (ArgsV.back() == 0) return 0;
1398  }
1399
1400  return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
1401}
1402
1403Value *IfExprAST::Codegen() {
1404  Value *CondV = Cond-&gt;Codegen();
1405  if (CondV == 0) return 0;
1406
1407  // Convert condition to a bool by comparing equal to 0.0.
1408  CondV = Builder.CreateFCmpONE(CondV,
1409                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1410                                "ifcond");
1411
1412  Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
1413
1414  // Create blocks for the then and else cases.  Insert the 'then' block at the
1415  // end of the function.
1416  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
1417  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
1418  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
1419
1420  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1421
1422  // Emit then value.
1423  Builder.SetInsertPoint(ThenBB);
1424
1425  Value *ThenV = Then-&gt;Codegen();
1426  if (ThenV == 0) return 0;
1427
1428  Builder.CreateBr(MergeBB);
1429  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1430  ThenBB = Builder.GetInsertBlock();
1431
1432  // Emit else block.
1433  TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
1434  Builder.SetInsertPoint(ElseBB);
1435
1436  Value *ElseV = Else-&gt;Codegen();
1437  if (ElseV == 0) return 0;
1438
1439  Builder.CreateBr(MergeBB);
1440  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1441  ElseBB = Builder.GetInsertBlock();
1442
1443  // Emit merge block.
1444  TheFunction-&gt;getBasicBlockList().push_back(MergeBB);
1445  Builder.SetInsertPoint(MergeBB);
1446  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
1447                                  "iftmp");
1448
1449  PN-&gt;addIncoming(ThenV, ThenBB);
1450  PN-&gt;addIncoming(ElseV, ElseBB);
1451  return PN;
1452}
1453
1454Value *ForExprAST::Codegen() {
1455  // Output this as:
1456  //   ...
1457  //   start = startexpr
1458  //   goto loop
1459  // loop:
1460  //   variable = phi [start, loopheader], [nextvariable, loopend]
1461  //   ...
1462  //   bodyexpr
1463  //   ...
1464  // loopend:
1465  //   step = stepexpr
1466  //   nextvariable = variable + step
1467  //   endcond = endexpr
1468  //   br endcond, loop, endloop
1469  // outloop:
1470
1471  // Emit the start code first, without 'variable' in scope.
1472  Value *StartVal = Start-&gt;Codegen();
1473  if (StartVal == 0) return 0;
1474
1475  // Make the new basic block for the loop header, inserting after current
1476  // block.
1477  Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
1478  BasicBlock *PreheaderBB = Builder.GetInsertBlock();
1479  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1480
1481  // Insert an explicit fall through from the current block to the LoopBB.
1482  Builder.CreateBr(LoopBB);
1483
1484  // Start insertion in LoopBB.
1485  Builder.SetInsertPoint(LoopBB);
1486
1487  // Start the PHI node with an entry for Start.
1488  PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
1489  Variable-&gt;addIncoming(StartVal, PreheaderBB);
1490
1491  // Within the loop, the variable is defined equal to the PHI node.  If it
1492  // shadows an existing variable, we have to restore it, so save it now.
1493  Value *OldVal = NamedValues[VarName];
1494  NamedValues[VarName] = Variable;
1495
1496  // Emit the body of the loop.  This, like any other expr, can change the
1497  // current BB.  Note that we ignore the value computed by the body, but don't
1498  // allow an error.
1499  if (Body-&gt;Codegen() == 0)
1500    return 0;
1501
1502  // Emit the step value.
1503  Value *StepVal;
1504  if (Step) {
1505    StepVal = Step-&gt;Codegen();
1506    if (StepVal == 0) return 0;
1507  } else {
1508    // If not specified, use 1.0.
1509    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1510  }
1511
1512  Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
1513
1514  // Compute the end condition.
1515  Value *EndCond = End-&gt;Codegen();
1516  if (EndCond == 0) return EndCond;
1517
1518  // Convert condition to a bool by comparing equal to 0.0.
1519  EndCond = Builder.CreateFCmpONE(EndCond,
1520                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1521                                  "loopcond");
1522
1523  // Create the "after loop" block and insert it.
