• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the (beginning) of an implementation of a loop dependence analysis
11 // framework, which is used to detect dependences in memory accesses in loops.
12 //
13 // Please note that this is work in progress and the interface is subject to
14 // change.
15 //
16 // TODO: adapt as implementation progresses.
17 //
18 // TODO: document lingo (pair, subscript, index)
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #define DEBUG_TYPE "lda"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/LoopDependenceAnalysis.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Assembly/Writer.h"
32 #include "llvm/Instructions.h"
33 #include "llvm/Operator.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetData.h"
39 using namespace llvm;
40 
41 STATISTIC(NumAnswered,    "Number of dependence queries answered");
42 STATISTIC(NumAnalysed,    "Number of distinct dependence pairs analysed");
43 STATISTIC(NumDependent,   "Number of pairs with dependent accesses");
44 STATISTIC(NumIndependent, "Number of pairs with independent accesses");
45 STATISTIC(NumUnknown,     "Number of pairs with unknown accesses");
46 
createLoopDependenceAnalysisPass()47 LoopPass *llvm::createLoopDependenceAnalysisPass() {
48   return new LoopDependenceAnalysis();
49 }
50 
51 INITIALIZE_PASS_BEGIN(LoopDependenceAnalysis, "lda",
52                 "Loop Dependence Analysis", false, true)
53 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
54 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
55 INITIALIZE_PASS_END(LoopDependenceAnalysis, "lda",
56                 "Loop Dependence Analysis", false, true)
57 char LoopDependenceAnalysis::ID = 0;
58 
59 //===----------------------------------------------------------------------===//
60 //                             Utility Functions
61 //===----------------------------------------------------------------------===//
62 
IsMemRefInstr(const Value * V)63 static inline bool IsMemRefInstr(const Value *V) {
64   const Instruction *I = dyn_cast<const Instruction>(V);
65   return I && (I->mayReadFromMemory() || I->mayWriteToMemory());
66 }
67 
GetMemRefInstrs(const Loop * L,SmallVectorImpl<Instruction * > & Memrefs)68 static void GetMemRefInstrs(const Loop *L,
69                             SmallVectorImpl<Instruction*> &Memrefs) {
70   for (Loop::block_iterator b = L->block_begin(), be = L->block_end();
71        b != be; ++b)
72     for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end();
73          i != ie; ++i)
74       if (IsMemRefInstr(i))
75         Memrefs.push_back(i);
76 }
77 
IsLoadOrStoreInst(Value * I)78 static bool IsLoadOrStoreInst(Value *I) {
79   return isa<LoadInst>(I) || isa<StoreInst>(I);
80 }
81 
GetPointerOperand(Value * I)82 static Value *GetPointerOperand(Value *I) {
83   if (LoadInst *i = dyn_cast<LoadInst>(I))
84     return i->getPointerOperand();
85   if (StoreInst *i = dyn_cast<StoreInst>(I))
86     return i->getPointerOperand();
87   llvm_unreachable("Value is no load or store instruction!");
88   // Never reached.
89   return 0;
90 }
91 
UnderlyingObjectsAlias(AliasAnalysis * AA,const Value * A,const Value * B)92 static AliasAnalysis::AliasResult UnderlyingObjectsAlias(AliasAnalysis *AA,
93                                                          const Value *A,
94                                                          const Value *B) {
95   const Value *aObj = GetUnderlyingObject(A);
96   const Value *bObj = GetUnderlyingObject(B);
97   return AA->alias(aObj, AA->getTypeStoreSize(aObj->getType()),
98                    bObj, AA->getTypeStoreSize(bObj->getType()));
99 }
100 
GetZeroSCEV(ScalarEvolution * SE)101 static inline const SCEV *GetZeroSCEV(ScalarEvolution *SE) {
102   return SE->getConstant(Type::getInt32Ty(SE->getContext()), 0L);
103 }
104 
105 //===----------------------------------------------------------------------===//
106 //                             Dependence Testing
107 //===----------------------------------------------------------------------===//
108 
isDependencePair(const Value * A,const Value * B) const109 bool LoopDependenceAnalysis::isDependencePair(const Value *A,
110                                               const Value *B) const {
111   return IsMemRefInstr(A) &&
112          IsMemRefInstr(B) &&
113          (cast<const Instruction>(A)->mayWriteToMemory() ||
114           cast<const Instruction>(B)->mayWriteToMemory());
115 }
116 
findOrInsertDependencePair(Value * A,Value * B,DependencePair * & P)117 bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *A,
118                                                         Value *B,
119                                                         DependencePair *&P) {
120   void *insertPos = 0;
121   FoldingSetNodeID id;
122   id.AddPointer(A);
123   id.AddPointer(B);
124 
125   P = Pairs.FindNodeOrInsertPos(id, insertPos);
126   if (P) return true;
127 
128   P = new (PairAllocator) DependencePair(id, A, B);
129   Pairs.InsertNode(P, insertPos);
130   return false;
131 }
132 
getLoops(const SCEV * S,DenseSet<const Loop * > * Loops) const133 void LoopDependenceAnalysis::getLoops(const SCEV *S,
134                                       DenseSet<const Loop*>* Loops) const {
135   // Refactor this into an SCEVVisitor, if efficiency becomes a concern.