1524  BasicBlock *LoopEndBB = Builder.GetInsertBlock();
1525  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1526
1527  // Insert the conditional branch into the end of LoopEndBB.
1528  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1529
1530  // Any new code will be inserted in AfterBB.
1531  Builder.SetInsertPoint(AfterBB);
1532
1533  // Add a new entry to the PHI node for the backedge.
1534  Variable-&gt;addIncoming(NextVar, LoopEndBB);
1535
1536  // Restore the unshadowed variable.
1537  if (OldVal)
1538    NamedValues[VarName] = OldVal;
1539  else
1540    NamedValues.erase(VarName);
1541
1542
1543  // for expr always returns 0.0.
1544  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1545}
1546
1547Function *PrototypeAST::Codegen() {
1548  // Make the function type:  double(double,double) etc.
1549  std::vector&lt;const Type*&gt; Doubles(Args.size(),
1550                                   Type::getDoubleTy(getGlobalContext()));
1551  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1552                                       Doubles, false);
1553
1554  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
1555
1556  // If F conflicted, there was already something named 'Name'.  If it has a
1557  // body, don't allow redefinition or reextern.
1558  if (F-&gt;getName() != Name) {
1559    // Delete the one we just made and get the existing one.
1560    F-&gt;eraseFromParent();
1561    F = TheModule-&gt;getFunction(Name);
1562
1563    // If F already has a body, reject this.
1564    if (!F-&gt;empty()) {
1565      ErrorF("redefinition of function");
1566      return 0;
1567    }
1568
1569    // If F took a different number of args, reject.
1570    if (F-&gt;arg_size() != Args.size()) {
1571      ErrorF("redefinition of function with different # args");
1572      return 0;
1573    }
1574  }
1575
1576  // Set names for all arguments.
1577  unsigned Idx = 0;
1578  for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
1579       ++AI, ++Idx) {
1580    AI-&gt;setName(Args[Idx]);
1581
1582    // Add arguments to variable symbol table.
1583    NamedValues[Args[Idx]] = AI;
1584  }
1585
1586  return F;
1587}
1588
1589Function *FunctionAST::Codegen() {
1590  NamedValues.clear();
1591
1592  Function *TheFunction = Proto-&gt;Codegen();
1593  if (TheFunction == 0)
1594    return 0;
1595
1596  // Create a new basic block to start insertion into.
1597  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1598  Builder.SetInsertPoint(BB);
1599
1600  if (Value *RetVal = Body-&gt;Codegen()) {
1601    // Finish off the function.
1602    Builder.CreateRet(RetVal);
1603
1604    // Validate the generated code, checking for consistency.
1605    verifyFunction(*TheFunction);
1606
1607    // Optimize the function.
1608    TheFPM-&gt;run(*TheFunction);
1609
1610    return TheFunction;
1611  }
1612
1613  // Error reading body, remove function.
1614  TheFunction-&gt;eraseFromParent();
1615  return 0;
1616}
1617
1618//===----------------------------------------------------------------------===//
1619// Top-Level parsing and JIT Driver
1620//===----------------------------------------------------------------------===//
1621
1622static ExecutionEngine *TheExecutionEngine;
1623
1624static void HandleDefinition() {
1625  if (FunctionAST *F = ParseDefinition()) {
1626    if (Function *LF = F-&gt;Codegen()) {
1627      fprintf(stderr, "Read function definition:");
1628      LF-&gt;dump();
1629    }
1630  } else {
1631    // Skip token for error recovery.
1632    getNextToken();
1633  }
1634}
1635
1636static void HandleExtern() {
1637  if (PrototypeAST *P = ParseExtern()) {
1638    if (Function *F = P-&gt;Codegen()) {
1639      fprintf(stderr, "Read extern: ");
1640      F-&gt;dump();
1641    }
1642  } else {
1643    // Skip token for error recovery.
1644    getNextToken();
1645  }
1646}
1647
1648static void HandleTopLevelExpression() {
1649  // Evaluate a top-level expression into an anonymous function.