136   for (const Loop *L = this->L; L != 0; L = L->getParentLoop())
137     if (!SE->isLoopInvariant(S, L))
138       Loops->insert(L);
139 }
140 
isLoopInvariant(const SCEV * S) const141 bool LoopDependenceAnalysis::isLoopInvariant(const SCEV *S) const {
142   DenseSet<const Loop*> loops;
143   getLoops(S, &loops);
144   return loops.empty();
145 }
146 
isAffine(const SCEV * S) const147 bool LoopDependenceAnalysis::isAffine(const SCEV *S) const {
148   const SCEVAddRecExpr *rec = dyn_cast<SCEVAddRecExpr>(S);
149   return isLoopInvariant(S) || (rec && rec->isAffine());
150 }
151 
isZIVPair(const SCEV * A,const SCEV * B) const152 bool LoopDependenceAnalysis::isZIVPair(const SCEV *A, const SCEV *B) const {
153   return isLoopInvariant(A) && isLoopInvariant(B);
154 }
155 
isSIVPair(const SCEV * A,const SCEV * B) const156 bool LoopDependenceAnalysis::isSIVPair(const SCEV *A, const SCEV *B) const {
157   DenseSet<const Loop*> loops;
158   getLoops(A, &loops);
159   getLoops(B, &loops);
160   return loops.size() == 1;
161 }
162 
163 LoopDependenceAnalysis::DependenceResult
analyseZIV(const SCEV * A,const SCEV * B,Subscript * S) const164 LoopDependenceAnalysis::analyseZIV(const SCEV *A,
165                                    const SCEV *B,
166                                    Subscript *S) const {
167   assert(isZIVPair(A, B) && "Attempted to ZIV-test non-ZIV SCEVs!");
168   return A == B ? Dependent : Independent;
169 }
170 
171 LoopDependenceAnalysis::DependenceResult
analyseSIV(const SCEV * A,const SCEV * B,Subscript * S) const172 LoopDependenceAnalysis::analyseSIV(const SCEV *A,
173                                    const SCEV *B,
174                                    Subscript *S) const {
175   return Unknown; // TODO: Implement.
176 }
177 
178 LoopDependenceAnalysis::DependenceResult
analyseMIV(const SCEV * A,const SCEV * B,Subscript * S) const179 LoopDependenceAnalysis::analyseMIV(const SCEV *A,
180                                    const SCEV *B,
181                                    Subscript *S) const {
182   return Unknown; // TODO: Implement.
183 }
184 
185 LoopDependenceAnalysis::DependenceResult
analyseSubscript(const SCEV * A,const SCEV * B,Subscript * S) const186 LoopDependenceAnalysis::analyseSubscript(const SCEV *A,
187                                          const SCEV *B,
188                                          Subscript *S) const {
189   DEBUG(dbgs() << "  Testing subscript: " << *A << ", " << *B << "\n");
190 
191   if (A == B) {
192     DEBUG(dbgs() << "  -> [D] same SCEV\n");
193     return Dependent;
194   }
195 
196   if (!isAffine(A) || !isAffine(B)) {
197     DEBUG(dbgs() << "  -> [?] not affine\n");
198     return Unknown;
199   }
200 
201   if (isZIVPair(A, B))
202     return analyseZIV(A, B, S);
203 
204   if (isSIVPair(A, B))
205     return analyseSIV(A, B, S);
206 
207   return analyseMIV(A, B, S);
208 }
209 
210 LoopDependenceAnalysis::DependenceResult
analysePair(DependencePair * P) const211 LoopDependenceAnalysis::analysePair(DependencePair *P) const {
212   DEBUG(dbgs() << "Analysing:\n" << *P->A << "\n" << *P->B << "\n");
213 
214   // We only analyse loads and stores but no possible memory accesses by e.g.
215   // free, call, or invoke instructions.
216   if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) {
217     DEBUG(dbgs() << "--> [?] no load/store\n");
218     return Unknown;
219   }
220 
221   Value *aPtr = GetPointerOperand(P->A);
222   Value *bPtr = GetPointerOperand(P->B);
223 
224   switch (UnderlyingObjectsAlias(AA, aPtr, bPtr)) {
225   case AliasAnalysis::MayAlias:
226   case AliasAnalysis::PartialAlias:
227     // We can not analyse objects if we do not know about their aliasing.
228     DEBUG(dbgs() << "---> [?] may alias\n");
229     return Unknown;
230 
231   case AliasAnalysis::NoAlias:
232     // If the objects noalias, they are distinct, accesses are independent.
233     DEBUG(dbgs() << "---> [I] no alias\n");
234     return Independent;
235 
236   case AliasAnalysis::MustAlias:
237     break; // The underlying objects alias, test accesses for dependence.
238   }
239 
240   const GEPOperator *aGEP = dyn_cast<GEPOperator>(aPtr);
241   const GEPOperator *bGEP = dyn_cast<GEPOperator>(bPtr);
242 
243   if (!aGEP || !bGEP)
244     return Unknown;
245 
246   // FIXME: Is filtering coupled subscripts necessary?