1650  if (FunctionAST *F = ParseTopLevelExpr()) {
1651    if (Function *LF = F-&gt;Codegen()) {
1652      // JIT the function, returning a function pointer.
1653      void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
1654
1655      // Cast it to the right type (takes no arguments, returns a double) so we
1656      // can call it as a native function.
1657      double (*FP)() = (double (*)())(intptr_t)FPtr;
1658      fprintf(stderr, "Evaluated to %f\n", FP());
1659    }
1660  } else {
1661    // Skip token for error recovery.
1662    getNextToken();
1663  }
1664}
1665
1666/// top ::= definition | external | expression | ';'
1667static void MainLoop() {
1668  while (1) {
1669    fprintf(stderr, "ready&gt; ");
1670    switch (CurTok) {
1671    case tok_eof:    return;
1672    case ';':        getNextToken(); break;  // ignore top-level semicolons.
1673    case tok_def:    HandleDefinition(); break;
1674    case tok_extern: HandleExtern(); break;
1675    default:         HandleTopLevelExpression(); break;
1676    }
1677  }
1678}
1679
1680//===----------------------------------------------------------------------===//
1681// "Library" functions that can be "extern'd" from user code.
1682//===----------------------------------------------------------------------===//
1683
1684/// putchard - putchar that takes a double and returns 0.
1685extern "C"
1686double putchard(double X) {
1687  putchar((char)X);
1688  return 0;
1689}
1690
1691//===----------------------------------------------------------------------===//
1692// Main driver code.
1693//===----------------------------------------------------------------------===//
1694
1695int main() {
1696  InitializeNativeTarget();
1697  LLVMContext &amp;Context = getGlobalContext();
1698
1699  // Install standard binary operators.
1700  // 1 is lowest precedence.
1701  BinopPrecedence['&lt;'] = 10;
1702  BinopPrecedence['+'] = 20;
1703  BinopPrecedence['-'] = 20;
1704  BinopPrecedence['*'] = 40;  // highest.
1705
1706  // Prime the first token.
1707  fprintf(stderr, "ready&gt; ");
1708  getNextToken();
1709
1710  // Make the module, which holds all the code.
1711  TheModule = new Module("my cool jit", Context);
1712
1713  // Create the JIT.  This takes ownership of the module.
1714  std::string ErrStr;
1715  TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&amp;ErrStr).create();
1716  if (!TheExecutionEngine) {
1717    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1718    exit(1);
1719  }
1720
1721  FunctionPassManager OurFPM(TheModule);
1722
1723  // Set up the optimizer pipeline.  Start with registering info about how the
1724  // target lays out data structures.
1725  OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
1726  // Provide basic AliasAnalysis support for GVN.
1727  OurFPM.add(createBasicAliasAnalysisPass());
1728  // Do simple "peephole" optimizations and bit-twiddling optzns.
1729  OurFPM.add(createInstructionCombiningPass());
1730  // Reassociate expressions.
1731  OurFPM.add(createReassociatePass());
1732  // Eliminate Common SubExpressions.
1733  OurFPM.add(createGVNPass());
1734  // Simplify the control flow graph (deleting unreachable blocks, etc).
1735  OurFPM.add(createCFGSimplificationPass());
1736
1737  OurFPM.doInitialization();
1738
1739  // Set the global so the code gen can use this.
1740  TheFPM = &amp;OurFPM;
1741
1742  // Run the main "interpreter loop" now.
1743  MainLoop();
1744
1745  TheFPM = 0;
1746
1747  // Print out all of the generated code.
1748  TheModule-&gt;dump();
1749
1750  return 0;
1751}
1752</pre>
1753</div>
1754
1755<a href="LangImpl6.html">Next: Extending the language: user-defined operators</a>
1756</div>
1757
1758<!-- *********************************************************************** -->
1759<hr>
1760<address>
1761  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1762  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1763  <a href="http://validator.w3.org/check/referer"><img
1764  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1765
1766  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1767  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
1768  Last modified: $Date$
1769</address>
1770</body>
1771</html>
1772