247 
248   // Collect GEP operand pairs (FIXME: use GetGEPOperands from BasicAA), adding
249   // trailing zeroes to the smaller GEP, if needed.
250   typedef SmallVector<std::pair<const SCEV*, const SCEV*>, 4> GEPOpdPairsTy;
251   GEPOpdPairsTy opds;
252   for(GEPOperator::const_op_iterator aIdx = aGEP->idx_begin(),
253                                      aEnd = aGEP->idx_end(),
254                                      bIdx = bGEP->idx_begin(),
255                                      bEnd = bGEP->idx_end();
256       aIdx != aEnd && bIdx != bEnd;
257       aIdx += (aIdx != aEnd), bIdx += (bIdx != bEnd)) {
258     const SCEV* aSCEV = (aIdx != aEnd) ? SE->getSCEV(*aIdx) : GetZeroSCEV(SE);
259     const SCEV* bSCEV = (bIdx != bEnd) ? SE->getSCEV(*bIdx) : GetZeroSCEV(SE);
260     opds.push_back(std::make_pair(aSCEV, bSCEV));
261   }
262 
263   if (!opds.empty() && opds[0].first != opds[0].second) {
264     // We cannot (yet) handle arbitrary GEP pointer offsets. By limiting
265     //
266     // TODO: this could be relaxed by adding the size of the underlying object
267     // to the first subscript. If we have e.g. (GEP x,0,i; GEP x,2,-i) and we
268     // know that x is a [100 x i8]*, we could modify the first subscript to be
269     // (i, 200-i) instead of (i, -i).
270     return Unknown;
271   }
272 
273   // Now analyse the collected operand pairs (skipping the GEP ptr offsets).
274   for (GEPOpdPairsTy::const_iterator i = opds.begin() + 1, end = opds.end();
275        i != end; ++i) {
276     Subscript subscript;
277     DependenceResult result = analyseSubscript(i->first, i->second, &subscript);
278     if (result != Dependent) {
279       // We either proved independence or failed to analyse this subscript.
280       // Further subscripts will not improve the situation, so abort early.
281       return result;
282     }
283     P->Subscripts.push_back(subscript);
284   }
285   // We successfully analysed all subscripts but failed to prove independence.
286   return Dependent;
287 }
288 
depends(Value * A,Value * B)289 bool LoopDependenceAnalysis::depends(Value *A, Value *B) {
290   assert(isDependencePair(A, B) && "Values form no dependence pair!");
291   ++NumAnswered;
292 
293   DependencePair *p;
294   if (!findOrInsertDependencePair(A, B, p)) {
295     // The pair is not cached, so analyse it.
296     ++NumAnalysed;
297     switch (p->Result = analysePair(p)) {
298     case Dependent:   ++NumDependent;   break;
299     case Independent: ++NumIndependent; break;
300     case Unknown:     ++NumUnknown;     break;
301     }
302   }
303   return p->Result != Independent;
304 }
305 
306 //===----------------------------------------------------------------------===//
307 //                   LoopDependenceAnalysis Implementation
308 //===----------------------------------------------------------------------===//
309 
runOnLoop(Loop * L,LPPassManager &)310 bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) {
311   this->L = L;
312   AA = &getAnalysis<AliasAnalysis>();
313   SE = &getAnalysis<ScalarEvolution>();
314   return false;
315 }
316 
releaseMemory()317 void LoopDependenceAnalysis::releaseMemory() {
318   Pairs.clear();
319   PairAllocator.Reset();
320 }
321 
getAnalysisUsage(AnalysisUsage & AU) const322 void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
323   AU.setPreservesAll();
324   AU.addRequiredTransitive<AliasAnalysis>();
325   AU.addRequiredTransitive<ScalarEvolution>();
326 }
327 
PrintLoopInfo(raw_ostream & OS,LoopDependenceAnalysis * LDA,const Loop * L)328 static void PrintLoopInfo(raw_ostream &OS,
329                           LoopDependenceAnalysis *LDA, const Loop *L) {
330   if (!L->empty()) return; // ignore non-innermost loops
331 
332   SmallVector<Instruction*, 8> memrefs;
333   GetMemRefInstrs(L, memrefs);
334 
335   OS << "Loop at depth " << L->getLoopDepth() << ", header block: ";
336   WriteAsOperand(OS, L->getHeader(), false);
337   OS << "\n";
338 
339   OS << "  Load/store instructions: " << memrefs.size() << "\n";
340   for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
341        end = memrefs.end(); x != end; ++x)
342     OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n";
343 
344   OS << "  Pairwise dependence results:\n";
345   for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
346        end = memrefs.end(); x != end; ++x)
347     for (SmallVector<Instruction*, 8>::const_iterator y = x + 1;
348          y != end; ++y)
349       if (LDA->isDependencePair(*x, *y))
350         OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin())
351            << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent")
352            << "\n";
353 }
354 
print(raw_ostream & OS,const Module *) const355 void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const {
356   // TODO: doc why const_cast is safe
357   PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L);
358 }
359